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Abstract001

Multimodal Large Language Models (MLLMs)002
often encounter irrelevant or misleading images003
in real-world applications. To handle such chal-004
lenges, MLLMs must dynamically adjust their005
reliance on different modalities based on rele-006
vance. However, we find that MLLMs dispro-007
portionately favor visual inputs, even when tex-008
tual cues are equally informative. This modal-009
ity bias leads to imbalanced reasoning and re-010
duced robustness, especially when irrelevant011
images are present. In this paper, we systemati-012
cally investigate modality bias by designing a013
Banana-Counting dataset, where identical infor-014
mation is embedded in both textual and visual015
formats, ensuring that models have equal ac-016
cess to both modalities. Our findings reveal017
that most MLLMs prioritize visual information018
even when textual cues provide equally infor-019
mative content. To mitigate this bias, we de-020
sign a balanced multimodal Banana-Counting021
training dataset and fine-tune MLLMs using022
LoRA-based adaptation. Our approach signifi-023
cantly reduces modality bias while maintaining024
or even improving general reasoning perfor-025
mance on datasets such as ScienceQA, CSQA,026
and MMLU. Additionally, our fine-tuned mod-027
els demonstrate enhanced robustness against028
noisy figures, ensuring more reliable perfor-029
mance in real-world multimodal scenarios. Our030
study highlights the importance of balanced031
multimodal training strategies and provides in-032
sights into improving MLLMs’ ability to inte-033
grate information effectively across modalities.034

