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ABSTRACT

We propose FlowDec, a neural full-band audio codec for general audio sampled at
48 kHz that combines non-adversarial codec training with a stochastic postfilter
based on a novel conditional flow matching method. Compared to the prior work
ScoreDec which is based on score matching, we generalize from speech to general
audio and move from 24 kbit/s to as low as 4 kbit/s, while improving output
quality and reducing the required postfilter DNN evaluations from 60 to 6 without
any fine-tuning or distillation techniques. We provide theoretical insights and
geometric intuitions for our approach in comparison to ScoreDec as well as another
recent work that uses flow matching and conduct ablation studies on our proposed
components. We show that FlowDec is a competitive alternative to the recent
GAN-dominated stream of neural codecs, achieving FAD scores better than those
of the established GAN-based codec DAC and listening test scores that are on par,
and producing qualitatively more natural reconstructions for speech and harmonic
structures in music.

1 INTRODUCTION

An audio codec is a technique aiming to compress an audio waveform into compact and quantized
representations and to reconstruct the audio waveform based on those encoded representations
faithfully. The compact and quantized representations are suitable for efficient transmission and
storage, which is essential for mobile communications and live video streaming applications (Kroon
et al., 1986; Salami et al., 1994; Rao & Hwang, 1996). Different from legacy codecs (Atal &
Schroeder, 1970; Schroeder & Atal, 1985; O’Shaughnessy, 1988) which exhibit considerable quality
sacrifice in low-bitrate scenarios, modern codecs achieve lossless (Liebchen & Reznik, 2004; Coalson,
2000) or acceptable lossy (Valin et al., 2013; Bessette et al., 2002; Dietz et al., 2015) codings with
2× or 10× compression ratios. However, these codecs usually involve ad hoc designs and extensive
manual efforts (Kim & Skoglund, 2024), which hinders the codecs from end-to-end optimizations to
achieve high-fidelity audio coding in even lower bitrates (e.g. <12 kbit/s).

End-to-end (E2E) Neural codecs (Zeghidour et al., 2021; Défossez et al., 2023; Wu et al., 2023;
Kumar et al., 2024) have seen a surge in interest in recent years, particularly due to their usefulness
in generative audio tasks such as generating music or speech conditioned on a textual description
or transcript. These codecs nowadays achieve very good audio quality at bitrates as low as 8 kbit/s,
where most classical non-neural codecs fail to produce acceptable results. To achieve high-quality
results at low bitrates, most E2E neural codecs employ adversarial training inspired by generative
adversarial networks (GANs) (Goodfellow et al., 2020) to recover natural-sounding signals and to
avoid artificial artifacts that arise when training only with waveform or spectral losses.

Score-based (diffusion) and flow-based generative models (Ho et al., 2020; Song et al., 2021; Lipman
et al., 2023) have in recent years taken over many generative application domains from GANs. In
this spirit, a recently proposed score-based codec is ScoreDec (Wu et al., 2024), a widely applicable
generative postfilter for E2E neural codecs. ScoreDec aims to recover natural-sounding signals by
enhancing codec outputs, removing adversarial losses when training the E2E model and instead
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training ascore-based generative model(Song et al., 2021) as apost�lter. While ScoreDec shows a
clear advantage in output quality compared to the original codec variants that use adversarial training,
it only considers speech signals, was tested only for a relatively high bitrate of 24 kbit/s, and – most
importantly – has prohibitively expensive inference at a real-time factor (RTF) of 1.7 caused by the
need of around 60 DNN evaluations.

In this work, we proposeFlowDec, a generative neural codec based on a novel adaptation of
conditional �ow matching (CFM) (Lipman et al., 2023; Pooladian et al., 2023; Tong et al., 2024),
and show that it is a competitive alternative to the currentGAN-focused stream of neural codecs for
general full-band audio. We address the shortcomings of ScoreDec (Wu et al., 2024) by designing
and training for general audio beyond only speech, reducing bitrates from 24 kbit/s to below 8 kbit/s,
and reducing the needed number of DNN calls from 60 to 6. We design for full-band audio covering
the whole range of human hearing (� 20 kHz) with a 48 kHz sampling rate, to avoid a signi�cant
loss of �delity due to the total removal of high but audible frequencies as in Défossez et al. (2023) or
Zeghidour et al. (2021). The key advantage of 48 kHz over 44.1 kHz models such as DAC (Kumar
et al., 2024) are that it is easier to achieve whole-number feature rates (75 Hz vs. 86.13 Hz) and
bitrates (7500 vs. 7751.95 bit/s) since 48,000 has simpler divisors.

Our main contributions in this work are:(1) the extension and simpli�cation of prior score-based
generative audio enhancement methods (Welker et al., 2022; Richter et al., 2023; Wu et al., 2024) with
a novel adaptedCFM method, with theoretical connections and comparisons to recent works onCFM
(Pooladian et al., 2023; Tong et al., 2024);(2) the application to audio coding and extension of the
speech-only ScoreDec (Wu et al., 2024) to general full-band audio at very low bitrates, while reducing
the number of DNN evaluations by a factor of 10 without �ne-tuning or distillation techniques;(3)
high-�delity perceptual quality competitive with a GAN-based state-of-the-art codec (Kumar et al.,
2024), which we con�rm with objective metrics and listening tests.

2 RELATED WORK

2.1 NEURAL CODECS

Based on the training objectives, neural audio codecs can be divided into three main categories:
auto-encoder (AE), neural vocoder, and post�lter. In the early days, legacyAE-based codecs
(Krishnamurthy et al., 1990; Wu et al., 1994; Deng et al., 2010) usually train anAE to reconstruct
handcrafted acoustic features and retrieve discrete codes with an independent quantization module on
the hidden units which is not globally optimized, and require extensive ad hoc assumptions on audio
signals and an additional audio synthesizer. Morishima et al. (1990) propose the �rstAE speech codec
in the waveform domain but do not train the quantizer jointly. The pioneering fullyE2Ewaveform-
domain audio codecs incorporate a straight-through gradient estimation (Van Den Oord et al., 2017)
or softmax quantization (Kankanahalli, 2018) for jointAE and quantizer training. However, they
suffer from either slow inference from autoregressive decoding or limited quality from the lack of
effective waveform losses for non-autoregressive (NAR) decoding. Recently, given the signi�cant
improvement inNAR audio waveform generation (Yamamoto et al., 2020; Kumar et al., 2019; Kong
et al., 2020) adoptingGANs (Goodfellow et al., 2020),GAN-basedNAR audio codecs (Zeghidour
et al., 2021; D́efossez et al., 2023; Wu et al., 2023; Kumar et al., 2024) achieve fast coding, impressive
audio quality, and low bitrates.

By using the high-�delity audio generations achieved by neural vocoders (van den Oord et al., 2016;
Kalchbrenner et al., 2018; Valin & Skoglund, 2019a; Kong et al., 2020), methods which reconstruct
the audio waveform based on quantized handcrafted acoustic features (Klejsa et al., 2019; Valin
& Skoglund, 2019b; Mustafa et al., 2021), codes of conventional codecs (Kleijn et al., 2018), or
neuralAEs (Wu et al., 2023; San Roman et al., 2024), also achieve impressive coding performance.
Post�ltering (Zhao et al., 2018; Deng et al., 2020; Biswas & Jia, 2020; Korse et al., 2022) is a similar
approach, easing the training burden of abstract code-to-waveform mapping by utilizing the decoder
of a pre-trained codec to generate a distorted waveform, which is then enhanced by a post�lter.

