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Abstract

Multimodal Large Language Models (MLLMs)
often encounter irrelevant or misleading images
in real-world applications. To handle such chal-
lenges, MLLMs must dynamically adjust their
reliance on different modalities based on rele-
vance. However, we find that MLLMs dispro-
portionately favor visual inputs, even when tex-
tual cues are equally informative. This modal-
ity bias leads to imbalanced reasoning and re-
duced robustness, especially when irrelevant
images are present. In this paper, we systemati-
cally investigate modality bias by designing a
Banana-Counting dataset, where identical infor-
mation is embedded in both textual and visual
formats, ensuring that models have equal ac-
cess to both modalities. Our findings reveal
that most MLLMSs prioritize visual information
even when textual cues provide equally infor-
mative content. To mitigate this bias, we de-
sign a balanced multimodal Banana-Counting
training dataset and fine-tune MLLMs using
LoRA-based adaptation. Our approach signifi-
cantly reduces modality bias while maintaining
or even improving general reasoning perfor-
mance on datasets such as ScienceQA, CSQA,
and MMLU. Additionally, our fine-tuned mod-
els demonstrate enhanced robustness against
noisy figures, ensuring more reliable perfor-
mance in real-world multimodal scenarios. Our
study highlights the importance of balanced
multimodal training strategies and provides in-
sights into improving MLLMs’ ability to inte-
grate information effectively across modalities.

1 Introduction

The rapid evolution of large language models
(LLMs) has been a major driving force in the pur-
suit of Artificial General Intelligence (AGI). To
meet the increasing demands of real-world ap-
plications, LL.Ms have advanced beyond single-
modality processing, evolving into multimodal
LLMs (MLLMs). These models are now capa-
ble of integrating and reasoning over multiple data

modalities, including text, images, and audio (Liu
et al., 2024; Bai et al., 2023; Achiam et al., 2023;
Wang et al., 2023; Yao et al., 2024; Wu et al., 2023).
With their remarkable performance in tasks such
as visual question answering (VQA), image cap-
tioning, and multimodal reasoning, MLLMs have
become indispensable in a wide range of applica-
tions (Yao et al., 2023; Ma et al., 2024; Bianco
et al., 2023; Zhang et al., 2023).

Despite these advancements, in this paper, we
reveal a concerning phenomenon with current
MLLMs: Modality Bias, which refers to an over-
reliance on one modality while neglecting infor-
mation from the others. Specifically, our exper-
iments find that many MLLMs tend to prioritize
visual cues over textual information, even when
text provides critical details. This bias appears to
stem from extensive training on VQA and image
captioning datasets, which heavily favor visual in-
formation. Consequently, this leads to two main
issues in real-world applications: (1) Limited Tex-
tual Processing: MLLMs tend to prioritize visual
information over textual content, limiting their abil-
ity to process and reason based on text. (2) Suscep-
tibility to Irrelevant Visual Input: In real-world
scenarios, users may provide irrelevant or mislead-
ing images. Ideally, an MLLM should dynamically
adjust its reliance on visual inputs based on their
relevance, rather than blindly incorporating visual
information into its reasoning process.

In this paper, we aim to systematically investi-
gate modality bias in MLLMs, analyze its implica-
tions, and propose an effective solution. To explore
this issue, we design the Banana-Counting dataset,
a multimodal dataset designed to evaluate whether
MLLMs can effectively extract numerical informa-
tion from both textual and visual sources rather
than relying on a single modality. As far as we
know, our dataset is the first to feature a balanced
multimodal design, where identical information is
embedded in both text and images, allowing for



a direct comparison of how models balance and
integrate the two modalities.

Upon identifying clear evidence of modality bias,
we introduce a simple yet effective intervention:
a LoRA fine-tuning approach using our custom
Banana-Counting training dataset. We train mul-
tiple MLLMs on this dataset and conduct a com-
prehensive evaluation. Our key findings demon-
strate that fine-tuning with balanced multimodal
data: (1) Effectively reduces modality bias, en-
abling MLLMs to integrate textual and visual in-
formation more equitably. (2) Enhances overall
performance on benchmark datasets such as Sci-
enceQA(Lu et al., 2022), CSQA(Talmor et al.,
2019), and MMLU (Hendrycks et al., 2021). (3) Im-
proves robustness in scenarios involving noisy or
misleading images, making MLLMs more resilient
to irrelevant visual input. By addressing modality
bias, we provide insights into how MLLMs can be
improved for more reliable multimodal reasoning
and highlight the importance of balanced dataset
construction in MLLM training.

2 Investigating Modality Bias in MLLMs

2.1 Preliminarily Study

Cognitive science research (Holsanova et al., 2009;
Sivle and Uppstad, 2018) suggests that effec-
tive reading comprehension requires the ability to
switch between textual and visual information to
construct a coherent understanding. In contrast,
many current MLLMs have been trained primar-
ily on VQA-based and Optical Character Recog-
nition (OCR) datasets (Liu et al., 2024) such as
OKVQA (Marino et al., 2019), OCRVQA (Mishra
et al., 2019), and TextCaps (Sidorov et al., 2020),
which heavily emphasize image-dependent ques-
tion answering. While these datasets effectively
train models to interpret images, they may also in-
advertently cause modality bias—a tendency for
MLLMs to overly rely on visual information while
neglecting textual information.

