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ABSTRACT

Stochastic Human Motion Prediction (HMP) has become an essential task for
the realm of computer vision, for its capacity to anticipate accurate and diverse
future human trajectories. Current diffusion-based techniques typically enforce
skeletal consistency by encoding structural priors into network architectures. Al-
though effective in promoting plausible kinematics, this approach provides only
indirect control over the generative process and often fails to guarantee strict
physical constraint satisfaction. In this work, we propose a structure-aligned and
joint-aware diffusion framework that enforces physical constraints by embedding
skeletal topology and joint-specific dynamics directly into the diffusion process.
Specifically, our framework consists of two key modules, the Joint-Adaptive Noise
Generator and the Structure-Aligned Regularizer. The former component, Joint-
Adaptive Noise Generator, infers joint-specific dynamics and injects heteroge-
neous, instance-aware noise per joint and sample to capture spatial variability and
enhance motion diversity. The latter component, Structure-Aligned Regularizer,
encodes skeletal topology by modeling joint connectivity and bone lengths from
historical motions, and it constrains each denoising step to preserve anatomical
consistency. Through their synergistic operation, these modules grant KinemaD-
iff direct control over physical realism and motion diversity, addressing the com-
mon limitations of indirect structural priors and uniform noise application. Ex-
tensive experiments on multiple benchmarks demonstrate the effectiveness of our
method, attributable to tailoring the diffusion process through structural alignment
and joint-adaptive noise modeling.

1 INTRODUCTION

Human Motion Prediction (HMP) (Barsoum et al., 2018) aims to forecast future human motion se-
quences based on past observations, which is crucial for applications like autonomous driving (Paden
et al., 2016), assistive robotics (Gui et al., 2018), and virtual avatars. While early deterministic meth-
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Figure 1: Comparisons about the noise
taken between other baselines and ours.

ods (Xu et al., 2023; Li et al., 2022; Ma et al., 2022) sought
to predict a single most likely future, they fell short in
capturing the inherent unpredictability of human actions.
Therefore, accurately modeling the multimodal and phys-
ically plausible distribution of future motions emerges as
a paramount yet daunting task. To address this challenge,
stochastic methods have gained prominence, with denois-
ing diffusion probabilistic models becoming the main-
stream approach (Yuan & Kitani, 2020; Dang et al., 2022).
These models demonstrate remarkable capabilities in gen-
erating diverse motion sequences by progressively refining
random noise into coherent human poses, as Fig. 1.

Despite their generative power, these diffusion-based methods face two critical technical limitations
in producing coherent and physically realistic human poses throughout the iterative diffusion pro-
cess. On the one hand, a uniform noise schedule is typically applied across all human joints, failing
to account for their heterogeneous motion patterns. Different joints exhibit vastly different degrees
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Figure 2: (a) Illustration of joint-adaptive noise generator. We propose a joint-adaptive noise deter-
mined by both the joint characteristics and the human motion observations. These noises are then
added to the corresponding human motions to be predicted. (b) Representation of Structure-Aligned
Regularizer, which identifies the human structural information from the historical motion and lever-
ages the extracted structure to guide the motion generation during the diffusion process.

of freedom and dynamic behaviors. Applying identical noise profiles overlooks these unique kine-
matic properties, resulting in disordered or physically invalid predictions that compromise motion
diversity and realism. On the other hand, prior methods tend to neglect the human skeleton’s in-
herent anatomical structure. They often rely on implicitly learning the structural constraints (Chen
et al., 2023; Sun & Chowdhary, 2024) or post-processing corrections (Wei et al., 2023), without
integrating these constraints into the diffusion process, which leads to the generation of physically
implausible poses with stretched or compressed bones, undermining motion realism, as in Fig. 2.

To address the aforementioned limitations, we present KinemaDiff, a novel kinematics-aware dif-
fusion framework that fundamentally reshapes the denoising diffusion process, via explicitly em-
bedding anatomical consistency and kinematic heterogeneity. Our framework consists of two core
modules: the Joint-Adaptive Noise Generator and the Structure-Aligned Regularizer, as illustrated
in Fig.2. The first component, the Joint-Adaptive Noise Generator, is responsible for capturing
and injecting heterogeneous motion patterns. It learns and applies instance-specific, heterogeneous
noise profiles to different joints, effectively adapting the noise characteristics based on their unique
dynamics and varied degrees of freedom, thereby guiding the diffusion process to generate dynam-
ically rich and realistic motions. Subsequently, the Structure-Aligned Regularizer, is tasked with
rigorously enforcing anatomical consistency throughout the generative process. It achieves this by
directly integrating bone length constraints into the denoising procedure, leveraging stable struc-
tural features extracted from historical motion observations to ensure that generated poses adhere
strictly to human biomechanics. Through the synergistic operation of these two modules, KinemaD-
iff enables direct and explicit control over physical realism and motion diversity, moving beyond the
limitations of indirect structural priors and uniform noise application.

We extensively validate the effectiveness of our proposed diffusion model on Human3.6M and more
challenging cross-dataset scenarios on AMASS. Our model outperformed previous models with
multiple evaluation metrics on these datasets. Our contributions can be summarized as follows:

• We introduce KinemaDiff, a novel diffusion framework that integrates human skeletal
structure and joint-specific motion dynamics directly within the diffusion process.

• We propose a learnable joint-adaptive noise generator to enhance motion diversity and a
novel structural alignment mechanism to enforce anatomical consistency.

• We validate the effectiveness of our method through comprehensive experiments on Hu-
man3.6M and the cross-dataset AMASS benchmark.

2 RELATED WORK

Stochastic Human Motion Prediction. Early research in Human Motion Prediction (HMP) fo-
cused on deterministic forecasting using sequential models like RNNs and GCNs (Jain et al.,
2016; Dang et al., 2021). To capture the inherent multimodality of human actions, this field has
shifted from deterministic forecasting to stochastic generation. Initial generative approaches, pri-
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marily Variational Autoencoders (VAEs) (Walker et al., 2017) and Generative Adversarial Networks
(GANs) (Barsoum et al., 2018), pioneered the generation of diverse futures but often struggled with
long-term coherence and physical plausibility. STARS (Xu et al., 2022) further advances multi-
modal motion modeling by introducing deterministic spatio-temporal anchors that enable diverse
yet controllable future predictions. Recently, Denoising Diffusion Models (DMs) have become the
dominant paradigm, offering superior fidelity and diversity. Research in this area has seen rapid
progress, from pioneering the paradigm with a two-stage framework Motiondiff (Wei et al., 2023),
simplifying the training pipeline via the masked completion model HumanMAC (Chen et al., 2023),
to introducing latent diffusion for more coherent, behavior-driven sampling in BeLFusion (Bar-
quero et al., 2023) and incorporating specialized architectures such as GCN-DCT to better capture
spatio-temporal dynamics in CoMusion (Sun & Chowdhary, 2024). More recently, SLD (Xu et al.,
2024) constructs a semantically structured latent motion space through Semantic Latent Directions,
enabling precise and interpretable control over generated motions.