2.2 SCORE-BASED GENERATIVE SIGNAL ENHANCEMENT

Welker et al. (2022) propose SGMSE, a score-based generative model (SGM) for speech enhance-
ment (SE), by formulating the speech enhancement task as a diffusion process in the complex spectral
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Figure 1: Method overview: Codecs such as DAC (Kumar et al., 2024) employ adversarial training,
using multiple specialized discriminator networks trained jointly with the decoder. Our method
FlowDec is trained in a non-adversarial two-stage fashion, removing these discriminators and instead
adding a stochastic post�lter that can produce multiple enhanced estimates of the pretrained decoder.

domain. To avoid the ad hoc assumption that the additive noise in noisy speech follows a white Gaus-
sian distribution, SGMSE directly incorporates theSEtask into the diffusion process by interpolating
between clean and noisy spectra, leading to a data-dependent prior similar to PriorGrad (gil Lee et al.,
2022). Richter et al. (2023) propose SGMSE+, extending SGMSE to speech dereverberation and
signi�cantly improving its quality by using the more powerful backbone NCSN++ (Song et al., 2021)
for the score model. Due to the complex spectral modeling, both magnitude and phase spectra are
utilized and enhanced, resulting in high-quality speech restoration.

Coding artifacts can also be viewed as a special type of noise that should be removed. To take
advantage of bothE2Eand post�lter approaches, ScoreDec (Wu et al., 2024) adopts SGMSE+ as the
post�lter for both conventional and neural codecs and achieves human-level speech quality. However,
the inference of ScoreDec is slow due to the high number of diffusion steps, and the effectiveness
of ScoreDec for general audio is unclear. To tackle these issues, we propose FlowDec for general
audio coding, with signi�cantly reduced runtime cost at a real-time factor below 1, and a simpli�ed
formulation that requires only one hyperparameter instead of four.

3 METHODS

We cast the problem of recovering an estimatex̂ 2 RL of the clean audiox � 2 RL given the code
c := E(x � ) from an encoderE as a stochastic inference problem, with the goal of having a model
that can provide clean audio estimatesx̂ as samples from the distribution

x̂ � pdata (x̂jc) ; c = E(x � ) 2 Z` ; ` � L ; (1)

wherepdata (�jc) is the conditional distribution of clean audio given the codec. We argue that
this treatment is natural, as any encoderE that mapsx � 2 RL to a lower-dimensional discrete
representationc is a many-to-one mapping: multiplex � will have the same codec. Hence, ful�lling
the ideal propertyD(E(x � )) = x � is formally impossible ifD is a one-to-one mapping. One could
instead constructD as an optimal estimator in the mean sense by minimizing

min
D

Ex � [dist(D (E(x � )) ; x � )] (2)

with a pairwise distancedist such as theL 2 or L 1 distance. However, it is known that a method
trained this way typically does not produce perceptually pleasing signals (Blau & Michaeli, 2018;
2019) even with domain-speci�c losses. A popular way around this for neural codecs is to employ
adversarial training losses (Zeghidour et al., 2021; Défossez et al., 2023; Kumar et al., 2024) to shift
the distribution of decoded signals closer to that of natural signals. While relatively effective, this
approach lacks clear interpretability, is limited by the quality of the discriminator, and may fail to
properly minimize the distance betweenp(x̂) andp(x � ).
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An alternative, which we follow here, is to directly constructD as a one-to-many mapping, as done in
recent literature on other audio inverse problems such as speech enhancement, dereverberation, and
bandwidth extension (Richter et al., 2023; Lemercier et al., 2023a;b) and most recently for speech
coding by Wu et al. (2024). We show a conceptual overview of this idea in Fig. 1. We realize
this mapping in the form of astochastic decoderD s(c) = 
( D0(c)) , combining a deterministic
pre-trained initial decoderD0 with a stochastic post�lter
 . De�ning y := D0(c), 
 produces
conditional sampleŝx � p
 (x̂jy) from a learned distributionp
 (�jy), which approximates the
intractable distributionpdata (�jy) via minimization of a statistical divergenceD:

p
 = arg min
q


D(q
 (�jy); pdata (�jy)) (3)

We can assume thatp
 (x̂jy) = p
 (x̂jc) sinceD0 is known, deterministic and non-compressive. The
role ofD0 is now to provide a decent initial estimate, which may well still suffer from artifacts and is
enhanced by
 to deliver perceptually pleasing results. We chooseD as the Wasserstein-2 distance,
and practically minimize equation 3 by training a�ow model, a neural networkv� trained with an
adapted CFM objective (Lipman et al., 2023).

3.1 FLOW MATCHING

Lipman et al. (2023) introduce the idea of Flow Matching, where the goal is to learn a model
that can transport samples from a tractable distributionq0(x0) to an intractable data distribution
q1(x1) = pdata by solving the neural ordinary differential equation (ODE)

d
dt

� t (x) = ut (� t (x)) ; � 0(x) = x0 (4)

starting from a samplex0 � q0. We call � t : [0; 1] � RN ! RN the �ow with the associated
time-dependent vector �eldut : [0; 1] � RN ! RN , which generates aprobability density path
pt : RN ! R> 0 with pt =0 = q0 andpt =1 = q1. They propose to learnv� with the CFM target:

L CFM := Ex;t;p t (x jx 1 )

h
kv� (x; t ) � ut (xjx1)k2

2

i
(5)

wherex1 � q1 andL denotes a training loss function. A key insight is that theconditionalEq. (5)
has the same gradients as an intractableunconditional�ow matching objective (Lipman et al., 2023,
Eq. 5), and marginalizes to the correct unconditional probability pathpt (x) and �ow �eld ut (x).

3.2 JOINT FLOW MATCHING FOR SIGNAL ENHANCEMENT

Figure 2: Unconditionalq0(x0) ver-
sus ourq0(x0jx1). Colored dots rep-
resenty, stars are associatedx � .

In the original �ow matching (Lipman et al., 2023) and score
matching (Song et al., 2021) formulations,x0

1 is sampled
independently ofx1, typically from a zero-mean Gaussian
q0 = N (0; � 2I ). Pooladian et al. (2023) and Tong et al. (2024)
show that, while theconditionalpathspt (xjx1) ful�ll optimal
transport (OT) from q0 to q1 whenq0 is a standard Gaussian,
the modeledmarginalprobability pathpt (x) generally does
not ful�ll OT. This can lead to high-variance training and low
straightness in the learned marginal �ow �eldv� , and thus to
inef�cient inference and suboptimal sample quality. To rectify
this, both works propose a per-batch approximation toOT
between the full distributions, by reordering the pairings in
each training batchf (xb;0; xb;1)gB

b=1 with optimal couplingsdetermined by anOT algorithm on each
batch. Effectively, this samples(x0; x1) � q(x0; x1) jointly rather than independently.