1 Introduction035

The rapid evolution of large language models036

(LLMs) has been a major driving force in the pur-037

suit of Artificial General Intelligence (AGI). To038

meet the increasing demands of real-world ap-039

plications, LLMs have advanced beyond single-040

modality processing, evolving into multimodal041

LLMs (MLLMs). These models are now capa-042

ble of integrating and reasoning over multiple data043

modalities, including text, images, and audio (Liu 044

et al., 2024; Bai et al., 2023; Achiam et al., 2023; 045

Wang et al., 2023; Yao et al., 2024; Wu et al., 2023). 046

With their remarkable performance in tasks such 047

as visual question answering (VQA), image cap- 048

tioning, and multimodal reasoning, MLLMs have 049

become indispensable in a wide range of applica- 050

tions (Yao et al., 2023; Ma et al., 2024; Bianco 051

et al., 2023; Zhang et al., 2023). 052

Despite these advancements, in this paper, we 053

reveal a concerning phenomenon with current 054

MLLMs: Modality Bias, which refers to an over- 055

reliance on one modality while neglecting infor- 056

mation from the others. Specifically, our exper- 057

iments find that many MLLMs tend to prioritize 058

visual cues over textual information, even when 059

text provides critical details. This bias appears to 060

stem from extensive training on VQA and image 061

captioning datasets, which heavily favor visual in- 062

formation. Consequently, this leads to two main 063

issues in real-world applications: (1) Limited Tex- 064

tual Processing: MLLMs tend to prioritize visual 065

information over textual content, limiting their abil- 066

ity to process and reason based on text. (2) Suscep- 067

tibility to Irrelevant Visual Input: In real-world 068

scenarios, users may provide irrelevant or mislead- 069

ing images. Ideally, an MLLM should dynamically 070

adjust its reliance on visual inputs based on their 071

relevance, rather than blindly incorporating visual 072

information into its reasoning process. 073

In this paper, we aim to systematically investi- 074

gate modality bias in MLLMs, analyze its implica- 075

tions, and propose an effective solution. To explore 076

this issue, we design the Banana-Counting dataset, 077

a multimodal dataset designed to evaluate whether 078

MLLMs can effectively extract numerical informa- 079

tion from both textual and visual sources rather 080

than relying on a single modality. As far as we 081

know, our dataset is the first to feature a balanced 082

multimodal design, where identical information is 083

embedded in both text and images, allowing for 084

1



a direct comparison of how models balance and085

integrate the two modalities.086

Upon identifying clear evidence of modality bias,087

we introduce a simple yet effective intervention:088

a LoRA fine-tuning approach using our custom089

Banana-Counting training dataset. We train mul-090

tiple MLLMs on this dataset and conduct a com-091

prehensive evaluation. Our key findings demon-092

strate that fine-tuning with balanced multimodal093

data: (1) Effectively reduces modality bias, en-094

abling MLLMs to integrate textual and visual in-095

formation more equitably. (2) Enhances overall096

performance on benchmark datasets such as Sci-097

enceQA(Lu et al., 2022), CSQA(Talmor et al.,098

2019), and MMLU(Hendrycks et al., 2021). (3) Im-099

proves robustness in scenarios involving noisy or100

misleading images, making MLLMs more resilient101

to irrelevant visual input. By addressing modality102

bias, we provide insights into how MLLMs can be103

improved for more reliable multimodal reasoning104

and highlight the importance of balanced dataset105

construction in MLLM training.106

2 Investigating Modality Bias in MLLMs107

2.1 Preliminarily Study108

Cognitive science research (Holsanova et al., 2009;109

Sivle and Uppstad, 2018) suggests that effec-110

tive reading comprehension requires the ability to111

switch between textual and visual information to112

construct a coherent understanding. In contrast,113

many current MLLMs have been trained primar-114

ily on VQA-based and Optical Character Recog-115

nition (OCR) datasets (Liu et al., 2024) such as116

OKVQA (Marino et al., 2019), OCRVQA(Mishra117

et al., 2019), and TextCaps (Sidorov et al., 2020),118

which heavily emphasize image-dependent ques-119

tion answering. While these datasets effectively120

train models to interpret images, they may also in-121

advertently cause modality bias—a tendency for122

MLLMs to overly rely on visual information while123

neglecting textual information.124

To empirically investigate this hypothesis, we125

evaluate two widely used MLLMs, Qwen2-VL-126

7B-Instruct (Bai et al., 2023) and Llama3-Llava-127

next-8b (Liu et al., 2024), on a subset of 1,000128

test samples from the ScienceQA dataset (Lu et al.,129

2022). We design three experimental settings to as-130

sess MLLMs’ reliance on visual input: (1) Normal:131

The original dataset with both textual and visual132

information. (2) No Figure: Images are removed,133

leaving only textual information. (3) Noisy Figure:134
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Figure 1: Accuracy of different LLMs on the Sci-
enceQA dataset under various settings. This bar chart
presents the accuracy (%) of Qwen2-VL-7B-Instruct
and Llama3-Llava-next-8b on the ScienceQA dataset.
The evaluation includes three conditions: Normal, No
Figure, and Noisy Figure.

Images are replaced with randomly selected, irrele- 135

vant images from the ScienceQA dataset. The re- 136

sults are presented in Figure 1. As shown in the Fig- 137

ure, both MLLMs exhibit a strong dependence on 138

visual information. The accuracy further degrades 139

when irrelevant images are introduced (Noisy Fig- 140

ure) compared to No Figure setting, indicating that 141

incorrect visual cues can mislead the model’s rea- 142

soning process. Ideally, a robust MLLM should 143

be capable of filtering out misleading or irrele- 144

vant images and relying more on textual infor- 145

mation when necessary. However, our findings 146

suggest that current MLLMs fail to do so effec- 147

tively, as their accuracy in the Noisy Figure setting 148

remains lower than in the No Figure setting. This 149

highlights a critical limitation: MLLMs may not 150

be assessing the relevance of visual input but 151

instead default to treating images as a primary 152

source of information, even when they introduce 153

noise. Therefore, based on this findings, we con- 154

structed a Banana-Counting dataset to systemati- 155

cally analyze modality bias in MLLMs. 156

2.2 Banana-Counting Dataset Construction 157

Banana-Counting dataset is based on SPIQA (Sci- 158

entific Paper Image Question Answering) (Praman- 159

ick et al., 2024), a large-scale QA dataset designed 160

to interpret complex figures and tables within the 161

context of scientific research articles across vari- 162

ous domains of computer science. We constructed 163

our dataset using the test-A split from SPIQA, se- 164

lecting images, their corresponding captions, and 165

associated text. We then inserted a needle phrase 166

into both text and images in the format: 167

The little monkey counted {number} bananas.
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Table 2: BLEU score on Chinese-English and … 
[The little monkey counted 12 bananas.] 
source sentence into the target sentence …

Banana-Counting Dataset

Figure 5: The GeoCUTS 
algorithm applied to user 
queries … [The little monkey 
counted 19 bananas.] and 
practical significance of …

Table 2: BLEU score on Chinese-English 
and … a single neural network to 
transform the [The little monkey 
counted 12 bananas.] source sentence 
into the target sentence …

(b) Zoom-in regions of a noisy 
input, … [The little monkey 
counted 9 bananas.] as well as 
its ground truth …

Figure 2: Creating multiple 
trajectories from a demonstration … 
One of the [The little monkey 
counted 17 bananas.] challenges of 
assistive

•Different Colors:
Black
Red
Blue

Green

Needle Variations

•Different Positions
Upper-left (UL)

Upper -right (UR) 
Center (C)

Lower-left (LL)
Lower -right (LR)

Both

Image

Caption

Please help the little monkey collect the number 
of banana from the above context. Only output 
the counted banana numbers in a list format. 
Do not include any other information. 

[8,12]Output: 

Input:

Table 2: BLEU score on Chinese-English and … 
[The little monkey counted 12 bananas.] 
source sentence into the target sentence …

Image

Caption

Instruction

Figure-only

Please help the little monkey collect the number of 
banana from the above context. Only output the 
counted banana numbers in a list format. Do not 
include any other information. 

[8]Output: 

Input:

Text-only

Please help the little monkey collect the number of 
banana from the above context. Only output the 
counted banana numbers in a list format. Do not 
include any other information. 

[12]Output: 

Input:

Figure 2: Overview of the Banana-Counting Dataset. We extracted figures and captions from the SPIQA dataset and
inserted needle phrases into both modalities. The needle’s color and position in figures were randomly assigned
while in text, it was inserted at random positions to avoid biases. To evaluate modality bias, we designed three
settings: (1) Both: The model receives both figure and caption, (2) Figure-only: The model receives only the figure,
and (3) Text-only: The model receives only the caption. This setup examines whether MLLMs effectively integrate
multimodal information or favor one modality over the other.