A concurrent line of work has also begun to adapt the diffusion process itself, such as Skeleton-
Diffusion (Curreli et al., 2025), which introduces anisotropic noise based on the skeleton’s static
structure. In contrast to these approaches, which largely treat the core diffusion mechanism as a
fixed component or adapt it based on static priors, our work is the first to fundamentally reshape the
denoising process to be dynamically aware of human kinematics. We achieve this by introducing a
novel framework equipped with a Structure-Aligned Regularizer for anatomical consistency and a
learnable, instance-adaptive Joint-Adaptive Noise Generator, offering a more flexible and physically
grounded generative process.

Denoising Diffusion Probabilistic Models. Denoising Diffusion Probabilistic Models
(DDPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2020) have emerged as a pow-
erful class of generative models, capable of synthesizing high-fidelity data by learning to reverse a
progressive noising process. While these models have been successfully applied to a wide range of
human-centric tasks (Gong et al., 2023; Shan et al., 2023), such applications have predominantly fo-
cused on innovating the denoiser’s network architecture, while largely adopting a standard, generic
diffusion process. However, a recent and promising research direction has begun to demonstrate
significant gains by tailoring the diffusion process itself, particularly through task-specific noise
designs (Sahoo et al., 2024; Huang et al., 2024). Following this trajectory, we introduce a novel dif-
fusion framework specifically for human motion, which moves beyond architectural modifications.
We propose to fundamentally reshape the denoising process with a joint-adaptive, structure-aligned
mechanism that is inherently adapted to the kinematic properties of human skeleton data.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

As illustrated in Fig.3, we denote the observed motion history of H frames as x(1:H) =
[x(1);x(2); . . . ;x(H)] ∈ RH×3J , where x(h) ∈ R3J represents the joint coordinates at frame h,
and J is the total number of joints. Given x(1:H), the goal of Human Motion Prediction is to fore-
cast the subsequent F frames y(1:F ) = x(H+1:H+F ) = [x(H+1);x(H+2); . . . ;x(H+F )] ∈ RF×3J ,
where y(f) ∈ RJ×3, and J is the number of body joints.

3.2 PRELIMINARIES

Motion Diffusion. Let {yt}Tt=0 denote a Markov noising process, where y0 represents the true
data samples. For training, we progressively corrupt the target human motion sequence {yt}Tt=0 by
adding noise. This forward diffusion process is represented as:

q(yt | yt−1) = N
(
yt;

√
αt yt−1, (1− αt)I

)
, (1)

where {αt}Tt=0 ∈ [0, 1] controls the noise level. To approximate the underlying data distribution,
the reverse diffusion process is formulated to iteratively remove noise from the corrupted samples
yt, starting from t = T down to t = 1, as follows:

pθ(yt−1 | yt) = N
(
yt−1;µθ(yt, t), σ

2
θ(yt, t)I

)
. (2)
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Figure 3: The overview of our proposed Kinemadiff. (a): Our Joint-adaptive noise generator. We
learn joint-adaptive noise from the historical human joints and add it to the future human motions.
(b): Initial motion reconstruction. The future human motion with injected noise is processed through
a self-attention mechanism, which generates an initial prediction in the absence of external condi-
tioning. (c): Structure-Aligned Regularizer. The initial prediction is concatenated with the motion
observations and then processed in the frequency domain through a frequency-aware GCN, and sub-
sequently transformed back to the temporal domain for structural alignment.

In addition, following prior work (Chen et al., 2023; Barquero et al., 2023), we condition the model
on the historical motion. The conditional reverse diffusion transition is then formulated as:

pθ(yt−1 | yt, x) = N
(
yt−1;µθ(yt, x, t), σ

2
θ(yt, x, t)I

)
. (3)

where x denotes the motion history and yt the noisy motion at step t.
Direct y0 prediction. In existing diffusion models (Chen et al., 2023; Barquero et al., 2023), the
objective is typically either to predict noise or to directly predict human motion. In this work,
we adopt the latter, as it enables more effective optimization of the diffusion process through the
incorporation of skeletal structural priors.

3.3 OVERALL ARCHITECTURE AND NETWORK DESIGN

Overall Architecture. As illustrated in Fig. 3, our network takes the observed motion history
x(1:H) ∈ RH×3J and the future frames y(1:F ) ∈ RF×3J as input. The future frames are perturbed
with our joint-adaptive noise, which varies across joints and samples, yielding a sequence {yt}Tt=0
that follows the forward diffusion process. Our model is trained to reverse this process and ultimately
reconstruct the predicted future motion ŷ0 ∈ RF×3J . First, we feed the noisy future frames yt into
an encoder composed of several Transformer layers to obtain an initial reconstruction ỹ0 ∈ RF×3J .
To ensure structural alignment, we reshape the motion history as x(1:H) ∈ RH×J×3 and the noisy
future as ỹ0 ∈ RF×J×3. Next, we concatenate the initial reconstruction with the historical motion
and process it with the Alignment Module to produce the denoised prediction.

Network Structure. As illustrated in Fig. 3, our network architecture consists of three main compo-
nents: a joint-adaptive noise generator, an initial encoder, and a Structure-Aligned Regularizer. The
first component generates joint-adaptive noise conditioned on a fixed-length motion history and joint
characteristics using a few linear layers. The second component employs a temporal Transformer
encoder to generate an initial reconstruction, providing a baseline prediction without conditioning.
The third component is the proposed Structure-Aligned Regularizer, which models the full mo-
tion sequence in the frequency domain via DCT/IDCT. Unlike prior works, it employs GCNs with
frequency-specific adjacency matrices, where each frequency band is associated with a tailored con-
nectivity to capture its distinct motion patterns, thereby enabling more effective modeling of motion
dynamics across different bands.
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3.4 JOINT-ADAPTIVE NOISE GENERATOR.

Unlike previous diffusion-based methods that adopt a fixed schedule, our approach designs a learn-
able noise schedule. We introduce a multivariate noise schedule that assigns joint-adaptive noise
rates, enabling the diffusion process to capture spatial variability in the human skeleton:

q(yt | yt−1) = N
(
yt;αtyt−1, (1− αt)Σ

)
(4)

where Σ = diag(s21, s
2
2, . . . , s

2
J), sj denotes the noise scaling factor for the j-th joint. Specifically,

the scaling factor is determined by two aspects. First, it depends on the joint index, since different
joints exhibit distinct motion characteristics. Second, we further refine the scaling factor by condi-
tioning on the historical motion trajectories of each joint. Formally, the joint- and instance-specific
noise scaling can be expressed as:

sj = fθ(j,x
(1:H)
j ) (5)

where j is the joint index, x(1:H)
j denotes the observed motion history of joint j, and fθ is a learnable

function. Through this design, we are able to inject noise with varying intensities across different
joints, better reflecting their heterogeneous motion properties. The reverse diffusion process that
denoises the corrupted data samples yt from t = T down to t = 1:

pθ(yt−1 | yt) = N
(
yt−1;µθ(yt, x, t), (1− αt)Σ

)
(6)

where Σ = diag(s21, s
2
2, . . . , s

2
J), sj denotes the noise scaling factor for the j-th joint. Through the

above design, the diffusion process is able to inject joint- and instance-adaptive noise, leading to
more realistic and coherent human motion generation.