Here, we also propose sampling(x0; x1) jointly, but in a way that is adapted to enhancement tasks
and does not require anyOT solvers or extra computations. Concretely, since we have access to the
initial estimatey = D0(c) = D0(E (x � )) , we choose the probability path

pt (x t jx1; y) = N (x t ; � t ; � t ) := N (x t ; y + t(x1 � y); (1 � t)2� y ) (6)

1Note the different notational convention in score-based works, where the meaning ofx0 andx1 is reversed.
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where� y = diag(� 2
y ) is a diagonal covariance matrix. This probability path is a linear interpolation

betweeny andx1, with noise linearly decreasing from� y to zero. This leads to a coupling between
x0 andx1 throughy. Namely,q0(x0jx1; y) = N (x; y; � y ), i.e., the mean ofx0 is shifted from
0 to y, similar to score-based signal enhancement works (Richter et al., 2023; Wu et al., 2024).
Intuitively, while we do not use it for inference or training, the marginalizedq0(x0) is now a mixture
of Gaussians, each of variance� 2

y and centered at the respectivey from the training data, see Fig. 2.
When� y is well-chosen so these Gaussians have negligible overlap, no minibatchOT is needed as
the per-batch couplings can be assumed optimal by construction. We �nd that the choice of� y is
important for output quality, see Appendix A.1 for more details. The conditionalut can be found via
(Lipman et al., 2023, Eq. 15), with the full derivation in Appendix A.2:

ut (xjx1; y) =
x1 � x t

1 � t
(7)

To simplify, sincex t can be written in terms ofx0, we note that

x t = tx 1 + (1 � t)x0; x0 � N (x0; y; � y )) (8)
= tx 1 + (1 � t)y + (1 � t)� t "; " � N (0; I ) (9)

x0 = y + � y "; " � N (0; I ) (10)

which, using thatx1 = x � from Eq. (6), leads to the simple joint �ow matching loss

L JFM := Et �U (0 ;1) ;(x � ;y ) � D ;" �N (0 ;I ) ;x t � pt (x t j x 0 )

� 


 v� (x t ; t; y ) � ( x �

|{z}
= x 1

� (y + � y " )
| {z }

= x 0

)






2

2

�
(11)

Figure 3: Flow �eld comparison att = 0 :7 for our
linear� t (left) versus score-based SGMSE (center)
and FlowAVSE with constant� t (right) for a toy
problem. The white dot isy, yellow stars are pos-
siblex � , blue lines are sample trajectories, and the
background color indicates the densitypt . SGMSE
has highly curved trajectories and does not contract
to x � ; FlowAVSE is non-contractive.

where D is the training dataset. Note also
that this loss removes the numerical instability
aroundt � 1 of Eq. (7) by reparameterizing in
terms ofx0 andx1. By choosing� y > 0, we en-
force the �ow �eld to be a contractive mapping.
This ensures theODE for inference is numeri-
cally stable and converges locally. Our choice of
pt improves upon SGMSE (Welker et al., 2022;
Richter et al., 2023; Wu et al., 2024), in that
trajectories in our formulation can reachx � ex-
actly, which SGMSE fails to do since it does not
model the correctq0 (Lay et al., 2023). We also
avoid designing and tuning special stochastic
differential equations (SDEs) with multiple hy-
perparameters and use only one hyperparameter,
� y , for which we propose a data-based heuristic
(Appendix A.1). Another recent work for audiovisual speech enhancement by Jung et al. (2024)
also makes use ofCFM, but uses an independentCFM formulation (Tong et al., 2024) resulting in
a constant� t = � and the target �ow �eldut being independent of the sampled noise. This leads
to a non-contractive �ow �eld and the potential for residual noise being left in the estimates since
� 1 = � > 0, whereas� 1 = 0 in our case. We illustrate this qualitatively in Fig. 3 and also show
empirically in our results section that, for our post�ltering task, our formulation leads to better quality
than both alternatives, at both a low and high number of function evaluations (NFE).

In practice, we replacex � ; y with the feature representationsX � ; Y from an invertible feature
extractor� and learn the �ow in this feature domain. Namely,� is an amplitude-compressed complex
short-time Fourier transform (STFT) (Welker et al., 2022) with compression exponent� = 0 :3, see
Appendix A.4 for details. We provideY to v� as conditioning via channel-wise concatenation at the
input (Richter et al., 2023).

After training, the �ow modelv� together with theODE (4) models the conditional distribution
p
 (X � jY ). To produce clean feature estimatesX̂ � p
 , we �rst sample an initial state (latent)
X 0 � q0(X 0jY ) and then solve the �owODE (4) usingv� from t = 0 to t = 1 with a numerical
ODEsolver to getX̂ 1. We use the Midpoint solver with 3 steps (NFE= 6) unless otherwise noted,
due to its improved quality over the Euler solver at a lowNFE, see Appendix A.7.6. Finally, we apply
the inverse of the feature extractor� to produce the waveform estimatex̂ = � � 1(X̂ 1).
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3.3 NON-ADVERSARIAL CODEC TRAINING

Due to a lack of effective phase losses, NAR audio generative models trained with only spectral
losses usually exhibit buzzy noise caused by unsynchronized phases. Many works employ adversarial
training to circumvent this and restore more natural-sounding audio. This however requires complex
handcrafted multi-discriminator losses and weightings to avoid unstable training, mode collapse, and
divergence, and lacks interpretability (Wu et al., 2024; Lee et al., 2024). In recent years, generative
diffusion models have largely supersededGANs for image and audio generation due to easier training
and better detail modeling (Dhariwal & Nichol, 2021), but have yet to make such a strong impact for
audio codecs.

To overcome these issues, we remove adversarial training and instead use a generative post�lter. We
train a deterministic neural codec as the initial decoderD0 without any adversarial losses and leave
the task of matching the distributions of output audio and clean audio to the stochastic post�lter
 .
The simplest way forward, which we follow, is to take an existing state-of-the-art neural codec such
as DAC (Kumar et al., 2024) asD0 and to remove all components related to adversarial loss terms.

3.4 UNDERLYING CODEC: IMPROVED NON-ADVERSARIAL DAC

In principle, stochastic post�lters such as ours can be trained for any underlying codec to enhance its
waveform estimates, as shown in Wu et al. (2024). We use DAC (Kumar et al., 2024) as the basis for
our underlying codecs due to its status as a state-of-the-art neural codec, as also recently established
for speech by Muller et al. (2024), and its adaptibility for other sampling rates and bitrates. We
remove the adversarial losses and modify some con�guration settings listed in Section 4.2.

When we �rst trained this non-adversarial codec, we found that it produced unnatural results and
bad scale-invariant signal-to-distortion ratio (SI-SDR) values around -30 dB, particularly for music.
After �nding that low frequencies (� 2kHz) were badly modeled we add a multiscale constant-Q
transform (CQT) loss, inspired by the high low-frequency resolution of theCQT, frequent use of the
CQT in music processing (Moliner et al., 2023), and the multiscale Mel losses used by DAC. As in
DAC's multiscale Mel loss, we use both the differences of amplitudes and of log-amplitudes. We
further add aL 1 waveform-domain loss to improveSI-SDRvalues and phase errors that magnitude-
only losses are blind to. We demonstrate the effectiveness of these losses in Appendix A.7.2.

3.5 FREQUENCY-DEPENDENTNOISE LEVELS

As noted in Section 3.1, the choice of� y is important for output quality. It is well known that the
power spectrum of most natural signals follows an inverse power law, so high frequencies have much
lower power than low frequencies. A single scalar� y can thus potentially lead to oversmoothing
when the added Gaussian noise dominates high frequencies, as also previously observed for images
(Kingma & Gao, 2023, Appendix J). To rectify this, we calculate frequency-dependent curves� y (f )
by performing the heuristic quantile calculation in Eq. (12) independently for eachSTFTfrequency
band. Similarly, MBD (San Roman et al., 2023) proposes a band-dependent noise scale but uses only
4 broad Mel bands for this purpose. We demonstrate the effectiveness in Appendix A.7.4.