where the number of bananas in each needle was168

randomly generated within the range of 1 to 20.169

The Banana-Counting dataset contains a total of170

1026 instances for evaluation. The overview of the171

dataset is illustrated in Figure 2. To eliminate poten-172

tial biases caused by superficial cues, the needle’s173

color and position in the figure were randomly174

assigned, while in the text, the needle was inserted175

at random positions. Specifically:176

Figure-based Needle Insertion: The needle177

phrase was placed at random positions within178

the image, including Upper-left (UL), Upper-right179

(UR), Center (C), Lower-left (LL), and Lower-right180

(LR). Additionally, the text color was randomly se-181

lected from black, red, blue, and green (as shown182

in Figure 2).183

Text-based Needle Insertion: The needle phrase184

was embedded into the textual content at random185

depths. The text primarily comprised the image186

or table caption. If the caption contained fewer187

than 100 words, we supplemented it with additional188

content from the corresponding research paper. If it189

exceeded 100 words, we truncated it to 100 words.190

2.3 Experiments191

During the inference phase, we provided input with192

predefined instructions, as shown in Figure 2, to193

guide MLLMs in extracting the banana count from194

the context. We evaluated whether LLMs could 195

identify and extract the banana count from the 196

given context. To assess modality bias, we de- 197

signed three experimental settings: (1) Both: The 198

model receives both the figure and caption as input; 199

(2) Figure-only: The model receives only the figure 200

as input; (3) Text-only: The model receives only 201

the caption as input. In the Both setting, we aim to 202

measure different MLLMs’ preferences for specific 203

modalities. In the single-modality settings (Figure- 204

only and Text-only), we further investigated the 205

accuracy of MLLMs when restricted to a single 206

modality. This evaluation serves to demonstrate 207

that MLLMs possess sufficient capability to pro- 208

cess each modality independently, ensuring that 209

modality bias is not merely a result of inadequate 210

unimodal processing ability, but rather an inherent 211

preference for one modality over the other. 212

To evaluate this, we tested ten different MLLMs 213

on the Banana-Counting dataset. The evaluated 214

models include: MiniCPM-V-2_6 (Yao et al., 215

2024), Qwen2-VL-7B-Instruct, Qwen2-VL-72B 216

(Bai et al., 2023), Cogvlm2-Llama3-chat-19B 217

(Wang et al., 2023), GPT-4o-mini (Achiam et al., 218

2023), Llava-next-Llama3, Llava-v1.6-vicuna-13B- 219

hf (Liu et al., 2024), MoE-LLaVA-Phi2-2.7B-4e, 220

MoE-LLaVA-Phi2-2.7B-4e-384 (Lin et al., 2024), 221

Deepseek-vl2-small (Wu et al., 2024). 222
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Model
Model Size

#Parameters (B)
Both Figure only Text only

ACCtext ACCfig ACCfig ACCtext

MiniCPM-V-2_6 (Yao et al., 2024) 8.10 67.17 74.93 92.14 98.48
Qwen2-VL-72B (Bai et al., 2023) 72.00 77.17 89.96 99.51 100.00
Qwen2-VL-Instruct (Bai et al., 2023) 7.00 51.66 72.32 98.05 99.90
Cogvlm2-Llama3-chat (Wang et al., 2023) 19.00 67.82 58.77 96.80 91.29
GPT-4o-mini (Achiam et al., 2023) - 81.52 87.15 99.51 100.00
Llava-next-Llama3 (Liu et al., 2024) 8.00 47.95 33.72 42.50 93.86
Llava-v1.6-vicuna (Liu et al., 2024) 13.00 47.37 54.87 90.35 97.08
MoE-LLaVA-Phi2-2.7B-4e (Lin et al., 2024) 5.61 22.71 96.20 52.05 88.11
MoE-LLaVA-Phi2-2.7B-4e-384 (Lin et al., 2024) 5.73 38.15 82.07 92.88 78.65
Deepseek-vl2-small (Wu et al., 2024) 16.10 8.00 78.17 90.55 98.83
Yi-VL-6B (Young et al., 2024) 6.00 77.78 27.17 48.54 90.55

Table 1: Performance of different LLMs on the Banana-Counting dataset. The table reports the accuracy of various
models in identifying the number of bananas under three settings: (1) Both (2) Image only, and (3) Text only.
#Parameters denotes the model size in billions. ACCtext and ACCfig represent the accuracy of extracting the banana
count from text and images, respectively. The results highlight significant modality bias, where most models favor
image-based information (ACCfig) while often overlooking text-based cues (ACCtext).