3.5 STRUCTURE-ALIGNED REGULARIZER

Earlier diffusion-based approaches (Chen et al., 2023; Sun & Chowdhary, 2024) treated human
motion prediction as a straightforward application of diffusion, overlooking the intrinsic structural
properties of human pose. For example, such methods fail to enforce structural constraints, such
as maintaining consistent bone lengths throughout motion generation. We proposed a Structure-
Aligned Regularizer, which effectively aligns the predicted human motion with historical motion
patterns based on the human skeletal structure during the diffusion process. Specifically, we cal-
culated the average bone length of connected joints from past human motions. Since the historical
motion is noise-free, it allows us to easily extract structural information. We regard the motion to be
predicted as clean human motion plus Gaussian noise:

yt =
√
ᾱt y0 +

√
1− ᾱt ϵ, (7)

where ϵ ∼ N (0, I) denotes Gaussian noise and y0 is the clean motion. For a batch of yt, we take
the mean across the batch. Since the noise ϵ follows a Gaussian distribution with zero mean, we can
compute the bone lengths of the motion sequence y from this mean:

ȳt =
1

B

B∑
b=1

y
(b)
t ≈

√
ᾱt y0, (8)

where B is the batch size. Specifically, we denote the set of skeletal connections as E , where each
(i, j) ∈ E represents a connected joint pair. The corresponding bone length is defined as:

ℓi,j = ∥yi − yj∥2, (i, j) ∈ E , (9)

where yi, yj ∈ R3 denote the 3D coordinates of joints i and j.

As previously mentioned, our model predicts the future motion values directly at each step. When
t is relatively large, the direct prediction of y0 tends to be inaccurate. To address this, we impose
constraints on the bone lengths of the target human motion and perform an alignment with the
structure of the historical human motion. Moreover, at each timestep, after the initial encoder,
we apply the same operation on ỹ0 to ensure that the human skeleton structure remains consistent
throughout the entire sequence. Specifically, for each bone connection (i, j) ∈ E , we compute the
average bone length over the observed history frames x(1:H) as b̄(i,j)obs , and those of ŷ(1:F )

0 and ỹ
(1:F )
0

5
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as b̄(i,j)pred and b̄
(i,j)
ref , respectively. The alignment loss is then defined as the mean discrepancy between

the two sets of averaged bone lengths:

Lalign =
1

|E|
∑

(i,j)∈E

∣∣∣b̄(i,j)obs − b̄
(i,j)
pred

∣∣∣
2
+

1

|E|
∑

(i,j)∈E

∣∣∣b̄(i,j)obs − b̄
(i,j)
ref

∣∣∣
2
, (10)

which encourages the predicted skeleton to preserve the structural scale of the observed motion,
thereby maintaining consistent bone proportions across time.

3.6 OVERALL LEARNING OBJECTIVES

Our loss consists of two components: a reconstruction loss applied to the predicted poses and an
alignment loss enforcing consistency between the predicted human motion and observed human mo-
tion. Unlike most diffusion-based motion models that predict noise at each timestep, our denoiser
directly outputs a pose prediction ŷ0 for every diffusion timestep t. This design allows us to im-
pose the reconstruction and alignment loss at every timestep, ensuring that the denoising trajectory
remains consistently aligned with anatomically plausible human motion rather than relying solely
on the final-step supervision. For the reconstruction loss, we follow prior work (Sun & Chowdhary,
2024) and assign different weights to individual joints, which are weighted differently to reflect their
relative importance in the motion context. The reconstruction loss for each timestep is defined by:

Lrec =
1

J

J∑
j=1

(
γ ·

∥∥(xj − x̂j) · λj
∥∥
1
+
∥∥(yj0 − ŷj0) · λj

∥∥
1

)
, (11)

where the superscript j denotes the joint index, λj is the weight assigned to each joint, and γ is a
hyperparameter balancing the reconstruction of motion history and the prediction of future.

Ltotal = α · Lrec + β · Lalign, (12)

where α and β control the relative weight of the reconstruction and alignment losses.

4 EXPERIMENTS

We first introduce the experimental setup in §4.1. Then we assess the performance of our method
across various settings, including intra-dataset forecasting on Human3.6M(§4.2), and more chal-
lenging cross-dataset generalization on AMASS(§4.3). Lastly, we provide ablative analyses in §4.4.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on two widely used datasets, intra-dataset forecasting on Hu-
man3.6M (Ionescu et al., 2013) and cross-dataset generalization on AMASS (Mahmood et al., 2019).
• Human3.6M is a seminal indoor dataset for 3D human motion analysis, widely utilized in stochas-

tic Human Motion Prediction. It comprises 3.6 million frames, captured at 50Hz, documenting
11 subjects performing 15 common daily activities. Consistent with prior work (Barquero et al.,
2023), we delineate subjects S1, S5, S6, S7, S8 for training, and subjects S9, S11 for evaluation.

• AMASS is a large-scale, highly diverse motion dataset for assessing cross-dataset generalization.
It consolidates 24 distinct motion capture datasets, all standardized to the SMPL parameterization,
accumulating over 9 million frames. Following prior research (Barquero et al., 2023), the dataset
is partitioned into 11 training, 4 validation, and 7 testing constituent datasets.

Implementation Details. Our model, is trained end-to-end, following protocols as detailed below:
• Diffusion Settings. KinemaDiff employs a 10-step diffusion process with standard DDPM sam-

pling, which is inherently augmented by our proposed kinematics-aware designs. Specifically,
both the Structure-Aligned Regularizer and the Joint-Adaptive Noise Generator are integrated
within the diffusion steps to ensure physical consistency and capture joint heterogeneity.

• Training Protocols. For both the Human3.6M and AMASS datasets, the model undergoes train-
ing for 500 epochs. We utilize the AdamW optimizer with a batch size of 128. The initial learning
rate is set to 1e-4, which is subsequently decayed after the 200th epoch. These training parameters
are consistent across both datasets.

• Dataset-Specific Protocols.

6
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Table 1: Quantitative results on Human3.6M. The best results are highlighted in bold. The symbol
‘–’ indicates not reported in the baseline work. For all metrics except for APD, lower is better.

