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ABSTRACT

The Bag of Little Bootstraps (BLB) method is widely utilized as a robust and
computationally efficient approach in statistical inference studies involving large-
scale data. However, this sampling technique overlooks the privacy protection of
the original data. To address this limitation, we enhance the existing differential
privacy algorithm and integrate it with the BLB method. This integration gives
rise to a novel differential privacy mechanism, enabling a comprehensive statis-
tical analysis of aggregated parameters while safeguarding the confidentiality of
individual private data. Additionally, to address both the variability in noise vari-
ance under the differential privacy mechanism and the uncertainty surrounding
estimate distributions, we employ the central limit theorem within the context of
nonlinear expectation theory. This facilitates the derivation of the corresponding
test statistic and the introduction of a hypothesis testing methodology. Further-
more, we validate the commendable performance of our proposed inference pro-
cedure through data simulation studies. The big data-oriented differential privacy-
preserving mechanism proposed in this study effectively fulfills the requirements
for privacy preservation without compromising subsequent statistical inference.
This contribution holds significant reference value for the sharing of pertinent data
and endeavors related to statistical analysis.

1 INTRODUCTION

In the era of massive data, the expansion of dataset sizes is surging, and large-scale datasets are
becoming more prevalent. Simultaneously, as technology for processing massive data matures and
computer hardware performance improves, using massive data becomes more efficient. However,
significant sample sizes, inherent variability in sampled data, and uncertainty around model selection
collectively pose new challenges to statistical modeling. Additionally, ensuring user privacy remains
crucial. Hence, our research focuses on preserving data privacy while conducting effective statistical
analyses.

Bootstrap methods introduced by Efron (1992) and subsequent advancements, like subsampling
Politis et al. (1999) and out-of-bootstrap methods Bickel & Sakov (2008), have enhanced statistical
inference for large-scale data sampling. Despite optimal resample size strategies Bickel et al. (2012),
substantial computation remains necessary. The Bag of Little Bootstraps (BLB) method by Kleiner
et al. (2012) combines outcomes from small bootstrapped subsets of a larger dataset, benefiting
statistical inference in extensive datasets. Merging bootstrap statistics with computation through
simulation yields robust results and enhanced efficiency.

However, prior studies concentrating on properties of estimators from extensive data methods over-
look sampled data privacy. If data providers distrust collectors or analysts, obtaining accurate data
is challenging, hindering inference. Differential Privacy (DP), proposed by Dwork et al. (2006),
is a privacy definition based on noise injection. Noise can be added to data, model parameters,
or outputs, preventing privacy attacks. Noise-based privacy methods are efficient but can reduce
accuracy.

There is extensive literature on massive data with differential privacy (Sarwate & Chaudhuri, 2013;
Joseph et al., 2018; Li et al., 2021). Xiong et al. (2018) developed an efficient, differential private
frequent itemsets mining algorithm over large-scale data. Vasa & Thakkar (2022) presented different
methods for protecting privacy for deep learning in massive data analysis. The methods reviewed in
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Vasa & Thakkar (2022) are classified based on anonymization, optimization-based approaches, and
cryptographic methods. Recent work attempt to link differential privacy to statistical problems of
streaming data by developing privacy-preserving algorithms. For example, Duchi et al. (2014) pro-
posed a common local Differential Privacy (LDP) for streaming data with SGD algorithm to obtain
a valid point estimation. Cummings et al. (2018) constructed a novel dynamic setting to provide an
accurate analysis of empirical risk minimization under the DP mechanism for a steaming database.
Hasidim et al. (2020) established a connection between the adversarial robustness of streaming al-
gorithms and the DP mechanism. Although there have been many advances in differential privacy
since the pioneering work of Dwork et al. (2006), one could argue that due to the lack of extensive
statistical inference guidelines, their practical utility in massive data area is minimal. In particular,
there is no general procedure for performing statistical hypothesis testing in the context of massive
data, which our paper plans to overcome.

