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Abstract: Standard evaluation protocols in robotic manipulation typically as-
sess policy performance over curated, in-distribution test sets, offering limited
insight into how systems fail under plausible variation. We introduce Geomet-
ric Red-Teaming (GRT), a red-teaming framework that probes robustness through
object-centric geometric perturbations, automatically generating CrashShapes—
structurally valid, user-constrained mesh deformations that trigger catastrophic
failures in pre-trained manipulation policies. The method integrates a Jacobian
field—based deformation model with a gradient-free, simulator-in-the-loop opti-
mization strategy. Across insertion, articulation, and grasping tasks, GRT consis-
tently discovers deformations that collapse policy performance, revealing brittle
failure modes missed by static benchmarks. By combining task-level policy roll-
outs with constraint-aware shape exploration, we aim to build a general purpose
framework for structured, object-centric robustness evaluation in robotic manipu-
lation. We additionally show that fine-tuning on individual CrashShapes, a process
we refer to as blue-teaming, improves task success by up to 60 percentage points
on those shapes, while preserving performance on the original object, demonstrat-
ing the utility of red-teamed geometries for targeted policy refinement. Finally, we
validate both red-teaming and blue-teaming results with a real robotic arm, observ-
ing that simulated CrashShapes reduce task success from 90% to as low as 22.5%,
and that blue-teaming recovers performance to up to 90% on the corresponding
real-world geometry—closely matching simulation outcomes. Videos and code
can be found on our project website: https://georedteam.github.io/.
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1 Introduction

Standard evaluation protocols in robotic manipulation often benchmark policies on curated, in-
distribution test sets, providing limited insight into failure modes under plausible variation. Such
evaluations often obscure vulnerabilities arising from subtle shifts in object geometry, which can un-
predictably alter affordances, disrupt contact dynamics, and precipitate task failure. While adjacent
fields like vision and language have developed systematic tools for probing model robustness under
controlled input variations [1, 2, 3], analogous methods are only beginning to emerge in robotic ma-
nipulation [4, 5, 6, 7]. Specifically, no formal frameworks exist for systematically evaluating policy
performance under plausible, task-relevant geometric perturbations, despite the centrality of object
shape to manipulation.

In this work, we pose the following question: Can we automatically discover failure-inducing object
geometries, treating the policy strictly as a black box? To address this question, we cast the task as a
red-teaming problem, inspired by cybersecurity frameworks that proactively discover vulnerabilities
via realistic and targeted stress tests. Our objective is to generate geometric deformations that induce
catastrophic policy failures—deformed objects which we refer to as CrashShapes—while enforcing
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Figure 1: GRT surfaces policy failures on a real robot from minimal, plausible geometry edits.
Top: nominal screwdriver, bottle, and USB plug succeed. Bottom: CrashShapes induce bad grasp
pose, grasp slippage, and insertion failure via in-gripper plug rotation at socket contact. Small,
realistic deformations collapse policies that succeed on the original object.

a geometric prior governing permissible shape variations, ensuring that generated objects remain
physically plausible and semantically coherent. Since failure depends on how an object interacts
with the policy and task environment, we rely on embodied simulation rollouts to reveal small shape
perturbations that break the learned assumptions underlying grasp affordances, contact transitions,
or control trajectories. We refer to this system as GRT (“Geometric Red-Teaming”).

Operationalizing this concept poses two primary challenges: (1) policy performance must be evalu-
ated via simulator rollouts, which are non-differentiable and therefore preclude the use of gradient-
based optimization methods to generate CrashShapes; (2) the deformation space is high-dimensional
and must be explored under structural constraints that preserve mesh integrity and ensure physically
plausible, semantically coherent variations. To address these, we propose GRT, a modular frame-
work integrating a physically-grounded deformation model with gradient-free optimization. Our
method defines a deformation via handle points (vertices actively displaced) and anchor points (fixed
vertices), using a Jacobian-field formulation derived from the APAP mesh editing framework [8].
Both handle and anchor points can be manually specified or automatically selected via a vision-
language model (VLM), facilitating flexible, user-guided, or task-conditioned perturbations. The
optimizer operates exclusively through simulator feedback, accommodating both binary and contin-
uous success metrics, and generalizing across diverse object types and manipulation tasks. Finally,
we propose a constrained variant of our method that enforces a bound on the average handle dis-
placement, restricting the search to small deviations from the nominal geometry that still yield large
performance degradations.

