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Abstract

In some settings neural networks exhibit a phenomenon known as grokking, where they
achieve perfect or near-perfect accuracy on the validation set long after the same perfor-
mance has been achieved on the training set. In this paper, we discover that grokking is
not limited to neural networks but occurs in other settings such as Gaussian process (GP)
classification, GP regression, linear regression and Bayesian neural networks. We also un-
cover a mechanism by which to induce grokking on algorithmic datasets via the addition of
dimensions containing spurious information. The presence of the phenomenon in non-neural
architectures shows that grokking is not restricted to settings considered in current theoret-
ical and empirical studies. Instead, grokking may be possible in any model where solution
search is guided by complexity and error.

1 Introduction

In this paper, we conduct an empirical exploration of grokking, uncovering new aspects of the phenomenon
not explained by current theory. We begin by describing grokking and summarise its existing explanations.
Afterwards, we present our empirical observations – most notably, the existence of grokking outside of neural
networks. Finally, we suggest a mechanism for grokking that is broadly consistent with our observations.
While we do not claim that this mechanism is necessary in all cases of grokking as it relies upon a complexity
penalty, we do provide evidence that it may be necessary in some of our learning settings.

1.1 Generalisation

Grokking is defined with respect to model generalisation – the capacity to make good predictions in novel
scenarios. To express this notion formally, we restrict our definition of generalisation to supervised learning.
In this paradigm, we are given a set of training examples X ⊂ X and associated targets Y ⊂ Y. We
then attempt to find a function fθ : X → Y so as to minimise an objective function L : (X, Y, fθ) → R.1
Having found fθ, we may then look at the function’s performance under a possibly new objective function
G (typically L without dependence on θ) on an unseen set of examples and labels, X ′ and Y ′. If G(X ′, Y ′)
is small, we say that the model has generalised well and if it is large, it has not generalised well.

1A popular choice for fθ is a neural network (Goodfellow et al., 2016) with θ representing its weights and biases.
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1.2 Model Selection and Complexity

Consider F , a set of models we wish to use for prediction. We have described a process by which to assess the
generalisation performance of fθ ∈ F given X ′ and Y ′. Unfortunately, these hidden examples and targets
are not available during training. As such, we may want to measure relevant properties about members of F
that could be indicative of their capacity for generalisation. One obvious property is the value of G(X, Y ) (or
some related function) which we call the data fit. Another property is complexity. If we can find some means
to measure the complexity, then traditional thinking would recommend we follow the principle of parsimony.
“[The principle of] parsimony is the concept that a model should be as simple as possible with respect to
the induced variables, model structure, and number of parameters” (Burnham & Anderson, 2004). That is,
if we have two models with similar data fit, we should choose the simplest of the two.

If we wish to follow both the principle of parsimony and minimise the data fit, the loss function L we use
for choosing a model is given by:

L = error + complexity. (1)

While Equation 1 may seem simple, it is often difficult to characterise the complexity term2. Not only
are there multiple definitions for model complexity across different model categories, definitions also change
among the same category. When using a decision tree, we might measure complexity by tree depth and the
number of leaf nodes (Hu et al., 2021). Alternatively, for deep neural networks, we could count the number
and magnitude of parameters or use a more advanced measure such as the linear mapping number (LMN)
(Liu et al., 2023b). Fortunately, in this wide spectrum of complexity measures, there are some unifying
formalisms we can apply. One such formalism was developed by Kolmogorov (Yueksel et al., 2019). In this
formalism, we measure the complexity as the length of the minimal program required to generate a given
model. Unfortunately, the difficulty of computing this measure makes it impractical. A more pragmatic
alternative is the model description length. This defines the complexity of a model as the minimal message
length required to communicate its parameters between two parties (Hinton & van Camp, 1993). We discuss
Kolmogorov complexity in Appendix B and the model description length in Appendix C. We also provide a
note on measuring complexity in GPs which can be found in Appendix D.

1.3 The Grokking Phenomenon

Grokking was recently discovered by Power et al. (2022) and has garnered attention from the machine
learning community. It is a phenomenon in which the performance of a model fθ on the training set reaches
a low error at epoch E1, then following further optimisation, the model reaches a similarly low error on the
validation dataset at epoch E2. Importantly the value ∆k = |E2−E1| must be non-trivial. In many settings,
the value of ∆k is much greater than E1. Additionally, the change from poor performance on the validation
set to good performance can be quite sudden.3 A prototypical illustration of grokking is provided in Figure
13 (Appendix J.2).

To the best of our knowledge, all notable existing empirical literature on the grokking phenomenon is
summarised in Table 1 (Appendix A). The literature has focused primarily on neural network architectures
and algorithmic datasets4. We use a variety of similar algorithmic datasets outlined in Appendix E.

No paper has yet demonstrated the existence of the phenomenon using a GP. In addition, several theories
have been presented to explain grokking. They can be categorised into three main classes based on the
mechanism they use to analyse the phenomenon. Loss-based theories such as Liu et al. (2023a) appeal
to the loss landscape of the training and test sets under different measures of complexity and data fit.
Representation-based theories such as Davies et al. (2023), Barak et al. (2022), Nanda et al. (2023) and
Varma et al. (2023) claim that grokking occurs as a result of feature learning (or circuit formation) and
associated training dynamics. Finally, there are a set of theories which use the neural tangent kernel (NTK)

2There exist standard choices for G (X, Y ) such as the cross entropy in classification or the L2 norm in regression
3Whether this sharp transition is required to fulfil the definition of grokking is somewhat unclear. In this paper, we tend to

accept both sharp and soft transitions.
4We define an algorithmic dataset as one in which labels are produced via a predefined algorithmic process such as a

mathematical operation between two integers.
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(Jacot et al., 2018) to explain grokking. Namely, Kumar et al. (2023) and Lyu et al. (2023). Importantly,
no existing theory could explain grokking if it were found in GPs.

Loss based theory. Liu et al. (2023a) assume that there is a spherical shell (Goldilocks zone) in the weight
space where generalisation is better than outside the shell. They claim that, in a typical case of grokking,
a model will have large weights and quickly reach an over-fitting solution outside of the Goldilocks zone.
Then regularisation will slowly move weights towards the Goldilocks zone. That is, grokking occurs due
to the mismatch in time between the discovery of the overfitting solution and the general solution. While
some empirical evidence is presented in Liu et al. (2023a) for their theory, and the mechanism itself seems
plausible, the requirement of a spherical Goldilocks zone seems too stringent. It may be the case that a more
complicated weight-space geometry is at play in the case of grokking.

Liu et al. (2023b) also recently explored some cases of grokking using the LMN metric. They find that
during periods they identify with generalisation, the LMN decreases. They claim that this decrease in LMN
is responsible for grokking.

Representation or circuit based theory. Representation or circuit based theories require the emergence
of certain general structures within neural architectures. These general structures become dominant in the
network well after other less general ones are sufficient for low training loss. For example, Davies et al.
(2023) claim that grokking occurs when, “slow patterns generalize well and are ultimately favoured by the
training regime, but are preceded by faster patterns which generalise poorly.” Similarly, it has been shown
that stochastic gradient descent (SGD) slowly amplifies a sparse solution to algorithmic problems which
is hidden to loss and error metrics (Barak et al., 2022). This is mirrored somewhat in the work of Liu
et al. (2022) which looks to explain grokking via a slow increase in representation quality5. Nanda et al.
(2023) claim in the setting of an algorithmic dataset and transformer architecture, training dynamics can be
split into three phases based on the network’s representations: memorisation, circuit formation and cleanup.
Additionally, the structured mechanisms (circuits) encoded in the weights are gradually amplified with later
removal of memorising components. Varma et al. (2023) are in general agreement with Nanda et al. (2023).
Representation (or circuit) theories seem the most popular, based on the number of research papers published
which use these ideas. They also seem to have a decent empirical backing. For example, Nanda et al. (2023)
explicitly discover circuits in a learning setting where grokking occurs.