This paper introduces an algorithm for implementing a differential privacy mechanism for sample
statistics, utilizing the Bag of Little Bootstraps sampling method. The overall estimate is derived
through an average-based aggregation technique applied to privacy-treated sample statistics. How-
ever, the variance of the noise introduced by the differential privacy algorithm exhibits heterogeneity
due to varying sensitivities among the bag-specific samples. This variance disparity results in uncer-
tainty regarding the distribution of the analyzed statistics, consequently impeding effective statistical
inference. To address this, we employ the sublinear expectation theory advanced by Peng (2010),
enabling an exploration of asymptotic statistical outcomes. Specifically, we establish the asymptotic
G-normal distribution of terminal DP estimates, enabling valid statistical inferences about overall
parameters and assessment of statistic performance via numerical simulations.

The primary contributions of this paper are outlined below:

• Pioneering differential privacy in static massive data using a novel algorithm.

• Providing a general, scalable differentially private algorithm adaptable to various methods.

• Analyzing asymptotic distribution of statistics using Nonlinear expectation theory, con-
structing parameter statistics and hypothesis testing.

The paper’s structure is outlined as follows. We commence by introducing our approach for formu-
lating differentially private estimators within the scope of massive data. Subsequently, we delve into
an exploration of their asymptotic characteristics, elucidating the methodology for creating corre-
sponding hypothesis tests and confidence intervals. Due to the length of the article, please refer to
the appendix for more details on this section. We substantiate the effectiveness of inference using
our differential privacy mechanism through the examination of synthetic data. The final section en-
capsulates our article by offering conclusions, a comprehensive discussion of outcomes, and insights
into potential future research avenues.

2 METHODOLOGY

2.1 BLB METHOD

The original dataset is represented as X = [X1, X2, · · · , XN ], encompassing a substantial number
of N data points. We subsequently engage in K non-replacement sampling iterations on the initial
dataset to procure K mutually independent sub-samples, denoted as X∗ = {X∗

1 ,X
∗
2 , · · · ,X∗

K}.

Within this context, for 1 ≤ k ≤ K, each sub-sample X∗
k =

[
X∗

k,1, X
∗
k,2, · · · , X∗

k,rk

]
contains a

total of rk data points.

From each sampled dataset, we conduct bootstrap sampling with replacement, yielding B
bootstrap samples. For instance, with the subsample X∗

k , we form bootstrapped samples{
X∗1

k ,X∗2
k , · · · ,X∗B

k

}
. For 1 ≤ b ≤ B, each bootstrapped sample X∗b

k comprises rk data points,

allowing us to derive an estimate θ̂∗bk using X∗b
k . The collection

{
θ̂∗bk

}B

b=1
is then aggregated to de-

rive a corresponding estimate θ̂ (X∗
k) = θ̂k ∈ Θ for the unknown population parameter θ associated

with F . In this manner, we obtain K estimates of the parameter θ. Moreover, we designate QN (F )
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Figure 1: Flowchart of BLB and Bag-specific DP method

as the authentic underlying distribution of θ, a determination influenced jointly by the form of F and
the parameter θ.

The classical goal of the BLB is to compute an estimator quality assessment ψ (QN (F ), F ), where
ψ can denote quantile, confidence interval, standard error, or deviation. For example, if ψ computes
a confidence interval, it might derive the distribution of the statistic

√
N(θ̂− θ). In practice, since F

or QN (F ) is unknown, we must estimate ψ (QN (F ), F ) based on the subsample-based estimators.

2.2 BAG-SPECIFIC DIFFERENTIAL PRIVACY

Considering privacy protection, this approach becomes inadequate for the diverse range of applica-
tions involving continuous subsampling over time without privacy safeguards. This limitation arises
from the tendency of subsampled data sets to contain bag-specific sensitive information, where each
bag corresponds to only one subsampled data set. Despite the trust data providers place in data
collectors or managers, doubt may arise concerning data learners employing machine learning tech-
niques, especially when their statistical algorithms identify sensitive observations or outliers. To
address privacy concerns, we propose the incorporation of a differential privacy mechanism into the
bag-specific estimator θ̂k. Firstly, we introduce the notions of bag-specific sensitivity and (ε, δ)-
differential privacy for this purpose.

