
CDF Normalization for Controlling the Distribution
of Hidden Nodes

Mike Van Ness
Cornell University

Ithaca, NY,
jmv249@cornell.edu

Madeleine Udell
Cornell University

Ithaca, NY
udell@cornell.edu

Abstract

Batch Normalizaiton (BN) is a normalization method for deep neural networks
that has been shown to accelerate training. While the effectiveness of BN is
undisputed, the explanation of its effectiveness is still being studied. The original
BN paper attributes the success of BN to reducing internal covariate shift, so we
take this a step further and explicitly enforce a Gaussian distribution on hidden
layer activations. This approach proves to be ineffective, demonstrating further that
reducing internal covariate shift is not important for successful layer normalization.

1 Introduction

Deep Neural Networks have increased in popularity over the last several years, particular in fields
like computer vision where the complexity of data requires deeper networks [8, 11, 13, 3]. Training
these deep networks is challenging; many methods have been proposed to boost training performance,
including optimization methods [12, 6], learning rate schedulers [9], and regularization methods [5].
One very popular regularization method is Batch Normalization (BN) [4], which standardizes the
activations of convolutional and linear layers before applying an activation function. This simple
normalization technique allows for more stable training with higher learning rates, and has become
standard across many fields of deep learning.

In [4], BN’s effectiveness is attributed to a reduction in internal covariate shift, which is defined as
the shift in the distribution of layer activations due to changes in earlier layer’s parameters during
training. By making each activation have a constant learnable mean and variance, BN ensures that
changes to network parameters earlier in the network do not effect the first and second moments of
network activations later in the network. Further, the authors argue that the outputs of linear and
convolution layers are “more Gaussian”, in which case controlling the first and second moments of
the output distributions actually control the whole distribution, since the distribution of Gaussian
random variables is completely determined by the mean and variance.

However, the explanations for BN’s effectiveness continue to be studied [10, 1]. Interestingly, in
[10] the authors argue that BN accelerates training not because of a reduction in internal covariate
shift, but because of a smoother loss landscape. To show this, the authors add random noise after BN
to explicitly induce internal covariate shift, and they find that this “noisy” BN is just as effective as
regular BN. Additionally, the authors find that adding such random noise without using BN prevents
the network from training entirely. This suggests that reducing internal covariate shift is not actually
why BN accelerates training, since training is accelerated even when internal covariate shift is present.

In this paper, we take a different approach than BN to further explore normalization techniques that
reduce internal covariate shift. Instead of controlling just the mean and variance of activations, we
explicitly enforce a standard Gaussian distribution upon activations. We do this by first applying
an estimated cumulant distribution function (CDF) to each hidden layer activation, followed by
transforming to a standard Gaussian distribution via the standard Gaussian inverse CDF. In theory,

I (Still) Can’t Believe It’s Not Better Workshop at NeurIPS 2021.



this would reduce internal covariate shift more than BN, since the inputs to subsequent layers are
always enforced to follow the same distribution, not just the same mean and variance.

2 Method

In this section, we describe our method for transforming hidden layer activations to standard Gaus-
sians, which we call CDF Normalization (CDFN). Consider a hidden layer matrix of activations
X of size (N, d), where N is the mini-batch size and d is the hidden dimension. Let X1, . . . , Xd

be random variables representing the d hidden dimensions. Assume first that we have an estimate
F̂i, i = 1, . . . , d for the CDFs of our random variables, then F̂1(X1), . . . , F̂d(Xd) are approximately
standard uniform random variables. Next, let Φ be the CDF of some other distribution (in our
case, the standard Gaussian), then Φ−1

[
F̂1(X1)

]
, . . . ,Φ−1

[
F̂d(Xd)

]
are all random variables with

distributions given by Φ. This gives us a framework for approximately transforming data at this
hidden layer to any distribution we desire.

We now turn our attention to how to calculate the CDF estimates F̂1, . . . , F̂d. Following BN, it
would be ideal to make our CDF estimates only using the current mini-batch so that gradient
backpropagation accounts for the normalization. However, as we will discuss in section 4, this
turns out to be challenging. Instead, we use a running collection of data from previous mini-batches
to estimate the CDFs for the current mini-batch. We compute the empirical CDF using a running
collection of n data samples, creating a step function, and we further linearly interpolate this step
function to transform to a piece-wise linear function. This transformation creates a function whose
gradient is not always 0, allowing for successful backpropagation of gradients. The process of linear
interpolation is illustrated in Figure 3 in the Appendix. Lastly, the running collection of data is
updated using a momentum parameter m ∈ [n−N,n]: sample m points from the current collection
without replacement, and sample the remaining n − m points from the current mini-batch. The
overall CDFN process is summarized in Algorithm 1.