This work presents the first red-teaming framework explicitly exploring 3D geometric deforma-
tion for robotic manipulation. Existing methods target symbolic parameters [5], language instruc-
tions [7], or scene-level failure taxonomies [6]. Object geometry is another critical axis of failure.
We explicitly target object-centric manipulation policies by perturbing the 3D meshes that define
both sensory input and interaction dynamics in simulation.

In summary, this paper makes the following contributions:

1. We introduce GRT, a policy-agnostic, simulator-in-the-loop framework that automatically
discovers physically plausible CrashShapes inducing catastrophic (> 50%) failures in pre-
trained manipulation policies.

2. We validate GRT in simulation across three domains—high-precision industrial insertion,
articulated drawer manipulation, and rigid-object grasping—demonstrating reliable failure
discovery in each.

3. We demonstrate the practical utility of our framework by showing that discovered
CrashShapes transfer to a physical robot and that simple PPO fine-tuning recovers up to
60 percentage points of performance without degrading performance on nominal shapes.



2 Related Work

Evaluation Strategies in ML and Robotics Evaluation in machine learning and robotics has
long relied on benchmarks over canonical scenes or narrowly drawn object distributions [9, 10,
11], which obscure policy behavior under unseen, realistic variations of the task environment. In
contrast, vision and language domains now routinely employ adversarial testing [12, 13] and red-
teaming strategies [14, 1, 2, 3] to reveal behavioral blind spots. Despite the increasing autonomy
and deployment of robotic systems, comparable dynamic evaluation tools tailored to manipulation
remain limited. GRT addresses this gap through systematic, object-centric geometric perturbations.

Evaluating Policies under Geometric Variation Object geometry presents a critical axis for gen-
eralization in robotic manipulation. DoorGym [15] and ManiSkill [16] introduce procedural object
variation within task families, while EGAD [17] adopts evolutionary strategies to generate datasets
covering a spectrum of geometric complexity and grasp difficulty. However, these datasets remain
static, task-specific, and entirely agnostic to policy behavior. In contrast, we formulate geometric
deformation as a continuous, policy-conditioned search for failure-inducing perturbations.

Failure Mode Discovery for Robot Policies Recent efforts in robustness evaluation have moved
beyond static benchmarks toward active vulnerability discovery [5, 6, 7, 4]. RoboMD [5], for in-
stance, employs RL to perturb scene attributes during policy rollouts, rewarding configurations that
induce failure. However, this methodology typically requires explicit parameterization of scene
attributes, offering limited insight into failure modes rooted in fine-grained, continuous geome-
try. Similarly, AHA [6] relies on predefined error taxonomies, constraining discovered failure
types, while language-conditioned methods [7] study semantic shifts but stay detached from object-
physical interactions. In contrast, by applying physically plausible mesh deformations and simulator
rollouts to surface geometric misgeneralizations, our method introduces 3D object geometry as a
core axis of failure analysis.

3 Background

Mesh Deformation with Jacobian Fields To generate structurally coherent deformations of 3D
meshes, we adopt the first stage of APAP [8]. Given a source mesh My = (Vp, Fy), where Vj €
RYV*3 are vertex positions and Fj denotes triangular faces, a local affine Jacobian Jy € R3%3 is
assigned to each face f € Fj. Deformation proceeds by specifying a set of handle points H C Vj
with target positions T;, € R¥*3, and fixed anchor points A C Vj with targets T, € RA4*3,
preventing trivial global translations and allowing more control over deformations in local regions
of the mesh. The deformed mesh V* is obtained by solving:

V* =argmin||LV — VT AJ|]> + \|| K.V — T.|)?, (1)
Vv

where L is the cotangent Laplacian, V is the stacked per-face gradient operator, A is a mass matrix,
J is the given Jacobian field, K, is an indicator matrix which selects anchor vertices, and A controls
the constraint strength. This linear system is solved via a differentiable Cholesky solver. Soft handle
constraints are then imposed by minimizing the loss £;, = || K,V * —T}||? through gradient descent
on the underlying Jacobian field, where K, is an indicator matrix to select handle vertices. We omit
the second-stage 2D diffusion prior used in Yoo et al. [8] due to its limited benefit in task-specific
object domains and substantial computational overhead. For more details, see Appendix B.