NTK based theory. Recently, Kumar et al. (2023) and Lyu et al. (2023) used the neural tangent kernel to
explain the grokking phenomenon. Specifically, Kumar et al. (2023) found that a form of grokking still occurs
without an explicit complexity penalty. They argue that in this case, grokking is caused by the transition
between lazy and feature-rich training regimes. This is distinct from previous theories of grokking in neural
networks, many of which require weight decay to remove “memorising” solutions. Lyu et al. (2023) worked
concurrently on grokking with small values of weight decay, demonstrating that under idealised conditions,
grokking could be provably induced through a sharp transition from an early kernel regime to a rich regime.

Grokking in Linear Estimators. Concurrently to the writing of this paper, Levi et al. (2023) studied
grokking in a linear student-teacher setting. In that work they proved that a significant gap between the
training and validation accuracy can arise when the two networks are given Gaussian inputs. This shows
that grokking can occur in linear settings without the need for a complex model that might transition from
“memorisation” to “understanding.”

Our contributions. Unlike previous work, in this paper, we choose another axis by which to explore
grokking. We restrict ourselves to cases where the loss function can be decomposed into the form of Equation
1 but expand the set of models we study. In particular, we contribute to the existing grokking literature in
the following ways:

• We demonstrate that grokking occurs when tuning the hyperparameters of GPs and in the case of
linear models. This necessitates a new theory of grokking outside of neural networks.

• We create a new data augmentation technique which we call concealment that can increase the
grokking gap via control of additional spurious dimensions added to input examples.

5See Figure 1 of this paper for a high quality visualisation of what is meant by a general representation.
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Figure 1: Accuracy, data fit and complexity on zero-one slope classification task with a linear model. Note
that the shaded region corresponds to the standard error of five training runs. Further, the grey line marks
the point of minimum data fit.

• We suggest a mechanism for grokking in cases where solution search is guided by complexity and
error. This mechanism is model-agnostic and can explain grokking outside of neural networks.

2 Experiments

In the following section, we present various empirical observations we have made regarding the grokking
phenomenon. In Section 2.1, we demonstrate that grokking can occur with GP classification and linear
regression. This proves its existence in non-neural architectures, identifying a need for a more general theory
of the phenomenon. Further, in Section 2.2, we show that there is a way of inducing grokking via data
augmentation. Finally, in Section 2.3, we examine directly the weight-space trajectories of models which
grok during training, incidentally demonstrating the phenomenon in GP regression. Due to their number,
the datasets used for these experiments are not described in the main text but rather in Appendix E.

2.1 Grokking in GP Classification and Linear Regression

In the following experiments, we show that grokking occurs with GP classification and linear regression. In
the case of linear regression, a very specific set of circumstances were required to induce grokking. However,
for the GP models tested using typical initialisation strategies, we were able to observe behaviours which
are consistent with our definition of grokking.

2.1.1 Zero-One Classification on a Slope with Linear Regression

As previously mentioned, to demonstrate the existence of grokking with linear regression, a very specific
learning setting was required. We employed Dataset 9 with three additional spurious dimensions and two
training points. Given a particular example x0 from the dataset, the spurious dimensions were added as
follows to produce the new example x′:

x′ =
[
x0 x2

0 x3
0 sin(100x0)

]T (2)

The model was trained as though the problem were a regression task with outputs later transformed into
binary categories based on the sign of the predictions.6 To find the model weights, we used SGD over a
standard loss function with a mean squared error (MSE) data fit component and a scaled weight-decay

6If fθ(x) < 0 then the classification of a given point was negative and if fθ(x) > 0, then the class was positive.
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complexity term7:

L = MSE(y, ŷ)
ϵ0

+
d∑

i=0

(wi − µi
0)2

σi
0

. (3)

In Equation 3, the term wi represents the individual weights of the linear regression model corresponding to
each feature dimension. Further, i indexes the dimensionality of the variables w, µ0 and σ0, ϵ0 is the noise
variance, µ0 is the prior mean, and σ0 is the prior variance. For our experiment, µi was taken to be 0 and σi

to be 0.5 for all i. Regarding initialisation, w was heavily weighted against the first dimension of the input
examples8. This unusual alteration to the initial weights was required for a clear demonstration of grokking
with linear regression.

The accuracy, complexity and data fit of the linear model under five random seeds governing dataset gener-
ation is shown in Figure 1. Clearly, in the region between epochs 2 · 101 and 103, validation accuracy was
significantly worse than training accuracy and then, in the region 2 · 103, the validation accuracy was very
similar to that of the training accuracy. This satisfies our definition of grokking, although the validation
accuracy did not always reach 100% in every case. Provided in Appendix H.1 is the accuracy and loss of a
training run with a specific seed that reaches 100% accuracy.

We also completed a series of further experiments concerning model initialisation, weight evolution and the
necessity of weight decay which we present in Appendix K. We find that the resulting trends are consistent
with the grokking mechanism we suggest in Section 3 and so are the evolution of the weights. Further, we
show that without weight decay we do not see grokking. This demonstrates that some form of regularisation is
required, providing evidence that the grokking mechanism we suggest might be both sufficient and necessary
in this setting.

2.1.2 Zero-One Classification with a Gaussian Process

In our second learning scenario, we applied GP classification to Dataset 8 with a radial basis function (RBF)
kernel:

k(x1, x2) = α exp
(
−1

2(x1 − x2)T Θ−2(x1 − x2)
)

. (4)

Here, Θ is called the lengthscale parameter and α is the kernel amplitude. Both Θ and α were found by
minimising the approximate negative marginal log likelihood associated with a Bernoulli likelihood function
via the Adam optimiser acting over the variational evidence lower bound (Hensman et al., 2015; Gardner
et al., 2018).

The result of training the model using five random seeds for dataset generation and model initialisation can
be seen in Figure 2. The final validation accuracy is not 100% like the cases we will see in the proceeding
sections. However, it is sufficiently high to say that the model has grokked. In Appendix H.2, we also provide
the loss curves during training. As we later discuss in Section 4, there are some subtleties associated with
interpreting the role of the complexity term.

In our third learning scenario, we also looked at GP classification. However, this time on a more complex
algorithmic dataset – a modified version of Dataset 1 (with k = 3) where additional spurious dimensions are
added and populated using values drawn from a normal distribution. In particular, the number of additional
dimensions is n = 37 making the total input dimensionality d = 40. We use the same training setup as in
Section 2.1.2. The results (again with five seeds) can be seen in Figure 3 with a complexity plot in Appendix
H.3 and discussion of the limitations of this complexity measure in Section 4.

For both GP learning scenarios we also completed experiments without the complexity term arising under
the variational approximation. The results of these experiments, namely a lack of grokking, can be seen
in Appendix L. This demonstrates that some form of regularisation is needed in this scenario and provides
further evidence for the possible necessity of the grokking mechanism we propose in Section 3.

7As demonstrated by Hinton & van Camp (1993), this loss function has an equivalence with the MDL principle when we fix
the standard deviations of prior and posterior Gaussian distributions.

8w0 =
[
5 · 10−4 9 · 10−1 9 · 10−1 9 · 10−1

]T
.
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Figure 2: Accuracy and log likelihoods on zero-one classification task with a RBF Gaussian process. Note
that the shaded region corresponds to the standard error of five training runs.
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Figure 3: Accuracy and log likelihoods on hidden parity prediction task with RBF Gaussian process. Note
that the shaded region corresponds to the standard error of five training runs. Acc. is Accuracy and Val. is
Validation.