Definition 1 (Bag-specific sensitivity) The ℓ1-sensitivity of bag-specific estimate θ̂k is defined by

Λk = sup
{δ(X∗

k ,X
∗
k′)=1}

∣∣∣θ̂ (X∗
k)− θ̂ (X∗

k′)
∣∣∣ <∞

where δ (X∗
k ,X

∗
k′) represent the Hamming distance between two neighboring dataset X∗

k and X∗
k′ .

That is, we can use Λb to calculate the sensitivity of θ̂k uniquely determined by the bag-specific
sample X∗

k .

Definition 2 ((ε, δ)-differential privacy) For an estimator θ̂k, satisfying (ε, δ)-differential privacy,
if for any two adjacent data sets X∗

k ,X
∗
k′ , for F ⊆ Range(θ̂), the estimator obeys the following

inequality

Pr
[
θ̂ (X∗

k) ∈ F
]
≤ eεk · Pr

[
θ̂ (X∗

k′) ∈ F
]
+ δk
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where the values of εb and δk are dictated by the bag-specific privacy requisites pertaining to the
b-th bag’s samples. When the privacy stipulations are uniform across distinct subsamples, we can
employ a unified set of values, denoted as εk = ε and δk = δ. For the sake of generality, this article
assumes uniform privacy requirements across all bags.

In this study, we incorporate the (ε, δ)-Gaussian differential privacy mechanism into the estimator
θk by introducing random noise uk drawn from a Gaussian distribution N

[
0, σ2

k

]
. This article’s

approach ensures the same privacy standards for all bags. The subsequent lemma asserts that the
Gaussian mechanism applied to each sample bag guarantees (ε, δ)-differential privacy.

Lemma 1 Dwork et al. (2014) Let ε ∈ (0, 1) be arbitrary constant. For c2 > 2 ln(1.25/δ), the
Gaussian Mechanism with parameter σk ≥ cΛk/ε is (ε, δ)-differentially private, where Λk is the
sensitivity of θ̂ (X∗

k), for 1 ≤ k ≤ K.

From this lemma, the standard deviation of the added noise is calculated as

σk =
Λk

√
2 ln(1.25/δ)

ε

consequently, after privacy processing, the estimator is obtained by θ̂naive,dpk = θ̂k + uk, and uk ∼
N
[
0, σ2

k

]
.

The outlined procedure is illustrated in Fig 1. We performed parameter estimation based on the
BLB method and added the bag-specific DP. Our approach entails parameter estimation grounded
in the BLB method, augmented with bag-specific differential privacy (DP). Subsequent sections
will delve into the statistical inference challenges arising from the introduction of bag-specific
DP. However, for 1 ≤ k ≤ K, since sub-sampling produces duplication of samples among{
X∗1

k ,X∗2
k , · · · ,X∗B

k

}
, the individual estimators

{
θ̂∗1k , θ̂

∗2
k , · · · , θ̂∗Bk

}
aren’t independent of each

other. Additionally, the variance of the distinct estimates’ introduced random noise showcases het-
erogeneity due to varying sensitivities, thereby complicating access to subsequent statistical infer-
ence.

2.3 DIFFERENTIALLY PRIVATE ALGORITHM

Therefore, we introduce an innovative privacy-preserving algorithm aimed at minimizing the vari-
ance fluctuations in random noise. This novel approach facilitates the establishment of hypothe-
sis tests and confidence intervals through the G-Normal theory proposed by Peng & Zhou (2020),
thereby enhancing our capacity to address subsequent statistical inference challenges. The frame-
work for generating the novel differentially private online estimator unfolds as follows: Initially, we
represent the range of standard deviation fluctuations in random noise as

∆ = max {σ1, σ2, · · · , σK} −min {σ1, σ2, · · · , σK}

where σ1, σ2, · · · , σK are calculated from the above mentioned Gaussian differential privacy for-
mula.