To empirically investigate this hypothesis, we
evaluate two widely used MLLMs, Qwen2-VL-
7B-Instruct (Bai et al., 2023) and Llama3-Llava-
next-8b (Liu et al., 2024), on a subset of 1,000
test samples from the ScienceQA dataset (Lu et al.,
2022). We design three experimental settings to as-
sess MLLMs’ reliance on visual input: (1) Normal:
The original dataset with both textual and visual
information. (2) No Figure: Images are removed,
leaving only textual information. (3) Noisy Figure:
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Figure 1: Accuracy of different LLMs on the Sci-
enceQA dataset under various settings. This bar chart
presents the accuracy (%) of Qwen2-VL-7B-Instruct
and Llama3-Llava-next-8b on the ScienceQA dataset.
The evaluation includes three conditions: Normal, No
Figure, and Noisy Figure.

Images are replaced with randomly selected, irrele-
vant images from the ScienceQA dataset. The re-
sults are presented in Figure 1. As shown in the Fig-
ure, both MLLMs exhibit a strong dependence on
visual information. The accuracy further degrades
when irrelevant images are introduced (Noisy Fig-
ure) compared to No Figure setting, indicating that
incorrect visual cues can mislead the model’s rea-
soning process. Ideally, a robust MLLM should
be capable of filtering out misleading or irrele-
vant images and relying more on textual infor-
mation when necessary. However, our findings
suggest that current MLLMs fail to do so effec-
tively, as their accuracy in the Noisy Figure setting
remains lower than in the No Figure setting. This
highlights a critical limitation: MLLLMs may not
be assessing the relevance of visual input but
instead default to treating images as a primary
source of information, even when they introduce
noise. Therefore, based on this findings, we con-
structed a Banana-Counting dataset to systemati-
cally analyze modality bias in MLLMs.

2.2 Banana-Counting Dataset Construction

Banana-Counting dataset is based on SPIQA (Sci-
entific Paper Image Question Answering) (Praman-
ick et al., 2024), a large-scale QA dataset designed
to interpret complex figures and tables within the
context of scientific research articles across vari-
ous domains of computer science. We constructed
our dataset using the test-A split from SPIQA, se-
lecting images, their corresponding captions, and
associated text. We then inserted a needle phrase
into both text and images in the format:

The little monkey counted {number} bananas.
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Figure 2: Overview of the Banana-Counting Dataset. We extracted figures and captions from the SPIQA dataset and
inserted needle phrases into both modalities. The needle’s color and position in figures were randomly assigned
while in text, it was inserted at random positions to avoid biases. To evaluate modality bias, we designed three
settings: (1) Both: The model receives both figure and caption, (2) Figure-only: The model receives only the figure,
and (3) Text-only: The model receives only the caption. This setup examines whether MLLMs effectively integrate
multimodal information or favor one modality over the other.

where the number of bananas in each needle was
randomly generated within the range of 1 to 20.
The Banana-Counting dataset contains a total of
1026 instances for evaluation. The overview of the
dataset is illustrated in Figure 2. To eliminate poten-
tial biases caused by superficial cues, the needle’s
color and position in the figure were randomly
assigned, while in the text, the needle was inserted
at random positions. Specifically:
Figure-based Needle Insertion: The needle
phrase was placed at random positions within
the image, including Upper-left (UL), Upper-right
(UR), Center (C), Lower-left (LL), and Lower-right
(LR). Additionally, the text color was randomly se-
lected from black, red, blue, and green (as shown
in Figure 2).
Text-based Needle Insertion: The needle phrase
was embedded into the textual content at random
depths. The text primarily comprised the image
or table caption. If the caption contained fewer
than 100 words, we supplemented it with additional
content from the corresponding research paper. If it
exceeded 100 words, we truncated it to 100 words.

2.3 Experiments

During the inference phase, we provided input with
predefined instructions, as shown in Figure 2, to
guide MLLMs in extracting the banana count from

the context. We evaluated whether LLMs could
identify and extract the banana count from the
given context. To assess modality bias, we de-
signed three experimental settings: (1) Both: The
model receives both the figure and caption as input;
(2) Figure-only: The model receives only the figure
as input; (3) Text-only: The model receives only
the caption as input. In the Both setting, we aim to
measure different MLLMSs’ preferences for specific
modalities. In the single-modality settings (Figure-
only and Text-only), we further investigated the
accuracy of MLLMs when restricted to a single
modality. This evaluation serves to demonstrate
that MLLMs possess sufficient capability to pro-
cess each modality independently, ensuring that
modality bias is not merely a result of inadequate
unimodal processing ability, but rather an inherent
preference for one modality over the other.