Gradient-Free Optimizers for Black-Box Search We approach deformation parameter search
as a black-box optimization problem, in which gradients with respect to policy performance are
unavailable and evaluations are carried out via simulator rollouts. Population-based, gradient-free
methods such as CEM [18] and CMA-ES [19] are commonly used in such settings. GRT builds on
TOPDM [20], which introduces a selective perturbation strategy—at each iteration, only a random
subset of parameters is modified, rather than perturbing the entire candidate vector. This selective
perturbation explores local refinements without overwriting globally effective structure, enabling
sample-efficient discovery of subtle, failure-inducing deformations.

4 Problem Formulation

We consider the problem of evaluating the geometric robustness of robotic manipulation policies by
discovering physically plausible deformations of 3D object meshes that induce policy failure.
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Figure 2: System overview of GRT. Given a task description and nominal object (Initialization
Parameters), anchor and handle points are selected using a vision-language model (a). Handle dis-
placements are sampled to define a population of deformation candidates. Each sample is converted
into a perturbed mesh via Jacobian field-based optimization (b) and evaluated in simulation with a
frozen policy (c¢). Deformations that induce failure are sampled to guide the next population.

Let 1 : S — A denote a pre-trained manipulation policy, where S is the policy’s observation
space and A is the action space. Each object instance is represented as a watertight triangle mesh
M = (V, F), with vertices V' € R™*3 and triangular faces F'. A parameterized deformation operator
Dp : R™3 — R"*3 with § € O representing the deformation parameters to be optimized, maps
the original mesh to a deformed variant M = (Dy(V), F). Given a task-specific success metric
J(m, M) € R computed via simulation rollouts, we aim to discover deformation parameters that
minimize task performance:

0" = arg min J(m, Do(M)), )

0€0, De(M)EG(M)

where G(M) denotes the set of physically plausible deformations of the nominal mesh M, ensuring
that the search is restricted to task-relevant perturbations, rather than degenerate geometries. Op-
tionally, we restrict search to constraining the average handle displacement. See Appendix C for
more details on this constrained variant of our method.

Assumptions We assume access to a pre-trained manipulation policy 7. Each object is represented
as a watertight, manifold triangle mesh M = (V, F'). We consider canonical objects on which the
policy achieves high success, as established by training performance or empirical evaluation. We
also assume access to a physics-based simulator capable of loading deformed meshes M = Dy(M),
executing 7, and reporting a scalar task performance metric J(w, M). The simulator must model
object contact, dynamics, and task-environment interactions to yield meaningful evaluation signals.
Neither the simulator nor the task performance metric is assumed to be differentiable.

5 Method

We propose GRT, an object-centric red-teaming framework for robotic manipulation policies, which
defines a continuous search space over object geometries, targeting minimal perturbations that in-
duce policy failures. GRT (see Figure 2) consists of four key components. First, we expose a
deformation interface on M by selecting task-relevant handle and anchor points. Second, we apply
a Jacobian field-based deformation model to generate smooth perturbations of the object from han-
dle displacements. Third, we evaluate 7 on the deformed object Dy (M) through simulation rollouts.
Finally, we leverage gradient-free optimization to search over the deformation parameter space 6, to
discover physically plausible deformations that maximally impair policy performance.

5.1 VLM-Guided Mesh Deformation

We represent each object as a watertight triangular mesh M = (V| F'). To generate plausible de-
formations, we specify a set of handle points H C V and anchor points A C V as boundary
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Figure 3: Two-stage VLM prompting strategy for 3D handle-point selection. First, the Geomet-
ric Reasoning template aligns a canonical view-panel and indexed keypoints with a high-level task
description, guiding the VLM to infer which vertices control meaningful mesh deformations. Next,
the Task-Critical Ranking template asks the model to pareto-rank these candidates by plausibility
and task relevance, producing a compact set of handle points for targeted, task-aware red-teaming.

constraints on the mesh surface, where the former are displaced and the latter remain fixed. We then
use the Jacobian-field optimization framework from Yoo et al. [8] to compute physically coherent
perturbations of the nominal mesh. Manually specifying H and A at scale is time-consuming and
risks overlooking non-intuitive failure hypotheses. Therefore, we adopt a VLM-guided handle selec-
tion strategy wherein we prompt a vision-language model ChatGPT-4o to propose candidate handle
points based on object geometry and high-level task cues. This strategy is realized through a hierar-
chical prompting framework that guides the VLM through two stages of reasoning (See Figure 3).