Next, we specify its upper and lower standard deviation bounds as

σ̄ =
γ̄

√
nk̄

+∆, γ̄ = max
1≤k≤K

{
√
rkσk} , k̄ = argmax

1≤k≤K
{
√
rkσk}

σ =
γ

√
rk

+∆, γ = min
1≤k≤K

{
√
rkσk} , k = argmin

1≤k≤K
{
√
rkσk}

Thus our newly constructed differentially private estimator is θ̂dpk = θ̂k + ωk = θ̂k + ξkϵk, where
ϵk is a random variable that obeys a normal distribution N [0, 1], {ξk}1≤k≤K ∈ Σ(σ, σ̄) denotes the
collection of all measurable sequences {Fk}∞k=1, which bounded to [σ, σ̄]. On the other hand, the
natural filtration is generated by ωk and the value of ξk is taken as

ξk =

{
σ̄, |Sk−1| /

√
K ≤ λ2k−1c1−α/2

σ, |Sk−1| /
√
K > λ2k−1c1−α/2
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where Sk equals to

√
r1

(
θ̂dp1 − 1

k

k∑
i=1

θ̂k

)
+ · · ·+

√
rk

(
θ̂dpk − 1

k

k∑
i=1

θ̂k

)
c1−α/2 is critical value of t distribution with proper freedom and it can be approximated by Φ−1(1−
α/2) when K tends to infinity, λ2k = var

[√
rkθ̂

dp
k

]
is calculated as

λ2k =
1

k

k∑
i=1

(√
rkθ̂

dp
k

)2
−

{
1

k

k∑
i=1

√
rkθ̂

dp
k

}2

therefore, we end up this section with a new differentially private estimator θ̂dpk . Moreover, it can be
verified that this new estimator still satisfies Gaussian differential privacy requirement, i.e., Theorem
1 .

Theorem 1 The bag-specific estimator θ̂k satisfies (ε, δ)-Gaussian differential privacy if the stan-
dard deviation is produced by above policy for k = 1, · · · ,K.

Theorem 1 holds, because the standard deviation of the noise we defined satisfies the following

σ̄ =
γ̄

√
nk̄

+∆ > σk =
Λk

√
2 ln(1.25/δ)

ε

σ =
γ

√
rk

+∆ > σk =
Λk

√
2 ln(1.25/δ)

ε

Algorithm 1 Differentially Private Algorithm

Input: K, θ̂k, Λk, ϵk
Function: Differential Privacy Estimator

for k = 1 to K do
Compute standard deviation of Gaussian DP noise σk
Compute statistics Sk

Compute asymptotic variance λ2k
Generate standard normal distribution variable ϵk

end for
Compute fluctuation range ∆
Compute upper and lower bounds σ̄, σ
for k = 1 to K do

if |Sk−1| /
√
K > λ2k−1c1−α/2 then

ξk = σ̄
else
ξk = σ

end if
end for
return θ̂dpk = θ̂k + ξkϵk
End Function

We delve into the asymptotic properties of the estimators
{
θ̂dpk

}K

k=1
. For details, please refer to the

Appendix.

3 HYPOTHESIS TEST AND CONFIDENCE INTERVAL

3.1 TAIL CAPACITY

The parameter p, referred to as the tail capacity of the G-Normal distribution, is a term in which
”capacity” serves as a broader concept akin to probability. The determination of p holds essential
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significance for comprehending the G-Normal distribution, and it is imperative to pinpoint the value
of p corresponding to a conventional significance level such as α = 0.05. Initially, we delve into the
examination of the right tail capacity as follows

p1
{
λ̄Φ−1(1− α);λ, λ̄

}
= lim

K→∞
sup

{λk}∈Σ(λ,λ̄)

Pr

{
K∑

k=1

√
rk√
K

(
θ̂dpk − θ

)
> λ̄Φ−1(1− α)