To evaluate this, we tested ten different MLLMs
on the Banana-Counting dataset. The evaluated
models include: MiniCPM-V-2_6 (Yao et al.,
2024), Qwen2-VL-7B-Instruct, Qwen2-VL-72B
(Bai et al., 2023), Cogvlm2-Llama3-chat-19B
(Wang et al., 2023), GPT-40-mini (Achiam et al.,
2023), Llava-next-Llama3, Llava-v1.6-vicuna-13B-
hf (Liu et al., 2024), MoE-LLaVA-Phi2-2.7B-4e,
MoE-LLaVA-Phi2-2.7B-4e-384 (Lin et al., 2024),
Deepseek-vl2-small (Wu et al., 2024).



Model Size

Both

Figure only  Text only

Model

#Parameters (B) ACCiext  ACCg ACCyg ACCext
MiniCPM-V-2_6 (Yao et al., 2024) 8.10 67.17 74.93 92.14 98.48
Qwen2-VL-72B (Bai et al., 2023) 72.00 77.17 89.96 99.51 100.00
Qwen2-VL-Instruct (Bai et al., 2023) 7.00 51.66 72.32 98.05 99.90
Cogvlm2-Llama3-chat (Wang et al., 2023) 19.00 67.82 58.77 96.80 91.29
GPT-40-mini (Achiam et al., 2023) - 81.52 87.15 99.51 100.00
Llava-next-Llama3 (Liu et al., 2024) 8.00 47.95 33.72 42.50 93.86
Llava-v1.6-vicuna (Liu et al., 2024) 13.00 47.37 54.87 90.35 97.08
MoE-LLaVA-Phi2-2.7B-4e (Lin et al., 2024) 5.61 22.71 96.20 52.05 88.11
MoE-LLaVA-Phi2-2.7B-4¢-384 (Lin et al., 2024) 5.73 38.15 82.07 92.88 78.65
Deepseek-v12-small (Wu et al., 2024) 16.10 8.00 78.17 90.55 98.83
Yi-VL-6B (Young et al., 2024) 6.00 77.78 27.17 48.54 90.55

Table 1: Performance of different LLMs on the Banana-Counting dataset. The table reports the accuracy of various
models in identifying the number of bananas under three settings: (1) Both (2) Image only, and (3) Text only.
#Parameters denotes the model size in billions. ACCqex; and ACCpg represent the accuracy of extracting the banana
count from text and images, respectively. The results highlight significant modality bias, where most models favor
image-based information (ACCjpg) while often overlooking text-based cues (ACCyext).

2.4 Results

The experimental results are presented in Table 1.
The table summarizes the performance of differ-
ent MLLMs in extracting banana counts under the
three evaluation settings: Both (where both the fig-
ure and caption are provided), Image-only (where
only the figure is available), and Text-only (where
only the caption is available). The accuracy of
retrieving banana counts from text (ACCrext) and
from images (ACCjy) is reported for each model.

The results reveal clear modality bias across
most MLLMs: (1) When both modalities are avail-
able, most models prioritize visual information,
extracting counts mainly from the figure and ne-
glecting the text, leading to significantly higher
ACCfg than ACCiexr. (2) In the Image-only and
Text-only settings, all models demonstrate higher
accuracy in extracting banana counts compared to
the Both setting. This indicates that when informa-
tion must be combined across modalities, models
struggle to effectively integrate textual and visual
cues. (3) Among the models exhibiting an inverse
modality bias, Cogvlm, Yi and Llava-next-Llama3
show distinct trends. Cogvlm displays a stronger
preference for textual information, leading to lower
ACCpg compared to other models. Meanwhile,
Yi and Llava-next-Llama3 demonstrates extremely
low accuracy in the Image-only setting, suggesting
that it has poor image text recognition capabilities,
causing it to ignore visual information and rely
more heavily on text.

Additionally, to eliminate the influence of the
needle phrase’s position and color in the figure, we
analyzed accuracy across different colors and po-

sitions, as shown in Table 2. The results indicate
that model performance remains relatively stable
regardless of needle position or color, suggesting
that neither factor significantly influences fig-
ure accuracy. This implies that modality bias is
primarily driven by an inherent preference for vi-
sual or textual information rather than superficial
attributes such as text color or placement.

These findings highlight a fundamental chal-
lenge in MLLM design—many models overly rely
on visual cues when both modalities are available,
which can lead to suboptimal decision-making
when textual information is equally or more in-
formative. The next section explores potential ap-
proaches to mitigating this modality bias and im-
proving multimodal reasoning in MLLMs.

Further Exploration To eliminate the influence
of instruction phrasing, we conducted an additional
experiment using Explicit Instruction. Specifically,
we modified the instruction in Figure 2, explicitly
directing the model to retrieve banana counts from
both the image and text. The detailed experimen-
tal setup and results are provided in Appendix A.
Our results indicate that even when explicitly in-
structed to integrate information from both modal-
ities, MLLMs still predominantly rely on image-
based cues. This further reinforces the presence
of modality bias and highlights the necessity for
improved training strategies to encourage balanced
multimodal reasoning.