2.4 Results223

The experimental results are presented in Table 1.224

The table summarizes the performance of differ-225

ent MLLMs in extracting banana counts under the226

three evaluation settings: Both (where both the fig-227

ure and caption are provided), Image-only (where228

only the figure is available), and Text-only (where229

only the caption is available). The accuracy of230

retrieving banana counts from text (ACCtext) and231

from images (ACCfig) is reported for each model.232

The results reveal clear modality bias across233

most MLLMs: (1) When both modalities are avail-234

able, most models prioritize visual information,235

extracting counts mainly from the figure and ne-236

glecting the text, leading to significantly higher237

ACCfig than ACCtext. (2) In the Image-only and238

Text-only settings, all models demonstrate higher239

accuracy in extracting banana counts compared to240

the Both setting. This indicates that when informa-241

tion must be combined across modalities, models242

struggle to effectively integrate textual and visual243

cues. (3) Among the models exhibiting an inverse244

modality bias, Cogvlm, Yi and Llava-next-Llama3245

show distinct trends. Cogvlm displays a stronger246

preference for textual information, leading to lower247

ACCfig compared to other models. Meanwhile,248

Yi and Llava-next-Llama3 demonstrates extremely249

low accuracy in the Image-only setting, suggesting250

that it has poor image text recognition capabilities,251

causing it to ignore visual information and rely252

more heavily on text.253

Additionally, to eliminate the influence of the254

needle phrase’s position and color in the figure, we255

analyzed accuracy across different colors and po-256

sitions, as shown in Table 2. The results indicate 257

that model performance remains relatively stable 258

regardless of needle position or color, suggesting 259

that neither factor significantly influences fig- 260

ure accuracy. This implies that modality bias is 261

primarily driven by an inherent preference for vi- 262

sual or textual information rather than superficial 263

attributes such as text color or placement. 264

These findings highlight a fundamental chal- 265

lenge in MLLM design—many models overly rely 266

on visual cues when both modalities are available, 267

which can lead to suboptimal decision-making 268

when textual information is equally or more in- 269

formative. The next section explores potential ap- 270

proaches to mitigating this modality bias and im- 271

proving multimodal reasoning in MLLMs. 272

Further Exploration To eliminate the influence 273

of instruction phrasing, we conducted an additional 274

experiment using Explicit Instruction. Specifically, 275

we modified the instruction in Figure 2, explicitly 276

directing the model to retrieve banana counts from 277

both the image and text. The detailed experimen- 278

tal setup and results are provided in Appendix A. 279

Our results indicate that even when explicitly in- 280

structed to integrate information from both modal- 281

ities, MLLMs still predominantly rely on image- 282

based cues. This further reinforces the presence 283

of modality bias and highlights the necessity for 284

improved training strategies to encourage balanced 285

multimodal reasoning. 286

3 Mitigating Modality Bias in MLLMs 287

Given the findings from the previous section, we 288

propose a simple yet effective approach to mitigate 289
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Figure Needle Color Figure Needle Position
Model

Blue Green Red Black M UR LR UL LL

MiniCPM-V-2_6 (Yao et al., 2024) 75.94 71.47 75.06 77.63 75.25 77.72 69.51 79.12 72.14
Qwen2-VL-72B (Bai et al., 2023) 89.52 90.59 89.96 89.75 89.69 89.41 90.10 90.18 90.52
Qwen2-VL-Instruct (Bai et al., 2023) 71.96 72.43 70.85 74.15 78.92 68.81 76.24 60.62 78.61
Cogvlm2-Llama3-chat (Wang et al., 2023) 59.63 58.82 56.36 60.25 57.94 55.35 57.23 62.65 60.58
GPT-4o-mini (Achiam et al., 2023) 87.45 88.60 87.45 84.83 91.57 84.06 84.26 85.31 90.87
Llava-next-Llama3 (Liu et al., 2024) 31.73 29.41 35.22 39.41 33.63 27.23 39.11 28.32 42.20
Llava-v1.6-vicuna (Liu et al., 2024) 56.83 52.57 53.85 56.36 53.36 46.04 67.33 43.36 67.63
MoE-LLaVA-Phi2-2.7B-4e (Lin et al., 2024) 33.95 32.72 35.22 31.78 34.98 29.70 36.14 29.20 38.15
MoE-LLaVA-Phi2-2.7B-4e-384 (Lin et al., 2024) 22.51 24.26 21.46 22.46 36.77 15.84 13.86 23.01 22.54
Deepseek-vl2-small (Wu et al., 2024) 80.07 79.78 78.95 73.31 76.23 78.22 83.17 72.57 82.08
Yi-VL-6B (Young et al., 2024) 39.48 42.65 40.89 43.22 51.12 37.62 37.62 42.92 36.42

Table 2: Accuracy of different LLMs in identifying the figure banana needle across various colors and positions.
The Figure Needle Color columns represent different text colors in the figure: Blue, Green, Red, and Black. The
Figure Needle Position columns correspond to different placements within the image: M (Middle), UR (Upper
Right), LR (Lower Right), UL (Upper Left), and LL (Lower Left). The results suggest that neither color nor
position significantly affects the ability of LLMs to locate the figure banana needle.

Needle
Type

Multimodal Unimodal
Text-only Both Text-only

# Instances 2101 1680 2101

Table 3: Statistics of the Banana-Counting training
dataset. # Instances represents the number of samples
in each category.