}
besides, we can obtain the following Theorem

Theorem 2 for any α ≤ 0.05 and λ < λ̄, the right tail capacity is

p1 = p1
(
λ̄Φ−1(1− α);λ, λ̄

)
=

2α

1 + λ/λ̄

It’s important to note that when the estimators
{
θ̂dpk

}K

k=1
are independently generated within each

bag, indicating the absence of duplicate samples across subsamples and the application of a com-
mon Gaussian mechanism for perturbation (i.e., λ = λ̄), the right tail capacity maintains asymp-
totic equivalence to the classical significance level α as K → ∞. However, due to non-identity
originating from the sequence of heterogeneous variances {λk}∞k=1, the assumption of identical be-
havior may be compromised. This leads to an increment in the right tail capacity by a minimum
of 2λ̄/(λ + λ̄). The definition of the right tail capacity in Theorem 3 suggests that selecting the
critical value of the classical standard normal distribution Φ−1(1−α) results in a right tail capacity
of α

1+λ/λ̄
. Thus, we can approximate the two-tailed capacity using the original critical value

p2
{
λ̄Φ−1(1− α/2);λ, λ̄

}
≈ 2p1

{
λ̄Φ−1(1− α/2);λ, λ̄

}
=

2α

1 + λ/λ̄

3.2 TEST STATISTIC

Next, we proceed to construct classical test statistics and delve into research concerning statistical
inference and hypothesis testing

TK(θ) =
1√
K

K∑
k=1

√
rk

(
θ̂dpk − θ

)
λ̂

(1)

where

λ̂2 =
1

K

K∑
k=1

(√
rkθ̂

dp
k

)2
−

{
1

K

K∑
k=1

√
rkθ̂

dp
k

}2

The null and alternative assumptions are

H0 : θ = θ0; H1 : θ ̸= θ0.

Given that the variances of the released sequential DP estimators
{√

r1θ̂
dp
1 , · · · ,√rK θ̂dpK

}
are less

than or equal to λ̄2, it follows that λ̂2 is also less than or equal to λ̄2 with probability one. As a
result, if θ0 represents the true parameter value, we proceed with a test involving the rejection region{
|TK (θ0)| > Φ−1(1− α/2)}. The probability of rejecting the null hypothesis H0 is then bounded

from below by Pr (|SK (θ0)| > λ̄Φ−1(1− α/2)
)
. However, in cases where the learner has the

freedom to select any {λk} ∈ Σ(λ, λ), then

lim
K→∞

sup
{λk}∈Σ(λ,λ̄)

Pr
(
|SK (θ0)| > λ̄Φ−1(1− α/2)

)
= p2

(
λ̄Φ−1(1− α/2);λ, λ̄

)
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By Theorem 3, the left and right tail capacities are not symmetric in this G-Normal distribution. We
can approximate the two tailed capacity by

p2
{
λ̄Φ−1(1− α/2);λ, λ̄

}
≈ 2α

1 + λ/λ̄
> α

Given the non-independence and non-identical nature of the sequential DP estimator sequences{
θ̂dpk

}K

k=1
, the type I error rate in this test deviates from α. The learner has the capacity to am-

plify the probability of erroneously rejecting the null hypothesis by a minimum of 2λ̄/(λ+ λ̄). As a
consequence, if our intention is to uphold the null hypothesis rejection standard at a significant level
of α = 0.05, the corresponding critical value must be adjusted to

Φ−1

(
1− α

λ+ λ̄

4λ̄

)
Meanwhile, the 1− α = 95% confidence interval for θ till K can be constructed by [Z1, Z2]

Z1 =

K∑
k=1

√
rk

λ̂∑K
k=1

√
rk

λ̂

θ̂dpk −

√
KΦ−1

(
1− αλ+λ̄

4λ̄

)
∑K

k=1

√
rk

λ̂

Z2 =

K∑
k=1

√
rk

λ̂∑K
k=1

√
rk

λ̂

θ̂dpk +

√
KΦ−1

(
1− αλ+λ̄

4λ̄

)
∑K

k=1

√
rk

λ̂

This indicates that the primary cost associated with constructing confidence intervals due to se-
quential DP under heterogeneous noise is the augmented length of the confidence interval, as
Φ−1