3 Mitigating Modality Bias in MLLMs

Given the findings from the previous section, we
propose a simple yet effective approach to mitigate



Figure Needle Color

Figure Needle Position

Model

Blue Green Red Black | M UR LR UL LL
MiniCPM-V-2_6 (Yao et al., 2024) 7594 7147 7506 77.63 | 7525 7772 69.51 7912 72.14
Qwen2-VL-72B (Bai et al., 2023) 89.52 90.59 89.96 89.75 | 89.69 89.41 90.10 90.18 90.52
Qwen2-VL-Instruct (Bai et al., 2023) 7196 7243 7085 74.15 | 78.92 68.81 7624 60.62 78.61
Cogvlm2-Llama3-chat (Wang et al., 2023) 59.63 58.82 56.36 60.25 | 57.94 5535 5723 62.65 60.58
GPT-40-mini (Achiam et al., 2023) 87.45 88.60 87.45 84.83 | 91.57 84.06 8426 8531 90.87
Llava-next-Llama3 (Liu et al., 2024) 3173 2941 3522 3941 | 33.63 27.23 39.11 2832 4220
Llava-v1.6-vicuna (Liu et al., 2024) 56.83 52.57 53.85 56.36 | 53.36 46.04 67.33 43.36 67.63
MoE-LLaVA-Phi2-2.7B-4e (Lin et al., 2024) 33.95 3272 3522 3178 | 3498 29.70 36.14 2920 38.15
MoE-LLaVA-Phi2-2.7B-4e-384 (Lin et al., 2024) 22.51 24.26 21.46 22.46 | 36.77 1584 13.86 23.01 22.54
Deepseek-vI2-small (Wu et al., 2024) 80.07 79.78 78.95 73.31 | 7623 7822 83.17 7257 82.08
Yi-VL-6B (Young et al., 2024) 39.48 4265 40.89 4322 | 51.12 37.62 37.62 4292 36.42

Table 2: Accuracy of different LLMs in identifying the figure banana needle across various colors and positions.

The Figure Needle Color columns represent different text colors in the figure: Blue,

, Red, and Black. The

Figure Needle Position columns correspond to different placements within the image: M (Middle), UR (Upper
Right), LR (Lower Right), UL (Upper Left), and LL (Lower Left). The results suggest that neither color nor
position significantly affects the ability of LLMs to locate the figure banana needle.

Needle Multimodal Unimodal
Type Text-only Both Text-only
# Instances 2101 1680 2101

Table 3: Statistics of the Banana-Counting training
dataset. # Instances represents the number of samples
in each category.

modality bias in MLLMs. Our method focuses
on targeted training using a structured Banana-
Counting training dataset, designed to balance the
model’s reliance on both text and images.

3.1 Dataset Construction and Training
Strategy

To address modality bias, we constructed a special-
ized Banana-Counting training dataset. The overall
dataset construction follows a similar process as
described in Section 2.2. However, unlike the test
set, the training dataset is designed to provide a
more balanced exposure to different modality con-
figurations. Specifically, the training set consists
of three distinct formats of Banana-Counting tasks:
(1) Multimodal-Text-Only: Both text and images
are provided, but the needle phrase appears only
in the text. (2) Multimodal - Both: Both text and
images are provided, and the needle phrase appears
both in the image and the text. (3) Unimodal -
Text-Only: Only text is provided, with the needle
phrase embedded solely within the text. The de-
tailed statistics of the Banana-Counting training
dataset are shown in Table 3.

To fine-tune the models, we leveraged the Llama-
Factory framework (Zheng et al., 2024) and applied
LoRA (Hu et al., 2021) for parameter-efficient

adaptation. The detailed hyperparameter settings
for the training process are provided in Table 8
in Appendix B. We selected five different models
to investigate the impact of LoRA fine-tuning on
the Banana-Counting training dataset, including:
Qwen2-VL-7B-Instruct (Bai et al., 2023), Llama3-
Llava-next-8b (Liu et al., 2024), Llava-v1.6-vicuna-
13b (Liu et al., 2024), MiniCPM-V-2_6 (Yao et al.,
2024) and Yi-VL-6B (Young et al., 2024).

To comprehensively assess the effectiveness of
LoRA fine-tuning in reducing modality bias, we
evaluated the pre-trained and fine-tuned models
on four datasets: Banana-Counting, ScienceQA
(Lu et al., 2022), CSQA (Commonsense QA) (Tal-
mor et al., 2019), and MMLU (Hendrycks et al.,
2021) where: (1) Banana-Counting dataset is used
to directly measure the model’s ability to extract
numerical information from both text and images.
It serves as the primary benchmark for assessing
modality bias reduction. (2) ScienceQA is a mul-
timodal multiple-choice science question dataset
collected from elementary and high school curric-
ula which requires both textual reasoning and vi-
sual interpretation to answer correctly. (3) CSQA
is designed for commonsense reasoning, contain-
ing multiple-choice questions with five possible
answers. Unlike ScienceQA, CSQA emphasizes
world knowledge and logical inference, making it
an ideal benchmark for evaluating a model’s abil-
ity to apply general reasoning skills. (4) MMLU
is a large-scale benchmark consisting of multiple-
choice questions from a wide range of disciplines,
including humanities, social sciences, hard sci-
ences, and mathematics. Covering 57 different