Geometric Reasoning Template Given a canonical object mesh M, we first generate a Canonical
View Panel, shown in the left panel of Figure 3—a 2 x 2 grid of rendered views with overlaid,
indexed keypoints produced via a heuristic keypoint sampler (see the Appendix F.1 for details).
The accompanying prompt instructs the VLM to reason jointly over the visual and 3D coordinate
information of the keypoints to propose subsets of handle points, each annotated with semantic
descriptions of the intended deformation.

Task-Critical Ranking Template The second prompt asks the VLM to rank these candidate han-
dle point subsets according to a two-part objective reflecting the dual goals of red-teaming: (i) the
plausibility of resulting objects post-deformation, and (ii) their hypothesized potential to induce
policy failure. The VLM is explicitly instructed to reason in a Pareto-optimal fashion, preferring
subsets that achieve a favorable trade-off between structural realism and task-specific red-teaming
utility, rather than optimizing for either criterion in isolation (See Figure 3). While this approach
is generally reliable, we observe failure cases on manufacturing components like USB connectors,
likely due to under-representation in the VLM’s pre-training corpus. In such cases, we allow the
user to fall back to manual handle point selection and encode domain knowledge or task-specific
priors directly into the deformation process.

5.2 Red-Teaming via Black-Box Optimization

Given a deformation model Dy (M) and a black-box manipulation policy 7, we aim to search for
deformation parameters 6 that degrade policy performance when evaluated through simulator feed-
back. This problem presents two primary challenges: First, the deformation space, defined by dis-
placements of handle points over the object mesh, has several global and local optima. Second,
the search must be conducted without access to gradients, as neither the reward function nor the
simulator are assumed to be differentiable.

We adopt the selective perturbation strategy from TOPDM [20], wherein only a random subset
of handle-point displacements is perturbed per candidate. This design is well suited to high-
dimensional deformation spaces, as perturbing all parameters can destabilize globally coherent ge-
ometry, while selective updates preserve promising global structure and support fine-grained local
refinement. In GRT, this enables incremental adjustment of local geometric features—such as the
contour of a contact surface—without introducing large-scale distortions to the object.

Operationally, our optimization framework maintains a population of deformation candidates sam-
pled from a Gaussian distribution over 6. In each iteration, candidates are evaluated via simulator
rollouts, ranked according to 7 (-), and the highest-performing samples (elites) are used to update
the proposal distribution. Early iterations apply perturbations broadly, promoting exploration of the



global deformation space. In later iterations, localized perturbations enable fine-grained adjustment
of critical object features that influence policy behavior. We implement this optimization loop in
NVIDIA IsaacGym [21], evaluating each candidate deformation across a batch of parallel envi-
ronments with randomized initial poses to obtain a reliable estimate of policy performance. The
complete procedure for our black-box policy red-teaming framework can be found in Algorithm 1.
All hyperparameters and task-specific implementation details can be found in Appendix L.

Algorithm 1: Red-Teaming Black-Box Manipulation Policies via Simulator Feedback

Input: Task object mesh M € R*; Handle points H = {h1, ho,...,har}, hm € M;

Anchor points A C M;

Population size N, elite fraction p, maximum iterations 77

Initial Gaussian distribution over deformation parameters: mean o € R *3, diagonal covariance
3o € RM*3,

Perturbation fraction ~y for localized refinement;

Pre-trained manipulation policy 7;

Simulator-based evaluation metric 7 (7, Dg(M)).

Output: CrashShape parameters §* € R"*? inducing minimal 7 (7, Do (M)).

Initialize: Sample population {950) 1Y, from NV (o, Lo);
fort =110 T do

foreach 9?_1) in population do
Randomly select |y M | handle points from H;

Add Gaussian noise to corresponding rows of 9?71) drawn from N/ (0, X0);
Generate deformed mesh M; = D -1 (M);
Evaluate task performance: J; = J (, 1\7[i) via simulator rollout;

Select elite set £~ = top [pN] samples with lowest J;;

| Replicate elites to form new population {6/ N

return 0 = argmin () J (m, D, (M)) across all i, t.