(
1− αλ+λ̄

4λ̄

)
is larger than Φ−1(1 − α/2). In reality, λ̄ and λ are unknown. We can esti-

mate λ̄2 and λ2 consistently by

̂̄λ2 =
1

|Ī|
∑
k∈Ī

(√
rkθ̂

dp
k

)2
−

 1

|Ī|
∑
k∈Ī

√
rkθ̂

dp
k


2

λ̂
2
=

1

|I|
∑
k∈I

(√
rkθ̂

dp
k

)2
−

 1

|I|
∑
k∈I

√
rkθ̂

dp
k


2

Let I be the corresponding index multisets where Ī = {b : ξk = σ̄} , I = {k : ξk = σ}.

4 SIMULATION STUDY

This section scrutinizes the performance of the proposed DP procedure within the context of the
mean model. Our assumptions are rooted in the normal distribution N [2, 1] characterizing the orig-
inal data, with the population parameter of interest denoted as θ = 2. Utilizing bag bootstrap
sampling, we generate K subsample sets {X∗

1 ,X
∗
2 , · · · ,X∗

K}, stipulating that the number of sam-
ples contained in each subsample set ranges from 50 to 100, i.e., 50 ≤ rk ≤ 100, ∀k ∈ [1,K]. The
mean statistic within the k-th bag is expressed as follows

θ̂k =

∑rk
i=1X

∗
k,i

rk

as per the aforementioned equation, when there’s a unit change in X∗
k,i, θ̂k experiences a change of

1/rk units. Hence, the corresponding sensitivity within the k-th bag amounts to 1/rk. Our approach
employs the Gaussian mechanism and the perturbed standard deviation for the naive differential
privacy (DP) is given by

σk =

√
2 ln(1.25/δ)

rkε
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Since rk fluctuates within the range [50, 100], it corresponds to the maximum value of σk when
rk = 50 and the minimum value of σk when rk = 100. The upper and lower bounds of the standard
deviation are thus substituted into the formula

σ̄ =
2
√
2 ln(1.25/δ)

50ε
−
√
2 ln(1.25/δ)

100ε

σ =

√
2 ln(1.25/δ)

50ε

Further we can obtain the estimators θ̂dpk after the differential privacy algorithm processing.

To commence, we analyze the distinction between the asymptotic distribution of TK(θ) and the
conventional t distribution for the parameters 50 ≤ rk ≤ 100,K = 1000, δ = 0.01, ε = 0.1. In this
investigation, we generate a total of 1000 subsamples. Figure 3 illustrates the histogram portraying
the empirical distribution of the test statistics TK(θ) centered around the veritable value of θ. Upon
juxtaposing the histogram against the black density line depicting the classical t distribution with
(K-1) degrees of freedom, a noticeable augmentation in the two-tailed capacity becomes evident.
This aligns precisely with the theoretical outcomes outlined in Theorem 3.

0.0
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0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0

D
en

si
ty

Figure 2: Histogram of the empirical distribution of the test statistics TK(θ) under the true value θ.
The black line represents the density function of the t-distribution with K − 1 degrees of freedom.

Subsequently, we delve into the examination of our estimators’ confidence intervals. These inter-
vals constitute estimations derived from sample statistics and encase the overall parameters. The
evaluation criteria for the adequacy of a confidence interval rest on two principles: firstly, a higher
confidence level signifies superior performance; secondly, a narrower interval width implies a more
favorable outcome.

Broadly speaking, three primary factors govern the width of a confidence interval. The foremost
element is the dispersion exhibited by the complete dataset, typically assessed through variance
measurement. Subsequent is the sample size; larger samples yield richer information content, which
generally translates into narrower confidence intervals. Moreover, the confidence level itself also
influences the interval width.