Algorithm 1: CDFN Procedure, done for each column of activations matrix X . For more details
on Linear Interpolation step, see Figure 3
Input : Mini-batch column x1, . . . , xN , running collection y1, . . . , yn, momentum m
Output : Normalized mini-batched x′1, . . . , x

′
N

ECDF(a) = 1
n

∑n
j=1 I(yj ≤ a)

F̂ (a) = LinInterp(ECDF(a))
for j = 1, . . . , N do

x′j = Φ−1[F̂ (xj)]

end
y1, . . . , yn = sample(y1, . . . , yn,m) + sample(x1, . . . , xN , n−m)
return x′1, . . . , x′N

Note that we have described CDFN for two-dimensional hidden layers of size (N, d), yet hidden
layers may be of higher dimensions, for example the output of a 2D convolution layer which is a
four-dimensional tensor of size (N,C,H,W ). In this case, CDFN is adapted similarly to BN: a CDF
is estimated for each index of the second dimension (channel dimension) using values from all other
dimensions.

3 Experiments

To test the CDFN procedure, we train a Convolutional Neural Network (CNN) on the CIFAR-10
image classification dataset [7]. Our CNN architecture is similar to a VGG style network [11]:

ConvBlock(3, 32)→ ConvBlock(32, 64)→ MaxPool→
ConvBlock(64, 128)→ ConvBlock(128, 128)→ MaxPool→

ConvBlock(128, 256)→ ConvBlock(256, 256)→ MaxPool→ FinalLinear

2



2 0 2 4 6 8

(a) Before CDF Norm

4 3 2 1 0 1 2 3 4

(b) After CDF Norm

Figure 1: Evolution of the distribution of one activation from the ConvBlock(128, 256) layer before
and after CDFN. Each horizontal line corresponds to one training iteration (mini-batch update),
evolving from back to front.

0.25

0.50

0.75

0 10 20 30 40 50
Epoch

Te
st

 A
cc

ur
ac

y Normalization

BN

CDFN

Identity

Figure 2: Test accuracies for different normalization techniques on the CIFAR-10 dataset.

A convolution block ConvBlock(nin, nout) is a sequential block with a 2D convolutional layer with
nin in channels, nout out channels, 3× 3 kernel size, and 1 padding, followed by a normalization
layer and a ReLU activation. We choose this dataset and architecture in order to use a standard
architecture which BN has been shown to be effective on. We train this network using the Adam
optimizer [6] with a batch size of 128.

3.1 Reducing Internal Covariate Shift

The goal of using CDFN is to normalize the network in a way that reduces internal covariate shift,
and thus we should check empirically that this is happening. For this, we train our CNN for 10
epochs, during which we keep track of the distribution of a random feature channel from the output
of each convolutional layer before and after applying CDFN. The results of this experiment are
shown in Figure 1. We see that even though the distribution of the activation is evolving during the
training process, the CDFN normalization procedure is successfully transforming them to approximate
Gaussian distributions that remain consistent through training. This supports the claim that CDFN is
in fact greatly reducing internal covariate shift in the network.

3.2 Accuracy Results

Now that we know that CDFN does in fact eliminate internal covariate shift, we can access its
performance. We do this by plotting the test accuracies for each epoch during training of our CIFAR-
10 network with no normalization, BN, and CDFN. We use the same learning rate of 10−4 to maintain
a fair convergence speed comparison even though we know BN allows for larger learning rates. The
accuracies of such training runs are shown in Figure 2. As expected, BN converges faster while
achieving similar final accuracy compared to using no normalization. On the other hand, while the
initial convergence of CDFN is similar to using no normalization, the final accuracy achieved is much

3



lower, as CDFN achieves a final accuracy of less than 70% compared to final accuracies over 80%
for the other two methods. All in all, we see that CDFN is not condusive to effective training.

4 Analysis

Even though BN and CDFN are both normalization techniques which standardize hidden layer
activations, BN accelerates training while CDFN hinders training. What is different between BN and
CDFN which leads to this severe difference in performance? One critical difference is that BN uses
only the current mini-batch to perform normalization, while CDFN uses data from other mini-batches
accululated through training. This difference is key, because using just the current mini-batch allows
the normalization to flow through the gradient backpropagation. To illustrate this point, consider one
column of the hidden layer activations matrix x = (x1, . . . , xN )T . BN will transform this as

y = BN(x) =
x− µx√
σ2
x + ε

, µx =
1

N

N∑
i=1

xi, σ2
x =

1

N

N∑
i=1

(xi − µx)2

During backpropagation, computing the gradient ∂y/∂x takes into account the normalization step
since both µx and σ2

x are functions of x. Comparatively, CDFN does the transformation

y = CDFN(x) = Φ−1
[
F̂ (x)

]
where Φ and F̂ are the standard Gaussian CDF and the approximated CDF respectively following
Algorithm 1. When computing the gradient ∂y/∂x here, we use the chain rule

∂

∂x
Φ−1

[
F̂ (x)

]
=
(
Φ−1

)′
(F̂ (x)) · F̂ ′(x)

The gradient of F̂ with respect to x is simply some constant that does not depend on x since F̂
is a piece-wise linear function formed from previous mini-batches independently of x. Similarly,(
Φ−1

)′
(F̂ (x)) does not involve any other terms than x itself, so the gradient does not account for any

normalization. Thus, it is possible that the optimizer will make gradient steps that are counteractive
to the normalization from CDFN, similarly to the discussion about whitening in [4]. This provides
both a potential reason why CDFN is not effective and also highlights how important it is for the
normalization to flow through the gradient as in BN.