Method Reference Accuracy Multimodality Diversity Realism

ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ CMD ↓ FID ↓

GAN-Based

HP-GAN (Barsoum et al., 2018) [CVPRW2018] 0.858 0.867 0.847 0.858 7.214 – –
DeLiGAN (Gurumurthy et al., 2017) [CVPR2017] 0.483 0.534 0.520 0.545 6.509 – –

VAE-Based

TPK (Walker et al., 2017) [ICCV2017] 0.461 0.560 0.522 0.569 6.723 6.326 0.538
Motron (Salzmann et al., 2022) [CVPR2022] 0.375 0.488 0.509 0.539 7.168 40.796 13.743
DSF (Yuan & Kitani, 2019) [ICLR2020] 0.493 0.592 0.550 0.599 9.330 – –
DLow (Yuan & Kitani, 2020) [ECCV2020] 0.425 0.518 0.495 0.531 11.741 4.927 1.255
GSPS (Mao et al., 2021) [ICCV2021] 0.389 0.496 0.476 0.525 14.757 10.758 2.103
DivSamp (Dang et al., 2022) [ACMMM2022] 0.370 0.485 0.475 0.516 15.310 11.692 2.083

DM-Based

MotionDiff (Wei et al., 2023) [AAAI2023] 0.411 0.509 0.508 0.536 15.353 – –
HumanMAC (Chen et al., 2023) [ICCV2023] 0.369 0.480 0.509 0.545 6.301 – –
BeLFusion (Barquero et al., 2023) [ICCV2023] 0.372 0.474 0.473 0.507 7.602 5.988 0.209
CoMusion (Sun & Chowdhary, 2024)[ECCV2024] 0.350 0.458 0.494 0.506 7.632 3.202 0.102
SkeletonDiff (Curreli et al., 2025) [CVPR2025] 0.344 0.450 0.487 0.512 7.249 4.178 0.123
Ours - 0.331 0.449 0.500 0.520 6.912 4.60 0.083

– Human3.6M. Consistent with prior work (Barquero et al., 2023), we predict 100 future frames
from 25 observed frames, using a 16-joint skeleton.

– AMASS. Following the protocol established by (Barquero et al., 2023), the task involves fore-
casting 120 future frames (2s) based on 30 observed frames (0.5s).

Baselines. We compare our method against several representative diffusion-based methods.
• BeLFusion. Operating within a VAE-encoded latent space, BeLFusion employs a diffusion model

to generate diverse and behavior-driven future motion predictions. Nevertheless, its physics-based
consistency check is a post-processing step applied externally, rather than a constraint that guides
the iterative denoising process internally.

• CoMusion. Integrating Graph Convolutional Networks (GCNs) within the Discrete Cosine Trans-
form (DCT) space, CoMusion’s denoiser effectively captures complex spatio-temporal dependen-
cies. Though effective in modeling these dependencies, it focuses on advancing the architecture,
rather than proposing adaptations to the core diffusion mechanism itself.

• SkeletonDiffusion. Introducing a non-isotropic diffusion process, SkeletonDiffusion defines an
anisotropic noise covariance matrix derived from the skeleton’s static kinematic tree. Though
effective in acknowledging joint heterogeneity, its noise characteristics remain fixed and are not
adaptive to the unique dynamics of a given motion instance.

Evaluation Metrics. Following established practices, we evaluate our method across three key
aspects: accuracy, diversity, and realism, using a comprehensive suite of standard metrics.
• Accuracy. We report Average Displacement Error (ADE) and Final Displacement Error (FDE),

the mean ℓ2 distance to the GT over the sequence and at the final frame, respectively.
• Diversity and Multimodality. We take Average Pairwise Distance (APD) to measure the variance

among generated samples. we also report Multimodal ADE/FDE (MMADE/MMFDE), which
assess multimodality by measuring the error to the best-matching ground-truth variant.

• Realism and Plausibility. We employ the Fréchet Inception Distance (FID) to assess the distri-
butional similarity between generated and real motions. Additionally, following (Barquero et al.,
2023), we use the Cumulative Motion Distribution (CMD) area for global plausibility to evaluate
how realistically the model’s generated diversity reflects that of the ground truth.

4.2 RESULTS OF INTRA-DATASET FORECASTING ON HUMAN3.6M

The comparative performance on the Human3.6M dataset is systematically reported in Tab. 1. The
results unequivocally demonstrate that our model establishes a new state-of-the-art result in forecast-
ing accuracy and realism. Specifically, KinemaDiff achieves an ADE of 0.331 and an FDE of 0.449,
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Table 2: Quantitative results for AMASS dataset. The best results are highlighted in bold. As
AMASS does not contain class labels, the FID metric is not used for evaluation.

Method Reference Accuracy Multimodality Diversity Realism

ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ CMD ↓

VAE-Based

TPK (Walker et al., 2017) [ICCV2017] 0.656 0.675 0.658 0.674 9.283 17.127
DLow (Yuan & Kitani, 2020) [ECCV2020] 0.590 0.612 0.618 0.617 13.170 15.185
GSPS (Mao et al., 2021) [ICCV2021] 0.563 0.613 0.609 0.633 12.465 18.404
DivSampp (Dang et al., 2022) [ACMMM2022] 0.564 0.647 0.623 0.667 24.724 50.239

DM-Based

HumanMAC (Barquero et al., 2023) [ICCV2023] 0.511 0.554 0.593 0.591 9.321 –
BeLFusion (Barquero et al., 2023) [ICCV2023] 0.513 0.560 0.569 0.585 9.376 16.995
CoMusion (Sun & Chowdhary, 2024)[ECCV2024] 0.494 0.547 0.469 0.466 10.848 9.636
SkeletonDiff (Curreli et al., 2025) [CVPR2025] 0.480 0.545 0.561 0.580 9.456 11.417
Ours – 0.478 0.540 0.456 0.457 9.683 9.448

Table 3: Ablation of the main components in our
method on Human3.6M.
Encoder J-Noise Align APD ↑ ADE ↓ FDE ↓ FID ↓

- - - 19.601 0.852 0.775 2.393
✓ - - 9.600 0.653 0.574 0.932
- - ✓ 6.214 0.354 0.478 0.177
✓ - ✓ 7.243 0.339 0.454 0.088
✓ ✓ – 7.014 0.336 0.453 0.089
✓ ✓ ✓ 6.912 0.331 0.449 0.083

Table 4: Experiment results on Hu-
man3.6M with different Scheduler.

Scheduler APD ↑ ADE ↓ FDE ↓ FID ↓

Sqrt 6.837 0.342 0.457 0.108

Cosine 7.213 0.365 0.478 0.178

Variance 6.912 0.331 0.449 0.083

surpassing all prior methods. We attribute this superior accuracy to the Structure-Aligned Regu-
larizer. By rigorously maintaining anatomical consistency at each step of the denoising process,
this module prevents the accumulation of kinematic errors that can degrade long-term predictions,
ensuring a physically grounded and accurate motion trajectory.