4 EXPERIMENTAL SETUP

4.1 DATASETS

For underlying codec training, we prepare a varied combination of datasets containing music,
speech, and sounds, which are listed in Table 1. As proposed in Kumar et al. (2024), we sample
audios in a type-balanced way during training, i.e., each training batch contains – in expectation – the
same number of speech �les as music �les and sound �les.

Forpost�lter training , we use the same overall dataset as a basis but perform the following additional
steps:(1) To avoid slow post�lter training from callingD0 in every step, we randomly sample 100,000
clean �lesx � per audio type and crop out segments with a maximum 30-second duration, calculate
y = D0(E (x � )) , and store it on disk.(2) For the post�lter to learn complex audio scenarios,
we increase data variety with 100,000 clean 10-second mixtures of all three audio types from the
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Table 1: Datasets used for codec training. Datasets in [brackets] are internal.f max
s denotes the

maximum sampling frequency and “h” is short for hours. For WavCaps-FreeSound*, we �lter the
part of FreeSound contained in WavCaps to keep only the �les with commercial-friendly licenses.
For CommonVoice 13.0* we use a custom subset.

Dataset Duration f max
s Type

MSP-Podcast (Lot�an & Busso, 2019) 103 h 16 kHz Speech
CommonVoice 13.0* (Ardila et al., 2020) 1602 h 16 kHz Speech
LibriTTS (Zen et al., 2019) 553 h 24 kHz Speech
EARS (Richter et al., 2023) 100 h 48 kHz Speech
VCTK 84spk (Valentini-Botinhao, 2017) 20 h 48 kHz Speech
LibriVox (Kearns, 2014) 55611 h 16 kHz Speech
Expresso (Nguyen et al., 2023) 20 h 48 kHz Speech
[InternalSpeech] 1512 h 48 kHz Speech
[InternalMusic] 18949 h 32 kHz Music
WavCaps-FreeSound* (Mei et al., 2024) 1582 h 32 kHz Sound
[InternalSound] 5309 h 48 kHz Sound

subsets described above. We mix each randomly paired three audios in random proportions with
mixing coef�cients(wspeech;k ; wmusic;k ; wsound;k ) sampled from a Dirichlet distributionDir(� speech=
4; � music = 2 ; � audio = 1) . We repeat all constituent segments shorter than 10 seconds and center-crop
all that are longer. This leaves us with 400,000 pairs (2778 hours) of data.

As our test set, we use 3,000 random audio samples with 1,000 of each audio type: 500 �les
from the VCTK test set (Valentini-Botinhao, 2017) and 500 from the EARS test set (Richter et al.,
2024b) for speech, 500 �les from MUSDB18-HQ (Ra�i et al., 2019) and 500 from MusicCaps
(Agostinelli et al., 2023)for music, and 1000 �les from AudioSet (Gemmeke et al., 2017) for sound.
To avoid overlap with MusicCaps, we remove all �les from AudioSet with music-related tags, but
keep tags related to instruments. We crop audios to a 10-second duration. As MUSDB, MusicCaps,
and AudioSet are not used for training, we sample from them without regard to train/test splits.

4.2 MODEL TRAINING AND VARIANTS

Table 2: Our underlying codec variants, compared to
of�cial 44.1 kHz DAC by Kumar et al. (2024).f s is the
sampling rate in kHz,H is the hop length in samples,
f feat is the feature rate in Hz,nc is the number of code-
books, anddemb is the latent code embedding dimension.
Bitrates are in kbit/s.

Name Bitrates f s H n c demb

DAC 0.86–7.75 44.1 512 9 1024
NDAC-75 0.75–7.50 48 640 10 1024
NDAC-25 0.25–4.00 48 1920 16 128

For ourunderlying codecs, we use the
of�cial code and training settings from
DAC (Kumar et al., 2024) but remove ad-
versarial losses (Section 3.3), add a CQT
and waveform loss (Section 3.4), and mod-
ify the con�guration as listed in Table 2.
We call these underlying codecsNDAC
to avoid confusion with the adversarially
trained DAC. NDAC-75 is targeted at
48 kHz audio with a whole-number fea-
ture rate (75 Hz) and whole-number bi-
trates. NDAC-25 is a variant tailored for
downstream generative audio tasks, with
a lower feature rate (25 Hz) and feature dimension which are advantageous for audio generation due
to more ef�cient memory usage and decreased modeling dif�culties. For theCQT loss (Section 3.4),
we use theCQT2010v2 implementation of theCQT from thennAudio Python package with 9
octaves, hop length 256, minimum frequency 27.5 Hz,f 16; 32; 48; 64; 80g bins per octave, with a
loss weight of 1 for music samples and 0 for audio and speech samples. For theL 1 waveform loss,
we use a weight of 50. We train for 800,000 iterations with 0.4 second snippets and a batch size of 72.
As baselines, we trainDAC-75andDAC-25, equivalent versions of NDAC-75 and NDAC-25 with
the original adversarial losses. To show that the differences between FlowDec and DAC are not just
caused by the extra parameters from the post�lter, we also train baselines2xDAC-75and2xDAC-25
for which we double the channels of all decoder convolution layers, increasing the parameters by
+100 M vs. +26 M from the post�lter.
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As post�lters , we train the following variants based on NDAC-75 and NDAC-25:

1. FlowDec-75m: 75 Hz, multi-bitrate. Trained based on NDAC-75 with bitratesf 7.5, 6.0, 4.5,
3.0gkbit/s, by setting the number of codebooks at inference tof 10, 8, 6, 4g. We include
only this set of bitrates for ease and speed of training, and because we found that the codec
does not provide good results below 3.0 kbit/s.

2. FlowDec-75s: 75 Hz, single-bitrate. Trained based on NDAC-75 using only the highest
bitrate of 7.5 kbit/s. The goal of this variant is to serve as a baseline for ablations and to
investigate the quality gap between a single- and multi-bitrate post�lter.

3. FlowDec-25s: 25 Hz, single-bitrate. Trained based on NDAC-25 with a bitrate of 4.0 kbit/s.
We do not train for multiple bitrates here as the bitrate and feature rate is already very low.

We train all post�lters based on a slightly modi�ed NCSN++ architecture (Song et al., 2021) with
26 M parameters (details in Appendix A.3). We use Adam (Kingma, 2014) at a learning rate of10� 4

for 800,000 iterations, a 2-second snippet duration, and a batch size of 64. We track an exponential
moving average (EMA) of the weights with decay0:999for inference. For every variant, we train
one version with global� y and one with a frequency-dependent� y (f ), see Section 3.5. We use the
frequency-dependent variants for all results unless stated otherwise. For the global variants, we set
� y = 0 :66. For the frequency-dependent variants, we estimate 768-point frequency curves� y (f ) and
smooth them with a Gaussian kernel of bandwidth 3. We train further models for ablation studies
(Appendix A.7) based on FlowDec-75s.

4.3 OBJECTIVE METRIC EVALUATION

For evaluation with objective metrics we useSI-SDR(Roux et al., 2019), Frechét Audio Distance
(FAD) with clap-laion-audio embeddings as proposed in Gui et al. (2024), frequency-weighted
segmental signal-to-noise-ratio (fwSSNR) (Loizou, 2013), the neural ITU-T P.804 estimation method
SIGMOS (Ristea et al., 2024), and logSpecMSE, i.e., the mean squared error (MSE) of decibel
log-magnitude spectrograms with a 32 ms Hann window and 75% overlap. Note that SIGMOS is
only valid for speech signals, so we only evaluate it on the speech test audios.