We purposefully chose δ values of 0.001, 0.005, and 0.01 to facilitate a comparative analysis of
confidence interval widths between estimates processed through the differential privacy mechanism
and the original estimates. Figures 3, 4, and 5 offer insights into the 1 − α = 95% confidence
intervals of θ, derived from the average-aggregated DP estimators within each bag. Notably, these
visualizations demonstrate the congruence between the confidence bands of the estimators based
on the original datasets and those produced through larger bag sizes. Concurrently, a diminutive
privacy budget combined with a substantial δ value yields a markedly narrower confidence band,
progressively approximating the outcomes obtained through accumulated statistics devoid of DP
processing.
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(a) δ = 0.001
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(b) δ = 0.005
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(c) δ = 0.01

Figure 3: Confidence band of two methods including sequential DP estimation (red) and estimators
under original data (green) across three cases δ = 0.005, 0.01, 0.01.

5 DISCUSSION

This paper contributes in the following ways: Firstly, we introduce a novel differential privacy esti-
mation method by adapting an existing differential privacy mechanism. This approach enables us to
derive estimates for overall parameters of interest through bag bootstrap sampling while safeguard-
ing data privacy by adjusting the (ε, δ) parameter within differential privacy. Secondly, we elucidate
the process of generating specific estimates for diverse sampled datasets and subsequently obtain-
ing overall parameter estimates. Addressing the intricate realm of statistical inference, we confront
challenges arising from the variance uncertainty introduced by privacy protection. To tackle this,
we employ the central limit theorem within nonlinear expectation theory. This allows us to es-
tablish that the statistics we construct exhibit an asymptotic G-normal distribution as the sample
size approaches infinity, yielding favorable statistical properties. In particular, our investigation re-
veals that the proposed bag-specific sensitivity introduces heterogeneous noisy perturbations with
uncertain variances, leading to an enlarged tail capacity for hypothesis and lengthened confidence
intervals. Furthermore, potential avenues for improvement and future research are identified. These
include extending the sequential ℓ1-sensitivity to ℓp-sensitivity and considering statistical inference
with local differential privacy, accounting for user-specific privacy settings. Additionally, we pro-
pose exploring distributed learning, online learning, or federated learning scenarios, building upon
the foundational work of Wasserman & Zhou (2010) and Duchi et al. (2014).
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A APPENDIX

B ASYMPTOTICALLY THEORETICAL RESULTS

In this section, we delve into the asymptotic properties of the estimators
{
θ̂dpk

}K

k=1
. Our primary

concern revolves around assessing whether θ̂dpk approaches the true value in a meaningful manner as
the sample size expands substantially. Specifically, our analysis centers on its asymptotic normality,
scrutinizing whether the distribution of the random variable Zn =

√
rk

(
θ̂dpk − θ

)
adheres to the

normal distribution. If θ̂dpk functions as an asymptotic normal estimator of θ, it inherently qualifies
as a consistent estimator for θ. This coherence arises from the concept of collinearity, pondering
whether θ̂dpk → θ holds as K → ∞, here → signifies the convergence of the random variable within
a probability context.

As stipulated by Slutsky’s theorem, when an estimator exhibits asymptotic normality, it necessitates
convergence in probability, thus ensuring consistent estimation. Within the framework of this paper,
our objective entails scrutinizing whether the distribution of the estimator approaches normality as
the sampling number K approaches infinity. The mean value of the random variable Zn equates to
√
rk

(
θ̂dpk − θ

)
/K. Employing the central limit theorem as our foundation, we devise the subse-

quent test statistic to explore the estimator’s asymptotic normality

SK(θ) =
1√
K

K∑
k=1

√
rk

(
θ̂dpk − θ

)
given the presence of variance heterogeneity in the estimates θ̂dpk , coupled with their interdepen-
dence, our approach necessitates turning to the central limit theorem as posited by Peng (2010)
within the framework of nonlinear expectations.

We assume that E
(
θ̂dpk

)
= E

(
θ̂k

)
= θ or = θ+ Op

(
1√
rk

)
, var

(√
rkθ̂k

)
=

σ2
f , E

(∣∣∣θ̂dpk ∣∣∣3) <∞, and denote the bag-specific variance λ2k with

λ̄2 = max
{
var
(√

r1θ̂
dp
1

)
, · · · , var

(√
rkθ̂

dp
k

)}
= σ2

f + γ̄2

λ2 = min
{
var
(√

r1θ̂
dp
1

)
, · · · , var

(√
rkθ̂

dp
k

)}
= σ2

f + γ2

It can be verified that SK(θ) obeys G-Normal distribution Peng (2010) which is defined in Definition
3.