2.2 Inducing Grokking via Concealment

In this section, we investigate how one might augment a dataset to induce grokking. In particular, we
develop a strategy which induces grokking on a range of algorithmic datasets. This work was inspired by
Merrill et al. (2023) and Barak et al. (2022) where the true task is “hidden” in a higher dimensional space.
This requires models to “learn” to ignore the additional dimensions of the input space. For an illustration
of learning to ignore see Figure 12 (Appendix J.1).

Our strategy is to extend this “concealment” idea to other algorithmic datasets. Consider (x, y), an example
and target pair in supervised learning. Under concealment, one augments the example x by adding random
bits, labeled v0 to vl, where the values 0 and 1 have equal probability. The new concealed example x′ is:

x′ =
[
x0 x1 · · · xd v0 · · · vl

]T
.

To determine the generality of this strategy in the algorithmic setting, we applied it to 6 different datasets
(2-7). These datasets were chosen as they share a regular form9 and seem to cover a fairly diverse variety of
algorithmic operations. In each case, we used the prime 7, and varied the additional dimensionality k. For
the model, we used a simple neural network analogous to that of Merrill et al. (2023). This neural network

9They are all governed by the same prime p and take two input numbers.
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Figure 4: Relationship between grokking gap and number of additional dimensions using the grokking via
concealment strategy. Note that x-values are artificially perturbed to allow for easier visibility of error bars.
In reality they are either 10, 20, 30 or 40. Also, the data of zero additional length is removed (although still
influences the regression fit). See Appendix I.2 for the plot without these changes.

consisted of 1 hidden layer of size 1000 and was optimised using SGD with cross-entropy loss. The weight
decay was set to 10−2 and the learning rate to 10−1. Loss plots for all experiments are shown in Appendix
N.

To discover the relationship between concealment and grokking, we measured the “grokking gap” ∆k. In
particular, we considered how an increase in the number of spurious dimensions relates to this gap. The
algorithm used to run the experiment is detailed in Algorithm 1 (Appendix I.1). The result of running
this algorithm can be seen in Figure 4. In addition to visual inspection of the data, a regression analysis
was completed to determine whether the relationship between grokking gap and additional dimensionality
might be exponential. The details of the regression are provided in Appendix F and its result is denoted as
Regression Fit in the figure. The Pearson correlation coefficient (Pearson, 1895; SciPy developers, 2023) was
also calculated in log space for all points available and for each dataset individually. Further, we completed
a test of the null hypothesis that the distributions underlying the samples are uncorrelated and normally
distributed. The Pearson correlation r and p-values are presented in Table 2 (Appendix F.2) The Pearson
correlation coefficients are high in aggregate and individually, indicating a positive linear trend in log space.
Further, p values in both the aggregate and individual cases are well below the usual threshold of α = 0.05.

In Appendix M, one can also find an analysis of this data augmentation technique with regards to the
grokking mechanism we suggest in Section 3. This analysis involved scaling the magnitude of weight matrices
to determine how this would alter trends seen in Figure 4.

2.3 Parameter Space Trajectories of Grokking

Our last set of experiments was designed to interrogate the parameter space of models which grok. We
completed this kind of interrogation in two different settings. The first was GP regression on Dataset
10 and the second was BNN classification on a concealed version of Dataset 1. Since the GP only had two
hyperparameters governing the kernel, we could see directly the contribution of complexity and data fit terms.
Alternatively, for the BNN we aggregated data regarding training trajectories across several initialisations
to investigate the possible dynamics between complexity and data fit.

2.3.1 GP Grokking on Sinusoidal Example

In this experiment, we applied a GP (with the same kernel as in Section 2.1.2) to regression of a sine
wave. To find the optimal parameters for the kernel, a Gaussian likelihood function was employed with
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Figure 5: Trajectories through parameter landscape for GP regression. Initialisation points A-C refer to
those mentioned in Section 2.3.1.

exact computation of the marginal log likelihood. In this optimisation scenario, the complexity term is as
described in Appendix D.

To see how grokking might be related to the complexity and data fit landscapes, we altered hyperparameter
initialisations. We considered three different initialisation types. In case A, we started regression in a region
of high error and low complexity (HELC) where a region of low error and high complexity (LEHC) was
relatively inaccessible when compared a region of low error and low complexity (LELC). For case B, we
initialised the model in a region of LEHC where LELC solutions were less accessible. Finally, in case C,
we initialised the model in a region of LELC. As evident in Figure 5, we only saw grokking for case B. It
is interesting that, in this GP regression case, we did not see a clear example of the spherical geometry
mentioned in the Goldilocks zone theory of Liu et al. (2023a). Instead, a more complicated loss surface is
present which results in grokking.

2.3.2 Trajectories of a BNN with Parity Prediction

We also examined the weight-space trajectories of a BNN (fθ). Our learning scenario involved Dataset 1
with the concealment strategy presented in Section 2.2. Specifically, we used an additional dimensionality of
27 and a parity length of 3. To train the model, we employed SGD with the following variational objective:

L(ϕ) = EQϕ(θ)[CrossEntropyLoss(fθ(X), Y )] + DKL(Qϕ(θ)||P (θ)). (5)

In Equation 5, P (θ) is a standard Gaussian prior on the weights and Qϕ(θ) is the variational approximation.
The complexity penalty in this case is exactly the model description length discussed in Section 1.2 with the
overall loss function clearly a subset of Equation 1.

To explore the weight-space trajectories of the BNN we altered the network’s initialisation by changing
the standard deviation of the normal distribution used to seed the variational mean of the weights. This
resulted in network initialisations with differing initial complexity and error. We then trained the network
based on these initialisations using three random seeds, recording values of complexity, error and accuracy.
The outcomes of this process are in Figure 6. Notably, initialisations which resulted in an increased grokking
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Figure 6: This figure illustrates grokking in Bayesian Neural Networks (BNNs) using different standard
deviation values (σ) for variational mean initialisations. The left plot shows the error-complexity landscape
during training. Points become less transparent as training progresses, indicating epoch advancement. Tri-
angles mark the grokking point for each σ, determined when validation accuracy first exceeds 95% after
training accuracy reaches this level. Three trials per σ contribute to these points. The right plot displays
the average error and complexity across epochs, highlighting how complexity evolves during the training and
grokking phases. Normalised Grokking Gap refers to the epoch difference between achieving 95% training
and validation accuracy, scaled between zero and one.

gap correlate with increased optimisation time in regions of LEHC. Further, there seems to be a trend across
epochs with error and complexity. At first, there is a significant decrease in error followed by a decrease in
complexity and it is in this region, where complexity is decreasing most, that grokking occurs.

3 Grokking and Complexity

So far we have explored grokking with reference to different complexity measures across a range of models.
There seems to be no theory of grokking in the literature which can explain the new empirical evidence we
present. Motivated by this, we suggest a possible mechanism which may induce grokking in cases where
solution search is guided by both complexity. We believe this condition to be compatible with our new
results, previous empirical observations and with many previous theories of the grokking phenomenon.

To build our hypothesised grokking mechanism, we first make Assumption 1. We believe that Assumption 1
is justified for the most common setting in which grokking occurs. Namely, algorithmic datasets. It is also
likely true for a wide range of other scenarios.
Assumption 1. For the task of interest, the principle of parsimony holds. That is, solutions with minimal
possible complexity will generalise better.

