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Abstract: Standard evaluation protocols in robotic manipulation typically as-
sess policy performance over curated, in-distribution test sets, offering limited
insight into how systems fail under plausible variation. We introduce Geomet-
ric Red-Teaming (GRT), a red-teaming framework that probes robustness through
object-centric geometric perturbations, automatically generating CrashShapes—
structurally valid, user-constrained mesh deformations that trigger catastrophic
failures in pre-trained manipulation policies. The method integrates a Jacobian
field–based deformation model with a gradient-free, simulator-in-the-loop opti-
mization strategy. Across insertion, articulation, and grasping tasks, GRT consis-
tently discovers deformations that collapse policy performance, revealing brittle
failure modes missed by static benchmarks. By combining task-level policy roll-
outs with constraint-aware shape exploration, we aim to build a general purpose
framework for structured, object-centric robustness evaluation in robotic manipu-
lation. We additionally show that fine-tuning on individual CrashShapes, a process
we refer to as blue-teaming, improves task success by up to 60 percentage points
on those shapes, while preserving performance on the original object, demonstrat-
ing the utility of red-teamed geometries for targeted policy refinement. Finally, we
validate both red-teaming and blue-teaming results with a real robotic arm, observ-
ing that simulated CrashShapes reduce task success from 90% to as low as 22.5%,
and that blue-teaming recovers performance to up to 90% on the corresponding
real-world geometry—closely matching simulation outcomes. Videos and code
can be found on our project website: https://georedteam.github.io/.
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1 Introduction
Standard evaluation protocols in robotic manipulation often benchmark policies on curated, in-
distribution test sets, providing limited insight into failure modes under plausible variation. Such
evaluations often obscure vulnerabilities arising from subtle shifts in object geometry, which can un-
predictably alter affordances, disrupt contact dynamics, and precipitate task failure. While adjacent
fields like vision and language have developed systematic tools for probing model robustness under
controlled input variations [1, 2, 3], analogous methods are only beginning to emerge in robotic ma-
nipulation [4, 5, 6, 7]. Specifically, no formal frameworks exist for systematically evaluating policy
performance under plausible, task-relevant geometric perturbations, despite the centrality of object
shape to manipulation.

In this work, we pose the following question: Can we automatically discover failure-inducing object
geometries, treating the policy strictly as a black box? To address this question, we cast the task as a
red-teaming problem, inspired by cybersecurity frameworks that proactively discover vulnerabilities
via realistic and targeted stress tests. Our objective is to generate geometric deformations that induce
catastrophic policy failures—deformed objects which we refer to as CrashShapes—while enforcing
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Figure 1: GRT surfaces policy failures on a real robot from minimal, plausible geometry edits.
Top: nominal screwdriver, bottle, and USB plug succeed. Bottom: CrashShapes induce bad grasp
pose, grasp slippage, and insertion failure via in-gripper plug rotation at socket contact. Small,
realistic deformations collapse policies that succeed on the original object.

a geometric prior governing permissible shape variations, ensuring that generated objects remain
physically plausible and semantically coherent. Since failure depends on how an object interacts
with the policy and task environment, we rely on embodied simulation rollouts to reveal small shape
perturbations that break the learned assumptions underlying grasp affordances, contact transitions,
or control trajectories. We refer to this system as GRT (“Geometric Red-Teaming”).

Operationalizing this concept poses two primary challenges: (1) policy performance must be evalu-
ated via simulator rollouts, which are non-differentiable and therefore preclude the use of gradient-
based optimization methods to generate CrashShapes; (2) the deformation space is high-dimensional
and must be explored under structural constraints that preserve mesh integrity and ensure physically
plausible, semantically coherent variations. To address these, we propose GRT, a modular frame-
work integrating a physically-grounded deformation model with gradient-free optimization. Our
method defines a deformation via handle points (vertices actively displaced) and anchor points (fixed
vertices), using a Jacobian-field formulation derived from the APAP mesh editing framework [8].
Both handle and anchor points can be manually specified or automatically selected via a vision-
language model (VLM), facilitating flexible, user-guided, or task-conditioned perturbations. The
optimizer operates exclusively through simulator feedback, accommodating both binary and contin-
uous success metrics, and generalizing across diverse object types and manipulation tasks. Finally,
we propose a constrained variant of our method that enforces a bound on the average handle dis-
placement, restricting the search to small deviations from the nominal geometry that still yield large
performance degradations.

This work presents the first red-teaming framework explicitly exploring 3D geometric deforma-
tion for robotic manipulation. Existing methods target symbolic parameters [5], language instruc-
tions [7], or scene-level failure taxonomies [6]. Object geometry is another critical axis of failure.
We explicitly target object-centric manipulation policies by perturbing the 3D meshes that define
both sensory input and interaction dynamics in simulation.

In summary, this paper makes the following contributions:

1. We introduce GRT, a policy-agnostic, simulator-in-the-loop framework that automatically
discovers physically plausible CrashShapes inducing catastrophic (> 50%) failures in pre-
trained manipulation policies.

2. We validate GRT in simulation across three domains—high-precision industrial insertion,
articulated drawer manipulation, and rigid-object grasping—demonstrating reliable failure
discovery in each.

3. We demonstrate the practical utility of our framework by showing that discovered
CrashShapes transfer to a physical robot and that simple PPO fine-tuning recovers up to
60 percentage points of performance without degrading performance on nominal shapes.
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2 Related Work
Evaluation Strategies in ML and Robotics Evaluation in machine learning and robotics has
long relied on benchmarks over canonical scenes or narrowly drawn object distributions [9, 10,
11], which obscure policy behavior under unseen, realistic variations of the task environment. In
contrast, vision and language domains now routinely employ adversarial testing [12, 13] and red-
teaming strategies [14, 1, 2, 3] to reveal behavioral blind spots. Despite the increasing autonomy
and deployment of robotic systems, comparable dynamic evaluation tools tailored to manipulation
remain limited. GRT addresses this gap through systematic, object-centric geometric perturbations.

Evaluating Policies under Geometric Variation Object geometry presents a critical axis for gen-
eralization in robotic manipulation. DoorGym [15] and ManiSkill [16] introduce procedural object
variation within task families, while EGAD [17] adopts evolutionary strategies to generate datasets
covering a spectrum of geometric complexity and grasp difficulty. However, these datasets remain
static, task-specific, and entirely agnostic to policy behavior. In contrast, we formulate geometric
deformation as a continuous, policy-conditioned search for failure-inducing perturbations.

Failure Mode Discovery for Robot Policies Recent efforts in robustness evaluation have moved
beyond static benchmarks toward active vulnerability discovery [5, 6, 7, 4]. RoboMD [5], for in-
stance, employs RL to perturb scene attributes during policy rollouts, rewarding configurations that
induce failure. However, this methodology typically requires explicit parameterization of scene
attributes, offering limited insight into failure modes rooted in fine-grained, continuous geome-
try. Similarly, AHA [6] relies on predefined error taxonomies, constraining discovered failure
types, while language-conditioned methods [7] study semantic shifts but stay detached from object-
physical interactions. In contrast, by applying physically plausible mesh deformations and simulator
rollouts to surface geometric misgeneralizations, our method introduces 3D object geometry as a
core axis of failure analysis.

3 Background
Mesh Deformation with Jacobian Fields To generate structurally coherent deformations of 3D
meshes, we adopt the first stage of APAP [8]. Given a source mesh M0 = (V0, F0), where V0 ∈
RV×3 are vertex positions and F0 denotes triangular faces, a local affine Jacobian Jf ∈ R3×3 is
assigned to each face f ∈ F0. Deformation proceeds by specifying a set of handle points H ⊆ V0

with target positions Th ∈ RH×3, and fixed anchor points A ⊆ V0 with targets Ta ∈ RA×3,
preventing trivial global translations and allowing more control over deformations in local regions
of the mesh. The deformed mesh V ∗ is obtained by solving:

V ∗ = arg min
V

||LV −∇TAJ ||2 + λ||KaV − Ta||2, (1)

where L is the cotangent Laplacian,∇ is the stacked per-face gradient operator, A is a mass matrix,
J is the given Jacobian field, Ka is an indicator matrix which selects anchor vertices, and λ controls
the constraint strength. This linear system is solved via a differentiable Cholesky solver. Soft handle
constraints are then imposed by minimizing the loss Lh = ||KhV

∗−Th||2 through gradient descent
on the underlying Jacobian field, where Kh is an indicator matrix to select handle vertices. We omit
the second-stage 2D diffusion prior used in Yoo et al. [8] due to its limited benefit in task-specific
object domains and substantial computational overhead. For more details, see Appendix B.