Furthermore, the effectiveness of our approach in generating high-fidelity motion is underscored by
the FID score of 0.083, a substantial 19% relative improvement over the previous leading model,
CoMusion. A lower FID indicates that the distribution of generated motions is significantly closer
to that of real human movements, not just in individual poses but in the naturalness of the entire
sequence. This gain in realism is a direct result of the synergy between our two core modules: the
Structure-Aligned Regularizer eliminates anatomically impossible poses, while the Joint-Adaptive
Noise Generator sculpts more natural, heterogeneous joint movements, avoiding the robotic unifor-
mity that can arise from conventional noise schedules. While other methods may achieve higher
raw diversity scores (APD) or broader multimodal coverage (MMADE/FDE), KinemaDiff excels at
ensuring that every generated sample possesses high physical fidelity, prioritizing the quality and
plausibility of predictions as evidenced by its leading accuracy and realism metrics.

4.3 RESULTS OF CROSS-DATASET GENERALIZATION ON AMASS

To evaluate robustness and generalization, we present a comparative analysis on the diverse AMASS
dataset in Tab. 2. In this challenging cross-dataset scenario, KinemaDiff demonstrates exceptional
performance, achieving advanced results across the majority of metrics, including ADE (0.478),
FDE (0.540), MMADE (0.456), MMFDE (0.457), and CMD (9.448). These results highlight
the model’s ability to learn fundamental principles of motion rather than dataset-specific artifacts.
The superior generalization is primarily driven by the Structure-Aligned Regularizer, which learns
intrinsic and invariant anatomical properties like bone lengths, making the model robust to the
wide variety of novel motions present in AMASS. Concurrently, the results in multimodal metrics
(MMADE/MMFDE) provide clear evidence for the efficacy of the Joint-Adaptive Noise Generator.
On a diverse dataset like AMASS, where a single observation can lead to many valid future actions,
the ability to generate instance-specific, heterogeneous noise allows the model to explore this rich
possibility space more effectively than methods with static or uniform noise. It does not merely
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Figure 4: Ablation results on the number of diffusion steps.
0.5s 1.0s 1.5s 2.0s0.5s 1.0s 1.5s 2.0s 0.5s 1.0s 1.5s 2.0s

CoMusion

Ours

Figure 5: Visualization results. The red-black skeletons and green-purple skeletons denote the ob-
served and predicted motions respectively.
generate random variations but rather meaningful and plausible alternatives tailored to the input
context. While some methods achieve a higher raw diversity score (APD) at the cost of accuracy,
KinemaDiff achieves a competitive APD (9.683) while simultaneously delivering the best accuracy
and multimodal coverage, demonstrating a superior balance between diversity and fidelity.

4.4 ABLATION STUDY

For in-depth analysis, we conduct ablative studies using Intra-Dataset Forecasting on Human3.6M.
Effect of our main components. To assess the contribution of our core components, we conducted
an ablation study by removing the Structure-Aligned Regularizer, joint-adaptive noise, and the ini-
tial encoder. From Tab. 3, it can be seen that using only the baseline or only the initial encoder
leads to low accuracy (ADE, FDE) and FID scores, despite high APD values. This suggests the
model produces motions that are diverse yet largely implausible and unstructured. Incorporating
the Structure-Aligned Regularizer substantially improves accuracy metrics (ADE, FDE) and con-
sistency metrics (FID) by leveraging structural cues aligned with historical motion. In addition, the
joint-adaptive noise dynamically allocates noise to different joints, enabling more accurate modeling
of human motion and further improving both accuracy (ADE, FDE) and consistency (FID) metrics.
Diffusion setting. We mainly investigate two aspects of the diffusion setting: the choice of sched-
uler and the number of diffusion steps. We evaluate multiple scheduler choices on the Human3.6M
dataset in Tab. 4, and the results indicate that Variance Scheduler (Sun & Chowdhary, 2024) pro-
vides the best trade-off between stability and performance. In addition, we investigate the effect
of the denoising step on model performance. We evaluate multiple metrics on Human3.6M under
different timesteps. As shown in Fig. 4, the model achieves the best performance when the number
of timesteps is 10. Moreover, choosing 10 timesteps ensures fast inference and accuracy.
Visualization results. In Fig. 5, we present a qualitative comparison by visualizing predicted motion
sequences on Human3.6M. We use CoMusion as the baseline and select 15 predicted results for each
frame. The visual analysis shows that our method generates more consistent and realistic human
motions. Compared with the ground truth, our predictions are especially accurate for samples with
smooth movements. In addition, unrealistic artifacts, such as sudden exaggerated leg lifts while
walking, occur less frequently. Moreover, the diversity of generated motions better reflects realistic
dynamics, with predictions concentrated near historical patterns and gradually diffusing over time.

5 CONCLUSION

In this work, we introduce a new diffusion model tailored for stochastic human motion prediction.
Our algorithm integrates a Joint-Adaptive Noise Generator and a Structure-Aligned Regularizer di-
rectly within the diffusion process. The former enhances motion diversity with instance-aware noise
, while the latter preserves anatomical consistency by embedding structural priors into each diffu-
sion step. Results across multiple benchmarks demonstrate its effectiveness, owing to the unique
integration of structural and dynamic priors within diffusion process.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT.

This work focuses on human motion prediction using publicly available benchmark datasets (Hu-
man3.6M and AMASS), which were collected and released under established research protocols.
No personally identifiable or sensitive information is involved, and our methodology does not in-
volve human subjects, sensitive attributes, or private data, posing no privacy or security concerns.
All experiments follow ethical research practices, including proper citations, fair comparisons with
prior works, and reproducibility efforts. All authors have read and will adhere to the ICLR Code of
Ethics.

REPRODUCIBILITY STATEMENT.

We have made significant efforts to ensure the reproducibility of our work. A detailed description of
our model architecture is provided in Section 3, while the evaluation protocols and training setup are
presented in Section 4 of the main paper. Additional implementation details are included in the Ap-
pendix. All datasets used in our experiments are publicly available and widely adopted benchmarks,
and our preprocessing steps strictly follow prior works to ensure consistency and comparability.
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A APPENDIX

The supplementary material herein extends the discussion and analysis presented in the primary
manuscript. It is structured as follows:

Use of Large Language Models (§ A.1) : This section describes the use of large language models
across the manuscript.

Additional Visualization (§ A.2) : This section introduces additional visualization results.

Additional Hyperparameter Setting (§ A.3) : This section introduces additional hyperparameter
setting.

Additional Metric Descriptions (§ A.4) : This section introduces the details of the metric descrip-
tions used in the manuscript.