We then suggest Mechanism 1 which we refer to as the complexity route to grokking.
Mechanism 1. If the low error, high complexity (LEHC) weight space is readily accessible from typical
initialisation but the low error, low complexity (LELC) weight space is not, models will quickly find a low error
solution which does not generalise. Given a path between LEHC and LELC regions which has non-increasing
loss, solutions in regions of LEHC will slowly be guided toward regions of LELC due to regularisation. This
causes an eventual decrease in validation error, which we see as grokking.

We do not claim that this is an exclusive route to the grokking phenomenon. Kumar et al. (2023) and others
have demonstrated that grokking does not require an explicit regularisation scheme in the neural network
cases. However, we believe it could be a sufficient mechanism there. In addition, it may be the dominant
mechanism in the non-neural network cases we present. Evidence for this is provided in Appendices K and
L where we demonstrate the need for regularisation in our linear regression and GP grokking cases.
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3.1 Explanation of Previous Empirical Results

We now discuss the congruence between our hypothesised mechanism and existing empirical observations.
In Appendix G we draw parallels between our work and existing theory.

Learning with algorithmic datasets benefits from the principle of parsimony as a small encoding is required
for the solution. In addition, when learning on these datasets, there appear to be many other more complex
solutions which do not generalise but attain low training error. For example, with a neural network containing
one hidden layer completing a parity prediction problem, there is competition between dense subnetworks
which are used to achieve high accuracy on the training set (LEHC) and sparse subnetworks (LELC) which
have better generalisation performance (Merrill et al., 2023). In this case, the reduced accessibility of LELC
regions compared to LEHC regions seems to cause the grokking phenomenon. This general story is supported
by further empirical analysis completed by Liu et al. (2022) and Nanda et al. (2023). Liu et al. (2022) found
that a less accessible, but more general representation, emerges over time within the neural network they
studied and that after this representation’s emergence, grokking occurs. If the principle of parsimony holds,
this general representation should be simpler under an appropriate complexity measure. Consequently, the
shift could be explained by Mechanism 1. Nanda et al. (2023) discovered that a set of trigonometric identities
were employed by a transformer to encode an algorithm for solving modular arithmetic. Additionally,
this trigonometric solution was gradually amplified over time with the later removal of high complexity
“memorising” structures. Indeed, it is stated in that paper that circuit formation likely happens due to
weight decay. This fits under Mechanism 1 – the model is moving from an accessible LEHC region where
memorising solutions exist to a LELC region via regularisation.

The work by Liu et al. (2023a) showed the existence of grokking on non-algorithmic datasets via alteration
of the initialisation and dataset size. From Mechanism 1, we can see why these factors would alter the
existence of grokking. Changing the initialisation alters the relative accessibility of LEHC and LELC regions
and reducing the dataset size may lessen constraints on LEHC regions which otherwise do not exist.

The study by Levi et al. (2023) on grokking in linear models complements our hypothesis on grokking’s
nature, particularly in the linear regression context. Their focus on the divergence between training and
generalisation loss in linear teacher-student models, influenced by input dimensionality and weight decay,
parallels our findings in inducing grokking via dataset manipulation. Our approach, especially with Dataset
9, where we add spurious dimensions, aligns with their emphasis on input structure’s role. This similarity
bolsters our claim that grokking emerges due to the initial inaccessibility of LELC solutions. Furthermore,
our exploration in GP models through data concealment, adding uninformative dimensions, demonstrates
that these relationships extend into more complex scenarios beyond linear estimators.

3.2 Explanation of New Empirical Evidence

Having been proposed to explain the empirical observation we have uncovered in this paper, Mechanism 1
should be congruent with these new findings – the first of which is the existence of grokking in non-neural
models. Indeed, one corollary of our theory (Corollary 1) is that grokking should be model agnostic. This is
because the proposed mechanism only requires certain properties of error and complexity landscapes during
optimisation. It is blind to the specific architecture over which optimisation occurs.

Corollary 1. The phenomenon of grokking should be model agnostic. Namely, it could occur in any setting
in which solution search is guided by complexity and error.

Another finding from this paper is that of the concealment data augmentation strategy. We believe this can be
explained via the lens of Mechanism 1 as follows. When dimensions are added with uninformative features,
there exist LEHC solutions which use these features. However, the number of LELC solutions remains
relatively low as the most general solution should have no dependence on the additional components. This
leads to an increase in the relative accessibility of LEHC regions when compared to LELC regions which in
turn leads to grokking.
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4 Discussion

Despite some progress made toward understanding the grokking phenomenon in this paper, there are still
some points to discuss. We start by assessing the limitations of the empirical evidence gathered. This is
important for a balanced picture of the experimentation completed and its implications for our suggested
grokking mechanism. Having examined these limitations, we can provide some recommendations regarding
related future work in the field.

4.1 Limitations of Empirical Evidence

In Section 2.1, experimentation with linear regression may be criticised for the specificity of the learning
setup required to demonstrate grokking and for the value of the final validation accuracy. We note that
the first critique is not reasonable in the sense that we should be able to show grokking under “normal”
circumstances since grokking does not appear under “normal circumstances.” However, if one wanted to
widen the scope of learning settings where Mechanism 1 applies, further experimentation is needed. It could
be the case that, with only one setting, we saw results consistent with Mechanism 1 but under another
learning scenario, our mechanism could become inconsistent. We do not consider the second critique to be
significant. For our purposes, grokking need not have 100% accuracy as not all general solutions provide
that. However, if this is desired, we provide a case where this occurs in Appendix H.1.

There are also reasonable critiques concerning the experimentation completed on GP classification. The
most pressing might be concerns over the measurement of complexity as presented in Appendices H.2 and
H.3. This is due to the way the model is optimised. Namely, via maximisation of the evidence lower bound:

LELBO(ϕ, θ) =
N∑

i=1
Eqϕ(fi)[log p(yi|fi)]− βKL[qϕ(f)||pθ(f)]. (6)

Unfortunately, optimisation of this value leads to changes in both the variational approximation and the
hyperparameters of the prior GP. This presents a problem when trying to use the results of GP classification
to validate Mechanism 1. The hyperparameters control the complexity of the prior which then influences the
measured complexity of the model via the KL divergence. Consequently, the complexity measurement at any
two points in training are not necessarily comparable. To disentangle optimisation of the hyperparameters
and the variational approximation, one could complete a set of ablation studies. For this, one would keep
either the hyperparameters or the variational approximation constant and alter the other variable. By doing
so, one would be able to validate more directly Mechanism 1 with GP classification. Additionally, one might
need to alter the learning setting to retain grokking under a new approximation scheme such as Laplace’s
method. Further discussion and experimentation are provided in Appendix O.

Due to the simplicity of the model considered in Figure 5, it is hard to criticise experimentation completed
there. However, the experimental design of the BNN lacks generality. Indeed, it is difficult to know if the
subspace from which the BNN was initialised is indicative of general trends about the weight space. However,
the values chosen were indicative of typical initialisation values. Thus, we can say that for “normal” cases
that might be encountered by a practitioner, the BNN weight trajectories are representative.

4.2 Future Work

An interesting outcome of experimentation in this paper was the discovery of the concealment data augmen-
tation strategy. As far as the authors are aware, this is the first data augmentation strategy found which
consistently results in grokking. Additionally, its likely exponential trend with the degree of grokking is of
great interest. Indeed, we know that the volume of a region in an n-dimensional space decreases exponentially
with an increase in n. This fact and the exponential increase in grokking with additional dimensionality
could be connected. Unfortunately, at this point in time, such a connection is only speculative. Thus, a
more theoretical analysis might be warranted which seeks to examine this relationship.