Gradient-Free Optimizers for Black-Box Search We approach deformation parameter search
as a black-box optimization problem, in which gradients with respect to policy performance are
unavailable and evaluations are carried out via simulator rollouts. Population-based, gradient-free
methods such as CEM [18] and CMA-ES [19] are commonly used in such settings. GRT builds on
TOPDM [20], which introduces a selective perturbation strategy—at each iteration, only a random
subset of parameters is modified, rather than perturbing the entire candidate vector. This selective
perturbation explores local refinements without overwriting globally effective structure, enabling
sample-efficient discovery of subtle, failure-inducing deformations.

4 Problem Formulation
We consider the problem of evaluating the geometric robustness of robotic manipulation policies by
discovering physically plausible deformations of 3D object meshes that induce policy failure.
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Figure 2: System overview of GRT. Given a task description and nominal object (Initialization
Parameters), anchor and handle points are selected using a vision-language model (a). Handle dis-
placements are sampled to define a population of deformation candidates. Each sample is converted
into a perturbed mesh via Jacobian field-based optimization (b) and evaluated in simulation with a
frozen policy (c). Deformations that induce failure are sampled to guide the next population.

Let π : S → A denote a pre-trained manipulation policy, where S is the policy’s observation
space and A is the action space. Each object instance is represented as a watertight triangle mesh
M = (V, F ), with vertices V ∈ Rn×3 and triangular faces F . A parameterized deformation operator
Dθ : Rn×3 → Rn×3, with θ ∈ Θ representing the deformation parameters to be optimized, maps
the original mesh to a deformed variant M̃ = (Dθ(V ), F ). Given a task-specific success metric
J (π, M̃) ∈ R computed via simulation rollouts, we aim to discover deformation parameters that
minimize task performance:

θ∗ = arg min
θ∈Θ, Dθ(M)∈G(M)

J (π,Dθ(M)), (2)

where G(M) denotes the set of physically plausible deformations of the nominal mesh M , ensuring
that the search is restricted to task-relevant perturbations, rather than degenerate geometries. Op-
tionally, we restrict search to constraining the average handle displacement. See Appendix C for
more details on this constrained variant of our method.

Assumptions We assume access to a pre-trained manipulation policy π. Each object is represented
as a watertight, manifold triangle mesh M = (V, F ). We consider canonical objects on which the
policy achieves high success, as established by training performance or empirical evaluation. We
also assume access to a physics-based simulator capable of loading deformed meshes M̃ = Dθ(M),
executing π, and reporting a scalar task performance metric J (π, M̃). The simulator must model
object contact, dynamics, and task-environment interactions to yield meaningful evaluation signals.
Neither the simulator nor the task performance metric is assumed to be differentiable.

5 Method
We propose GRT, an object-centric red-teaming framework for robotic manipulation policies, which
defines a continuous search space over object geometries, targeting minimal perturbations that in-
duce policy failures. GRT (see Figure 2) consists of four key components. First, we expose a
deformation interface on M by selecting task-relevant handle and anchor points. Second, we apply
a Jacobian field-based deformation model to generate smooth perturbations of the object from han-
dle displacements. Third, we evaluate π on the deformed objectDθ(M) through simulation rollouts.
Finally, we leverage gradient-free optimization to search over the deformation parameter space θ, to
discover physically plausible deformations that maximally impair policy performance.

5.1 VLM-Guided Mesh Deformation
We represent each object as a watertight triangular mesh M = (V, F ). To generate plausible de-
formations, we specify a set of handle points H ⊆ V and anchor points A ⊆ V as boundary
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[Task-Ranking Response Schema]
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Figure 3: Two-stage VLM prompting strategy for 3D handle-point selection. First, the Geomet-
ric Reasoning template aligns a canonical view-panel and indexed keypoints with a high-level task
description, guiding the VLM to infer which vertices control meaningful mesh deformations. Next,
the Task-Critical Ranking template asks the model to pareto-rank these candidates by plausibility
and task relevance, producing a compact set of handle points for targeted, task-aware red-teaming.

constraints on the mesh surface, where the former are displaced and the latter remain fixed. We then
use the Jacobian-field optimization framework from Yoo et al. [8] to compute physically coherent
perturbations of the nominal mesh. Manually specifying H and A at scale is time-consuming and
risks overlooking non-intuitive failure hypotheses. Therefore, we adopt a VLM-guided handle selec-
tion strategy wherein we prompt a vision-language model ChatGPT-4o to propose candidate handle
points based on object geometry and high-level task cues. This strategy is realized through a hierar-
chical prompting framework that guides the VLM through two stages of reasoning (See Figure 3).

Geometric Reasoning Template Given a canonical object meshM , we first generate a Canonical
View Panel, shown in the left panel of Figure 3—a 2 × 2 grid of rendered views with overlaid,
indexed keypoints produced via a heuristic keypoint sampler (see the Appendix F.1 for details).
The accompanying prompt instructs the VLM to reason jointly over the visual and 3D coordinate
information of the keypoints to propose subsets of handle points, each annotated with semantic
descriptions of the intended deformation.

Task-Critical Ranking Template The second prompt asks the VLM to rank these candidate han-
dle point subsets according to a two-part objective reflecting the dual goals of red-teaming: (i) the
plausibility of resulting objects post-deformation, and (ii) their hypothesized potential to induce
policy failure. The VLM is explicitly instructed to reason in a Pareto-optimal fashion, preferring
subsets that achieve a favorable trade-off between structural realism and task-specific red-teaming
utility, rather than optimizing for either criterion in isolation (See Figure 3). While this approach
is generally reliable, we observe failure cases on manufacturing components like USB connectors,
likely due to under-representation in the VLM’s pre-training corpus. In such cases, we allow the
user to fall back to manual handle point selection and encode domain knowledge or task-specific
priors directly into the deformation process.

5.2 Red-Teaming via Black-Box Optimization
Given a deformation model Dθ(M) and a black-box manipulation policy π, we aim to search for
deformation parameters θ that degrade policy performance when evaluated through simulator feed-
back. This problem presents two primary challenges: First, the deformation space, defined by dis-
placements of handle points over the object mesh, has several global and local optima. Second,
the search must be conducted without access to gradients, as neither the reward function nor the
simulator are assumed to be differentiable.

We adopt the selective perturbation strategy from TOPDM [20], wherein only a random subset
of handle-point displacements is perturbed per candidate. This design is well suited to high-
dimensional deformation spaces, as perturbing all parameters can destabilize globally coherent ge-
ometry, while selective updates preserve promising global structure and support fine-grained local
refinement. In GRT, this enables incremental adjustment of local geometric features—such as the
contour of a contact surface—without introducing large-scale distortions to the object.

Operationally, our optimization framework maintains a population of deformation candidates sam-
pled from a Gaussian distribution over θ. In each iteration, candidates are evaluated via simulator
rollouts, ranked according to J (·), and the highest-performing samples (elites) are used to update
the proposal distribution. Early iterations apply perturbations broadly, promoting exploration of the
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global deformation space. In later iterations, localized perturbations enable fine-grained adjustment
of critical object features that influence policy behavior. We implement this optimization loop in
NVIDIA IsaacGym [21], evaluating each candidate deformation across a batch of parallel envi-
ronments with randomized initial poses to obtain a reliable estimate of policy performance. The
complete procedure for our black-box policy red-teaming framework can be found in Algorithm 1.
All hyperparameters and task-specific implementation details can be found in Appendix I.

Algorithm 1: Red-Teaming Black-Box Manipulation Policies via Simulator Feedback
Input: Task object mesh M ∈ R3; Handle points H = {h1, h2, . . . , hM}, hm ∈M ;
Anchor points A ⊂M ;
Population size N , elite fraction ρ, maximum iterations T ;
Initial Gaussian distribution over deformation parameters: mean µ0 ∈ RM×3, diagonal covariance
Σ0 ∈ RM×3;
Perturbation fraction γ for localized refinement;
Pre-trained manipulation policy π;
Simulator-based evaluation metric J (π,Dθ(M)).
Output: CrashShape parameters θ∗ ∈ RM×3 inducing minimal J (π,Dθ(M)).

Initialize: Sample population {θ(0)
i }

N
i=1 fromN (µ0,Σ0);

for t = 1 to T do
foreach θ(t−1)

i in population do
Randomly select bγMc handle points from H;
Add Gaussian noise to corresponding rows of θ(t−1)

i drawn fromN (µ0,Σ0);
Generate deformed mesh M̃i = D

θ
(t−1)
i

(M);

Evaluate task performance: Ji = J (π, M̃i) via simulator rollout;

Select elite set E(t−1) = top dρNe samples with lowest Ji;
Replicate elites to form new population {θ(t)

i }
N
i=1;

return θ∗ = arg min
θ
(t)
i

J (π,D
θ
(t)
i

(M)) across all i, t.