Banana

Model Both Text-only Figure-only ScienceQA CSQA MMLU
ACCrexy ACCpg  ACCiex ACCgg

Qwen2-VL-7B-Instruct 72.32 51.66 99.90 98.05 78.50 78.71 69.20
Qwen2-VL-7B-Instruct_lora  100.00  100.00 100.00 100.00 79.50 78.79  69.38
Llama3-Llava-next-8b 33.72 47.95 93.86 42.50 68.40 66.83 61.32
Llama3-Llava-next-8b_lora 99.31 100.00 100.00 99.51 67.80 68.63 61.64
Llava-v1.6-vicuna-13b 54.87 47.37 97.08 90.35 56.90 48.89  56.79
Llava-v1.6-vicuna-13b_lora 99.42 98.93 100.00 99.61 56.90 51.27 56.94
MiniCPM-V-2_6 75.24 67.64 98.83 92.20 84.80 79.77  63.07
MiniCPM-V-2_6_lora 99.81 100.00 100.00 99.81 85.20 79.77  63.20
Yi-VL-6B 20.66 77.78 83.04 48.54 63.10 7559  61.22
Yi-VL-6B_lora 55.26 99.61 100.00 53.22 62.20 76.16  61.17

Table 4: Performance comparison of different models before and after LoRA fine-tuning (highlighted in yellow)
across various datasets, with accuracy (%) averaged over ten runs. The table includes results on the Banana-Counting
dataset, with accuracy measured for text-based and image-based banana counting in both multimodal (both text
and image), figure-only and text-only settings. Additionally, performance on ScienceQA, CSQA, and MMLU
benchmarks is provided to assess whether LoRA fine-tuning improves Banana-Counting accuracy without negatively

impacting broader multimodal and reasoning tasks.

subjects, MMLU is designed to evaluate models
on broad world knowledge and complex problem-
solving capabilities. Details about the dataset statis-
tics and examples can be found in Appendix C.

Since the LoRA fine-tuning process was con-
ducted solely on the Banana-Counting training
dataset, testing on unseen datasets (ScienceQA,
CSQA, and MMLU) allows us to determine
whether reducing modality bias in one task af-
fects the model’s performance on broader mul-
timodal and reasoning tasks.

3.2 Results

Table 4 presents the evaluation results of differ-
ent models and their LoRA fine-tuned versions
(highlighted in yellow) across multiple datasets.
As shown in the table, fine-tuned models ex-
hibit perfect or near-perfect accuracy across all
Banana-Counting scenario. This confirms that tar-
geted training effectively enables models to ex-
tract numerical information from both text and
images without favoring one modality. Further-
more, LoRA fine-tuning significantly improves
Banana-Counting accuracy while maintaining
or even enhancing general benchmark perfor-
mance. The fine-tuned models achieve compara-
ble or better results on ScienceQA, CSQA, and
MMLU, demonstrating that reducing modality bias
does not degrade broader multimodal reasoning
capabilities. Notably, LoRA fine-tuning yields sub-
stantial performance gains on the CSQA dataset
for Llava models, where Llama3-Llava-next-8b
improves by nearly 2 points after fine-tuning and

Llava-v1.6-vicuna-13b sees an improvement of ap-
proximately 3 points. This aligns with our hypoth-
esis that forcing the model to process information
from both text and images during training strength-
ens its contextual reasoning abilities. Addition-
ally, we observe that while most models experience
only minor variations in MMLU performance, fine-
tuning does not degrade their ability to generalize
across diverse knowledge domains.

These findings reinforce the importance of bal-
anced multimodal training, demonstrating that re-
ducing modality bias can enhance general per-
formance across a range of multimodal and
knowledge-intensive tasks.

3.3 Robustness to Noisy Figures

In Figure 1, we observed that modality bias can
cause models to overly rely on a single modality,
particularly the image modality for most MLLMs.
This over-reliance makes them highly susceptible
to performance degradation when presented with
irrelevant images, a critical issue in real-world ap-
plications. To address this concern, this section
investigates whether fine-tuning on the Banana-
Counting training dataset using LoRA can improve
model robustness against noisy figures. To eval-
uate this, we constructed noisy versions of the
ScienceQA, CSQA, and MMLU datasets, where
we randomly inserted unrelated images from Sci-
enceQA into different instances. The experimental
results are summarized in Table 5. From Table 5,
we observe that across all datasets, models fine-
tuned with LoRA show higher accuracy in noisy



Noisy
Model ScienceQA  CSQA MMLU
Qwen2-VL-7B-Instruct 66.38 77.58 67.89
Qwen2-VL-7B-Instruct_lora 66.68 78.54 67.97
Llama3-Llava-next-8b 62.44 66.39 57.82
Llama3-Llava-next-8b_lora 64.12 68.12 57.72
Lava-v1.6-vicuna-13b 53.96 60.38 42.22
Llava-v1.6-vicuna-13b_lora 55.02 63.04 43.00
MiniCPM-V-2_6 69.38 77.39 62.14
MiniCPM-V-2_6_lora 69.86 78.18 62.32
Yi-VL-6B 59.06 72.17 59.74
Yi-VL-6B_lora 58.70 7292 59.83