Additional work should also be conducted to investigate the need for regularisation in grokking. In our
work, we have suggested a mechanism for grokking which requires a complexity penalty. We believe this
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mechanism to be broadly compatible with previous experimentation and theory produced for cases with such
a penalty. However, the work completed by Levi et al. (2023) and Kumar et al. (2023) show that grokking
need not require a complexity penalty in every case. Through the novel ablation studies provided, we have
begun to draw a boundary around cases where grokking does seem to need a penalty like weight decay or KL
divergence. Nonetheless, there is much still left to do in order to investigate the role of explicit regularisation
in grokking.

4.3 The Real-World Applications of Grokking

We would also like to briefly touch upon the possible applications of our work on grokking. We believe there
are several ways it may be useful. The most obvious case would be the discovery of grokking in datasets
important to ML practitioners. In this scenario, practitioners could leverage our analysis to mitigate grokking
by, for example, modifying their initialisation strategy. Indeed, our paper is the first to examine grokking
in GPs, offering unique insights relevant to grokking in that model class. Another important consideration
is the relationship between grokking and concealment. Given that some form of concealment could occur in
real-world tasks, it merits analysis to determine whether any form of grokking is present and, if absent, to
understand why.

5 Conclusion

We have presented novel empirical evidence for the existence of grokking in non-neural architectures and
discovered a data augmentation technique which induces the phenomenon. Relying upon these observations
and analysis of training trajectories in a GP and BNN, we suggested a mechanism for grokking in models
where solution search is guided by complexity and error. Importantly, we argued that this theory is congruent
with previous empirical evidence and many previous theories of grokking. In future, researchers could extend
the ideas in this paper by undertaking a theoretical analysis of the concealment strategy discovered and by
conducting further studies to assess the role of complexity penalties.

Supplementary Material

All experiments can be found at this GitHub page. They have descriptive names and should reproduce the
figures seen in this paper. For Figure 6, the relevant experiment is in the feat/info-theory-description
branch.

Broader Impact Statement

We have completed empirical experiments with the grokking phenomenon using synthetic data. It is difficult
to identify any specific ethical concerns. Of course, broader ethical reservations, present in any basic machine
learning research, might be relevant.
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A Summary of Existing Empirical Work on Grokking

Research Paper Architecture Category Dataset Description
Power et al. (2022) Transformer Algorithmic Problems of the form a ◦ b = c

where ◦ is a binary operation and
“a”, “b”, “◦”, “=” and “c” are
tokens.

Žunkovič & Ilievski (2022) Perceptron
Tensor Network

Rules-Based 1D cellular automaton rule, 1D
exponential and D-dimensional
uniform ball.

Liu et al. (2022) MLP
Transformer

Algorithmic
Image class.

Addition modulo P , regular ad-
dition and MNIST.

Nanda et al. (2023) Transformer Algorithmic Addition modulo P .
Liu et al. (2023a) MLP

LSTM
GCNN

Algorithmic
Image class.
Language
Molecules

Regular addition, MNIST, IMDb
dataset and QM9.

Merrill et al. (2023) MLP Algorithmic Parity prediction and operations
modulo prime.

Davies et al. (2023) Transformer Algorithmic Addition modulo P .
Barak et al. (2022) MLP

Transformer
PolyNet

Algorithmic Parity prediction task.

Murty et al. (2023) Transformer Language Question formation, tense-
inflection and bracket nesting

Liu et al. (2023b) MLP Algorithmic XOR, S4 group operation and
bitwise XOR.

Varma et al. (2023) Transformer Algorithmic Similar to Power et al. (2022)

Table 1: Summary of datasets and architectures in which the grokking phenomenon has been studied. Note
that class. is short for classification.
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B Kolmogorov Complexity

The Kolmogorov complexity is one of several measures of complexity discussed in this paper. In some sense,
it is the measure of complexity with the least prior knowledge used to generate its value.
Definition B.1 (Kolmogorov). According to Yueksel et al. (2019), the Kolmogorov complexity KU of a
string x with respect to a universal computer U is:

KU (x) = min
p:U(p)=x

l(p) (7)

where p denotes a program and l(p) is the length of the program in some standard language.

Essentially, the Kolmogorov complexity is the length of the minimal program required to produce a string
representation of a model. To illustrate this point, consider the three strings presented in Figure. 7. Let us
assume that each of the associated programs are minimal under some language understood by a universal
computer U10. In this case, the first string would have the least complexity as the program specifying
it requires 52 characters, the second string would be more complex requiring 105 and the third would be
most complex requiring 106. In the Kolmogorov formalism, if we have members f, h ∈ F and the minimal
program to produce the string representation of f is longer than h, it is more complex.

aaaaaaaaaaaaaaaa abababababababab

Program 1 Program 2

abcdabcdabcdabcc

Program 3

Figure 7: Illustration of Kolmogorov Complexity

With this Kolmogorov measure of complexity we can formalism the principle of parsimony under a com-
putational picture. To do so, we use Solomonoff’s theory of inductive inference. In Solomonoff induction,
we assume that we have an observation about the world o ∈ O which can be encoded in a binary string.
In addition, we have a set of hypothesis H about that observation. We assume that these hypothesises
are computable in the sense that each can be run on a Turing machine producing o. Further, we make a
metaphysical assumption that true hypothesises are generated randomly using an unbiased process whereby
the binary sequence defining h ∈ H is generated by choosing between three options at every point in the
sequence: 0, 1 or END. In this setting if a hypothesis h generates an observation o but has a smaller
Kolmogorov complexity than other hypotheses generating o, it is more likely (Altair, 2012).

B.1 Approximating Kolmogorov Complexity using Entropy

Unfortunately, the Kolmogorov complexity of a string (here a model) is non-computable (Vitányi, 2020).
However, we can approximate it with a concept from information theory (Shannon, 1948). Namely, the
entropy of a stochastic process which produces that string (or model).
Theorem 1. Let a stochastic process {Xi} be drawn i.i.d. according to the probability mass function f(x),
x ∈ X , where X is a finite alphabet. According to Cover & Thomas (2006), we have the limit:

1
n
E [K(Xn|n)]→ H(X). (8)

10For example, we ignore the fact that we could simply print the strings using fewer character than these programs.
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I.e. the expected Kolmogorov complexity of a n-bit string approaches the entropy of the distribution from
which characters in that string are drawn.

Thus, if we treat each parameter of a model as a random variable, we may calculate the approximate
Kolmogorov complexity of the model by considering the entropy of the distribution over the parameters
which make up the model. For example, if we assume that each parameter W in a particular model (f) is
distributed normally, then the approximate11 distribution (after quantisation) for W is given in Equation 9
(Hinton & van Camp, 1993):

p(W ) = t√
2π

exp
[
−W 2

2

]
. (9)

Now that we have a distribution over W , we can calculate H(W ):

H(W ) = Ep [− ln p(W )]

= Ep

[
− ln

(
t

1√
2π

exp
[
−W 2

2

])]
= 1

2Ep[W 2] + const.

Given this expression for H(W ), the approximate Kolmogorov complexity is then:

K(f) ≈ N

2 EW [W 2] + const. (10)

Notably, K(f) is proportional to the square of the weights of the network. Consequently, by minimising the
approximate Kolmogorov complexity under the assumption of normality, we also minimise the L2 norm of
the weights. This is equivalent to the familiar weight decay regularisation strategy.