6 Experiments
We structure our experimental evaluation around three central research questions:
RQ–1 Failure Discovery. Can our red-teaming pipeline reliably uncover catastrophic policy failures

through minimal geometric perturbations of nominal objects?
RQ–2 Component Contribution. How much do VLM-guided handle selection and gradient-free

optimization individually contribute to the efficiency and quality of failure discovery?
RQ–3 Actionability. Do the generated CrashShapes transfer to real-world settings, and can they be

leveraged to enhance policy robustness through straightforward fine-tuning?

Policies and Object Suites. We evaluate GRT across three robotic manipulation tasks—rigid ob-
ject grasping, high-precision insertion, and articulated manipulation—to cover diverse policies and
failure modes. The grasping experiments red-team Contact-Graspnet [22], a generalized grasp pre-
dictor, on 22 YCB dataset objects [23] that achieve at least 25% success on nominal shapes under
our evaluation protocol (64 grasp trials per object in randomized poses). For insertion, we test two
variants—a state-based policy trained under the IndustReal framework [24], alongside a point-cloud
initialized variant using PointNet++ [25]. Articulated manipulation employs a state-based drawer-
opening policy trained on assets from PartNet-Mobility [26]. Real-world validation is performed
on both the state-based insertion policy and the rigid-object grasping policy (Contact-Graspnet),
confirming transferability of discovered CrashShapes beyond simulation.
Evaluation Metrics. We quantify the effectiveness of our red-teaming framework using four com-
plementary metrics. Final Drop measures the mean relative reduction in success rate from nominal
to discovered CrashShapes. Iter @ 50% indicates the average iterations at which a 50% relative
performance drop is reached. AUC is the area under the curve of relative success drop versus itera-
tion, capturing both speed and severity. We additionally report the median increase in angular-deficit
entropy [27])—termed ∆Complexity—relative to the nominal mesh, computed over the ten worst-
performing discovered shapes to characterize typical deformation severity while remaining robust
to outliers. Formal definitions appear in Appendix E.

Catastrophic Failure Discovery (RQ–1) Table 1 demonstrates that GRT reliably exposes catas-
trophic failures beyond standard evaluations. In grasping, VLM-guided handles reach severe policy
degradation in fewer iterations and without increased geometric deviation compared to manual se-
lection, reflecting the ability of vision–language priors to pinpoint high-leverage contact regions that
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humans may overlook. For insertion, manual handles outperform VLM proposals on the state-based
controller by focusing perturbations on mechanical contact features that drive state-only feedback,
while VLM guidance more effectively stresses the point-cloud model by perturbing visually dis-
criminative geometry. In articulated manipulation, manual handles induce near-complete failure
immediately. These results demonstrate that the effort required to elicit failure varies with both pol-
icy modality and task demands, reinforcing the generality of our approach. We additionally report
evaluations under a Smoothness Score (SS) constraint, in which we constrain the average handle
displacement to be under a threshold. Across all tasks, our method continues to induce significant
failures in this constrained setting, indicating that the framework does not rely on large deformations
to find confounding geometries. See the Appendix C for details.
Table 1: Red-teaming results across tasks. Final drop, iteration to failure, and AUC measure failure
severity; ∆Comp. quantifies geometric deviation.

Task Method Final Drop (%) ↑ Iter @ 50% ↓ AUC ↑ ∆Comp. ↓

Grasp (YCB)
VLM-Guided 76.3 7.3 5.26 0.041

Manual 63.4 9.1 4.33 0.050
VLM-Guided + SS 58.3 9.2 3.301 0.002

Articulated Manip.
VLM-Guided 61.9 10.0 4.90 1.517

Manual 98.9 6.0 6.52 0.054
Manual + SS 44.7 10.0 1.97 0.021

Insertion (State)
VLM-Guided 67.4 9.0 5.53 0.286

Manual 73.95 8.0 5.39 0.096
Manual + SS 60.9 6.0 4.37 0.032

Insertion (PCD)
VLM-Guided 77.7 6.0 6.85 0.358

Manual 71.7 10.0 5.98 0.155
Manual + SS 43.4 10.0 3.85 0.044

Ablation Study: Handle Selection and Optimization (RQ–2) We ablate key components of
GRT by red-teaming Contact-GraspNet [22] on 22 YCB objects with diverse shapes and grasp-
ing affordances. This setting enables controlled comparisons between deformation strategies while
retaining object-level variability. As shown in Table 2, we factor our pipeline across two key
axes—sampling strategy (Gaussian Perturbation vs. Optimization) and handle-selection (Heuris-
tic vs. VLM-guided)—yielding four core variants. All methods begin by extracting a candidate set
of handle points using a fixed geometric heuristic. VLM-guided variants select handles using the
prompting strategy from Section 5.1; while the Heuristic variants uniformly sample handles from
the candidate pool, with the selection cardinality matched to VLM mean across all YCB objects for
fairness. Gaussian perturbations deformation parameters without structure, while optimization uses
TOPDM’s selective perturbation scheme. We also include an Optimization + All Candidates base-
line that treats all candidates as active handles, increasing both the expressivity and complexity of the
search space. The results highlight two key findings: (1) optimization substantially improves both
failure severity and convergence speed over gaussian perturbations, and (2) VLM-guided handle
selection outperforms heuristics, validating the value of learned priors for efficient failure discovery.

Table 2: Ablation results on grasping with Contact-GraspNet across 22 YCB objects. We evalu-
ate the impact of handle selection strategy (Heuristic vs. VLM-guided) and deformation search
method (Gaussian Perturbation vs. Optimization). All keypoint-based methods (except “All Han-
dles”) use a fixed handle count matched to the VLM-guided mean. Results show that both VLM
guidance and optimization improve failure severity and convergence.

Method Final Drop (%) ↑ ∆Complexity ↓ Iter @ 50% ↓ AUC ↑

Heuristic + Gaussian Perturbation 63.3 0.058 10.00 3.654
Heuristic + Optimization 68.4 0.035 8.95 4.610
All Handles + Optimization 71.4 0.179 8.91 4.650
VLM-Guided + Gaussian Perturbation 65.1 0.030 10.00 3.803

VLM-Guided + Optimization (Ours) 76.3 0.041 7.32 5.259

Blue-Teaming: CrashShapes as Corrective Training Signals (RQ–3) To assess whether
CrashShapes can serve as effective corrective training signals, we fine-tune both insertion poli-
cies on subsets of failure-inducing geometries. For the state-based policy, we identify two distinct
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CrashShapes (CS-1, CS-2) and fine-tune separate policy instances on each, alongside the nominal
plug. Fine-tuning is conducted via PPO with early stopping and no task augmentation. For the
point-cloud-initialized policy, we fine-tune a single policy jointly on five CrashShapes (PC-CS-1 to
5) and the nominal plug. Table 3 shows that across both setups, blue-teaming lifts task success on
CrashShapes from 20-45% to 80–95%, while preserving original performance on the nominal ge-
ometry. These results demonstrate that even simple red-teamed geometries can meaningfully guide
robustness improvement without inducing regression.

Table 3: Simulation blue-teaming results on high-precision industrial insertion. CrashShape per-
formance is reported before and after fine-tuning; the final column confirms nominal performance is
preserved. Nominal pre-training success: 96% (State-based) and 86% (PointCloud-initialized).

Policy Geometry Orig. % Blue. % Nominal after %

State-based CS-1 25.0 87.8 87.5
CS-2 45.0 93.8 96.0

PointCloud-initialized PC-CS Shapes 31.3 81.3 87.3

Actionability: Real-World Validation (RQ–3) We further validate the practical transferability of
red- and blue-teaming to the real-world by fabricating CrashShapes for both the state-based insertion
policy and the rigid-object grasping policy (Contact-Graspnet) and evaluating them on hardware.
Using PLA prints of CS-1 and CS-2, generated via CoACD decomposition [28] and 3D printing,
we conduct 40 physical trials per shape on an xARM 6. Results in Table 4 show a close match
to simulation: task success drops from 90% (nominal) to 22.5% and 55% on the CrashShapes,
respectively. For grasping, we 3D-printed one CrashShape per object for two YCB objects (mustard
bottle, screwdriver) and evaluated each in 20 trials on a Franka arm. In Table 4, these appear under
“CS-1” with “CS-2” marked as “–”, to maintain a uniform column structure across tasks. The results
show substantial real-world success drops, consistent with simulation trends. Deploying the blue-
teamed policies from simulation—without additional real-world fine-tuning—recovers success rates
to 90% (CS-1) and 82.5% (CS-2), with no degradation on the nominal plug. These results affirm the
physical realism, and underscore the utility of CrashShapes as both diagnostic and corrective tools.