Comparison with anisotropic noise (§ A.5) : This section introduces a comparison with anisotropic
noise and more detailed effect of the Joint-Adaptive Noise Generator.

Comparison with Standard Bone-Length Constraints (§ A.6) : This section introduces the com-
parison with standard bone-length constraints.

Effect of different loss functions in Structure-aligned Regularizer (§ A.7) : This section dis-
cusses how different structural loss formulations affect the trade-off between physical realism and
motion accuracy.

Analysis of Physical Realism Metrics (§ A.8 ) : This section analyzes physical realism metrics
and demonstrates how our framework effectively enhances both structural validity and temporal
smoothness.

Discussion of learned noise scale (§ A.9): This section discusses the learned noise scale.

Discussion on realism/accuracy and diversity of our model (§ A.10): This section analyzes how
enforcing anatomical consistency leads to high-quality, physically plausible motion diversity, even
if numerical diversity (APD) is slightly reduced.

Effectiveness of Early-Timestep Structural Constraint (§ A.11): This section demonstrates why
applying structural constraints at early timesteps is effective.

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we used a large language model (LLM) only for grammar correction
and improving the clarity of phrasing. The LLM was not involved in generating ideas, methods,
experiments, analyses, or results. All scientific contributions, including the problem formulation,
model design, and evaluation, are entirely the work of the authors.

A.2 ADDITIONAL VISUALIZATION.

To further validate the physical realism and accuracy of our generated motions, we provide addi-
tional qualitative comparisons with baselines including CoMusion(Sun & Chowdhary, 2024), Skele-
tonDiffusion (Curreli et al., 2025), and BeLFusion (Barquero et al., 2023). As illustrated in the
accompanying figures (Fig. 7), KinemaDiff consistently produces results closer to the ground truth
with fewer unrealistic poses compared to CoMusion. Moreover, it significantly reduces artifacts like
bone stretching common in SkeletonDiffusion and BeLFusion. These visual improvements sub-
stantiate the effectiveness of our approach, demonstrating that our proposed structural constraints
and joint-adaptive noise generator effectively enforce anatomical consistency and improve motion
coherence without compromising diversity.

A.3 ADDITIONAL HYPERPARAMETER SETTING.

Additional diffusion setting. We introduce three additional metrics—APD, MMADE, and
CMD—to evaluate model performance across different timesteps. As shown in Fig. 6, when the
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Figure 6: Additional ablation results on the number of diffusion steps.

number of timesteps is set to 10, the model achieves strong performance in terms of diversity, accu-
racy, and consistency. Therefore, we select this setting for our experiments.

Hyperparameter for loss function. In Section 3.6, we set γ = 0.1 to balance the reconstruction
of motion history and the prediction of future frames. The coefficients α and β are set to 1 and 2,
respectively, to control the relative contributions of the reconstruction loss and the alignment loss.
These values were selected based on experiments with several parameter configurations to identify
the most effective setting.

Model setting. In the initial encoder, we stack two Transformer layers with a feature dimension
of 512. In the Structure-Aligned Regularizer, we employ nine Frequency-aware GCN layers with
a feature dimension of 125. The graph structure consists of N nodes, where N corresponds to the
number of joints in the skeleton.

A.4 ADDITIONAL METRIC DESCRIPTIONS.

• APD (Average Pairwise Distance) measures the diversity of generated samples by com-
puting the average distance between all pairs of generated motions.

• ADE (Average Displacement Error) computes the mean per-timestep distance between
the predicted and ground-truth motions, reflecting overall accuracy.

• FDE (Final Displacement Error) measures the distance between the predicted and
ground-truth motions at the final timestep, highlighting long-term prediction accuracy.

• MMADE and MMFDE extend ADE/FDE by comparing with clustered groundtruth vari-
ants, capturing a model’s ability to generate multiple plausible outcomes.

• CMD (Conditional Motion Distance) quantifies global plausibility by comparing the ar-
eas under cumulative distributions of true and generated motion.

• FID (Fréchet Inception Distance for motion) computes the distance between the feature
distributions of generated and ground-truth motions, reflecting realism at the distribution
level.

As shown in Tab. 5, we present the formulas for the metrics used in the main text, with the definitions
of relevant parameters as follows.

Notation. We denote the ground-truth motion sequence by pgt = {pgt
t }Tt=1, and the k-th generated

motion sequence by p(k) = {p(k)
t }Tt=1, where T is the prediction horizon and K is the number of

generated samples. Here, pt ∈ RJ×3 represents the 3D skeleton at timestep t, with J denoting the
number of joints. For CMD, we compute the average displacement of all joints at frame t as Mt,
and the average displacement over the whole test set as M̄ . (µ,Σ) are the mean and covariance of
extracted motion features used for FID calculation.
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Figure 7: Additional visualization results. The red-black skeletons and green-purple skeletons de-
note the observed and predicted motions respectively.

Table 5: Evaluation metrics used for motion prediction.

Metric Formula

APD
1

K(K − 1)

∑
i<j

1

T

T∑
t=1

∥p(i)
t − p

(j)
t ∥2

ADE
1

T

T∑
t=1

∥p̂t − pgt
t ∥2

FDE ∥p̂T − pgt
T ∥2

CMD
T−1∑
t=1

(T − t) ∥Mt − M̄∥1

FID* ∥µg − µr∥22 +Tr
(
Σg +Σr − 2(ΣgΣr)

1/2
)

A.5 COMPARISON WITH ANISOTROPIC NOISE.

Although our J-Noise shares similarities with SkeletonDiffusion’s (Curreli et al., 2025) anisotropic
noise, they differ fundamentally in design. SkeletonDiffusion treats the human skeleton as a pre-
defined graph with fixed, manually specified joint-wise covariance. In contrast, J-Noise learns a
dynamic scale sj = fθ(j, x

1:H
j ) directly from data, making the injected noise both joint-dependent

and motion-dependent.

To evaluate the contribution of this proposed module, we conduct a detailed ablation study compar-
ing the full model with two reduced variants: (1) No J-Noise, which adopts a uniform scalar noise
schedule shared across all joints, and (2) No Temporal, which learns static per-joint noise scales but
omits temporal motion cues.

The results in Tab. 6 highlight the importance of both joint-aware and temporally adaptive noise
modeling. The No J-Noise variant exhibits the highest diversity (APD) but suffers from signifi-
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cantly degraded accuracy (ADE/FDE) and realism (FID), as the identical noise assignment fails to
distinguish between highly dynamic limb joints and more stable trunk joints. Introducing joint-wise
noise scaling (No Temporal) alleviates this issue and leads to measurable improvements, yet the
model still underperforms compared to the full version.

In contrast, the Full J-Noise module—by adapting noise magnitude based on both joint identity and
motion history, achieves the best performance across accuracy and physical realism metrics, while
maintaining competitive diversity. These findings confirm that adaptive, temporally modulated joint-
wise noise regulation is essential for generating accurate, coherent, and physically plausible motion.