modality bias in MLLMs. Our method focuses290

on targeted training using a structured Banana-291

Counting training dataset, designed to balance the292

model’s reliance on both text and images.293

3.1 Dataset Construction and Training294

Strategy295

To address modality bias, we constructed a special-296

ized Banana-Counting training dataset. The overall297

dataset construction follows a similar process as298

described in Section 2.2. However, unlike the test299

set, the training dataset is designed to provide a300

more balanced exposure to different modality con-301

figurations. Specifically, the training set consists302

of three distinct formats of Banana-Counting tasks:303

(1) Multimodal-Text-Only: Both text and images304

are provided, but the needle phrase appears only305

in the text. (2) Multimodal - Both: Both text and306

images are provided, and the needle phrase appears307

both in the image and the text. (3) Unimodal -308

Text-Only: Only text is provided, with the needle309

phrase embedded solely within the text. The de-310

tailed statistics of the Banana-Counting training311

dataset are shown in Table 3.312

To fine-tune the models, we leveraged the Llama-313

Factory framework (Zheng et al., 2024) and applied314

LoRA (Hu et al., 2021) for parameter-efficient315

adaptation. The detailed hyperparameter settings 316

for the training process are provided in Table 8 317

in Appendix B. We selected five different models 318

to investigate the impact of LoRA fine-tuning on 319

the Banana-Counting training dataset, including: 320

Qwen2-VL-7B-Instruct (Bai et al., 2023), Llama3- 321

Llava-next-8b (Liu et al., 2024), Llava-v1.6-vicuna- 322

13b (Liu et al., 2024), MiniCPM-V-2_6 (Yao et al., 323

2024) and Yi-VL-6B (Young et al., 2024). 324

To comprehensively assess the effectiveness of 325

LoRA fine-tuning in reducing modality bias, we 326

evaluated the pre-trained and fine-tuned models 327

on four datasets: Banana-Counting, ScienceQA 328

(Lu et al., 2022), CSQA (Commonsense QA) (Tal- 329

mor et al., 2019), and MMLU (Hendrycks et al., 330

2021) where: (1) Banana-Counting dataset is used 331

to directly measure the model’s ability to extract 332

numerical information from both text and images. 333

It serves as the primary benchmark for assessing 334

modality bias reduction. (2) ScienceQA is a mul- 335

timodal multiple-choice science question dataset 336

collected from elementary and high school curric- 337

ula which requires both textual reasoning and vi- 338

sual interpretation to answer correctly. (3) CSQA 339

is designed for commonsense reasoning, contain- 340

ing multiple-choice questions with five possible 341

answers. Unlike ScienceQA, CSQA emphasizes 342

world knowledge and logical inference, making it 343

an ideal benchmark for evaluating a model’s abil- 344

ity to apply general reasoning skills. (4) MMLU 345

is a large-scale benchmark consisting of multiple- 346

choice questions from a wide range of disciplines, 347

including humanities, social sciences, hard sci- 348

ences, and mathematics. Covering 57 different 349
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Banana

Both Text-only Figure-onlyModel
ACCtext ACCfig ACCtext ACCfig

ScienceQA CSQA MMLU

Qwen2-VL-7B-Instruct 72.32 51.66 99.90 98.05 78.50 78.71 69.20
Qwen2-VL-7B-Instruct_lora 100.00 100.00 100.00 100.00 79.50 78.79 69.38
Llama3-Llava-next-8b 33.72 47.95 93.86 42.50 68.40 66.83 61.32
Llama3-Llava-next-8b_lora 99.31 100.00 100.00 99.51 67.80 68.63 61.64
Llava-v1.6-vicuna-13b 54.87 47.37 97.08 90.35 56.90 48.89 56.79
Llava-v1.6-vicuna-13b_lora 99.42 98.93 100.00 99.61 56.90 51.27 56.94
MiniCPM-V-2_6 75.24 67.64 98.83 92.20 84.80 79.77 63.07
MiniCPM-V-2_6_lora 99.81 100.00 100.00 99.81 85.20 79.77 63.20
Yi-VL-6B 20.66 77.78 83.04 48.54 63.10 75.59 61.22
Yi-VL-6B_lora 55.26 99.61 100.00 53.22 62.20 76.16 61.17

Table 4: Performance comparison of different models before and after LoRA fine-tuning (highlighted in yellow)
across various datasets, with accuracy (%) averaged over ten runs. The table includes results on the Banana-Counting
dataset, with accuracy measured for text-based and image-based banana counting in both multimodal (both text
and image), figure-only and text-only settings. Additionally, performance on ScienceQA, CSQA, and MMLU
benchmarks is provided to assess whether LoRA fine-tuning improves Banana-Counting accuracy without negatively
impacting broader multimodal and reasoning tasks.

subjects, MMLU is designed to evaluate models350

on broad world knowledge and complex problem-351

solving capabilities. Details about the dataset statis-352

tics and examples can be found in Appendix C.353

Since the LoRA fine-tuning process was con-354

ducted solely on the Banana-Counting training355

dataset, testing on unseen datasets (ScienceQA,356

CSQA, and MMLU) allows us to determine357

whether reducing modality bias in one task af-358

fects the model’s performance on broader mul-359

timodal and reasoning tasks.360

3.2 Results361

Table 4 presents the evaluation results of differ-362

ent models and their LoRA fine-tuned versions363

(highlighted in yellow) across multiple datasets.364

As shown in the table, fine-tuned models ex-365

hibit perfect or near-perfect accuracy across all366

Banana-Counting scenario. This confirms that tar-367

geted training effectively enables models to ex-368

tract numerical information from both text and369

images without favoring one modality. Further-370

more, LoRA fine-tuning significantly improves371

Banana-Counting accuracy while maintaining372

or even enhancing general benchmark perfor-373

mance. The fine-tuned models achieve compara-374

ble or better results on ScienceQA, CSQA, and375

MMLU, demonstrating that reducing modality bias376

does not degrade broader multimodal reasoning377

capabilities. Notably, LoRA fine-tuning yields sub-378

stantial performance gains on the CSQA dataset379

for Llava models, where Llama3-Llava-next-8b380

improves by nearly 2 points after fine-tuning and381

Llava-v1.6-vicuna-13b sees an improvement of ap- 382

proximately 3 points. This aligns with our hypoth- 383

esis that forcing the model to process information 384

from both text and images during training strength- 385

ens its contextual reasoning abilities. Addition- 386

ally, we observe that while most models experience 387

only minor variations in MMLU performance, fine- 388

tuning does not degrade their ability to generalize 389

across diverse knowledge domains. 390

These findings reinforce the importance of bal- 391

anced multimodal training, demonstrating that re- 392

ducing modality bias can enhance general per- 393

formance across a range of multimodal and 394

knowledge-intensive tasks. 395

3.3 Robustness to Noisy Figures 396

In Figure 1, we observed that modality bias can 397

cause models to overly rely on a single modality, 398

particularly the image modality for most MLLMs. 399

This over-reliance makes them highly susceptible 400

to performance degradation when presented with 401

irrelevant images, a critical issue in real-world ap- 402

plications. To address this concern, this section 403

investigates whether fine-tuning on the Banana- 404

Counting training dataset using LoRA can improve 405

model robustness against noisy figures. To eval- 406

uate this, we constructed noisy versions of the 407

ScienceQA, CSQA, and MMLU datasets, where 408

we randomly inserted unrelated images from Sci- 409

enceQA into different instances. The experimental 410

results are summarized in Table 5. From Table 5, 411

we observe that across all datasets, models fine- 412

tuned with LoRA show higher accuracy in noisy 413

6



Noisy
Model

ScienceQA CSQA MMLU

Qwen2-VL-7B-Instruct 66.38 77.58 67.89
Qwen2-VL-7B-Instruct_lora 66.68 78.54 67.97
Llama3-Llava-next-8b 62.44 66.39 57.82
Llama3-Llava-next-8b_lora 64.12 68.12 57.72
Lava-v1.6-vicuna-13b 53.96 60.38 42.22
Llava-v1.6-vicuna-13b_lora 55.02 63.04 43.00
MiniCPM-V-2_6 69.38 77.39 62.14
MiniCPM-V-2_6_lora 69.86 78.18 62.32
Yi-VL-6B 59.06 72.17 59.74
Yi-VL-6B_lora 58.70 72.92 59.83