K

6 Experiments

We structure our experimental evaluation around three central research questions:

RQ-1 Failure Discovery. Can our red-teaming pipeline reliably uncover catastrophic policy failures
through minimal geometric perturbations of nominal objects?

RQ-2 Component Contribution. How much do VLM-guided handle selection and gradient-free
optimization individually contribute to the efficiency and quality of failure discovery?

RQ-3 Actionability. Do the generated CrashShapes transfer to real-world settings, and can they be
leveraged to enhance policy robustness through straightforward fine-tuning?

Policies and Object Suites. We evaluate GRT across three robotic manipulation tasks—rigid ob-
ject grasping, high-precision insertion, and articulated manipulation—to cover diverse policies and
failure modes. The grasping experiments red-team Contact-Graspnet [22], a generalized grasp pre-
dictor, on 22 YCB dataset objects [23] that achieve at least 25% success on nominal shapes under
our evaluation protocol (64 grasp trials per object in randomized poses). For insertion, we test two
variants—a state-based policy trained under the IndustReal framework [24], alongside a point-cloud
initialized variant using PointNet++ [25]. Articulated manipulation employs a state-based drawer-
opening policy trained on assets from PartNet-Mobility [26]. Real-world validation is performed
on both the state-based insertion policy and the rigid-object grasping policy (Contact-Graspnet),
confirming transferability of discovered CrashShapes beyond simulation.

Evaluation Metrics. We quantify the effectiveness of our red-teaming framework using four com-
plementary metrics. Final Drop measures the mean relative reduction in success rate from nominal
to discovered CrashShapes. Iter @ 50% indicates the average iterations at which a 50% relative
performance drop is reached. AUC is the area under the curve of relative success drop versus itera-
tion, capturing both speed and severity. We additionally report the median increase in angular-deficit
entropy [27])—termed AComplexity—relative to the nominal mesh, computed over the ten worst-
performing discovered shapes to characterize typical deformation severity while remaining robust
to outliers. Formal definitions appear in Appendix E.

Catastrophic Failure Discovery (RQ-1) Table 1 demonstrates that GRT reliably exposes catas-
trophic failures beyond standard evaluations. In grasping, VLM-guided handles reach severe policy
degradation in fewer iterations and without increased geometric deviation compared to manual se-
lection, reflecting the ability of vision—language priors to pinpoint high-leverage contact regions that



humans may overlook. For insertion, manual handles outperform VLM proposals on the state-based
controller by focusing perturbations on mechanical contact features that drive state-only feedback,
while VLM guidance more effectively stresses the point-cloud model by perturbing visually dis-
criminative geometry. In articulated manipulation, manual handles induce near-complete failure
immediately. These results demonstrate that the effort required to elicit failure varies with both pol-
icy modality and task demands, reinforcing the generality of our approach. We additionally report
evaluations under a Smoothness Score (SS) constraint, in which we constrain the average handle
displacement to be under a threshold. Across all tasks, our method continues to induce significant
failures in this constrained setting, indicating that the framework does not rely on large deformations
to find confounding geometries. See the Appendix C for details.

Table 1: Red-teaming results across tasks. Final drop, iteration to failure, and AUC measure failure
severity; AComp. quantifies geometric deviation.

Task Method Final Drop (%)1 Iter @50% | AUC?T AComp.]
Grasp (YCB) VLM-Guided 76.3 7.3 5.26 0.041
Manual 63.4 9.1 433 0.050
VLM-Guided + SS 58.3 9.2 3.301 0.002
Articulated Manip. VLM-Guided 61.9 10.0 4.90 1.517
Manual 98.9 6.0 6.52 0.054
Manual + SS 44.7 10.0 1.97 0.021
. VLM-Guided 67.4 9.0 5.53 0.286
Insertion (State)
Manual 73.95 8.0 5.39 0.096
Manual + SS 60.9 6.0 4.37 0.032
VLM-Guided 71.7 6.0 6.85 0.358
Inserti PCD
nsertion (PCD) Manual 717 10.0 5.98 0.155
Manual + SS 434 10.0 3.85 0.044