Table 6: Detailed ablation of the Joint-Adaptive Noise Generator. The full model achieves the best
accuracy and realism while maintaining competitive diversity.

Method ADE ↓ FDE ↓ FID ↓ APD ↑

No J-noise 0.339 0.454 0.088 7.243
No temporal 0.336 0.452 0.086 7.041

Full J-Noise (ours) 0.331 0.449 0.083 6.912

A.6 COMPARISON WITH STANDARD BONE-LENGTH CONSTRAINTS.

Although bone-length consistency is a commonly used constraint in human motion genera-
tion (Liang et al., 2024), our approach differs in how it is integrated into the diffusion model. Instead
of predicting noise, the denoiser is designed to output the denoised human motion ŷ0 at every diffu-
sion timestep. After the initial encoding stage, all subsequent operations occur directly in the space
of a noisy but valid 3D skeleton, which enables anatomical constraints to be applied at every stage
of the denoising process.

Prior methods such as InterGen (Liang et al., 2024) enforce bone-length consistency only on the
final reconstructed motion sequence, meaning the constraint influences the model once at the end
of generation. In contrast, our step-wise formulation exposes the model to structural information
during the entire denoising trajectory, encouraging globally consistent pose generation.

To assess the impact of this design, we replace our step-wise constraint with the traditional final-step
constraint. As shown in Tab. 7, enforcing structure at every timestep yields consistently better accu-
racy and realism, demonstrating the clear benefit of integrating anatomical consistency throughout
diffusion.

Table 7: Comparison with Standard Bone-Length Constraints.

Constraint Timing ADE ↓ FDE ↓ FID ↓

Final step 0.336 0.455 0.089
Each step (Ours) 0.331 0.449 0.083

A.7 EFFECT OF DIFFERENT LOSS FUNCTIONS IN STRUCTURE-ALIGNED REGULARIZER.

To further investigate the impact of different structural regularization strategies, we evaluate two
stricter frame-wise bone-length constraints based on L1 and L2 penalties, as seen in Tab. 8. The L1
formulation leads to substantially degraded performance (ADE 0.457), indicating that its constant
gradient may introduce instability during denoising. In contrast, the L2-based constraint enforces
the geometry more rigorously and achieves the lowest FID, but slightly reduces prediction accuracy
due to over-constraining the motion manifold at each timestep.

A.8 ANALYSIS OF PHYSICAL REALISM METRICS

To quantitatively assess the physical plausibility of the generated motions, we evaluate two addi-
tional metrics on Human3.6M: Limb Stretch and Limb Jitter, as seen in Tab. 9.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Effect of different loss functions in Structure-Aligned Regularizer.

Loss Variant ADE ↓ FDE ↓ FID ↓

Frame-wise L1 0.457 0.574 0.512
Frame-wise L2 0.333 0.452 0.075
Average (Ours) 0.331 0.449 0.083

Table 9: Comparison of physical realism metrics on Human3.6M.

Method Limb Stretch ↓ Limb Jitter ↓ ADE ↓ FDE ↓ FID ↓

SkeletonDiffusion 3.90 0.16 0.344 0.450 0.123
KinemaDiff (Ours) 2.42 0.45 0.331 0.449 0.083
KinemaDiff + jitter loss 2.42 0.28 0.331 0.447 0.084

Limb Stretch: Our method achieves a limb stretch of 2.42, which is significantly lower than Skele-
tonDiffusion’s 3.90. This improvement is primarily attributed to our Structure-Aligned Regularizer,
which constrains the skeleton at every diffusion timestep, effectively reducing unrealistic deforma-
tions.

Limb Jitter: Initially, our model obtains a limb jitter score of 0.45. To further explore the flexibility
of our framework in enforcing temporal consistency, we adopted the same jitter loss as used in
SkeletonDiffusion as an additional constraint. Specifically, this loss quantifies the magnitude of
bone length changes between adjacent frames. We calculate the bone length Lj

t from 3D keypoints
and define the jitter as the absolute difference |Lj

t+1−Lj
t |. The loss minimizes the squared difference

between the predicted and ground-truth jitter values, constraining the generated bone dynamics to
be temporally consistent with real motion.

After incorporating this loss, the jitter metric significantly improves from 0.45 to 0.28. This
demonstrates that our framework can readily incorporate such constraints to prevent excessive high-
frequency shaking. Crucially, adding this loss does not compromise other metrics (ADE/FDE/FID
remain stable), confirming that our framework can effectively balance structural validity and tempo-
ral smoothness.

A.9 DISSCUSSION OF LEARNED NOISE SCALES

To investigate what is learned by the Joint-Adaptive Noise Generator, we visualize the learned joint-
wise noise scales and find that they correlate with each joint’s motion characteristics.

We categorized joints into three groups: Trunk (indices 0, 3, 6, 7, 8, 9, 10, 13), Knees & Elbows (1,
4, 11, 14), and Wrists & Feet (2, 5, 12, 15). We compared three settings:

• Ours: Initialized with increasing scales (1.0, 1.2, 1.4) and a learnable offset (clamped to
[−0.3, 0.3]), encouraging higher variance for dynamic extremities.

• Uniform: Fixed scale of 1.0 for all joints.

• Reverse-scale: Initialized with decreasing scales (1.0, 0.8, 0.6) and a restricted learnable
offset (clamped to [−0.2, 0.2]), forcing lower variance for extremities.

Analysis of Learned Scales: As shown in Tab. 10 and Fig. 8, our model learns to assign significantly
higher noise scales to dynamic joints (e.g., Joint 15/R-Wrist: 1.41, Joint 5/L-Foot: 1.37) compared
to stable trunk joints (e.g., Joint 0/Hip: 1.02). This aligns with the intuition that extremities have
higher degrees of freedom and require more stochasticity. In contrast, the "Reverse-scale" setting
forces the opposite pattern, suppressing noise in the limbs.

Performance Analysis: The impact of these noise distributions is clearly reflected in the quantitative
results in Tab. 11. Ours achieves the best performance (ADE 0.331, FID 0.083), confirming that
the learned kinematic-aware noise schedule effectively models human motion dynamics. Notably,
Reverse-scale performs significantly worse (ADE 0.349, FID 0.115) than even the Uniform base-
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Figure 8: Visualization of the learned noise scales compared to Uniform and Reverse-scale baselines
on Human3.6M. Our method automatically learns to assign larger noise scales to dynamic limb
joints (indices 1, 2, 4, 5, 11, 12, 14, 15) to capture their higher degrees of freedom, while maintaining
lower variance for the stable trunk. In contrast, the Reverse-scale setting enforces an unnatural
distribution by suppressing noise in the extremities.

line. This degradation indicates that incorrectly assigning low variance to dynamic joints (and high
variance to stable ones) actively harms the generation process, further validating the necessity of our
joint-adaptive design.