4.4 SUBJECTIVE L ISTENING TESTS

Table 3: Listening test parameters. Bold numbers in
parentheses denote the bitrates in kbit/s.

Test Compared methods

A
FlowDec-75m(7.5, 4.5), FlowDec-75s(7.5),
DAC-75 (7.5, 4.5), EnCodec(6.0), Opus(7.5)

B
FlowDec-25s(4.0), FlowDec-75m(4.5),
DAC-25 (4.0), DAC-75(4.5), Opus(4.0)

Since objective metrics generally do not
tell the full story of how a method is per-
ceived by human listeners (Torcoli et al.,
2021), it is important to also test this per-
ceived quality directly. We conduct two
MUSHRA-like tests (ITU, 2015) detailed
in Table 3, comparing FlowDec variants
against their DAC equivalents. “Test A”
is designed to test our main models, and
“Test B” to test low feature rate (25 Hz)
models. We use Opus (Valin et al., 2013)
at the highest used bitrate as the low anchor and include the original audio as the hidden reference. In
Test A, we also include the of�cial 48 kHz checkpoint of EnCodec (Défossez et al., 2023) at 6.0 kbit/s
for comparison. We conduct both tests with 21 random 10-second audios from our test set: 7 from
the EARS test set, 7 from MUSDB, and 7 from AudioSet. We ask 15 expert listeners to rate each
audio on a scale from 0 to 100. We exclude listeners that rated the reference< 90or the low anchor
> 90 for more than 15% of trials, resulting in 11 listeners for Test A and 10 for Test B.

5 RESULTS

5.1 OBJECTIVE METRICS

In Fig. 4, we show the objective metric results of FlowDec-75m and FlowDec-75s compared to
EnCodec (48 kHz), DAC-75, 2xDAC-75 and the of�cial DAC 44.1 kHz checkpoint, and also include
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Figure 4: Mean objective metrics attained by compared methods on the test set at varying bitrates.
Colored bands indicate 95% con�dence intervals. SIGMOS is speech-only and is calculated only on
the speech test �les. FAD is multiplied by 100 for readability. Numbers can be found in Table 8.

Figure 5: Perception (FAD) – distortion
(SI-SDR) – rate tradeoff (Blau & Michaeli, 2019)
of compared methods. Numbers next to points
indicate the bitrate in kbit/s.

Table 4: FAD� 100, mean SI-SDR, and mean
fwSSNR of FlowDec-75s versus the related Score-
Dec (Wu et al., 2024) and constant� t (Jung et al.,
2024). Best in bold.

Method FAD � 100 SI-SDR fwSSNR

NFE = 6
FlowDec 1.62 7.55 15.46
ScoreDec 145.30 -27.23 3.15
� t = 0 :05 28.88 9.95 5.50
� t = 0 :66 29.83 10.10 6.55

NFE = 50
FlowDec 1.34 7.41 15.65
ScoreDec 5.73 7.50 14.45

the 25 Hz feature rate models FlowDec-25s and DAC-25 for comparison. Our main model FlowDec-
75m produces the bestFAD values by a large margin and also performs best on the SIGMOS
OVRL metric. For the intrusive spectral metricsSI-SDR, fwSSNR, and logSpecMSE, retrained DAC
generally outperforms FlowDec, though the gap in the perceptually weightedfwSSNRis small. This
is to be expected under theperception-distortion tradeoffdiscussed in (Blau & Michaeli, 2018; 2019):
FlowDec favors better perception (FAD) along this tradeoff at the cost of increased distortion (SI-
SDR), see also Fig. 5, similar to observations made about score-based models for speech enhancement
(Richter et al., 2023) and JPEG artifact removal (Welker et al., 2024). Furthermore, we see that the
single-bitrate FlowDec-75s slightly outperforms FlowDec-75m at 7.5 kbit/s as expected, and that
2xDAC is slightly better than DAC but does not fundamentally change the qualitative behavior of
DAC. For the 25 Hz models, we can see that the general behavior of FlowDec and DAC is unchanged,
with FlowDec again exhibiting better FAD and SIGMOS.

In Table 4, we compareFAD, SI-SDRandfwSSNRof FlowDec-75s atNFE 2 f 6; 50g against
ScoreDec (Wu et al., 2024) and the alternative �ow-based formulation with constant� t (Jung et al.,
2024). We can see that forNFE = 6 , FlowDec is a clear improvement over ScoreDec which produces
unusable results at thisNFEand also performs signi�cantly better than Jung et al. (2024) here. At
NFE = 50, ScoreDec and FlowDec achieve similarSI-SDR, but FlowDec performs signi�cantly
better inFAD. A full metric comparison table can be found in Appendix A.7.1. Finally, in Fig. 7,
we show a qualitative spectrogram comparison of FlowDec compared DAC for a guitar recording,
which illustrates better reconstruction of harmonic structures by FlowDec. We show more example
spectrogram comparisons, including the worst reconstructions from FlowDec, in Appendix A.8.

5.2 SUBJECTIVE L ISTENING TESTS

In Fig. 6, we show the results from both subjective listening Tests, A and B, as boxplots of MUSHRA
scores per method and bitrate. For Test A, we can see that the 4.5 kbit/s variants are rated somewhat
lower than the 7.5 kbit/s variants but still achieve good scores compared to EnCodec at 6.0 kbit/s, and

9



Published as a conference paper at ICLR 2025

Figure 6: Subjective listening results from Test A (left) and Test B (right). Numbers in (parentheses)
denote the used bitrate in kbit/s. FlowDec is rated on par with DAC (Kumar et al., 2024), with no
signi�cant differences between their score distributions at any given bitrate and feature rate.

the low anchor Opus. We can further see that, at any given bitrate, the score distributions of DAC-75
and FlowDec-75m show no signi�cant differences. For Test B with the 25 Hz models, we can again
see that DAC and FlowDec generally perform on par, and also that the 25 Hz models are rated very
similarly as their higher feature rate (75 Hz) equivalents at a similar bitrate. In Appendix A.6, we
also show results split by audio type, which seem to suggest that FlowDec performs better than DAC
for speech samples, slightly worse for sound samples, and on par for music.

5.3 REAL-TIME FACTOR

Figure 7: Spectrogram comparison (pre-emphasis
of 0.95) of DAC and FlowDec at 7.5 kbit/s for a
guitar test audio. FlowDec better preserves har-
monics where DAC creates noise-like structures.

An important property of a codec is its runtime.
We determine the real-time factor (RTF) of the
two NDAC variants and the FlowDec post�lter
at NFE 2 f 4; 6; 8g with the midpoint solver
on an NVIDIA A100-SXM4-80GB GPU. We
�nd an RTFof 0.0134 for NDAC-75 and 0.0084
for NDAC-25. For the post�lter, we �nd that
RTF � 0:0358� NFE. At our default setting
NFE = 6 , this results in a totalRTF of 0.2285
for FlowDec-75(m/s) and0.2235for FlowDec-
25s, a signi�cant improvement over the RTF of
1.707 for ScoreDec (Wu et al., 2024).