Table 5: Performance of MLLMs before and after LoORA
fine-tuning (highlighted in yellow) on noisy datasets.
The table shows accuracy (%) on ScienceQA, CSQA,
and MMLU after injecting irrelevant images to assess
model robustness against noisy figures. Each result
is averaged over ten runs. The findings demonstrate
that fine-tuned models are more resilient to noisy figure
interference, maintaining higher accuracy than their pre-
trained counterparts.

settings compared to their original versions, indi-
cating a stronger ability to filter out irrelevant
visual information. Llama3-Llava-next-8b and
Llava-v1.6-vicuna-13b benefit significantly from
fine-tuning. Llava-v1.6-vicuna-13b’s accuracy im-
proves by 1.06 percentage points in ScienceQA
and 2.66 in CSQA, highlighting that fine-tuning
strengthens multimodal alignment and robustness.

These findings confirm that fine-tuning with
a balanced multimodal dataset enhances a
model’s ability to focus on relevant context while
ignoring misleading visual inputs, making it
more reliable for real-world applications where
noisy or irrelevant figures are prevalent.

3.4 MMLU Performance Analysis

In this section, we examine how LoRA fine-tuning
influences model performance across different do-
mains in the MMLU dataset. Following the ap-
proach of Llama-Factory (Zheng et al., 2024), we
categorize MMLU instances into four broad groups:
STEM, Social Sciences, Humanities, and Other.
Table 6 presents the results for each model before
and after LoRA fine-tuning. From the table, we
observe that fine-tuning on the Banana-Counting
dataset has varying effects across different cat-
egories. The most consistent improvements ap-
pear in the STEM and Social Sciences categories,
where models such as Qwen2-VL-7B-Instruct and
Llama3-Llava-next-8b show noticeable gains. For
example, Qwen2-VL-7B-Instruct-lora improves by
0.69 points in STEM, while Llama3-Llava-next-8b-

lora gains 0.20 points in Social Science. The Hu-
manities and Other category shows diverse trends.
For example, in Other category, while Llava-v1.6-
vicuna-13b-lora sees a notable improvement of
+0.65 points, other models like MiniCPM-V-2-6
and Yi-VL-6B experience minimal changes (4-0.15
and +0.13, respectively). This suggests that the
impact of fine-tuning on general knowledge-based
tasks is model-dependent.

One key takeaway is that fine-tuning with a mul-
timodal dataset does not universally enhance per-
formance across all MMLU categories. The im-
provements are more pronounced in domains re-
quiring structured reasoning and numerical un-
derstanding (STEM and Social Sciences). These
findings highlight the need for a more balanced
fine-tuning approach when adapting multimodal
LLMs to diverse real-world tasks.

4 Related Work

Our work mainly relates to two areas of research:
multimodal needle retrieval and modality bias in
multimodal learning. Wang et al. (2024) introduce
MM-NIAH, a benchmark for evaluating MLLMs’
ability to retrieve information from long multi-
modal documents, testing whether models can lo-
cate and process dispersed information across tens
of thousands of tokens. In contrast, our study fo-
cuses on modality bias, ensuring that models have
equal access to identical needle information in both
text and image modalities within short-context in-
stances. Unlike MM-NIAH, which does not explic-
itly analyze how models balance text vs. image in-
formation when both provide the same answer, our
work is the first to systematically evaluate whether
MLLMs truly integrate multimodal inputs or inher-
ently favor one modality over the other.

Beyond needle retrieval, prior research has ex-
tensively examined dataset-induced modality bias
in multimodal learning. Park et al. (2024) investi-
gate modality bias in Video Question Answering
(VidQA) datasets, introducing the Modality Im-
portance Score (MIS) to quantify the contribution
of each modality. Their findings reveal that many
VidQA benchmarks are inherently skewed toward
a single modality, often allowing models to answer
questions unimodally. While their work primarily
identifies dataset-level biases, our study shifts the
focus to model-induced modality bias, analyzing
whether MLLMs exhibit inherent modality pref-
erences even when provided with fully balanced



Model STEM Social Sciences Humanities Other
Qwen2-VL-7B-Instruct 63.82 79.07 62.95 73.90
Qwen2-VL-7B-Instruct_lora 64.51 (+0.69) 79.10 (+0.03) 63.02 (+0.07)  73.90 (+0.00)
Llama3-Llava-next-8b 52.42 70.91 56.45 67.58
Llama3-Llava-next-8b_lora  52.49 (+0.07) 71.11 (+0.20) 57.19 (+0.74) 67.61 (+0.03)
Llava-v1.6-vicuna-13b 46.26 65.91 52.99 63.45
Llava-v1.6-vicuna-13b_lora  46.36 (+0.10) 66.17 (+0.26) 52.77 (-0.22)  64.10 (+0.65)
MiniCPM-V-2_6 54.17 73.64 58.64 67.74
MiniCPM-V-2_6_lora 54.14 (-0.03)  73.55 (-0.09) 59.00 (+0.36) 67.89 (+0.15)
Yi-VL-6B 51.49 72.90 54.88 68.38
Yi-VL-6B_lora 51.89 (+0.40) 72.86 (-0.04) 54.43 (-0.45) 68.51 (+0.13)