Table 10: The Learned Noise Scale per Joint in different noise settings on Human3.6M.

Joint Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ours 1.02 1.15 1.28 1.04 1.13 1.37 1.01 1.11 1.03 1.04 1.06 1.28 1.36 1.11 1.21 1.41
Reverse 0.98 0.84 0.73 1.00 0.87 0.75 1.05 1.09 1.07 1.11 1.07 0.83 0.71 1.06 0.85 0.73
Uniform 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 11: Effect of different joint noise settings.

Method ADE ↓ FDE ↓ FID ↓

Uniform 0.339 0.454 0.088
Reverse scale 0.349 0.462 0.115

Ours 0.331 0.449 0.083

A.10 DISCUSSION ON REALISM/ACCURACY AND DIVERSITY OF OUR MODEL.

Tab. 3 shows that KinemaDiff achieves state-of-the-art accuracy and realism, while its APD score is
slightly lower than several baselines. This phenomenon does not indicate a limitation of the noise
generation module, but rather reflects a fundamental characteristic of enforcing anatomical consis-
tency. Methods that report higher APD values often achieve diversity by producing motion samples
that violate physical constraints, such as unrealistic bone stretching or implausible joint trajectories.
In contrast, the incorporation of both Structure-Aligned Regularizer and the Joint-Adaptive Noise
Generator restricts the generative distribution to anatomically feasible regions of the motion mani-
fold. This “pruning” effect naturally leads to a more compact—yet physically valid—set of possible
futures. As a result, KinemaDiff exhibits slightly reduced numerical diversity while achieving sub-
stantially stronger motion realism, as evidenced by its state-of-the-art FID performance. These
findings highlight that our objective is not unrestricted diversity, but high-quality and physically
plausible diversity, which more faithfully reflects the true distribution of human motion.
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Figure 9: Performance across diffusion timesteps. The model achieves reasonable performance even
at early denoising stages, with progressive improvement as the process proceeds to Step 10.

A.11 EFFECTIVENESS OF EARLY-TIMESTEP STRUCTURAL CONSTRAINT.

We analyse the feasibility and benefits of applying structural constraints at early diffusion timesteps
(t → 1). While the predicted x̂0 at early stages (e.g., t = 0.95) exhibits high uncertainty and lacks
high-frequency details compared to later stages (t < 0.3), applying structural constraints throughout
the process is supported by the following rationale:

Feasibility of Direct x0 Prediction. Unlike models that predict noise ϵ, ours directly predicts the
clean motion x0 at every step. This means the network explicitly estimates a full skeleton even at
high noise levels. While the motion trajectory (pose) might be uncertain or coarse at t = 0.95, the
skeletal structure (bone lengths) is a deterministic property that should remain invariant.

Visualization Analysis. We added the output results for timesteps 1, 3, 6, and 8 (Fig. 9).
Our visualizations show that even at early timesteps like 1 or 3, our model can produce a rough
prediction. Specifically, for short-term predictions, the outputs at timesteps 1 or 3 are already close
to the ground truth. Moreover, at these early timesteps, the top-performing hypotheses are fairly
close to the ground truth, even for long sequence predictions. Therefore, within our direct prediction
framework for x0, imposing constraints at the early denoising stages is meaningful.

Quantitative Analysis. As shown in Tab. 12, our model produces reasonably structured out-
puts rather than random noise even at early steps. This further confirms that applying structural
constraints is valid and feasible throughout the process.

Table 12: Performance metrics across diffusion timesteps. The model achieves reasonable per-
formance even at early denoising stages (Steps 1-3), with progressive improvement as the process
proceeds to Step 10.

Step ADE ↓ FDE ↓ FID ↓

1st Step 0.556 0.789 5.977
3rd Step 0.443 0.632 3.728
6th Step 0.358 0.490 0.763
8th Step 0.336 0.455 0.139
10th Step (Ours) 0.331 0.449 0.083

Reducing Search Space via Structural Constraints. Applying constraints early acts as a strong
geometric regularizer. By enforcing bone-length consistency, we decouple structure from dynamics.
We essentially tell the model: “Even if you are unsure about the exact future pose, the output must be
a valid human skeleton.” This effectively prunes the search space, forcing the denoising trajectory to
evolve strictly within the space of anatomically valid poses and preventing the model from wasting
capacity on physically impossible distortions (e.g., stretched limbs).
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Table 13: Comparison of Noise Schedules. The values represent the noise standard deviation
(
√
1− ᾱt) at each diffusion timestep.

TimeStep 1 2 3 4 5 6 7 8 9 10

Cosine 0.986 0.948 0.887 0.805 0.703 0.584 0.451 0.307 0.155 0.005
Sqrt 0.831 0.747 0.676 0.609 0.544 0.477 0.406 0.327 0.228 0.007
Ours (Variance) 0.707 0.650 0.588 0.523 0.454 0.383 0.309 0.233 0.156 0.079

Specialized Variance Schedule. Enforcing constraints at very early timesteps could interfere with
learning when the signal-to-noise ratio is extremely low. To address this, we intentionally adopt
a variance scheduler that suppresses noise magnitude when t approaches the highest-noise region.
Specifically, as shown in Tab. 13, our noise variance (

√
1− ᾱt) is significantly smaller than that

of the Cosine and Sqrt schedules in early timesteps (e.g., 0.707 vs. 0.986 at timestep 1). This
design is crucial: by reducing the noise level at early stages, the model can more easily recover
meaningful skeletal structure from the noisy input, making it feasible to apply structural constraints
effectively. In contrast, attempting to enforce constraints when predicting from near-complete noise
(as in Cosine/Sqrt schedules) would be significantly more challenging and could hinder learning.
Our approach ensures stable convergence and effective learning throughout the denoising process,
as demonstrated in Tab. 4.

Comparison with Late-Stage Constraint. We conducted experiments applying the structural con-
straint only during the late denoising stages (t < 0.2 and t < 0.3) in Tab. 14, as is commonly done in
other frameworks. In our direct prediction framework, imposing the constraint only on the last few
timesteps still performs worse than applying it at every timestep. As shown in the table, restricting
the constraint to late timesteps results in higher bone stretching (3.7 and 3.4 vs. 2.4) and degraded
performance across all metrics compared to the full-process approach. This indicates that, for the
direct prediction framework, waiting until the end to enforce structure is suboptimal.

Table 14: Comparison with Late-Stage Constraints.

Constraint Timing ADE ↓ FDE ↓ FID ↓ Stretch ↓

t < 0.2 0.336 0.458 0.113 3.7
t < 0.3 0.335 0.452 0.106 3.4
Ours (All steps) 0.331 0.449 0.083 2.4
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