Table 4: Real-world validation across insertion and grasping. Columns are uniform for both tasks.
For insertion, CS-1 and CS-2 are the two printed CrashShapes. For grasping, each object has a
single printed CrashShape reported under CS-1; CS-2 is “–”.

Task Policy / Object Nominal CS-1 CS-2

Insertion (xARM 6)
Original Policy 90.0 % 22.5 % 55.0 %
Blue-Teaming on CS1 85.0 % 90.0 % –
Blue-Teaming on CS2 95.0 % – 82.5 %

Grasping (Franka) Mustard Bottle 80.0 % 30.0 % –
Screwdriver 90.0 % 35.0 % –

7 Conclusion
This paper presents GRT, an automated red-teaming framework for robotic manipulation policies,
with a focus on generating confounding object geometries leveraging user-specified or VLM-guided
constraints. Our method casts shape deformation as a black-box search problem, using embod-
ied simulation rollouts to discover CrashShapes—physically plausible object variants that trigger
catastrophic failures in pre-trained manipulation policies. The ability to guide deformations using
either manual or VLM-derived priors enables semantically grounded stress-testing. Importantly, we
demonstrate that the failure-inducing geometries discovered in simulation reliably transfer to the real
world across multiple manipulation skills, including high-precision insertion on a physical xARM 6
setup and rigid-object grasping on a Franka arm. These CrashShapes can then be leveraged for tar-
geted policy improvement through naive fine-tuning using PPO with early stopping (blue-teaming).
This simple training strategy recovers up to 60 percentage points in task success on the CrashShapes
without degrading performance on the original shape. These results affirm that CrashShapes are not
only diagnostic but also actionable, providing a practical pathway to enhance robustness without
overfitting. Altogether, our pipeline offers a scalable, policy-agnostic tool for structured robustness
evaluation and targeted correction of failure modes in robotic manipulation, with validated impact
both in simulation and the real world.
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8 Limitations

In this work, we assume that input objects are represented as watertight, manifold triangle meshes.
This requirement arises from the underlying Jacobian field-based deformation model, which de-
pends on well-defined differential operators over the mesh surface. Real-world scans, however,
often contain noise, holes, or non-manifold artifacts, and require careful preprocessing for mesh
repair or mesh reconstruction before they can be used within our framework.

Failure-inducing geometries are discovered through embodied simulation rollouts in the Isaac Gym
simulator. Although Isaac Gym offers high-fidelity rigid-body simulation, it inevitably approximates
real-world contact dynamics and frictional effects. While our real-world experiments demonstrate
strong transferability for high-precision, millimeter-level tolerance tasks like USB insertion, trans-
ferability cannot be assumed universally across all tasks and object types.

Finally, while our framework effectively uncovers hidden failure modes, it does not aim to explain
why those specific failures occur. The resulting CrashShapes serve as actionable test cases, but in-
terpreting their causal relationship to policy behavior currently requires manual analysis. Extending
the framework with tools for automatic failure diagnosis or causal attribution remains an important
direction for future work.
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Appendix
A Qualitative Evolution of Red-Teaming

To visualize the progression of our geometric red-teaming framework, Figure 4 presents the opti-
mization trajectory for six representative objects spanning all three task domains. Each row corre-
sponds to a single object, shown at five key stages: the nominal mesh, the initialization (Iteration 0),
and Iterations 4, 8, and 9 of the optimization process. Annotations include task success rate (mea-
sured via simulator rollouts) and morphological shape complexity (computed via angular-deficit
entropy).

The first four rows depict grasping objects from the YCB benchmark, while the fifth and sixth
rows showcase results from the high-precision insertion and articulated drawer manipulation tasks,
respectively. These examples reveal that failure-inducing deformations are often subtle: for several
objects, catastrophic policy collapse occurs with minimal increase in shape complexity, highlighting
the brittleness of learned affordances.

Across tasks, performance degradation is often non-monotonic, reinforcing the need for simulator-
in-the-loop evaluation over one-shot or gradient-based strategies. Notably, the final CrashShapes
in row 5 (USB insertion) and row 6 (drawer manipulation) retain structural realism despite causing
near-complete task failure—validating our goal of discovering minimal, plausible perturbations with
high diagnostic value.

B Evaluating the Role of the 2D Diffusion Prior in APAP

Our deformation module adopts only the first stage of the APAP framework [8], which optimizes
a per-face Jacobian field subject to handle and anchor constraints. The original APAP method in-
cludes a second stage that applies a 2D diffusion prior over mesh texture space to further smooth the
deformation field. While beneficial for stylized mesh editing, we find this stage to be unnecessary
for our use case, where the primary objective is to produce plausible geometric changes that satisfy
localized constraints.

Deformation Consistency. To evaluate whether omitting the 2D diffusion prior degrades the qual-
ity of deformation, we compare the resulting meshes across 15 diverse objects from the original
APAP dataset. Figure 5 presents qualitative examples, showing that both deformation pipelines
yield smooth, semantically coherent shapes that satisfy the same sets of handle and anchor con-
straints. Visually, the deformations are nearly indistinguishable, suggesting that the core structure
of the transformation is retained without the diffusion stage.

Chamfer Distance. Quantitatively, we compute the pairwise Chamfer Distance between:

the nominal mesh and the full APAP deformation (CDNom-APAP),

the nominal mesh and the Jacobian-only deformation (CDNom-Jac),

and the two deformed variants themselves (CDAPAP-Jac):

CDNom-APAP CDNom-Jac CDAPAP-Jac

Value (×1000) 4.137 3.084 0.686

The deformation variants differ by an average of just 6.86 × 10−4 in absolute terms—remarkably
low for objects normalized to a unit bounding box—indicating that the mesh produced by Jacobian
optimization alone closely matches the result of the full APAP pipeline.

Computational Efficiency. While accuracy is preserved, the computational footprint differs sub-
stantially. On an NVIDIA RTX 4090 GPU, the full APAP pipeline consumes roughly 10 GB of
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Figure 4: Evolution of geometric red-teaming across optimization. Each row shows an object un-
dergoing deformation via our pipeline across three tasks: rigid grasping (rows 1–4), high-precision
insertion (row 5), and articulated drawer manipulation (row 6). Columns show deformation stages
with annotated shape complexity and task success. Results confirm that minor, plausible deforma-
tions can collapse performance, often without significant increase in complexity.

memory and requires 10 minutes per object. In contrast, the Jacobian-only variant completes in
22 seconds using ∼1 GB of memory—a 27× speedup in runtime and 10× reduction in memory
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Figure 5: Qualitative comparison of deformations with and without the 2D diffusion prior from
APAP. Both variants satisfy identical handle and anchor constraints; differences are minimal despite
the Jacobian-only variant being substantially more efficient.

usage. Given that each optimization run in our red-teaming framework requires hundreds of de-
formation evaluations, omitting the diffusion prior enables tractable, high-throughput exploration
without compromising geometric fidelity.

Failure on Specialized Objects. While the diffusion stage offers negligible benefit in general, it
is actively harmful in certain task settings. Figure 6 visualizes deformations of a USB plug—an
object category likely underrepresented in APAP’s 2D training distribution. Here, the full pipeline
yields grossly implausible shapes that fail to preserve the structural priors essential to downstream
manipulation.

Figure 6: Deformation failure induced by the APAP diffusion prior on a USB plug. While the
Jacobian-only variant preserves connector geometry, the full pipeline produces unrealistic deforma-
tions. These deviations significantly undermine task viability for insertion.

We quantify this failure by measuring Chamfer Distance in two ways: globally across the full object,
and locally over a densely sampled patch on the plug’s connector head—the region most critical for
the insertion task. Importantly, this region was explicitly constrained via a dense set of anchor
points, intended to preserve its geometry during deformation. Despite these constraints, the full
APAP pipeline introduces large deviations in this area, indicating that the diffusion prior overrides
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local geometric fidelity in pursuit of global smoothness. In contrast, our Jacobian-field-only model
faithfully preserves the anchor-constrained region while enabling expressive variations elsewhere.
The results are summarized below:

Region CDNom-APAP CDNom-Jacobian CDAPAP-Jacobian

Global (×1000) 5.074 0.793 2.429
Connector Head Only (×1000) 11.833 0.186 5.697

The full APAP pipeline introduces an order-of-magnitude larger deviation in the connector head
region than the Jacobian-only variant. This geometric corruption is especially detrimental in tasks
like insertion, where small perturbations in contact geometry can lead to complete task failure. In
contrast, our Jacobian-field-only model produces constraint-faithful deformations that preserve task-
relevant geometry while allowing expressive variations elsewhere.