B.2 Connection Between Kolmogorov Complexity and Bayesianism

We can also relate Kolmogorov complexity to Bayesian inference. Consider the case where we are finding
parameters of a model using the maximum a posteriori estimator. In this paradigm, we wish to choose the
model fθ to maximise P (f |D) where D is the data. According to Vitányi & Li (2000), this is equivalent to
finding θ∗ such that:

f∗
θ = min

θ
{− log P (D|fθ)− log P (fθ) + log P (D)}

= min
θ
{− log P (D|fθ)− log P (fθ)}

(11)

If we assume our hypothesis class to be finite and take the universal prior m, we can make the substitution
− log P (fθ) = K(fθ) and − log P (D|fθ) = K(D|fθ) (Vitányi & Li, 2000). This gives:

f∗
θ = min

H
{K(fθ) + K(D|fθ)} . (12)

Hence, under the universal prior, the maximum a posteriori estimator is equivalent to the minimiser of the
Kolmogorov complexity of the model and of the data given the model.

11Note that Equation 9 is in practice a very good approximation, since the quantisation t is much smaller than the standard
deviation of 1.
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C Model Description Length

To understand model description length, we will consider two agents connected via a communication channel.
One of these agents (Brian) is sending a model across the channel and the other (Oscar) is receiving the model.
Both agree upon two items before communication. First, anything required to transmit the model with the
parameters unspecified. For example, the software that implements the model, the training algorithm used
to generate the model and the training examples (excluding the targets). Second, a prior distribution P over
parameters in the model . After initial agreement on these items, Brian learns a set of model parameters θ
which are distributed according to Q. The complexity of the model found by Brian is then given by the cost
of “describing” the model over the channel to Oscar. Via the “bits back” argument (Hinton & van Camp,
1993), this cost is:

L(fθ) = DKL(Q||P ) (13)

While the model description length is a relatively simple and quite general measure of model complexity,
it relies upon a critical assumption. Namely, that the amount of information contained in the components
agreed upon by Brian and Oscar should be small or shared among different models being compared. For-
tunately, this is usually the case, especially in our experiments. When analysing the grokking phenomenon,
we generally agree upon priors and look at the complexity of a model across epochs in optimisation. Thus,
there is complete shared information cost outside of changes which occur during optimisation.

The model description length is often combined with a data fit term under the minimal description length
principle or MDL (MacKay, 2003). One can understand this principle by considering the following scenario.
Oscar does not know the training targets Y but would like to infer them from X to which he has access.
To help Oscar, Brian transmits parameters θ which Oscar then uses to run fθ on X. However, the model
is not perfect; so Brian must additionally send corrections to the model outputs. The combined message of
the corrections and model, denoted (D, f), has a total description length of:

L(D, fθ) = L(fθ) + L(D|fθ). (14)

In reference to Equation 1, the model description length is taking the role of the complexity term and the
residuals are taking on the role of the data fit. The model which minimises L(D, fθ) is deemed optimal
under the MDL principle (Hinton & van Camp, 1993) and also under our generalised objective function in
Equation 1.

Notably, the MDL principle is equivalent to two widely used paradigms for model selection. The first is
MAP estimation from Bayesian inference where L(fθ) comes to represent a prior over the parameters which
specify fθ (MacKay, 2003). Alternatively, if one calculates L(D, fθ) under a Gaussian prior and posterior
where the standard deviation of these distributions are fixed in advance, the model complexity term reduces
to a squared weight penalty and the data fit is proportional to the mean squared error (Hinton & van Camp,
1993)12.

12See Equation 4 of Hinton & van Camp (1993)
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D A note on GP Complexity

While the model description length is equivalent to many complexity measures used in model selection,
it is not equivalent to all. For example, we complete some experimentation with GP regression where we
observe grokking across optimisation of the kernel hyperparameters. The posterior distribution of these
kernel parameters is given by:

p(θ|X, y) = p(y|X, θ)p(θ)
p(y|X) = p(θ)

∫
p(y|f, X)p(f |θ)df

p(y|X) (15)

From here we could use MAP-estimation to find θ which we know is equivalent to the MDL. However, it is
standard practice in GP optimisation to find θ which maximises p(y|X, θ) (Rasmussen & Williams, 2006).
It turns out p(y|X, θ) itself contains a regularising term which is often labelled the complexity13 (Rasmussen
& Williams, 2006):

log p(y|X, θ) = − 1
2yT K−1

θ y︸ ︷︷ ︸
data fit

− 1
2 log |Kθ|︸ ︷︷ ︸
complexity

− n

2 log 2π︸ ︷︷ ︸
normalisation

. (16)

In Equation 16, this so-called complexity penalty characterises “the volume of possible datasets that are
compatible with the data fit term” (Bauer et al., 2016). This is clearly distinct from the model description
length. However, Equation 16 is still congruent with Equation 1 and thus amenable to analysis in this paper.
As we will see, even though this definition of complexity is not equivalent to the description length, it seems
to serve the same function empirically and is treated in the same way by the mechanism we propose for
grokking.

13Note that in the equation, Kθ = Kf + σ2
nI, which is the covariance function for targets with Gaussian noise of variance σ2

n
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E Datasets used in Experimentation

Many datasets were used for the experimentation completed in this paper. They are were either found in
Merrill et al. (2023), Power et al. (2022) or were developed independently. Although grokking has been seen
on non-algorithmic datasets (Liu et al., 2023a), we restrict ourselves to these and a basic regression task since
our focus is a theoretical exploration of the phenomenon via the modification of other inducing variables.
Work on larger datasets may have hindered this exploration.
Dataset 1 (Parity Prediction Task). In the parity prediction task, the model is provided with a binary
sequence x of length k. The target y is the parity of the sequence i.e. the product of the sequence if 0 is −1
and 1 is 1.
Dataset 2 (Prime Modulo Addition Task). In the prime modulo addition task, a prime p and two numbers
in the range [0, p) are chosen. These numbers are represented by a one hot encoding and the model must
predict their addition modulo p.
Dataset 3 (Prime Modulo Subtraction Task). The prime modulo subtraction task has the same setup as
Dataset 2, but is subtraction.
Dataset 4 (Prime Modulo Division Task). The prime modulo division task has the same setup as Dataset
2, but is division.
Dataset 5 (Prime Modulo Polynomial Task). The prime polynomial division task has the same setup as
Dataset 2, but the model tries to predict the result of the equation:

x ◦ y = x2 + xy + y2 mod p (17)

Dataset 6 (Extended Prime Modulo Polynomial Task). The extended prime polynomial division task has
the same setup as Dataset 2, but the model tries to predict the result of the equation:

x ◦ y = x2 + xy + y2 + x mod p (18)

Dataset 7 (Extended Prime Modulo Multiplication Task). The extended prime polynomial division task
has the same setup as Dataset 2, but the model tries to predict the result of the equation:

x ◦ y = x · y · x mod p (19)

Dataset 8 (1-0 Classification). In this classification task, a model is attempting to distinguish whether a
point will take a value of 0 or 1. These points are normally distributed (with σ = 1) around 0 and have label
y = 0 if they are below x = 0 and y = 1 if they are above.
Dataset 9 (1-0 Classification on a Slope). In this classification task, a model is attempting to distinguish
whether a point will be above 0 or not. The x values of these points are normally distributed (with σ = 1)
around 0 and the y values are given by the linear equation:

y = 0.3x (20)

Dataset 10 (Regression on a Sine Wave). In this regression task, a model is attempting to predict the value
of the equation:

y = A sin(2πfx + ϕ) + Bϵ (21)

where by default A = 1, f = 1
π , ϕ = 0, B = 0.1 and ϵ is noise distributed according to N (0, 1). Further x

values in the training set are modified so that the function is not necessarily on a uniform support by adding
Gaussian noise of the same form as ϵ.
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F Statistical Analysis of the Concealment Strategy

F.1 Regression Method

Given a matrix X of pairs (l, δ) where l is the additional length and δ is the recorded grokking gap, we first
transform the y-values into log space. That is, the dataset of pairs is given by:

X ′ =
[
X0 ln X1

]
(22)

Then we find the optimal coefficients a and b such that the model:

ŷ = aX ′
0 + b (23)

has minimal squared error with respect to the labels X ′
1. Returning from log to regular space, the function:

δ = exp (al + b) (24)

is then our proposed relationship between additional dimensionality and grokking gap.