Definition 3 (G - Normal distribution). Let PY be a set of probability measures defined on the
space (Ω,F).A measurable function Y : Ω 7→ R is said to follow a Normal distribution with lower
variance λ2 and upper variance λ̄2(0 ≤ λ ≤ λ̄), if, for every Lipschitz function φ,

sup
P∈PY

EP[φ(Y )] = sup
P∈PY

∫
Ω

φ(Y )dP = u(1, 0;φ)

where {u(t, y;φ) : (t, y) ∈ [0,∞)× R} is the unique viscosity solution to the Cauchy Problem

ut =
1

2

(
λ̄2 (uyy)

+ − λ2 (uyy)
−
)
, u(0, y) = φ(y)

In the above expression ut = ∂u
∂t , uyy = ∂2u/∂y2 and the superscripts + and − denote the positive

and negative parts respectively and the sublinear partial differential equation is referred to a G-heat
equation.
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It should be emphasized that G-Normal distribution is unable to inherit the sense of traditional distri-
bution, because G-Normal distribution of one random variable actually has distributional uncertainty
and PY in this theorem denotes the collection of all possible probability measures of random vari-
able Y , which is caused by the heterogeneous standard deviations from [λ, λ̄] u(1, 0;φ) represents
the sublinear expectation of φ(Y ). This definition also implies when λ = λ̄ = λ the G-Normal dis-
tribution reduces to normal distributionN

[
0, λ2

]
and G− heat equation reduces to the heat equation

with

u(t, y;φ) =

∫ ∞

−∞
ϕ(z)φ(y + κ

√
tz)dz

where ϕ(y) is the density function of standard normal distribution.

In the following, we use the central limit theorem under nonlinear expectation theory to study the
asymptotic sampling distribution of the statistic.

Let {λk}Kk=1 ∈ Σ(λ, λ̄) be the collection of sequences that bounded to [λ, λ̄], where λ, λ̄ are given
constants (0 ≤ λ ≤ λ̄ <∞).

Theorem 3 For given constents {λk}Kk=1 ∈ Σ(λ, λ̄) and
{
θ̂dpk

}K

k=1
, and for any Lipschitz function

φ,

u(1, 0;φ)

= lim
K→∞

sup
{λk}∈Σ(λ,λ̄)

E

[
φ

(
K∑

k=1

√
rk√
K

{
θ̂dpk − θ

})]
where u(1, 0;φ) is given in Definition 3.

Essentially, this theorem can be regarded as an immediate corollary of Peng’s original central limit
theorem Peng (2019) in terms of the language of classical probability. We can refer to the similar
theoretical conclusion in the studies of Rokhlin (2015) and Fang et al. (2019), which can be seen as a
generalization of the classical central limit theorem to controlled stochastic processes Peng (2019).

The theorem can be further generalized to non-identically distributed sequence
{
θ̂dpk

}∞

k=1
. Fang

et al. (2019) introduced the detailed proof procedures and the convergence rate of Theorem 2. The
function φ can also be any Borel measurable indicator function Peng & Zhou (2020).

Based on subsample X∗
k generate

θ̂dp
k = θ̂k + ξkϵk
ξk ∈ (σ, σ̄)

The value of ξk is determined by

ξk =

{
σ̄, if |Sk−1| /

√
K ≤ λ2

k−1c1−α/2

σ, if |Sk−1| /
√
K > λ2

k−1c1−α/2

Statistical inference under test statistics
1√
K

∑K
k=1

√
rk

(
θ̂dp
k − θ

)
Select an adjusted critical value

Φ−1(1 − αλ+λ̄

4λ̄
)

Sequential DP and statistical inference

Figure 4: Flowchart of estimation and statistical inference.
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