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ABSTRACT

We present a visual tuning framework, Knowledge Lift Alignment Fine Tuning
(KLAFT), which enhances the expressive image captioning capabilities of Pre-
trained Language Models (PLMs), including LLMs and VLMs. As this task in-
volves generating more detailed and comprehensive captions than basic image
descriptions, the core idea behind KLAFT is that fine-grained alignment could
exploit the capabilities of PLMs and a given target domain dataset. This idea mo-
tivates and challenges us to explore the framework that deeply understands both
given images and text for this alignment and tuning PLMs towards expressive
image captioning. This motivation modifies the attention mechanism to a Mod-
ified Attention Mechanism (MAM) and develops both a Topic Control Mecha-
nism (TCM) and their training objectives. The innovation of KLAFT lies in its
approach to addressing the disparities in knowledge - visual versus textual via
MAM and source versus target domain via TCM. As these hidden spaces are con-
ceptualized as distinct sub-networks within the PLM, each possessing specific
knowledge, KLAFT’s unique contribution is in aligning and adjusting the weights
of these sub-networks in a fine-grained manner, and fine-tuning this PLM. Our
empirical studies demonstrate that KLAFT significantly improves expressive cap-
tioning tasks by aligning and amplifying target knowledge, with the potential for
Parameter-Efficient fine tuning (PEFT) at low computational cost.

1 INTRODUCTION

Our goal is to create descriptive and informative captions that address the limitations of models re-
lying solely on visual features. In the field of computer vision, transformer-based models Vaswani
et al. (2017); Devlin et al. (2019); Radford et al. (2019); Yang et al. (2019); Liu et al. (2019); Lan
et al. (2020); Touvron et al. (2023); AI@Meta (2024) have demonstrated significant potential as
PLMs, including Vision-Language Models (VLMs) Liu et al. (2023a), as demonstrated by various
studies. However, these models often overlook additional knowledge individuals use when gener-
ating captions, beyond the inherent content of the data Chen et al. (2019). Source-domain datasets
are sufficient for acquiring linguistic and source-domain knowledge but inadequate for learning
target-domain knowledge. This robust prior knowledge may overshadow target domain-specific
knowledge, rendering it ineffective. Interestingly, the robust prior knowledge that enhances the lin-
guistic abilities of PLMs may also overshadow the target domain-specific knowledge, rendering it
ineffective Ramasesh et al. (2021).

To guide PLMs in generating expressive descriptions, we introduce an adaptation framework called
Knowledge Lift Alignment Tuning (KLAFT). Unlike existing Knowledge Distillation methods Hin-
ton et al. (2015), knowledge injection approaches Xu et al. (2023); Zhang et al. (2023), LoRA Hu
et al. (2022), and adapters Hu et al. (2023); Zhang et al. (2024), KLAFT perceives hidden spaces as
sub-networks within PLMs and aligns the weights of these sub-networks from the source to the tar-
get domain through fine-grained knowledge alignment and lift. This approach modifies the attention
mechanism to a Modified Attention Mechanism (MAM) and develops a Topic Control Mechanism
(TCM) with specific training objectives. KLAFT uses the concept of topics to bridge the ”knowledge
differences” in visual versus textual data via MAM, and source versus target domain by exploiting
the hidden spaces within PLMs via TCM. The novelty of KLAFT lies in using knowledge to quan-
tify the domain gap and introduce it into fine-tuning. To leverage knowledge, KLAFT aligns and
adjusts the weights of these sub-networks in a fine-grained manner, fine-tuning the PLM towards
expressive image captioning. This framework not only enhances knowledge adoption and tuning
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Table 1: Example of image captions: The green highlighted words are detected via knowledge lift
after knowledge alignment in KLAFT.

Image Model or Framework: generated texts
BLIP: Dog standing in a car stopping on the street
KLAFT: A golden retriever is waiting for its master in a truck.

but also coexists with other PEFTs and fine-tunes various PLMs Radford et al. (2021); Jia et al.
(2021); Li et al. (2023b); Liu et al. (2023a).

As with a visual tuning framework, our experiments confirm that KLAFT and its components:
1. Capture fine-grained interactions between images and texts through knowledge alignment and
reflect the target domain knowledge via knowledge lift, as confirmed by human evaluations.
2. Demonstrate model-agnosticism, cooperating with other PLMs and VLMs, exploiting their capa-
bilities, with low computational cost.