F.2 Correlation and p-Value Results

Dataset r p

Combined 0.92 1.46 · 10−37

Addition 0.933 3.91 · 10−7

Subtraction 0.914 1.84 · 10−6

Division 0.967 4.659 · 10−9

Polynomial 0.959 1.860 · 10−8

Extended Polynomial 0.906 2.981 · 10−6

Extended Multiplication 0.942 1.484 · 10−7

Table 2: Table summarising the Person correlation r and null hypothesis likelihood p for concealment data
in log space. Note that all datasets are under a modulo argument.
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G Connection Between the Complexity Theory of Grokking and Previous Theories

The complexity theory of grokking unifies loss and representation based theories of grokking under a single
framework. In the text below, we show how each may be seen as an example of the behaviour described in
Mechanism 1.

The loss-based explanation of Liu et al. (2023a) asserts that in the weight space of a model there exists a
Goldilocks zone of high generalisation. In cases of grokking, models will quickly find over-fitting solutions
before being guided towards this Goldilocks zone via weight decay. As previously mentioned, weight norm
can be seen as a measure of a model’s description length. Thus the guidance of weight norm is towards
regions of lower complexity. Additionally, via Assumption 1, we can say that the Goldilocks zone must be
a region of LELC since good generalisation comes from lower complexity. Consequently, this theory can
be viewed as an instance of our broader framework with over-fitting solutions constituting LEHC and the
Goldilocks zone constituting LELC.

The use of the LMN by Liu et al. (2023b) is also congruent with our theory of grokking. In the paper, the
authors introduce LMN as a complexity measure and show that a decrease in LMN after a period of high
training performance leads to a grokking solution. Under Mechanism 1, LMN is one instance of a complexity
measure which can result in grokking.

Theories which use representation dynamics as a means of explaining grokking can also be placed in our
framework. Via Assumption 1, more general representations should have a relatively low complexity. Thus,
representation descriptions which talk of an emergence of general structures after the initial creation of
memorising structures are talking of a transition from LEHC to LELC. Indeed, in neural networks it may be
the case that LEHC solutions can often be characterised as “memorising” and LELC as “general circuits.”
However, in other models we require the more abstract language of Mechanism 1.
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H Additional Model Experiments

H.1 Linear Regression with a Specific Seed

In the following experiment, we take the same learning setting as in Section 2.1.1 but restrict ourselves to
one seed which shows a clear case of grokking. This case is presented in Figure 8
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Figure 8: Accuracy, complexity and data fit on zero-one slope classification task with a linear model and one
seed.

H.2 GP Classification Complexity for 0-1 Classification

We take the same learning setting as in Section 2.1.2, showing the complexity and error curves in Figure 9.
In this figure, the data fit term is the negation of the error in Equation 6. Alternatively, the complexity is
measured as the KL divergence in Equation 6. That is, the data fit and complexity are:

data fit = −
N∑

i=1
Eqϕ(fi)[log p(yi|fi)], complexity = KL[qϕ(f)||pθ(f)] (25)
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Figure 9: Complexity and data fit for GP classification on the 0-1 task.

H.3 GP Classification Complexity for Algorithmic Case

We take the same learning setting as in Section 2.1.2, showing the complexity and error curves in Figure 9
as defined in Equation 25.
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Figure 10: Complexity and data fit for GP classification on the concealed parity prediction task.
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I Grokking via Concealment

I.1 Algorithm

Algorithm 1 Algorithm for relationship of ∆k with dimensionality
Require: |L| > 0 ▷ Number of additional lengths
Require: |D| > 0 ▷ Number of datasets
Require: |R| > 0 ▷ Number of random seeds

1: γ ← 0.95 ▷ Threshold for high accuracy
2: N ← 1500 ▷ Number of epochs
3: array_of_avg, array_of_std ← [], []
4: for each l in L do
5: length_scale_avgs, length_scale_stds ← [], []
6: for each d in D do
7: dataset_gap ← []
8: for each r in R do
9: set_random_seed(r)

10: model ← initialise_model()
11: training_accuracy, validation_accuracy ← train_model(model, d)
12: training_index ← first_index_above(training_accuracy, γ)
13: validation_index ← first_index_above(validation_accuracy, γ)
14: ∆k ← validation_index− training_index
15: dataset_gap.append(∆k)
16: end for
17: avg_gap, std_gap ← avg(dataset_gap), std(dataset_gap)
18: length_scale_avgs.append(avg_gap)
19: length_scale_stds.append(std_gap)
20: end for
21: array_of_avg.append(length_scale_avgs)
22: array_of_std.append(length_scale_stds)
23: end for
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I.2 Original Regression Plot

Below we present a version of Figure 4 where we have reversed alterations to the error bars and included
data from the 0 additional length category.
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Figure 11: Relationship between grokking gap and number of additional dimensions using the grokking via
concealment strategy.
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J Illustrative Figures

J.1 Lengthscale Plot of GP with Parity Prediction

In Section 2.1.2, a GP is used for the hidden parity prediction task. With this dataset, models should learn
to disregard dimensions with spurious data. In this case, the spurious dimensions are those above three.
Presented in Figure 12 is a plot of the length scale parameter over the course of hyperparameters. As can
be seen in that figure, length scale increases for for input dimensions above three but decrease for input
dimensions three and below. This is expected – a larger length scale cannot discern small changes in the
input dimension and thus renders them uninformative.
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Figure 12: Example of GP kernel length scale for hidden parity prediction task. Note that inverse length
scale refers to 1/li where li is the length scale associated with dimension i.
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J.2 Illustrative Example of Grokking
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Figure 13: Illustrative example of the grokking phenomenon. The red line is the training loss and the blue
line is the validation loss.
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K Further Analysis of Linear Classification

In this appendix we provide a further analysis of the linear classification grokking case covered in Section
2.1.1. Specifically, we examine the congruency of these results with our grokking hypothesis (Section 3).
To do so, we conducted three further experiments. In the first we alter the way we initialise the model
and consider the trend between the grokking gap, complexity gap and data fit gap (defined in the relevant
subsection). In the second experiment, we examine the evolution of weights in the linear model over the
course of optimisation. Finally, in the third experiment we remove the weight penalty altogether and find
that this removes grokking altogether.

K.1 Altering the Initialisation of the Linear Model

In this experiment we considered the trend between three variables whilst altering the model’s initialisation14.
Specifically we changed the value of α in the following equation:

w0 =
[
α 1− α 1− α 1− α

]
(26)

The three variables of interest are:

• The grokking gap (defined in the introduction)

• The complexity gap. I.e. the difference in complexity between the point that the model does well
on the training set when compared to the validation set.

• The data fit gap. I.e. the difference in the data fit term between the point that the model does well
on the training set when compared to the validation set.

Under the grokking mechanism we propose, we would expect these variables to be related in the following
ways. Firstly, the grokking gap should be a decreasing function with the complexity gap since the required
time to go from a region of HELC to LELC determines the gap width. Secondly, the data fit gap should be
increasing with initialisation weight since in these cases we see a smaller grokking gap with learning driven
primarily by the data fit rather than complexity (we are in a region of HELC). In Figure 14, one can see
that these predicted trends are supported when one alters α in Equation 26.