Ablation Study: Handle Selection and Optimization (RQ-2) We ablate key components of
GRT by red-teaming Contact-GraspNet [22] on 22 YCB objects with diverse shapes and grasp-
ing affordances. This setting enables controlled comparisons between deformation strategies while
retaining object-level variability. As shown in Table 2, we factor our pipeline across two key
axes—sampling strategy (Gaussian Perturbation vs. Optimization) and handle-selection (Heuris-
tic vs. VLM-guided)—yielding four core variants. All methods begin by extracting a candidate set
of handle points using a fixed geometric heuristic. VLM-guided variants select handles using the
prompting strategy from Section 5.1; while the Heuristic variants uniformly sample handles from
the candidate pool, with the selection cardinality matched to VLM mean across all YCB objects for
fairness. Gaussian perturbations deformation parameters without structure, while optimization uses
TOPDM’s selective perturbation scheme. We also include an Optimization + All Candidates base-
line that treats all candidates as active handles, increasing both the expressivity and complexity of the
search space. The results highlight two key findings: (1) optimization substantially improves both
failure severity and convergence speed over gaussian perturbations, and (2) VLM-guided handle
selection outperforms heuristics, validating the value of learned priors for efficient failure discovery.

Table 2: Ablation results on grasping with Contact-GraspNet across 22 YCB objects. We evalu-
ate the impact of handle selection strategy (Heuristic vs. VLM-guided) and deformation search
method (Gaussian Perturbation vs. Optimization). All keypoint-based methods (except “All Han-
dles”) use a fixed handle count matched to the VLM-guided mean. Results show that both VLM
guidance and optimization improve failure severity and convergence.

Method Final Drop (%) 1 AComplexity | Iter @ 50% | AUC T
Heuristic + Gaussian Perturbation 63.3 0.058 10.00 3.654
Heuristic + Optimization 68.4 0.035 8.95 4.610
All Handles + Optimization 71.4 0.179 8.91 4.650
VLM-Guided + Gaussian Perturbation 65.1 0.030 10.00 3.803
VLM-Guided + Optimization (Ours) 76.3 0.041 7.32 5.259

Blue-Teaming: CrashShapes as Corrective Training Signals (RQ-3) To assess whether
CrashShapes can serve as effective corrective training signals, we fine-tune both insertion poli-
cies on subsets of failure-inducing geometries. For the state-based policy, we identify two distinct



CrashShapes (CS-1, CS-2) and fine-tune separate policy instances on each, alongside the nominal
plug. Fine-tuning is conducted via PPO with early stopping and no task augmentation. For the
point-cloud-initialized policy, we fine-tune a single policy jointly on five CrashShapes (PC-CS-1 to
5) and the nominal plug. Table 3 shows that across both setups, blue-teaming lifts task success on
CrashShapes from 20-45% to 80-95%, while preserving original performance on the nominal ge-
ometry. These results demonstrate that even simple red-teamed geometries can meaningfully guide
robustness improvement without inducing regression.

Table 3: Simulation blue-teaming results on high-precision industrial insertion. CrashShape per-
formance is reported before and after fine-tuning; the final column confirms nominal performance is
preserved. Nominal pre-training success: 96% (State-based) and 86% (PointCloud-initialized).

Policy Geometry Orig. % Blue.% Nominal after %
CS-1 25.0 87.8 87.5

State-based Cs-2 45.0 938 96.0

PointCloud-initialized PC-CS Shapes 31.3 81.3 87.3

Actionability: Real-World Validation (RQ-3) We further validate the practical transferability of
red- and blue-teaming to the real-world by fabricating CrashShapes for both the state-based insertion
policy and the rigid-object grasping policy (Contact-Graspnet) and evaluating them on hardware.
Using PLA prints of CS-1 and CS-2, generated via CoACD decomposition [28] and 3D printing,
we conduct 40 physical trials per shape on an xARM 6. Results in Table 4 show a close match
to simulation: task success drops from 90% (nominal) to 22.5% and 55% on the CrashShapes,
respectively. For grasping, we 3D-printed one CrashShape per object for two YCB objects (mustard
bottle, screwdriver) and evaluated each in 20 trials on a Franka arm. In Table 4, these appear under
“CS-1" with “CS-2” marked as “-”, to maintain a uniform column structure across tasks. The results
show substantial real-world success drops, consistent with simulation trends. Deploying the blue-
teamed policies from simulation—without additional real-world fine-tuning—recovers success rates
to 90% (CS-1) and 82.5% (CS-2), with no degradation on the nominal plug. These results affirm the
physical realism, and underscore the utility of CrashShapes as both diagnostic and corrective tools.