Table 5: Performance of MLLMs before and after LoRA
fine-tuning (highlighted in yellow) on noisy datasets.
The table shows accuracy (%) on ScienceQA, CSQA,
and MMLU after injecting irrelevant images to assess
model robustness against noisy figures. Each result
is averaged over ten runs. The findings demonstrate
that fine-tuned models are more resilient to noisy figure
interference, maintaining higher accuracy than their pre-
trained counterparts.

settings compared to their original versions, indi-414

cating a stronger ability to filter out irrelevant415

visual information. Llama3-Llava-next-8b and416

Llava-v1.6-vicuna-13b benefit significantly from417

fine-tuning. Llava-v1.6-vicuna-13b’s accuracy im-418

proves by 1.06 percentage points in ScienceQA419

and 2.66 in CSQA, highlighting that fine-tuning420

strengthens multimodal alignment and robustness.421

These findings confirm that fine-tuning with422

a balanced multimodal dataset enhances a423

model’s ability to focus on relevant context while424

ignoring misleading visual inputs, making it425

more reliable for real-world applications where426

noisy or irrelevant figures are prevalent.427

3.4 MMLU Performance Analysis428

In this section, we examine how LoRA fine-tuning429

influences model performance across different do-430

mains in the MMLU dataset. Following the ap-431

proach of Llama-Factory (Zheng et al., 2024), we432

categorize MMLU instances into four broad groups:433

STEM, Social Sciences, Humanities, and Other.434

Table 6 presents the results for each model before435

and after LoRA fine-tuning. From the table, we436

observe that fine-tuning on the Banana-Counting437

dataset has varying effects across different cat-438

egories. The most consistent improvements ap-439

pear in the STEM and Social Sciences categories,440

where models such as Qwen2-VL-7B-Instruct and441

Llama3-Llava-next-8b show noticeable gains. For442

example, Qwen2-VL-7B-Instruct-lora improves by443

0.69 points in STEM, while Llama3-Llava-next-8b-444

lora gains 0.20 points in Social Science. The Hu- 445

manities and Other category shows diverse trends. 446

For example, in Other category, while Llava-v1.6- 447

vicuna-13b-lora sees a notable improvement of 448

+0.65 points, other models like MiniCPM-V-2-6 449

and Yi-VL-6B experience minimal changes (+0.15 450

and +0.13, respectively). This suggests that the 451

impact of fine-tuning on general knowledge-based 452

tasks is model-dependent. 453

One key takeaway is that fine-tuning with a mul- 454

timodal dataset does not universally enhance per- 455

formance across all MMLU categories. The im- 456

provements are more pronounced in domains re- 457

quiring structured reasoning and numerical un- 458

derstanding (STEM and Social Sciences). These 459

findings highlight the need for a more balanced 460

fine-tuning approach when adapting multimodal 461

LLMs to diverse real-world tasks. 462

4 Related Work 463

Our work mainly relates to two areas of research: 464

multimodal needle retrieval and modality bias in 465

multimodal learning. Wang et al. (2024) introduce 466

MM-NIAH, a benchmark for evaluating MLLMs’ 467

ability to retrieve information from long multi- 468

modal documents, testing whether models can lo- 469

cate and process dispersed information across tens 470

of thousands of tokens. In contrast, our study fo- 471

cuses on modality bias, ensuring that models have 472

equal access to identical needle information in both 473

text and image modalities within short-context in- 474

stances. Unlike MM-NIAH, which does not explic- 475

itly analyze how models balance text vs. image in- 476

formation when both provide the same answer, our 477

work is the first to systematically evaluate whether 478

MLLMs truly integrate multimodal inputs or inher- 479

ently favor one modality over the other. 480

Beyond needle retrieval, prior research has ex- 481

tensively examined dataset-induced modality bias 482

in multimodal learning. Park et al. (2024) investi- 483

gate modality bias in Video Question Answering 484

(VidQA) datasets, introducing the Modality Im- 485

portance Score (MIS) to quantify the contribution 486

of each modality. Their findings reveal that many 487

VidQA benchmarks are inherently skewed toward 488

a single modality, often allowing models to answer 489

questions unimodally. While their work primarily 490

identifies dataset-level biases, our study shifts the 491

focus to model-induced modality bias, analyzing 492

whether MLLMs exhibit inherent modality pref- 493

erences even when provided with fully balanced 494
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Model STEM Social Sciences Humanities Other