6 CONCLUSION

We presented FlowDec, a novel post�lter-based neural codec for general audio with high perceptual
quality. FlowDec uses a novel modi�cation of the �ow matching formalism for signal enhancement,
which is inspired by previous score- and �ow-based generative works for signal enhancement (Richter
et al., 2023; Wu et al., 2024; Jung et al., 2024) but improves upon them both in terms of theoretical
properties and output quality. We showed that FlowDec achieves state-of-the-art FAD scores for
the coding task and, in a listening test, performs on par with the current state-of-the-art GAN-based
codec DAC (Kumar et al., 2024) at bitrates between 4.5 and 7.5 kbit/s. Furthermore, FlowDec also
shows promising quality at the very low feature rate of 25 Hz and bitrate of 4.0 kbit/s, which we hope
can contribute to more ef�cient long-range generative audio modeling.

While FlowDec, like DAC, is currently not streaming-capable due to the noncausal architecture of the
used DNNs, our post�lter approach can be modi�ed for a causal DNN as in (Richter et al., 2024a),
which would pave the way for real-time communication and audio streaming applications. We leave
this for future work, particularly since there are currently no streaming codecs available that achieve
the quality of DAC to our knowledge. Another interesting future direction is the joint training of the
initial decoder and the post�lter similar to Lemercier et al. (2023b), which could improve quality
but may lead to unstable training. Finally, as the NCSN++ architecture we use was originally built
for images, we expect that future work using DNN architectures better adapted to audio signals can
further improve the quality of FlowDec.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide all necessary details on the mathematical
formulations and loss functions in Section 3.1 and Appendix A.2, of the network architecture in
Appendix A.3, and the feature representation in Appendix A.4. We explicitly describe the proposed
modi�cations to non-adversarial DAC in Section 3.4, and provide all hyperparameters for this
modi�cation along with the training details of both this underlying codec and all post�lters in
Section 4.2. We provide the full list and details for all datasets, besides internal datasets which
at present cannot be open-sourced, in Section 4.1. We note that we used only a small fraction
of this total training data for training our FlowDec post�lter, with most being used for training
the underlying codecs (see Section 4.1). Our underlying codecs are based on DAC (Kumar et al.,
2024) and can straightforwardly be retrained with the public datasets listed in their work, using their
available codebase, and the additional implementation details for our proposedCQT loss listed in
Section 3.4. To further ensure reproducibility, we have open-sourced our code for FlowDec training
and inference, along with pretrained model checkpoints of the FlowDec models listed in this paper,
made available athttps://github.com/facebookresearch/FlowDec . A demo page is
available athttps://sp-uhh.github.io/FlowDec/ .
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A A PPENDIX

A.1 A HEURISTIC FOR CHOOSING� y

An important question arising in Section 3.1 is how to set� y . In Fig. 8, we show the effects of
three� y settings on a simple toy problem. A too-large� y leads to a regression to the mean effect,
pointing the �ow �eld towards the mean of all viable clean audiosx � for most timest, which results
in oversmoothing and bad perceptual quality. On the other hand, a very small� y close to 0 does
not allow learning the �ow �eld well, as most regions of the space have very low probability during
training. Similar to the visually guided setting� y = 0 :4 in Fig. 8, we �nd that the following heuristic
works well for all of our cases:

� y =
1
3

p
Q(jX � � Y j2; 0:997) (12)

whereQ is the quantile operation. Similarly to a root mean squared error (RMSE), this is theroot
of the 0.997th quantile of squared errorsinduced by the initial decoderD0 in the feature domain.
The constants13 and0:997are inspired by the 3-sigma rule of a Gaussian distribution. The chosen
� y , 0:66 for our FlowDec models, then covers all viable estimatesX � , except outliers beyond the
0.997th quantile, within the 3-sigma region of the added Gaussian noise aroundY .

A.2 DERIVATION OF CONDITIONAL FLOW FIELD

Referring to Section 3.2, we perform the derivation of the target �ow �eldut in more detail here. We
can �nd the target �ow �eld ut from our chosen probability path,pt Eq. (6), using (Lipman et al.,
2023, Eq. 15):

ut (xjx1; y) =
� 0

t (x1; y)
� t (x1; y)

(x � � t (x1; y)) + � 0
t (x1; y) (13)

=
� � y

(1 � t)� y
(x t � (y + t(x1 � y))) + ( x1 � y) (14)

= �
x t � y � tx 1 + ty

1 � t
+

(1 � t)(x1 � y)
1 � t

(15)

=
� x t + y + tx 1 � ty + x1 � tx 1 � y + ty

1 � t
(16)

=
x1 � x t

1 � t
(17)

(18)

which matches the expression (Lipman et al., 2023, Eq. 21) of the �ow �eld for an unconditional
zero-meanx0 when their� min = 0 . We can further see that

ut (xjx1; y) =
x1 � x t

1 � t
(19)

=
x1 � (tx 1 + (1 � t)x0)

1 � t
(20)

=
(1 � t)x1 � (1 � t)x0

1 � t
(21)

= x1 � x0 (22)
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Figure 8: Flow �elds for our FlowDec formulation at different timest and settings of the hyperparam-
eter� y , illustrated on a toy problem. The white dot represents the initial estimatey, the yellow stars
represent possible target signalsx � , and the red cross is the mean of allx � . The background shows
the probability densitypt and the circle indicates3� y aroundy. The �ow �eld for large � y = 1 :6
points towards the mean (red cross) for mostt, while for � y = 0 :4, it points towards each viable point
much earlier. While a low� y = 0 :1 leads to the straightest paths, it also results in most regions of the
space having very low probabilitypt for all t of being sampled during training, which is problematic
under model and truncation errors since it is much more likely that trajectories fall off the small
high-probability regions.
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wherex1 = x � is exactly the target clean signalx � since� 1 = 0 , andx0 � N (x0; y; � y ) is a sample
from a Gaussian with meany (the initial decoder output) and diagonal covariance� y = diag( � 2

y ).
Hence, we can reparameterizex0 as

x0 = y + � y "; " � N (0; I ) (23)

which, together with Eq. (22) andx1 = x � , leads exactly to the expression used in our loss, Eq. (11).

A.3 NCSN++NEURAL NETWORK CONFIGURATION DETAILS

For our post�lter �ow model, we recon�gure the NCSN++ 2-D U-Net architecture (Song et al., 2021)
used in prior audio works (Richter et al., 2023; Wu et al., 2024). In preliminary investigations, we
found that the original architecture can produce high-frequency harmonic artifacts in music, see
Appendix A.7.5. We found that doubling the channels (128! 256) at the �rst two U-Net depths
effectively suppresses these artifacts. An explanation may be that the capacity of only 128 �lters
in the early layers may not be enough for the increased sampling rate and data complexity (speech
! music, sound, speech) compared to Richter et al. (2023). To counteract the increased memory
usage, we reduce the depth from 7 to 4 and reduce the channels at depths 3 and 4 from 256 to 128.
We use 1 instead of 2 ResNet blocks per depth as in (Lemercier et al., 2023b). Finally, we remove
all attention-based layers to ensure that the inference runtime is linear in the audio duration. Our
architecture has 26 M parameters instead of the original 65 M.