Takeaway. Omitting the APAP diffusion prior improves deformation throughput by an order of
magnitude and yields better geometric preservation on task-relevant regions—especially for spe-
cialized objects underrepresented in the prior’s training data. Given the absence of meaningful
degradation and the significant performance benefits, our framework adopts the Jacobian-only vari-
ant for all experiments.

C Smoothness Score: A User Interface for Guaranteed Deformation Extents

C.1 Motivation and Design Goals

We aim to provide a simple interface that gives users guarantees on the extent of deformation while
preserving mesh plausibility and task semantics. Rather than targeting “visual subtlety,” which is
subjective, we expose a metric, simulator-agnostic deformation budget that:

1. provides explicit guarantees on average handle displacement in metric units,
2. constricts the optimizer to a narrower feasible set around the nominal geometry,
3. composes cleanly with the Jacobian-field solver and anchor constraints from the main method

(Sec. 5),
4. remains stable in optimization via a projection step that preserves proposed directions.

C.2 Definition and Guarantee

Let H = {hi}Mi=1 be the set of handle vertices and di ∈ R3 their displacements in a candidate
deformation. We define the Smoothness Score (SS) as

SS(D) =
1

M

M∑
i=1

‖di‖2 , D = {di}Mi=1. (3)

Given a user budget τ > 0 (meters), we collect all budget-feasible deformations in

Cτ (M) =
{
θ ∈ Θ : SS

(
D(θ)

)
≤ τ

}
. (4)

Any proposed candidate with SS(D) > τ is projected back to the budget surface by uniform scaling:

Pτ (D) = sD, s = min

{
1,

τ

SS(D)

}
. (5)

This projection guarantees SS(Pτ (D)) ≤ τ and preserves the direction of the proposed handle
motions.

Normalization. We report τ in metric units and also provide axis-aligned bounding-box extents
for context. A dimensionless variant τ̂ = τ/Bmax, where Bmax is the maximum box extent, may
be used for cross-object comparability.
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C.3 Relationship to Plausibility and ∆Complexity

The budget limits the magnitude of handle motion. Plausibility of the full mesh deformation contin-
ues to be enforced by the Jacobian-field optimization and anchor constraints. We report the median
change in angular-deficit entropy (∆Complexity) as a mesh-level proxy for geometric deviation. Un-
der budgeted search we observe a significant drop in median ∆Complexity across all task and policy
suites, indicating minimal deviation beyond local neighborhoods of the handles.

C.4 Integration into the Optimization Loop

We insert the projection after mutation and before the mesh solve. This
keeps the proposal distribution unchanged while narrowing the feasible region.

Algorithm 2: Budgeted candidate projection within the red-teaming loop

Input: Proposed handle displacements D = {di}Mi=1, budget τ > 0
if SS(D) > τ then

D ← τ

SS(D)
D ; // Uniform scaling to the budget surface

return D

D Real-World Setup

D.1 Insertion Policy

Real-world experiments were conducted using an xArm 6 robotic arm connected via Ethernet to
a laptop equipped with an NVIDIA GeForce RTX 2070S GPU. Inference and control logic were
executed locally on this machine. The xArm was controlled using the manufacturer-provided Python
API for Cartesian position control.

Each CrashShape geometry was processed using CoACD [28] to generate a convex decomposition.
This served two purposes: first, to match the simulation setup, where convex decomposition was
used to prevent contact buffer overflows; and second, to improve printability. Without decomposi-
tion, several CrashShapes exhibited topological artifacts that prevented reliable slicing, such as open
holes or thin surfaces; CoACD regularization mitigated these defects.

Figure 7: Physical setup and fabricated geometries used for real-world insertion experiments.
Left: Nominal USB plug and two red-teamed CrashShapes generated by our framework. These 3D-
printed variants retain connector plausibility while introducing subtle geometric deviations. Right:
xArm 6 robot and assembly platform used for physical testing.

The processed meshes were fabricated using a Bambu Labs X1E 3D printer with white PLA fila-
ment. Physical socket placement was manually configured to approximate the same relative pose
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used in simulation. Representative images of the fabricated plugs and socket, as well as the overall
experimental setup, are shown in Figure 7. For control, we used the PLAI controller from Indus-
tReal [24], which facilitated policy transfer from Isaac Gym by stabilizing Cartesian-space motions.
To adapt the policy outputs to real-world dynamics, a fixed scaling factor was applied to all action
vectors prior to execution.

Experimental Setup

Each CrashShape was evaluated across 40 independent insertion trials. To ensure geometric diver-
sity and improve coverage of failure modes, we randomized the pose of the plug relative to the
socket in each trial. Candidate plug poses were sampled using a Poisson Disk distribution centered
around the nominal insertion pose and constrained to a bounded cuboidal volume that mirrors the
plug initialization distribution used during curriculum-based policy training in simulation. This sam-
pling strategy ensured non-overlapping plug placements while maximizing uniformity across the test
space, and helped assess policy robustness to small real-world perturbations in plug alignment.

D.2 Grasp Policy

Real-world grasping experiments were conducted on a table-top Franka Emika Panda arm. An
Azure Kinect camera, mounted on a stand, provided RGB-D observations from which object point
clouds were extracted. Control was implemented with the Deoxys library using a joint position
controller: given a target grasp pose from the policy, we solved inverse kinematics for the target
joint configuration and commanded the arm to that configuration.

Nominal and GRT-generated CrashShape geometries were 3D printed in PLA (Bambu Labs X1E).
The prints preserve object plausibility while introducing subtle geometric deviations that affect grasp
stability. Representative objects and the physical setup are shown in Fig. 8.

Figure 8: Physical setup and fabricated geometries used for real-world grasping experiments.
Left: Nominal screwdriver and bottle and their CrashShapes (deformed variants). Right: Table-top
Franka Emika Panda with an Azure Kinect camera used to acquire point clouds. These 3D-printed
variants preserve plausibility while altering geometry relevant to grasping.

Experimental Setup

Each object (nominal and CrashShapes) was evaluated over 20 independent grasp trials. For each
trial, the object was randomly re-initialized on the tabletop within a bounded workspace region with
randomized planar position and yaw. The grasp policy proposed a target pose from the point cloud;
the pose was executed via the IK-then-joint-position pipeline described above.

E Evaluation Metrics

We evaluate the effectiveness of our red-teaming framework using four metrics: relative final drop
in success, area under the degradation curve (AUC), mean iterations to first catastrophic failure,
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and median change in shape complexity. These metrics quantify failure severity, optimization effi-
ciency, and geometric plausibility. All metrics are computed per object, then aggregated across the
benchmark suite. Formal definitions and justifications follow.

Final Drop in Success Rate. Let S0 denote the success rate of a pre-trained policy π on the
undeformed object M . For each red-teamed geometry Tθ(M) discovered during optimization, let
Sθ denote the success rate of π when evaluated on that geometry. The final drop is defined as the
maximum relative decline in performance:

∆final := maxθ∈Θ(
S0 − Sθ
S0

),

where Θ is the set of all deformation parameters explored by the red-teaming framework.

Motivation. This metric captures the worst-case relative degradation in policy performance across
the entire optimization trajectory. By normalizing to the nominal object geometry, it supports con-
sistent comparison across tasks with differing baseline success rates.

Area Under Degradation Curve (AUC). Let St denote the best success rate observed up to iter-
ation t, and define the normalized degradation curve as:

C(t) := (
S0 − St
S0

), t = 0, · · · , T.

We compute AUC via trapezoidal integration over the T optimization steps:

AUC :=

T∑
t=1

1

2
(C(t) + C(t− 1)).

Motivation. AUC jointly reflects the rate and severity of failure discovery. High AUC corresponds
to early and substantial degradation, making it a sensitive indicator of optimizer effectiveness under
constrained simulation budgets.

Mean Iterations to First Catastrophic Failure. A geometry Tθ(M) is classified as inducing
catastrophic failure if: Sθ ≤ 0.5 ·S0. Let t(i)fail be the first optimization step at which this condition is
met for object i. Then,

E[tfail] :=
1

N

N∑
i=1

tfail(i),

where N is the number of test objects. Motivation. This metric quantifies how efficiently the opti-
mizer surfaces critical failure cases—those that reduce policy performance by at least 50% relative
to the undeformed object. It provides insight into the convergence dynamics of the search process.