Qwen2-VL-7B-Instruct 63.82 79.07 62.95 73.90
Qwen2-VL-7B-Instruct_lora 64.51 (+0.69) 79.10 (+0.03) 63.02 (+0.07) 73.90 (+0.00)
Llama3-Llava-next-8b 52.42 70.91 56.45 67.58
Llama3-Llava-next-8b_lora 52.49 (+0.07) 71.11 (+0.20) 57.19 (+0.74) 67.61 (+0.03)
Llava-v1.6-vicuna-13b 46.26 65.91 52.99 63.45
Llava-v1.6-vicuna-13b_lora 46.36 (+0.10) 66.17 (+0.26) 52.77 (-0.22) 64.10 (+0.65)
MiniCPM-V-2_6 54.17 73.64 58.64 67.74
MiniCPM-V-2_6_lora 54.14 (-0.03) 73.55 (-0.09) 59.00 (+0.36) 67.89 (+0.15)
Yi-VL-6B 51.49 72.90 54.88 68.38
Yi-VL-6B_lora 51.89 (+0.40) 72.86 (-0.04) 54.43 (-0.45) 68.51 (+0.13)

Table 6: Performance of different MLLMs before and after LoRA fine-tuning (highlighted in yellow) on the MMLU
dataset across four major categories: STEM, Social Sciences, Humanities, and Other. Accuracy values are
reported as percentages, with improvements (or declines) from LoRA fine-tuning shown in parentheses. The results
illustrate how fine-tuning on the Banana-Counting dataset impacts broader knowledge-based reasoning tasks.

multimodal inputs. Relatively few studies have in-495

vestigated modality bias at the model level. Gat496

et al. (2021) introduced the Perceptual Score, mea-497

suring prediction stability under modality perturba-498

tions, revealing that early small-scale VQA models499

over-relied on textual cues. However, rather than500

perturbing modalities, our approach injects identi-501

cal information into both text and image modali-502

ties, explicitly testing whether modern large-scale503

multimodal LLMs (MLLMs) can integrate both504

modalities or favor one. Our findings indicate a re-505

versal in modality bias trends—whereas early VQA506

models primarily relied on text, modern MLLMs507

tend to prioritize visual information over text. Fur-508

ther research has examined modality robustness509

and preference in multimodal learning. Yang et al.510

(2024) propose a two-step training framework that511

regulates uni-modal representation margins and ad-512

justs modality integration factors to enhance robust-513

ness against adversarial perturbations. Similarly,514

concurrent work (Park et al., 2025) explores modal-515

ity imbalance in vision-language models, where516

models perform significantly better on text-based517

tasks than their visual counterparts. While modal-518

ity imbalance refers to performance gaps across519

modalities (text vs. image modalities) in complex520

reasoning tasks, our study focuses on modality bias,521

where models systematically favor one modality522

even when both provide equally informative con-523

tent. Additionally, while their work evaluates tasks524

presented in either textual (e.g., LaTeX) or image525

format, we explicitly inject identical information526

into both modalities to assess whether MLLMs527

genuinely integrate multimodal inputs or exhibit a528

preference.529

5 Conclusion 530

In this work, we conducted a systematic investiga- 531

tion into modality bias in MLLMs, revealing that 532

many models inherently favor visual cues over tex- 533

tual ones. To quantify this bias, we designed a 534

Banana-Counting dataset, where numerical infor- 535

mation is embedded identically in both text and 536

images, ensuring that models have an equal op- 537

portunity to utilize both sources. Our experiments 538

demonstrate that most MLLMs prioritize visual in- 539

formation, leading to biased decision-making and 540

reduced robustness when textual information is 541

more reliable. To address this issue, we introduced 542

a balanced multimodal Banana-Counting training 543

dataset and fine-tuned MLLMs using LoRA. Our 544

results show that fine-tuning significantly reduces 545

modality bias while maintaining or even improv- 546

ing performance on general reasoning benchmarks 547

such as ScienceQA, CSQA, and MMLU. Fur- 548

thermore, fine-tuning enhanced model robustness 549

against noisy images, ensuring that MLLMs do 550

not blindly rely on visual inputs but instead make 551

decisions based on the most relevant modality. 552

Our findings suggest that MLLMs often rely too 553

heavily on vision, even when textual cues provide 554

equally valid answers. This highlights the need 555

for balanced multimodal training strategies that 556

teach MLLMs that "maybe seeing is not believing" 557

and true multimodal intelligence requires context- 558

aware, adaptive reasoning across both text and im- 559

ages. Future work could explore extending this 560

methodology to other multimodal tasks, investi- 561

gating whether similar biases exist in real-world 562

multimodal applications, and developing more so- 563

phisticated training strategies to further enhance 564

multimodal reasoning capabilities. 565
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Limitations566

While Banana-Counting performance reached near567

100%, variations in broader benchmark scores sug-568

gest that fine-tuning strategies could be further op-569

timized to generalize across diverse multimodal570

tasks. Future work should explore more sophis-571

ticated training paradigms that explicitly encour-572

age dynamic modality selection based on task rele-573

vance. We hope that our study will inspire further574

research into developing more robust and unbiased575

MLLMs, capable of true multimodal reasoning in576

real-world applications.577
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Model
Model Size

(# Parameters(B))
Both

ACCtext ACCfig

MiniCPM-V-2_6 8.10 63.26 82.07
Qwen2-VL-Instruct 7.00 48.34 83.24
Cogvlm2-Llama3-chat 19.00 51.27 59.55
Llava-next-Llama3 8.00 37.91 38.89
Llava-v1.6-vicuna 13.00 35.87 53.12
Deepseek-vl2-small 16.10 7.60 83.24

Table 7: Effect of explicit instruction on Banana-
Counting dataset. ACCtext and ACCfig represent the
accuracy of extracting the banana count from text and
images, respectively. Despite explicitly instructing mod-
els to extract information from both image and text,
strong modality bias persists.