Table 6: Performance of different MLLMs before and after LoRA fine-tuning (highlighted in yellow) on the MMLU
dataset across four major categories: STEM, Social Sciences, Humanities, and Other. Accuracy values are
reported as percentages, with improvements (or declines) from LoRA fine-tuning shown in parentheses. The results
illustrate how fine-tuning on the Banana-Counting dataset impacts broader knowledge-based reasoning tasks.

multimodal inputs. Relatively few studies have in-
vestigated modality bias at the model level. Gat
et al. (2021) introduced the Perceptual Score, mea-
suring prediction stability under modality perturba-
tions, revealing that early small-scale VQA models
over-relied on textual cues. However, rather than
perturbing modalities, our approach injects identi-
cal information into both text and image modali-
ties, explicitly testing whether modern large-scale
multimodal LLMs (MLLMs) can integrate both
modalities or favor one. Our findings indicate a re-
versal in modality bias trends—whereas early VQA
models primarily relied on text, modern MLLMs
tend to prioritize visual information over text. Fur-
ther research has examined modality robustness
and preference in multimodal learning. Yang et al.
(2024) propose a two-step training framework that
regulates uni-modal representation margins and ad-
justs modality integration factors to enhance robust-
ness against adversarial perturbations. Similarly,
concurrent work (Park et al., 2025) explores modal-
ity imbalance in vision-language models, where
models perform significantly better on text-based
tasks than their visual counterparts. While modal-
ity imbalance refers to performance gaps across
modalities (text vs. image modalities) in complex
reasoning tasks, our study focuses on modality bias,
where models systematically favor one modality
even when both provide equally informative con-
tent. Additionally, while their work evaluates tasks
presented in either textual (e.g., LaTeX) or image
format, we explicitly inject identical information
into both modalities to assess whether MLLMs
genuinely integrate multimodal inputs or exhibit a
preference.

5 Conclusion

In this work, we conducted a systematic investiga-
tion into modality bias in MLLMs, revealing that
many models inherently favor visual cues over tex-
tual ones. To quantify this bias, we designed a
Banana-Counting dataset, where numerical infor-
mation is embedded identically in both text and
images, ensuring that models have an equal op-
portunity to utilize both sources. Our experiments
demonstrate that most MLLMs prioritize visual in-
formation, leading to biased decision-making and
reduced robustness when textual information is
more reliable. To address this issue, we introduced
a balanced multimodal Banana-Counting training
dataset and fine-tuned MLLMs using LoRA. Our
results show that fine-tuning significantly reduces
modality bias while maintaining or even improv-
ing performance on general reasoning benchmarks
such as ScienceQA, CSQA, and MMLU. Fur-
thermore, fine-tuning enhanced model robustness
against noisy images, ensuring that MLLMs do
not blindly rely on visual inputs but instead make
decisions based on the most relevant modality.

Our findings suggest that MLLMs often rely too
heavily on vision, even when textual cues provide
equally valid answers. This highlights the need
for balanced multimodal training strategies that
teach MLLMs that "maybe seeing is not believing"
and true multimodal intelligence requires context-
aware, adaptive reasoning across both text and im-
ages. Future work could explore extending this
methodology to other multimodal tasks, investi-
gating whether similar biases exist in real-world
multimodal applications, and developing more so-
phisticated training strategies to further enhance
multimodal reasoning capabilities.



Limitations

While Banana-Counting performance reached near
100%, variations in broader benchmark scores sug-
gest that fine-tuning strategies could be further op-
timized to generalize across diverse multimodal
tasks. Future work should explore more sophis-
ticated training paradigms that explicitly encour-
age dynamic modality selection based on task rele-
vance. We hope that our study will inspire further
research into developing more robust and unbiased
MLLMSs, capable of true multimodal reasoning in
real-world applications.
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Model Size Both
Model (# Parameters(B))
* ACCiext ACCyg
MiniCPM-V-2_6 8.10 63.26 82.07
Qwen2-VL-Instruct 7.00 48.34 83.24
Cogvlm?2-Llama3-chat 19.00 51.27 59.55
Llava-next-Llama3 8.00 37.91 38.89
Llava-v1.6-vicuna 13.00 35.87 53.12
Deepseek-v12-small 16.10 7.60 83.24

Table 7: Effect of explicit instruction on Banana-
Counting dataset. ACCiex¢ and ACCyg represent the
accuracy of extracting the banana count from text and
images, respectively. Despite explicitly instructing mod-
els to extract information from both image and text,
strong modality bias persists.

A Results for Explicit Instruction

To further investigate the impact of instruction
phrasing on modality bias, we conducted an Ex-
plicit Instruction experiment. In our original setting
(implicit instruction), the model was guided with
the following prompt:

Please help the little monkey collect the
number of bananas from the above con-
text. Only output the counted banana
numbers in a list format. Do not include
any other information.