Median Change in Shape Complexity. We adopt the angular-deficit entropy [27] as a morpho-
logical proxy for shape complexity. For a mesh M , the angular deficit at vertex j is given by:

Φj = 2π −
∑
i

φi,

where φi are the internal angles of faces adjacent to j. The histogram of Φj over [−2π, 2π) is
normalized into a probability distribution p(Φb) over bins b, and the entropy of this distribution
defines the complexity:

H(M) := −
∑
b

p(Φb) log p(Φb).

We compute this measure for the nominal object geometry and for the ten red-teamed geometries
with lowest observed success rate. The reported metric is the median increase in complexity:

∆Complexity := medianθ∈Θ′(H(Tθ(M))−H(M)),

where Θ′ ⊂ Θ is the set of ten worst-performing geometries. Motivation. This metric estimates
the typical morphological deviation required to induce failure. We use the median rather than the
mean or maximum to suppress the influence of extreme outliers and better characterize the central
tendency of deformation severity. Prior work has shown that angular-deficit entropy correlates well
with human intuition for shape complexity, making it a meaningful descriptor for plausibility.
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F Canonical View Panel Construction

To support 3D keypoint selection via the Geometric Reasoning prompt, we construct a 4-view canon-
ical panel that depicts a mesh overlaid with semantically diverse surface keypoints. This section
details the in-house heuristic sampling algorithm used to select these keypoints, as well as the ren-
dering strategy used to generate the final composite.

F.1 Keypoint Sampling via PCA-Guided Geometric Heuristics

Given a watertight object mesh M , we first uniformly sample P = 20,000 surface points {xi}Pi=1
and their corresponding face normals. A two-stage downsampling procedure is then applied to
promote semantic and spatial diversity while preserving geometric symmetry and coverage.

Stage 1: Principal Axis Estimation. We compute the mean-centered point cloud X ∈ RP×3 and
extract its dominant principal direction v1 ∈ R3 using Principal Component Analysis (PCA):

v1 := arg max
‖v‖=1

Var(Xv),

with subsequent orthogonal directions {v2, v3} forming a right-handed basis. These axes define a
canonical frame for symmetry-aware sampling.

Stage 2: Symmetry-Aware Candidate Selection. We begin by estimating a local density ρ(xi)
at each point xi using k-nearest neighbor distances:

ρ(xi) :=

1

k

k∑
j=1

‖xi − xj(i)‖

−1

,

where {xj(i)}kj=1 are the k nearest neighbors of xi. Points are ranked by ρ to prioritize sampling in
regions with structural detail.

For each high-density candidate point xi, we compute its reflection about the principal axes:

x
(j)
i := xi − 2(v>j xi)vj , j ∈ {1, 2, 3},

and identify the nearest mesh point x∗ ∈ {xk}Pk=1 to each reflection using a KD-tree query. Re-
flected candidates are accepted only if they satisfy a minimum distance constraint ‖x∗ − x′‖1 > δ
for all previously selected keypoints x′, ensuring spatial separation.

This stage yields approximately half the desired keypoints, promoting symmetric, well-distributed
coverage.

Stage 3: Axis-Aligned Completion. The remaining samples are drawn from projections of the
point cloud onto each principal axis. Points are sorted by projected position along vj , and farthest-
point sampling is performed within this ordering to ensure geometric spread while avoiding over-
sampling along minor features.

Output. The final set of N = 25 keypoints is obtained by combining symmetric and axis-aligned
samples, followed by a final pruning pass that filters pairs of points with Euclidean separation less
than δ = 0.1.

F.2 Canonical View Rendering and Panel Assembly

To construct the canonical panel, we render the mesh from ten viewpoints sampled uniformly over
the viewing hemisphere using spherical coordinates:

(azimuth, elevation)i =

(
180 · i

n
, 180 ·

(
0.5− i+ 0.5

n

))
, i = 0, . . . , n−1,

where n = 10. From these, four diverse views are selected and rendered using a fixed 3D perspec-
tive.
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Each rendered view overlays the mesh M with the selected keypoints. Keypoints are visualized
using a perceptually uniform colormap with one color per index, enabling direct cross-view corre-
spondence. Numerical indices are overlaid at each point to facilitate unambiguous referencing by
vision-language models.

The object mesh is rendered with low-opacity shading to ensure that keypoint markers and annota-
tions remain visible, even in regions of geometric occlusion or low curvature. The global coordinate
frame is plotted at the mesh origin with axes colored in RGB (X: red, Y: green, Z: blue), providing
a consistent spatial reference across objects and views.

The resulting four images are arranged into a 2× 2 grid with quadrant labels (A–D) to form a single
composite image used as input to the Geometric Reasoning prompt.

G VLM Prompts

G.1 Geometric Reasoning Prompt

To ground handle point selection in semantically meaningful and physically plausible regions of the
mesh, we initiate our hierarchical prompting pipeline with a stage we term Geometric Reasoning.
This stage is designed to interface 3D mesh representations with the inductive biases of image-
language foundation models, which are typically pre-trained on paired natural language captions
and perspective renderings of real-world scenes, and therefore lack native support for reasoning
over metric 3D geometry.

Our input consists of two complementary components. First, a panel of rendered canonical views
with overlaid keypoints provides spatial context through image-space structure and surface topol-
ogy. Second, a serialized point cloud exposes the underlying 3D coordinates of these keypoints in
the world frame, enabling the model to localize correspondences across views and infer geomet-
ric relationships. Together, these inputs guide the model toward identifying deformation-relevant
subsets of keypoints that are grounded in both perceptual semantics and physical plausibility.

Prompt Design and Structured Output Schema

The prompt consists of two primary inputs:

• A set of canonical views, showing the object from multiple angles with overlaid keypoints.
• A 3D keypoint point cloud, represented as a JSON file listing coordinates and vertex

indices.

These inputs are paired with an instruction block that defines the deformation task, introduces the
concepts of handle and anchor points, and specifies the expected output format. The goal is to elicit
sets of keypoints that can be displaced to yield meaningful shape transformations while preserving
structural plausibility.

To ensure that the output from the VLM is machine-parseable and semantically rich, we enforce a
structured response schema defined using Python’s pydantic interface. Each response includes:

• keypoint indices: indices of mesh vertices to be used as handle points.
• semantic object label: a brief description of the object part affected.
• expected transformations: a list of plausible geometric operations that the selected

keypoints could enable.

The schema is defined as follows:

Listing 1: Structured schema for geometric reasoning responses.
1 class HandlePoint(BaseModel):
2 keypoint_indices: List[int]
3 semantic_object_label: str
4 expected_transformations: List[str]
5

6 class Choices(BaseModel):
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7 choices: List[HandlePoint]

This design encourages both high-level conceptual grounding and fine-grained geometric localiza-
tion. The returned handle sets are later filtered and ranked in the second stage of our pipeline.

Concrete Example: Bowl Object Prompt

We now provide the full text of a prompt issued to the model for the bowl object from the YCB
dataset. This example combines the 3D keypoint data with the deformation task description in a
format that is directly interpretable by a VLM.

Listing 2: Geometric Reasoning prompt issued to the VLM for the bowl object.
1 High -level Task: Deformation of a 3D mesh object via key point

manipulation.
2

3 Index:
4

5 1. Handle Points -- Mesh vertices which serve as keypoints to be
displaced for the purposes of mesh deformation.

6

7 2. Anchor Points -- Mesh vertices which remain in place through
the deformation process.

8

9 3. Displacement Vectors -- Directional displacements of handle
points for the purposes of mesh deformation.

10

11 Method: Jacobian field optimization by means of a Poisson solver
over the entire mesh under the constraints imposed by the
deformation parameters.

12

13 Input:
14

15 1. Images containing multiple canonical views of the object under
inspection , annotated with keypoints sampled on the object ’s
surface.

16

17 2. A JSON file containing the 3D location of the object in the
world coordinates.

18

19 Objective: Provide multiple subsets of keypoints to serve as
handle points for the deformation process , along with a single
line description of the transformations one can hope to achieve
using those handle points.