Table 4: Real-world validation across insertion and grasping. Columns are uniform for both tasks.
For insertion, CS-1 and CS-2 are the two printed CrashShapes. For grasping, each object has a
single printed CrashShape reported under CS-1; CS-2 is “-"".

Task Policy / Object Nominal CS-1 CS-2
Original Policy 90.0% 225% 55.0%

Insertion (xARM 6) Blue-Teaming on CS1 85.0%  90.0% -
Blue-Teaming on CS2 ~ 95.0% - 82.5 %

Grasping (Franka) Mustard Bottle 80.0%  30.0% -

ping Screwdriver 90.0% 350% -

7 Conclusion

This paper presents GRT, an automated red-teaming framework for robotic manipulation policies,
with a focus on generating confounding object geometries leveraging user-specified or VLM-guided
constraints. Our method casts shape deformation as a black-box search problem, using embod-
ied simulation rollouts to discover CrashShapes—physically plausible object variants that trigger
catastrophic failures in pre-trained manipulation policies. The ability to guide deformations using
either manual or VLM-derived priors enables semantically grounded stress-testing. Importantly, we
demonstrate that the failure-inducing geometries discovered in simulation reliably transfer to the real
world across multiple manipulation skills, including high-precision insertion on a physical xARM 6
setup and rigid-object grasping on a Franka arm. These CrashShapes can then be leveraged for tar-
geted policy improvement through naive fine-tuning using PPO with early stopping (blue-teaming).
This simple training strategy recovers up to 60 percentage points in task success on the CrashShapes
without degrading performance on the original shape. These results affirm that CrashShapes are not
only diagnostic but also actionable, providing a practical pathway to enhance robustness without
overfitting. Altogether, our pipeline offers a scalable, policy-agnostic tool for structured robustness
evaluation and targeted correction of failure modes in robotic manipulation, with validated impact
both in simulation and the real world.



8 Limitations

In this work, we assume that input objects are represented as watertight, manifold triangle meshes.
This requirement arises from the underlying Jacobian field-based deformation model, which de-
pends on well-defined differential operators over the mesh surface. Real-world scans, however,
often contain noise, holes, or non-manifold artifacts, and require careful preprocessing for mesh
repair or mesh reconstruction before they can be used within our framework.

Failure-inducing geometries are discovered through embodied simulation rollouts in the Isaac Gym
simulator. Although Isaac Gym offers high-fidelity rigid-body simulation, it inevitably approximates
real-world contact dynamics and frictional effects. While our real-world experiments demonstrate
strong transferability for high-precision, millimeter-level tolerance tasks like USB insertion, trans-
ferability cannot be assumed universally across all tasks and object types.

Finally, while our framework effectively uncovers hidden failure modes, it does not aim to explain
why those specific failures occur. The resulting CrashShapes serve as actionable test cases, but in-
terpreting their causal relationship to policy behavior currently requires manual analysis. Extending
the framework with tools for automatic failure diagnosis or causal attribution remains an important
direction for future work.
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Appendix

A Qualitative Evolution of Red-Teaming

To visualize the progression of our geometric red-teaming framework, Figure 4 presents the opti-
mization trajectory for six representative objects spanning all three task domains. Each row corre-
sponds to a single object, shown at five key stages: the nominal mesh, the initialization (Iteration 0),
and Iterations 4, 8, and 9 of the optimization process. Annotations include task success rate (mea-
sured via simulator rollouts) and morphological shape complexity (computed via angular-deficit
entropy).

The first four rows depict grasping objects from the YCB benchmark, while the fifth and sixth
rows showcase results from the high-precision insertion and articulated drawer manipulation tasks,
respectively. These examples reveal that failure-inducing deformations are often subtle: for several
objects, catastrophic policy collapse oc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>