At this point, it is natural to wonder whether it is possible to adapt CDFN to use only the current
mini-batch as in BN. It turns out that applying an estimated CDF from only the current mini-batch
is challenging. The natural first attempt would be to compute the empirical CDF using the current
mini-batch and proceed exactly as in CDFN. The problem is that applying an empirical CDF to the
same data it is built on amounts to doing an argsort operation, and this operation is not differentiable.
To get around this problem, we can "soften" the empirical CDF calculation so that it is differentiable.
One way to do this is to replace the indicator functions in the empirical CDF with sigmoid functions
centered at each point. This turns out to be too slow to be practical. Even computing a sum of sigmoids
for a reasonably-sized subset of data points in a given mini-batch followed by linear interpolation is
very slow and does not produce good results. Another potentially better approach would be to use
some kind of soft rank function that is differentiable such as [2]. So far, we have discovered this to
also work less effectively than using no normalization, and also to be too slow to be realistic when
the soft ranking is over multiple dimensions as in CIFAR-10.

5 Conclusion

Batch Normalizaiton (BN) [4] has the effect of reducing internal covariate shift in neural networks,
yet [10] demonstrates that the effectiveness of BN is not related to this reduction in internal covariate
shift. We provide a normalization technique, CDF Normalization (CDFN), which reduces internal
covariate shift even more than BN and yet hinders training. We argue that CDFN not using the
current mini-batch for normalization disrupts gradient flow, and doing CDFN using only the current
mini-batch is challenging. We leave it to future work to find more efficient and effective ways to
perform CDFN-style normalization using only the current mini-batch.

4



References
[1] J. Bjorck, C. Gomes, B. Selman, and K. Q. Weinberger. Understanding batch normalization.

arXiv preprint arXiv:1806.02375, 2018.

[2] M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga. Fast differentiable sorting and ranking. In
International Conference on Machine Learning, pages 950–959. PMLR, 2020.

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[4] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456.
PMLR, 2015.

[5] A. Kadra, M. Lindauer, F. Hutter, and J. Grabocka. Regularization is all you need: Simple
neural nets can excel on tabular data. arXiv preprint arXiv:2106.11189, 2021.

[6] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25:1097–1105, 2012.

[9] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[10] S. Santurkar, D. Tsipras, A. Ilyas, and A. Mądry. How does batch normalization help optimiza-
tion? In Proceedings of the 32nd international conference on neural information processing
systems, pages 2488–2498, 2018.

[11] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[12] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In International conference on machine learning, pages 1139–
1147. PMLR, 2013.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.

5



0.00

0.25

0.50

0.75

1.00

-2.1 -0.5  1.2  3.4  6.1

x

P
(X

 ≤
 x

)

(a) Empirical CDF from sample

0.00

0.25

0.50

0.75

1.00

-2.1 -0.5  1.2  3.4  6.1

x

P
(X

 ≤
 x

)

(b) Linear Interpolation of ECDF

Figure 3: Demonstration of Linear Interpolation from an empirical CDF. In a) a sample of
{−2.1,−0.5, 1.2, 3.4, 6.1} is used to construct the ECDF, which then is smoothed by linear in-
terpolation in b). In practice, values after interpolation are truncated between [0.001, 0.999] to avoid
infinities.

Appendix

In Figure 3, we demonstrate the process of generating a piece-wise linear function that esti-
mates the CDF of a given data sample. In the example in the figure, we take the sample
S = {−2.1,−0.5, 1.2, 3.4, 6.1} and start by plotting the empirical CDF of this sample as the
step function a 7→ 1

n

∑
s∈S I(a ≤ s). To perform linear interpolation of this step function, we simply

build a piece-wise linear function connecting the jump points from the step function. After the last
point, the function levels off at 1, while before the first point the function continues linearly down to
0 before leveling off. In practice, we take the additional step of truncating the function between 0.001
and 0.999 to avoid computing the inverse CDF of 0 or 1 during the following step when we convert
from uniform to Gaussian distribution.

6


	Introduction
	Method
	Experiments
	Reducing Internal Covariate Shift
	Accuracy Results

	Analysis
	Conclusion