20

21 Hints:
22 1. The multiple annotated views of the underlying object , along

with the 3D world frame positions of the keypoints , can be used
to localize the keypoints and reason about the type and

structure of the object.
23 2. Deformations that yield realistic objects often maintain

symmetry across the key axes of symmetry.
24

25 Penalty:
26 You ’ll lose points if the returned output contains any content

other than requested output.
27

28 Json File:
29 ---
30 {
31 "points ": [
32 {" index": 0, "coordinates ": [ -0.47172870409604656 ,

-0.14247249438098228 , 0.17822726655889315]} ,
33 {" index": 1, "coordinates ": [ -0.46929558729234583 ,

0.1350456377707993 , 0.1796215656020141]} ,
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34 {" index": 2, "coordinates ": [ -0.35644749303156864 ,
-0.3464904332560477 , 0.17204569944492737]} ,

35 {" index": 3, "coordinates ": [ -0.35300153906438475 ,
0.017063087435454195 , -0.07459165106927007]} ,

36 {" index": 4, "coordinates ": [ -0.32169580652204455 ,
-0.1885024930547734 , -0.03901991261143628]} ,

37 {" index": 5, "coordinates ": [ -0.26721085819530344 ,
0.3453163712585918 , 0.0891211484372599]} ,

38 {" index": 6, "coordinates ": [ -0.20121465343061082 ,
0.21445315574996734 , -0.13554194451645532]} ,

39 {" index": 7, "coordinates ": [ -0.16289154898156788 ,
-0.46736681905226585 , 0.17699411386750605]} ,

40 {" index": 8, "coordinates ": [ -0.07177334220021714 ,
-0.36468495429770964 , -0.0461483319136234]} ,

41 {" index": 9, "coordinates ": [ -0.04224310529134742 ,
0.3813957476898451 , -0.028733817963148323]} ,

42 {" index": 10, "coordinates ": [ -0.039131664935924744 ,
-0.1252406967012443 , -0.14648472527402323]} ,

43 {" index": 11, "coordinates ": [0.0508298903781717 ,
0.17015377379407495 , -0.14869136388269089]} ,

44 {" index": 12, "coordinates ": [0.09356827578313848 ,
0.4913365426332097 , 0.16198085363100448]} ,

45 {" index": 13, "coordinates ": [0.1902896398639075 ,
-0.37800836951965583 , 0.06340997268906587]} ,

46 {" index": 14, "coordinates ": [0.20253074338317512 ,
-0.295063278758562 , -0.06585252822312912]} ,

47 {" index": 15, "coordinates ": [0.2047127648919393 ,
0.3362792723809077 , -0.023198523693772254]} ,

48 {" index": 16, "coordinates ": [0.26734059954429806 ,
-0.022174095770825998 , -0.14745247326570718]} ,

49 {" index": 17, "coordinates ": [0.38576119336327147 ,
0.22145619287954538 , 0.12381330003252163]} ,

50 {" index": 18, "coordinates ": [0.3992351923636997 ,
-0.28827945973258284 , 0.1774309357560207]} ,

51 {" index": 19, "coordinates ": [0.43362864405756985 ,
-0.04558597752419907 , 0.09125812443992103]}

52 ]
53 }
54 ---

This prompt provides the model with both semantic structure and geometric detail, facilitating in-
formed and localized handle selection for downstream mesh deformation.

Example Output: Parsed Response from Geometric Reasoning Prompt

For the prompt issued on the bowl object (Listing 2), the vision-language model returned the follow-
ing structured response, automatically parsed according to the schema described in Listing 1. Each
entry identifies a candidate set of handle keypoints, a semantic description of the affected part, and
the expected outcome of deformation:

Listing 3: Parsed output returned by the VLM for the bowl object, identifying semantically mean-
ingful handle regions.

1 {
2 "0": {
3 "semantic_object_label ": "bowl",
4 "keypoint_indices ": [0, 1, 2, 5, 12],
5 "expected_transformations ": [
6 "Expand or contract the rim of the bowl."
7 ]
8 },
9 "1": {

10 "semantic_object_label ": "bowl",
11 "keypoint_indices ": [9, 11, 15, 19],
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12 "expected_transformations ": [
13 "Alter the shape of the bowl ’s side profile ."
14 ]
15 },
16 "2": {
17 "semantic_object_label ": "bowl",
18 "keypoint_indices ": [6, 18],
19 "expected_transformations ": [
20 "Adjust the height or depth of the bowl."
21 ]
22 }
23 }

This response illustrates the model’s capacity to associate localized subsets of mesh vertices with
intuitive part-level semantics and deformation goals, even when reasoning only over projected ren-
derings and sparse 3D coordinates.

G.2 Task-Critical Ranking Prompt

The second stage of our hierarchical prompting pipeline refines the handle point proposals gener-
ated during geometric reasoning by evaluating their utility with respect to a concrete downstream
manipulation task. We refer to this stage as Task-Critical Ranking.

Motivation and Design

While the first stage encourages the model to propose a diverse set of plausible deformation handles
grounded in visual semantics and geometric symmetry, not all suggestions are equally meaningful
for the intended manipulation objective (e.g., grasping, insertion). To disambiguate these propos-
als and select the most task-relevant subset, we issue a follow-up query that reframes deformation
selection within the broader context of policy stress-testing.

This second-stage prompt is issued in the presence of the full conversational history from the Ge-
ometric Reasoning stage, including the canonical view panel, point cloud representation, and the
model’s prior output. By replaying the earlier interaction, we ensure that the ranking query remains
referentially grounded and contextually coherent.

Critically, the model is instructed to apply a Pareto-optimality criterion when reasoning about defor-
mation utility. Specifically, the prompt enumerates two prioritized objectives: (1) the existence of
real-world analogs for the resulting geometry, and (2) the potential of the deformation to challenge
or degrade a grasping policy. The model is asked to identify candidate subsets that lie on the Pareto
frontier of this multi-objective tradeoff—favoring geometries that are both physically plausible and
adversarially informative.

The final output is expected to be a single top-ranked deformation candidate, serialized in a strict
JSON format conforming to the schema described below.

Response Schema

To ensure consistent and parseable outputs from the model, we enforce a tightly scoped response
schema. The expected output is a single top-ranked candidate, encapsulated in a typed JSON object
as follows:

Listing 4: Schema used to parse VLM responses for the task-critical ranking stage.
1 class HandlePoint(BaseModel):
2 keypoint_indices: List[int]
3 semantic_object_label: str
4 expected_transformations: List[str]
5

6 class TopRank(BaseModel):
7 top_choice: HandlePoint
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This schema ensures that the final output consists of a single handle region, distilled from the larger
candidate set, and tailored to the semantics and physical structure most likely to affect task perfor-
mance.

Prompt Example

The full text of the prompt issued to the model at this stage is shown below. The conversational
history from the prior Geometric Reasoning stage is replayed before this message to retain semantic
grounding:

Listing 5: Raw prompt string issued during the Task-Critical Ranking stage.
1 Rank the deformations using pareto -optimality in your reasoning.

The objectives of interest at the end of the deformation
process , ranked in order of priority , are:

2

3 1. Existence of similar objects in the real world.
4 2. Handle point placements that provide a good avenue for red -

teaming a grasping policy.
5

6 Objective: Return a single json file containing the information on
the highest ranking subset.

7

8 Penalty: You ’ll lose points if the returned output contains any
content other than requested output.

H Operational Details of the Red-Teaming Framework

Our red-teaming framework employs a conservative, geometry-aware optimization strategy to iden-
tify subtle yet task-critical object deformations that induce policy failure. All experiments reported
in this paper use our adapted version of the TOPDM algorithm [20] to navigate the deformation
space, subject to anchor and handle constraints derived either from user specification or automated
selection via a hierarchical prompting strategy.

Deformation Space Initialization

The deformation space is defined over a normalized and centered mesh representation, with vertex
coordinates scaled to fit within a unit cube. This normalization ensures numerical stability during
optimization and compatibility with the Poisson-based deformation model. All candidate geometries
are rescaled to their original dimensions and aligned to the undeformed shape via an Orthogonal
Procrustes transformation using the anchor point correspondences. This alignment step is essential
to preserve physically meaningful contact regions—particularly for insertion and articulation tasks
where positional accuracy governs success.

Perturbation Strategy and Optimization Parameters

To preserve realism and avoid geometric artifacts, we initialize the deformation search with a low-
variance Gaussian distribution over the Jacobian field parameters. The standard deviation is fixed
to 0.001 (in normalized mesh units), which strikes a balance between exploration and structural
integrity. A larger variance was found to produce frequent self-intersections or mesh degeneracies,
while a smaller one limited the optimizer’s ability to discover non-trivial failure modes.

The optimizer evaluates a batch of 10 candidates per iteration and runs for a fixed budget of 10
iterations. A fractional sampling strategy—central to TOPDM—is used to selectively perturb only
half of the parameters at each iteration. This mechanism facilitates fine-grained, local search without
collapsing global structure, which is particularly important for preserving shape semantics while
probing failure boundaries. In practice, red-teaming a single object–policy pair requires between
0.5 and 4 wall-clock hours on a single NVIDIA RTX 4090, depending on the policy and observation
space dimensionality.
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Simulation and Evaluation Constraints

Each deformation candidate is evaluated in a physically realistic simulation environment using task-
specific performance metrics computed under a pre-trained manipulation policy. These metrics vary
by task. For both insertion and grasping, we use binary success criteria: insertion success is deter-
mined based on positional alignment and contact constraints, while grasping success is defined by
the object’s retention following a lift-and-shake test. For articulated manipulation, we instead adopt
a continuous metric corresponding to the final displacement of the drawer’s prismatic joint, allowing
the optimizer to reason over graded failure severity rather than discrete outcomes. In all cases, the
optimization objective is minimized to surface deformations that degrade policy effectiveness.