K.2 Examining the Evolution of Weights in the Linear Model

We also considered the evolution of weights in the linear model. Specifically, we experimented with different
values of α in Equation 26, examining the 4 weights of the linear regression model in each case (all values
were averaged across five random seeds). The results of this experimentation are in Figure 15. We found
that a similar solution was reached no matter the initialisation employed. In addition, the three “distracting”
values of the input are slowly “ignored” over the course of training. This corresponds to a lower complexity
solution under the L2 norm employed for the regression.

14Employing five random seeds which are averaged to produce Figure. 14.
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Figure 14: Further initialisation analysis of the model presented in Section 2.1.1. Gaps refers to the particular
gap (grokking, complexity or data fit) which is presented in the graph. The x-axis is the initialisation weight
of the first component i.e. α in Equation 26. Note that all gaps are approximately 0 when α is 1 since
the solution to the problem given by the first component of the input. The number in parentheses after
“Grokking Gap” refers to the value points on the graph are divided by.
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Figure 15: Evolution of weights in the linear model. Black crosses correspond to the values of the weights
at which grokking occurred.
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K.3 Removing Weight Decay

If we remove the weight penalty term used for optimisation of the linear model, we do not see grokking even
after 1,000,000 epochs of optimisation. The lack of grokking can be seen in Figure 16. Note that only every
100th point is plotted.
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Figure 16: Accuracy, data fit and complexity on zero-one slope classification task with a linear model and
no weight penalty. Note that the shaded region corresponds to the standard error of five training runs.
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L Further Analysis of GP Classification

To determine the necessity of a complexity regularisation term for grokking in GP classification, we removed
it from the training of models under learning scenarios 2 and 3 (Section 2.1.2). As can be seen in Figures 17
and 18. Note that for both figures, only every 5th point is plotted.
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Figure 17: Accuracy and log likelihoods of RBF GP on the 0-1 prediction task without added complexity
term. Note that the shaded region corresponds to the standard error of five training runs. Acc. is Accuracy
and Val. is Validation.
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Figure 18: Accuracy and log likelihoods of RBF GP on the hidden parity prediction task without added
complexity term. Note that the shaded region corresponds to the standard error of five training runs. Acc.
is Accuracy and Val. is Validation.
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M Further Analysis of Concealment Data Augmentation

We also considered how the magnitude of initial weights influenced the concealment data augmentation strat-
egy. Under our theory, smaller initial weight magnitudes should decrease the propensity for grokking since
models start in a region of lower complexity. We would predict this trend should, however, be counterbal-
anced by introducing additional spurious dimensions in the input space. Thus, all models should exhibit an
increase in grokking with additional spurious dimensions but those models with smaller magnitudes should
exhibit a smaller increase. Indeed, this is what we see in Figure 19, where we plot the relative grokking gap
since models with smaller initial weights took longer to fit the training data. Note that the definition of
relative grokking gap ∆̃k is:

∆̃k = ∆k

E1
(27)

where E1 is the epoch at which the model reached high training performance.
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Figure 19: Relationship between relative grokking gap and number of additional dimensions using the
grokking via concealment strategy. Datasets used were the same as in Figure 4.
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N Loss plots from grokking with concealment

In Figure 20 we show a collection of loss plots from our experiments inducing grokking via concealment.
Each of the datasets can again be found in Appendix E. The number of spurious dimensions used for these
particular plots is k = 30. The model is trained on each task for 500 epochs.

(a) Modulo Multiplication Task (b) Polynomial Task Two (c) Modulo Addition Task

(d) Modulo Division Task (e) Modulo Subtraction Task (f) Polynomial Task

Figure 20: Loss plots from all experiments when inducing grokking via concealment with 30 spurious dimen-
sions.
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O On the complexity term in approximate inference for GP models

As shown in the main text, the exact log marginal likelihood (LML) for GP regression has interpretable
terms as follows:

L(θ) = log p(y|X, θ) = − 1
2yT K−1

θ y︸ ︷︷ ︸
data fit

− 1
2 log |Kθ|︸ ︷︷ ︸
complexity

− n

2 log 2π︸ ︷︷ ︸
normalisation

. (28)

where Kθ = Kf + σ2
nI. Unfortunately, the exact LML is analytically intractable for many other GP models

of interest such as GP classification. In the following, we will write down the approximate LML provided by
variational inference or the Laplace’s approximation. We will then look at their special case - GP regression,
to identify which terms correspond to the data fit term and the complexity term in the GP regression’s LML.

O.1 Laplace approximation

Laplace’s method approximates the posterior by a Gaussian density where its mean is the mode of the
posterior and its covariance is the inverse of the negative Hessian evaluated at the mode. The corresponding
approximate LML is

FLaplace(θ) = − 1
2 f̂T K−1

θ f̂ + log p(y|̂f)︸ ︷︷ ︸
data fit

− 1
2 log |B|︸ ︷︷ ︸
complexity

, (29)

where f̂ is the posterior mode, B = In + W
1
2 KW

1
2 , and W = −∇∇ log p(y|f). For GP classification

with a logistic likelihood function, the second derivative of the likelihood function wrt the function value
does not depend on the target. That is, B does not depend on y. For this reason, we can view 1

2 log |B|
as a model complexity measure. To double check, when the likelihood is Gaussian as in GP regression,
B = 1

σ2
n

(Kf + σ2
nIn) and hence 1

2 log |B| = 1
2 log |Kf + σ2

nIn| − N
2 log σ2

n, which is identical to the GPR’s
complexity term up to a constant when the noise is fixed.

Figure 21: The approximate log marginal likelihood, data-fit and complexity provided by the Laplace’s
approximation. The black curves are the trajectories of the hyperparameters with different initialisations
when using variational inference.

O.2 Variational inference and the lower bound on the LML

Gaussian variational inference is widely used to perform approximate inference in GP models with non-
Gaussian likelihoods such as GP classification. In this setting, the variational lower bound on the LML can
be optimised to select the variational approximation and a point estimate for the model hyperparameters.
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Assuming p(f) = N (f ; 0, Kf ) and q(f) = N (f ; µ, Σ), the variational bound can be written as follows,

FVI(q(f), θ) = −KL(q(f)||p(f))︸ ︷︷ ︸
KL term

+
∫

f
q(f) log p(y|f)︸ ︷︷ ︸

expected log likelihood

(30)

= −1
2µ⊺K−1

f µ− 1
2trace(K−1

f Σ)− 1
2 log |Kf |︸ ︷︷ ︸

prior entropy+const

+1
2 log |Σ| − N

2 +
∫

f
q(f) log p(y|f) (31)

Using the KL term as a complexity measure in this case has two connected issues:

• Unlike exact GP regression or Bayesian neural networks with a fixed prior, both the variational
approximation and the hyperparameters are being optimised in variational inference. It is thus
challenging to state which terms in the KL correspond to the complexity of the current fit, and
which corresponds to the complexity governed by the prior model. In fact, for the GP regression
case and q(f) is set to the exact posterior, the KL term has a data-fit component and thus does not
naturally fall back to the complexity term in the GPR’s exact LML.

• One could pick the variational posterior to be the prior (which is of course a poor fit), leading to a
zero KL term. However, this does not mean the complexity is zero!

Due to these potential issues, we did not see a clear relationship between the KL term and grokking in GP
classification, as shown in the main text and Sections H.2 and H.3. We can work around these issues by
looking at just the entropy of the prior (which resembles the complexity term in the GPR LML) or using the
complexity term provided by Laplace’s method using the current hyperparameter estimates. Figure 22 shows
the objective function, the learning curves and predictions made during training, for various hyperparameter
initialisations. The initialisations and trajectories are shown together with the Laplace approximate LML in
in Figure 21.
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