A.4 FEATURE REPRESENTATION DETAILS

As in related literature (Richter et al., 2023; Wu et al., 2024), we use amplitude-compressed and
scaled complex spectrogramsX ij 2 CF � T as the input and output feature representations of the
post�lter network with an invertible feature extractor� :

�( x) = X ij := � j ~X ij j � exp(i � \ ( ~X ij )) ; ~X ij := STFT( x) ij (24)

where\ denotes the phase of a complex number, andSTFT is a complex-valued short-time Fourier
transform (STFT). For thisSTFT, we use a 1534-sample (31.96 ms) Hann window resulting in
F = 768 frequency bins and a hop length of 384 samples (74:97%overlap). We choose� = 0 :3
since we found it to produce better outputs for general audio than the original� = 0 :5 used in Wu
et al. (2024), see Appendix A.7.5. Note that the choice of window length and hop length is different
from ScoreDec (Wu et al., 2024) (510-sample Hann window, 320-sample hop length, 37.5% overlap)
since we found the increased overlap and frequency resolution to help with output quality. Our choice
of window length and hop length is the same as in the related 48 kHz speech work by Richter et al.
(2024b). To keep the values of the real and imaginary parts ofX constrained to roughly[� 1; 1],
we set� = 0 :66, which we determine as the 99.7th percentile of compressed but unscaledSTFT
amplitudes (i.e., Eq. (24) with� = 1 ) on 2,500 random clean training audio �les.

A.5 QUALITATIVE OUTPUTS FROM INITIAL DECODER

To show how the enhanced outputs by our FlowDec post�lter,
( D0(c)) , compare to the outputs of
the initial decoderD0(c) of the underlying non-adversarially trained codec NDAC-75, we show three
example spectrograms in Fig. 9. The initial decoder produces overly smooth spectral structures and
buzzy noise artifacts. FlowDec successfully removes these artifacts and replaces them with plausible
natural spectral structures, thereby signi�cantly enhancing the audio.

A.6 DETAILED RESULTS FROM SUBJECTIVE LISTENING TESTS

In Fig. 10, we show the score distribution from both MUSHRA-like listening tests (Section 4.4)
split by audio type. These results suggest that FlowDec may perform better on speech than DAC,
particularly for FlowDec-75m versus DAC-75 at 4.5 kbit/s and that DAC may perform slightly better
than FlowDec on sound �les; score distributions for music are very similar.
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Figure 9: Spectrograms from parts of three audio examples (from top to bottom: speech, music,
sound) as output by the initial decoderD0 of NDAC-75, compared to their enhanced version from
FlowDec-75m. The estimates fromD0 show severe buzzy and unnatural artifacts, which FlowDec
successfully replaces with plausible spectral structures.
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(a)Speech samples: Listening test results (MUSHRA score distributions)

(b) Music samples: Listening test results (MUSHRA score distributions)

(c) Sound samples: Listening test results (MUSHRA score distributions)

Figure 10: Detailed results from the listening tests (Section 4.4) split by audio type.
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Table 5: Mean± 95% con�dence interval of objective metrics for FlowDec(-75s) compared against
baselines using the alternative ScoreDec formulation (Wu et al., 2024) or FlowAVSE (constant-� t )
formulation, each trained on the same data with the same backbone DNN and feature representation.
We show results at two differentNFE (6 and 50). FAD is multiplied by 100 for readability. For
“ScoreDec NC”, in contrast to the original ScoreDec, we do not use the annealed Langevin corrector
(Song et al., 2021) during inference, and instead double the number of predictor steps to achieve
the sameNFE. We can see that ScoreDec returns unusable estimates at NFE=6. At NFE=50, the
metric values are now acceptable but still clearly worse than those of FlowDec in FAD, fwSSNR,
SIGMOS, and logSpecMSE. InSI-SDRand SIGMOS, ScoreDec, and FlowDec achieve similar
values at NFE=50.

Method FAD� 100 SI-SDR fwSSNR logSpecMSE SIGMOS

NFE = 6
FlowDec 1.62 7.55 ± 0.25 15.46 ± 0.07 80.57 ± 1.72 3.48 ± 0.03
ScoreDec 145.30 -27.23 ± 0.15 3.15 ± 0.07 4873.42 ± 51.92 1.18 ± 0.01
ScoreDec NC 78.71 -5.89 ± 0.19 4.58 ± 0.08 2484.17 ± 28.89 1.45 ± 0.01
� t = 0 :05 28.88 9.95 ± 0.21 5.50 ± 0.19 1613.40 ± 33.08 3.00 ± 0.02
� t = 0 :66 29.83 10.10 ± 0.22 6.55 ± 0.18 1442.94 ± 25.52 2.94 ± 0.02

NFE = 50
FlowDec 1.34 7.41 ± 0.25 15.65 ± 0.06 81.83 ± 2.17 3.44 ± 0.03
ScoreDec 5.73 7.50 ± 0.24 14.45 ± 0.09 176.25 ± 4.123.51 ± 0.03
ScoreDec NC 3.84 7.56 ± 0.25 15.00 ± 0.08 130.32 ± 2.95 3.43 ± 0.03

A.7 ABLATION STUDIES

In this appendix section, we conduct several ablation studies to further justify the choices we have
made. We show comparative tables with objective metrics, and spectrograms to illustrate model
behaviors qualitatively.

A.7.1 FULL METRIC COMPARISON AGAINSTSCOREDEC AND FLOWAVSE

In Table 5 we show objective metric values for FlowDec compared to the prior work ScoreDec (Wu
et al., 2024) and FlowAVSE (Jung et al., 2024) atNFE=6 andNFE=50. For the baseline models
here, we retrained the model with each alternative formulation while keeping all other settings
(data, backbone, feature representation) the same. For FlowAVSE we train one variant with a small
� t = 0 :05, and one with the same� t = 0 :66 as the� y = 0 :66 setting used for FlowDec. As the
metrics show, FlowDec works signi�cantly better atNFE=6 where ScoreDec and FlowAVSE fail to
produce acceptable results, and also generally outperforms ScoreDec at NFE=50.

A.7.2 NON-ADVERSARIAL DAC WITHOUT ADDED CQT AND WAVEFORM LOSSES

As proposed in Section 3.4, we train our underlying non-adversarial codec (“NDAC”) based on
DAC (Kumar et al., 2024) but newly add a multiscale constant-Q transform (CQT) loss and anL 1

waveform-domain loss, in particular to combat the bad low-frequency preservation of the initial
non-adversarial NDAC variants we trained in preliminary experiments. In Fig. 11, we show this
effect qualitatively, comparing the original non-adversarial DAC without our added losses (rightmost
column) to our proposed underlying codec NDAC-75 (center column), which includes these losses,
in the frequency range between 0 and 1500 Hz. The original non-adversarial DAC introduces severe
errors and generates a very noisy low-frequency spectrum. In comparison, our variant NDAC-75
(center column) does not suffer from these problems in the low-frequency region and produces
relatively good estimates.

A.7.3 ADVERSARIAL DAC WITHOUT AND WITH ADDED CQT AND WAVEFORM LOSSES

To further show that the advantages of our method are not caused just by the addedCQTand waveform
L 1 loss, as proposed in Section 3.4, we also train a variant of the adversarially trained DAC-75 that
includes both those original adversarial losses, the original non-adversarial losses (Kumar et al.,
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Figure 11: Low-frequency (0–1500 Hz) spectrum of two music samples (top: vocals, bottom: mixture)
from our test set, comparing our underlying codec NDAC-75 against the version we initially trained
without added CQT and waveform losses (“w/o CQT+wav”).