To ensure stable simulation dynamics and compatibility with collision detection routines, each de-
formed mesh undergoes convex decomposition using CoACD [28] prior to loading. This step mit-
igates issues such as contact buffer overflows, non-manifold surface artifacts, and slicing errors
that may arise during 3D printing or simulation-based evaluation. It also mirrors the preprocess-
ing applied to assets during training, helping maintain consistency across nominal and perturbed
evaluations.

Grasping and articulation tasks inherit their contact models and solver settings directly from Isaac
Gym. The deformed geometry is introduced per rollout by replacing the nominal mesh, allowing the
policy to interact with physically plausible but strategically perturbed shapes we term CrashShapes.

I Implementation Details

I.1 Simulation Environment Configuration

All simulation experiments were conducted using NVIDIA Isaac Gym Preview Release 4 [21],
which provides GPU-accelerated physics via the NVIDIA PhysX engine. To exploit parallel roll-
outs, the workspace was divided into four independent subscenes executed concurrently on a single
CUDA-enabled GPU.

The simulation advanced at 60 Hz with two internal substeps per frame, stabilizing contact dynamics
and rigid body interactions. We employed the Temporal Gauss-Seidel (TGS) solver with 16 position
iterations per substep. Gravity was set to 9.81 m/s2 along the negative z-axis, and global damping
was enabled to mitigate oscillatory motion.

All experiments used a Franka Emika Panda manipulator with self-collision checking. A fixed ran-
dom seed (42) governed environment initialization, and PyTorch’s deterministic mode was disabled
to maximize throughput.

Object meshes were incorporated based on task-specific requirements. For grasping and insertion,
all deformed shapes (CrashShapes) were preprocessed using CoACD [28] to generate convex rigid-
body approximations compatible with the physics engine. The insertion task additionally incorpo-
rated contact feedback using signed distance field (SDF) queries to model penetration and alignment.
In contrast, articulated manipulation experiments used undecomposed triangle meshes directly.

I.2 Grasping Task: Environment, Policy, and Evaluation

I.2.1 Environment Setup

The grasping benchmark was instantiated in 64 parallel environments. Objects were drawn from a
curated subset of 22 YCB models [23], each selected based on achieving at least 25% nominal grasp
success using the pre-trained policy on unmodified meshes. This baseline success rate was computed
using the same perturbation-tolerant evaluation described below, averaged over randomized trials.

At the beginning of each trial, a single object was placed at the center of a planar surface with
uniform perturbations applied to its XY position (±0.02 m) and yaw orientation (±0.79 rad). The
robot was reset to a fixed configuration at episode start.

Perception relied on six simulated depth cameras placed at canonical positions on a virtual hemi-
sphere focused on the object origin. Each camera captured 240 × 360 depth images, which were
fused to produce a complete point cloud representation of the scene.
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I.2.2 Grasping Policy

We used a pre-trained Contact-GraspNet (CGN) [22] model as the grasping policy. Depth images
were segmented to isolate object points, transformed into CGN’s expected coordinate frame, and
processed to generate grasp proposals. If no candidates were detected, inference was repeated up to
10 times.

The highest-ranked valid grasp was selected after geometric consistency checks. This pose was
adjusted by a 5 cm approach offset and a 90° rotation about the approach axis before execution.
The resulting 6D grasp was converted into joint-space commands using inverse kinematics with a
Damped Least Squares (DLS) solver and tracked using Isaac Gym’s built-in PD controller.

I.2.3 Evaluation Protocol

Each grasp attempt comprised three phases: approach, grasp, and lift. After securing the object,
the robot applied a horizontal shake—displacing the gripper 10 cm laterally and returning—to test
stability under dynamic motion.

A grasp was deemed unsuccessful if the object slipped from the gripper at any point during or after
the shake. We report success rate J(π,M) averaged over 64 trials per object, each trial correspond-
ing to one parallel environment with randomized initial conditions.

I.2.4 Metric Motivation and Red-Teaming Implications

This evaluation protocol goes beyond assessing contact feasibility to test post-grasp stability under
external perturbation. Such criteria surface fragilities in grasps that may lift objects reliably yet fail
under minor disturbances—an essential distinction for real-world deployment.

By identifying object geometries that degrade this stability metric, our red-teaming framework re-
veals failure modes tied not to perception alone, but to the physical affordances exploited by the
grasping policy. Subtle changes in surface curvature, contact patch topology, or fingertip alignment
can result in superficially valid grasps that are dynamically brittle. Discovering such CrashShapes
offers insight into the geometric assumptions baked into CGN’s grasp predictions and where they
begin to fail.

I.3 High-Precision Insertion Task

I.3.1 Environment Setup

The insertion task was simulated across 128 parallel environments. In each trial, the socket pose was
randomized: XY displacements were drawn uniformly from ±0.1 m, vertical height was offset in
[0.0, 0.05] m, and yaw perturbed within ±0.087 rad. The plug was spawned above the socket using
a curriculum-driven offset, with additional XY noise of ±0.01 m when aligned over the rim.

I.3.2 Policy Architecture and Training

Both the state-based and point cloud-based insertion policies shared the same neural architecture:

• A reduced-size classification-type PointNet++ encoder producing a 32D geometric feature
vector;

• A 2-layer LSTM with 256 units per layer and layer normalization;

• A feedforward MLP (512-256-128 units, ELU activation) consuming the concatenated
LSTM output and encoder input.

Policies were trained using PPO with a learning rate of 1× 10−4 (linearly decayed), discount factor
γ = 0.998, clipping threshold of 0.2, and 8 mini-epochs per update. Rollouts used a horizon
of 128 steps and minibatches of size 8192. The reward function combined multiple terms from
IndustReal [24]: SDF-based proximity (sampled at 1000 points), interpenetration checks (SAPU,
1 mm threshold), an engagement bonus, and SBC-based curriculum shaping. Training continued
for up to 8192 epochs.
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I.3.3 State-Based Variant

The input to the policy comprised a 24D vector: 7 joint positions, a 7D end-effector pose, a 7D
noisy target pose (with up to ±1 mm XY noise), and a 3D displacement from the current end-
effector pose to the target. The policy output a 6D delta pose command, scaled by 0.01 and applied
via a task-space impedance controller.

I.3.4 Point Cloud Variant

The point cloud-based policy received geometric input from multiple cameras. Depth images were
segmented and aggregated into a unified scene point cloud, which was downsampled to 500 points
using Farthest Point Sampling. This centered point cloud was passed to the PointNet++ encoder,
and its output concatenated with proprioceptive state before being processed by the LSTM and
MLP. Action generation and control were identical to the state-based variant.

I.3.5 Evaluation

Each episode terminated after 256 steps or earlier upon success. A trial was considered successful if
two conditions were met: the plug’s final vertical distance to the socket base was less than 3 mm, and
the mean distance between four annotated plug-socket keypoint pairs was below 0.15 m. Success
rates were averaged over 128 independent trials.

I.4 Articulated Manipulation Task

I.4.1 Environment Setup

This task involved opening drawers attached to cabinet assets with functional prismatic joints, in-
cluding the sektion cabinet from Isaacgym and models from PartNet-Mobility [26]. Each episode
began with the drawer fully closed and the robot reset to a perturbed joint configuration with additive
uniform noise of ±0.25 rad.

Simulation parameters included a single substep per frame, 12 position iterations, 1 velocity itera-
tion, a contact offset of 0.005 m, and a maximum depenetration velocity of 1000 m/s.

I.4.2 Policy Details

The state-based policy received a 23D observation vector: 9 joint positions, 9 scaled joint velocities
(scaled by 0.1), a 3D vector from the end-effector to the drawer handle grasp pose, and the drawer’s
current position and velocity (1D each). The policy produced 9D joint deltas (7 arm, 2 gripper
DoFs), clipped to ±1.0, scaled by 7.5, and applied via the low-level PD controller. PPO training
rewarded proximity to the grasp frame, end-effector alignment, accurate gripper finger placement,
maximum drawer translation, and penalized large control inputs.

I.4.3 Evaluation

Episodes were capped at 500 steps. The task success metric J(π,M) was defined as the final value
of the drawer’s prismatic joint position. The theoretical maximum opening was 0.39 m. Results
were averaged over 4096 randomized trials.
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