A Results for Explicit Instruction742

To further investigate the impact of instruction743

phrasing on modality bias, we conducted an Ex-744

plicit Instruction experiment. In our original setting745

(implicit instruction), the model was guided with746

the following prompt:747

Please help the little monkey collect the748

number of bananas from the above con-749

text. Only output the counted banana750

numbers in a list format. Do not include751

any other information.752

For the explicit instruction setting, we modified753

the prompt to explicitly instruct the model to extract754

information from both image and text:755

Please help the little monkey collect the756

number of bananas from the above image757

and text. Only output the counted banana758

numbers in a list format. Do not include759

any other information.760

Apart from this change in instruction, all other761

experimental settings remained identical to those762

described in Section 2. The results are presented in763

Table 7.764

From Table 7, it is evident that even with explicit765

instructions directing the model to extract informa-766

tion from both modalities, a significant modality767

bias remains prevalent. Across all tested models,768

the accuracy for extracting banana counts from im-769

ages remains consistently higher than that from770

text, indicating a persistent tendency to prioritize771

visual information over textual input.772

These findings suggest that modality bias is not773

merely an artifact of instruction phrasing but rather774

an inherent characteristic of current MLLMs. Even775

Hyper-parameter Value

finetuning_type lora
lora_target all
per_device_train_batch_size 1
gradient_accumulation_steps 8
learning_rate 1.00E-04
num_train_epochs 5
lr_scheduler_type cosine
warmup_ratio 0.1
val_size 0.1

Table 8: Detailed hyper-parameter settings for LoRA
fine-tuning.

ScienceQA CSQA MMLU

# Instances 1000 1221 14042

Table 9: Detailed statistics of the datasets used in our
experiments. #Instances refers to the number of samples
in each dataset.

when explicitly prompted to integrate information 776

from both modalities, the models still predomi- 777

nantly rely on image-based cues, further reinforc- 778

ing the need for improved training strategies to 779

mitigate this bias. 780

B Hyper-parameter Settings 781

The detailed hyper-parameter settings for LoRA 782

fine-tuning can be found in Table 8 783

C Dataset Statistics and Examples 784

To evaluate the effectiveness of our approach, we 785

conduct experiments on ScienceQA, CSQA, and 786

MMLU, three widely-used multimodal and com- 787

monsense reasoning benchmarks. ScienceQA (Lu 788

et al., 2022) consists of multiple-choice science 789

questions, often accompanied by images, requir- 790

ing models to integrate textual and visual informa- 791

tion for reasoning. CSQA (Talmor et al., 2019) 792

is a commonsense question-answering dataset that 793

evaluates a model’s ability to infer everyday knowl- 794

edge from text. MMLU (Hendrycks et al., 2021) 795

is a large-scale benchmark containing questions 796

from diverse disciplines, including STEM, social 797

sciences, humanities, and other general knowledge 798

areas. These datasets collectively provide a com- 799

prehensive evaluation framework, testing models 800

on multimodal reasoning, commonsense inference, 801

and factual knowledge retrieval. 802
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ScienceQA

BOutput: 

Input:

You are tasked with answering a multiple-choice question. 

Based on the question and the provided options, select 

the correct answer. Output only the letter corresponding 

to the correct option (e.g., A, B, C, D, E). Do not include any 

additional text or explanation in your response. 

Question: Which of these organisms contains matter that 

was once part of the lichen?

Hint: Below is a food web from a tundra ecosystem in 

Nunavut, a territory in Northern Canada.\nA food web 

models how the matter eaten by organisms moves 

through an ecosystem. The arrows in a food web represent 

how matter moves between organisms in an ecosystem.

Choices: (A) bilberry (B) mushroom

Answer: 

CSQA

AOutput: 

Input:

You are tasked with answering 

a multiple-choice question. 

Based on the question and the 

provided options, select the 

correct answer. Output only the 

letter corresponding to the 

correct option (e.g., A, B, C, D, 

E). Do not include any 

additional text or explanation 

in your response. 

Question: The sanctions 

against the school were a 

punishing blow, and they 

seemed to what the efforts the 

school had made to change?

Choices: (A) ignore (B) enforce 

(C) authoritarian (D) yell at (E) 

avoid

Answer: 

MMLU

BOutput: 

Input:

Question: The following are multiple choice questions 
(with answers) about abstract algebra.
Statement 1| Every function from a finite set onto itself 
must be one to one. Statement 2 | Every subgroup of 
an abelian group is abelian.
A. True, True B. False, False C. True, False D. False, True
Answer: A
Question: Statement 1 | Every element of a group 
generates a cyclic subgroup of the group. Statement 2 
| The symmetric group S_10 has 10 elements.
A. True, True B. False, False C. True, False D. False, True
Answer: C
Question: Statement 1 | If aH is an element of a factor 
group, then |aH| divides |a|. Statement 2 | If H and K 
are subgroups of G then HK is a subgroup of G.
A. True, True B. False, False C. True, False D. False, True
Answer: B
Question: Find all c in Z_3 such that Z_3[x]/(x^2 + c) is 
a field.
A. 0 B. 1 C. 2 D. 3
Answer: B
Question: Find the characteristic of the ring 2Z.
A. 0 B. 3 C. 12 D. 30
Answer: A
Question: Find the degree for the given field extension 
Q(sqrt(2), sqrt(3), sqrt(18)) over Q.
A. 0 B. 4 C. 2 D. 6
Answer: 

Figure 3: Example instances from the ScienceQA, CSQA, and MMLU datasets. ScienceQA contains multimodal
science-related multiple-choice questions, CSQA evaluates commonsense reasoning, and MMLU covers a broad
range of subjects requiring advanced reasoning skills.

The detailed dataset statistics are presented in803

Table 9, while Figure 3 provides representative804

examples from each dataset.805
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