Table 6: Mean± 95% con�dence interval of objective metrics for DAC-75, compared to a variant
(“+Cw”) trained with the original adversarial and non-adversarial losses as well as our proposed CQT
and waveform losses used for DAC-75 (Section 3.4). Bitrates are in kbit/s, and FAD is multiplied by
100 for readability.

Method Bitrate FAD SI-SDR fwSSNR logSpecMSE SIGMOS

DAC-75 3.00 9.68 4.66 ± 0.18 12.11 ± 0.07 80.79 ± 1.41 3.14 ± 0.03
DAC-75 +Cw 3.00 9.39 4.86 ± 0.19 12.21 ± 0.07 81.93 ± 1.58 3.09 ± 0.02

DAC-75 4.50 6.80 6.95 ± 0.18 13.62 ± 0.08 76.95 ± 1.32 3.19 ± 0.02
DAC-75 +Cw 4.50 6.63 7.17 ± 0.19 13.74 ± 0.07 77.81 ± 1.49 3.16 ± 0.02

DAC-75 6.00 5.23 8.54 ± 0.18 15.01 ± 0.08 74.94 ± 1.29 3.19 ± 0.02
DAC-75 +Cw 6.00 5.12 8.76 ± 0.19 15.14 ± 0.07 75.65 ± 1.42 3.17 ± 0.02

DAC-75 7.50 4.15 10.03 ± 0.19 16.57 ± 0.0973.05 ± 1.24 3.19 ± 0.02
DAC-75 +Cw 7.50 3.95 10.16 ± 0.19 16.65 ± 0.07 73.98 ± 1.38 3.19 ± 0.02

2024), and our proposed CQT and waveformL 1 loss. We show the metric results in Table 6. It
can be seen that our proposed loss terms seem to improve FAD, SI-SDR, and fwSSNR slightly, and
on the other hand, worsen logSpecMSE and SIGMOS slightly. No large differences in any metric
can be seen at any particular bitrate, con�rming that the strong improvements in FAD and SIGMOS
of FlowDec we show in Section 5.1 are not caused purely by these loss terms being added to our
underlying codec.

A.7.4 FREQUENCY-DEPENDENT� y VS. GLOBAL � y

In Fig. 12, we compare objective metrics of our main FlowDec-75m and FlowDec-25s variants, both
with frequency-dependent� y , against each corresponding variant with a global� y (“g� y ”). We use
each method at a bitrate of 7.5 kbit/s for FlowDec-75m and 4.0 kbit/s for FlowDec-25s, and run
inference at differentNFE. At a low NFE, we see that the frequency-dependent� y achieves on par
or better logSpecMSE and FAD scores, particularly for the 25 Hz models. For the metrics SI-SDR,
fwSSNR, and SIGMOS, which choice of� y is optimal seems not as clear. At NFE=4, the global� y
variants deteriorate signi�cantly in logSpecMSE but gain in SI-SDR, indicating that oversmoothing
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Figure 12: Objective metrics at different NFE, from our main FlowDec-75m (top row) and FlowDec-
25s (bottom row) models, compared against each corresponding global� y variant (“g� y ”).

Table 7: Mean± 95% con�dence interval of objective metrics for our method compared to the original
NCSN++ architecture, and compared to the original choice of� = 0 :5 in contrast to our� = 0 :3.
We use NFE=6 with the midpoint solver. FAD is multiplied by 100 for readability. Best in bold,
second best underlined.

Method FAD SI-SDR fwSSNR logSpecMSE SIGMOS

FlowDec-75s 1.62 7.55 ± 0.25 15.46 ± 0.07 80.57 ± 1.72 3.48 ± 0.03
with original NCSN++ 1.75 7.51 ± 0.25 15.30 ± 0.06 79.84 ± 1.76 3.45 ± 0.03
with � = 0 :5 2.16 7.54 ± 0.25 14.49 ± 0.09 130.10 ± 1.98 3.57 ± 0.03

of high frequencies is occurring; the frequency-dependent� y variants exhibit this effect much less
strongly.

A.7.5 NETWORK ARCHITECTURE AND FEATURE REPRESENTATION

In Table 7, we show metric results of FlowDec-75s, compared to two ablation model variants: one
trained with the original NCSN++ architecture (Song et al., 2021; Richter et al., 2023), and one
trained with the original choice of the feature representation parameter� = 0 :5 (Welker et al., 2022;
Richter et al., 2023; Wu et al., 2024). We can see that FlowDec-75s performs best in FAD, SI-SDR,
and fwSSNR, and signi�cantly improves upon� = 0 :5 in logSpecMSE. In SIGMOS, which is a
speech-only metric, the� = 0 :5 model achieves the best score, which may hint at� = 0 :5 being
more optimal for speech signals; however, in all other metrics� = 0 :3 seems to be a better choice,
and it seems to work better overall for general audio.

A.7.6 COMPARISON OFODE SOLVERS

In Fig. 13, we show that the numerical Midpoint ODE solver is much more effective than the simpler
Euler ODE solver at producing high-quality audio at low numbers of DNN evaluations (low number of
function evaluations (NFE)). Both solvers perform similarly at a high NFE of 50, but Euler generally
degrades signi�cantly at low NFE (4, 6, 8). While Euler achieves better SI-SDR, it at the same
time shows signi�cantly worse fwSSNR and logSpecMSE, which indicates spectral oversmoothing
(removal of high frequencies). Midpoint performs similarly for NFE=6 as for NFE=8 and NFE=50
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Figure 13: Objective metrics for FlowDec-75m at 7.5 kbit/s, comparing the Euler and Midpoint solver
for different NFE.

but degrades slightly at the next possible lower NFE=4, thus con�rming our default choice NFE=6 to
be a good choice along the tradeoff between output quality and inference speed.

A.8 QUALITATIVE SPECTROGRAM COMPARISONS

In Fig. 14, we show spectrograms comparing FlowDec-75m and DAC-75 on three examples with
high harmonic content such as speech and isolated music instruments. We can see that, for these
examples, FlowDec recovers more plausible natural spectral structures, and recovers high harmonics
better.

For fairness, in Fig. 15, we show the three examples from our test set with the worst logSpecMSE
values for FlowDec, and also those with the worst fwSSNR values in Fig. 16. We again compare
FlowDec-75m against DAC-75 and also show the output from the initial decoder, NDAC-75. For
the logSpecMSE examples, we see that FlowDec either inpaints frequencies that are not there in the
clean reference, or wrongly removes high frequencies present in the initial decoder outputs beyond
16 kHz, which may be related to training on music data with a sampling rate of 32 kHz.

For the example with worst fwSSNR (-3.32) in Fig. 16, we can see that FlowDec mistakenly �lters
out most of the strong frequency content around 6 kHz even though it is present in the initial decoder
output, and replaces it with spectrally more complex but wrong structures, indicating that the FlowDec
post�lter is mistakenly treating these sounds as artifacts from the initial decoder rather than parts of
the target signal. For the other two next-worst fwSSNR examples, FlowDec reconstructs relatively
similar estimates as DAC-75, with no particularly implausible structures visible.

A.9 FULL OBJECTIVE METRICS TABLE

In the main paper, we showed objective metrics result visually. For completeness, we list the exact
numbers of metric values in Table 8.
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Figure 14: Spectrograms (pre-emphasis of 1.0 applied) comparing FlowDec-75m against DAC-75
and NDAC-75 on three audio files: speech (top), glockenspiel and speech (middle), and acoustic
guitar (bottom).
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