For the explicit instruction setting, we modified
the prompt to explicitly instruct the model to extract
information from both image and text:

Please help the little monkey collect the
number of bananas from the above image
and text. Only output the counted banana
numbers in a list format. Do not include
any other information.

Apart from this change in instruction, all other
experimental settings remained identical to those
described in Section 2. The results are presented in
Table 7.

From Table 7, it is evident that even with explicit
instructions directing the model to extract informa-
tion from both modalities, a significant modality
bias remains prevalent. Across all tested models,
the accuracy for extracting banana counts from im-
ages remains consistently higher than that from
text, indicating a persistent tendency to prioritize
visual information over textual input.

These findings suggest that modality bias is not
merely an artifact of instruction phrasing but rather
an inherent characteristic of current MLLMs. Even
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Hyper-parameter Value
finetuning_type lora
lora_target all
per_device_train_batch_size 1
gradient_accumulation_steps 8
learning_rate 1.00E-04
num_train_epochs 5
Ir_scheduler_type cosine
warmup_ratio 0.1
val_size 0.1

Table 8: Detailed hyper-parameter settings for LoRA
fine-tuning.

ScienceQA CSQA MMLU
1000 1221 14042

# Instances

Table 9: Detailed statistics of the datasets used in our
experiments. #Instances refers to the number of samples
in each dataset.

when explicitly prompted to integrate information
from both modalities, the models still predomi-
nantly rely on image-based cues, further reinforc-
ing the need for improved training strategies to
mitigate this bias.

B Hyper-parameter Settings

The detailed hyper-parameter settings for LoRA
fine-tuning can be found in Table 8

C Dataset Statistics and Examples

To evaluate the effectiveness of our approach, we
conduct experiments on ScienceQA, CSQA, and
MMLU, three widely-used multimodal and com-
monsense reasoning benchmarks. ScienceQA (Lu
et al., 2022) consists of multiple-choice science
questions, often accompanied by images, requir-
ing models to integrate textual and visual informa-
tion for reasoning. CSQA (Talmor et al., 2019)
is a commonsense question-answering dataset that
evaluates a model’s ability to infer everyday knowl-
edge from text. MMLU (Hendrycks et al., 2021)
is a large-scale benchmark containing questions
from diverse disciplines, including STEM, social
sciences, humanities, and other general knowledge
areas. These datasets collectively provide a com-
prehensive evaluation framework, testing models
on multimodal reasoning, commonsense inference,
and factual knowledge retrieval.



Smmw

You are tasked with answering a multiple-choice question.
Based on the question and the provided options, select
the correct answer. Output only the letter corresponding
to the correct option (e.g., A, B, C, D, E). Do not include any
additional text or explanation in your response.

Question: Which of these organisms contains matter that
was once part of the lichen?

Hint: Below is a food web from a tundra ecosystem in
Nunavut, a territory in Northern Canada.\nA food web
models how the matter eaten by organisms moves
through an ecosystem. The arrows in a food web represent
how matter moves between organisms in an ecosystem.
Choices: (A) bilberry (B) mushroom

Answer:

You are tasked with answering
a multiple-choice question.
Based on the question and the
provided options, select the
correct answer. Output only the
letter corresponding to the
correct option (e.g., A, B, C, D,
E). Do not include any
additional text or explanation
in your response.

Question: The sanctions
against the school were a
punishing blow, and they
seemed to what the efforts the
school had made to change?
Choices: (A) ignore (B) enforce
(C) authoritarian (D) yell at (E)
avoid

Answer:

Question: The following are multiple choice questions
(with answers) about abstract algebra.

Statement 1| Every function from a finite set onto itself
must be one to one. Statement 2 | Every subgroup of
an abelian group is abelian.

A. True, True B. False, False C. True, False D. False, True
Answer: A

Question: Statement 1 | Every element of a group
generates a cyclic subgroup of the group. Statement 2
| The symmetric group S_10 has 10 elements.

A.True, True B. False, False C. True, False D. False, True
Answer: C

Question: Statement 1| If aH is an element of a factor
group, then |aH| divides |al. Statement 2 | If H and K
are subgroups of G then HK is a subgroup of G.

A. True, True B. False, False C. True, False D. False, True
Answer: B

Question: Find all ¢ in Z_3 such that Z_3[x]/(x"2 + ¢) is
a field.

A.0B.1C.2D.3

Answer: B

Question: Find the characteristic of the ring 2Z.
A.0B.3C.12D.30

Answer: A

Question: Find the degree for the given field extension
Q(sqrt(2), sqrt(3), sqrt(18)) over Q.

A.0B.4C.2D.6

Answer:

Figure 3: Example instances from the ScienceQA, CSQA, and MMLU datasets. ScienceQA contains multimodal
science-related multiple-choice questions, CSQA evaluates commonsense reasoning, and MMLU covers a broad

range of subjects requiring advanced reasoning skills.

The detailed dataset statistics are presented in
Table 9, while Figure 3 provides representative

examples from each dataset.
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