2 PREVIOUS WORK

There is increasing interest in vision-language tasks, such as image captioning Xu et al. (2015);
Herdade et al. (2019); He et al. (2020); Cornia et al. (2020); Song et al. (2021); Liu et al. (2021);
Chen et al. (2021a; 2022); Zhou et al. (2021). VisualGPT Chen et al. (2022) leverages the linguistic
knowledge of the PLM, and introduces an encoder-decoder attention mechanism to bridge the dif-
ferences between modalities. However, the structure between the textual units in images (usually the
regions detected by the object detection model) and sentences (each single word) are different He
et al. (2020). Wang et al. Wang et al. (2020) explicitly engage human consensus to measure the
quality of ground truth captions in advance to resolve grammatical errors, wrong identification of
visual objects, and sub-optimal sentence focus. For controllable image captioning, Chen et al Chen
et al. (2021b) propose Verb-specific Semantic Roles, each of which consists of a verb and several
semantic roles. CGRL Zhang et al. (2021) attempts to reproduce the human inference procedure,
i.e., consensus graph representation learning framework, in the grounded captioning pipeline and
model training. CAAG Song et al. (2021) guides the captioning model to learn semantics by repro-
ducing the current generation based on the global contexts; it takes advantage of global predictions
in this process. Xu et al. (2021) proposed an Anchor-Captioner to generate multiple captions from
different views and so extract more valuable scene information. Ji et al. (2021) introduced a Global
Enhanced Transformer to enable the extraction of more comprehensive global representations, and
guide the decoder to generate high-quality captions. DLCT Luo et al. (2021) aims to realize the
complementary advantages of region and grid features for image captioning.

Recently proposed prefix style models Mokady et al. (2021); Wang et al. (2022b); Tsimpoukelli
et al. (2021); Zhou et al. (2022); Muresan et al. (2022) address this task by prepending image feature
sequences to the text sequences. CLIP (Contrastive Language-Image Pre-Training) Radford et al.
(2021)is a neural network that projects both images and texts into the same space and learns their
representations. ClipCap Mokady et al. (2021) uses CLIP as the vision encoder, and maps the CLIP
embedding as a prefix to the caption. ALIGN Jia et al. (2021) presents an example of leveraging
large-scale noisy image-text data to strengthen visual and vision-language representation learning,
while training a dual-encoder model with contrastive loss. COTS Lu et al. (2022a) addresses the
high computation cost of object detection in images by proposing two-stream vision-language pre-
training that leverages three levels of cross-modal interactions in image-text retrieval, while still
maintaining its advantage of efficiency for image-text retrieval. BLIP Li et al. (2022) pre-trains a
multi-modal mixture of encoder-decoder models using a dataset bootstrapped from large-scale noisy
image-text pairs by injecting diverse synthetic captions and removing noisy captions. CoCa Yu et al.
(2022) also uses CLIP as the vision encoder, and pretrains an image-text encoder-decoder foundation
model jointly with contrastive loss and captioning loss.

Given that the catastrophic forgetting problem implies a loss of PLMs’ knowledge by overwriting
their parameters through fine-tuning Mccloskey & Cohen (1989); Mi et al. (2020), KLAFT tackles
this problem by collaborating their source knowledge with the target knowledge, and belongs to
PEFT Hu et al. (2022); Wang et al. (2022a); Li et al. (2023c); Anonymus (-a;b). Unlike knowledge
injection, “knowledge lift” aims to highlight the target domain inherent in PLMs, and allows KLAFT
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Figure 1: (left) Differences between source and target, (center left) The motivation of KLAFT is
to consider differences between visual and textual, and reflect more target tokens in captions, and
textual, than the others, as shown in Table 1, (center right) Architectures of KLAFT: KLAFT plugs
a Modified Attention Mechanism (MAM) (blue box), TCM, and training tasks MRM, ITM, and
TTM, into the base PLM (Transformer blocks + Language model head (LMH)), where MAM aligns
visual or textual on the token level, and TCM highlights the target knowledge through the knowledge
lift. (right) Masks of MAM: During the training phase, KLAFT uses the dependent mask, Mc, to
maximize the probability of both the masked features and the next token. On the inference, KLAFT
uses an independent mask, Ms, to yield the text for a given image.

to adopt the visual-textual space, VLMs (e.g., BLIP2 Li et al. (2023b) and Llava Liu et al. (2023a)),
or collaborate with other PEFT (e.g., LoRA and MixPHM), knowledge injection, prompt tuning, or
in-context learning.

3 KNOWLEDGE LIFT ALIGNMENT FINE TUNING (KLAFT)

3.1 BASIC IDEAS, DEFINITIONS, AND ARCHITECTURE

In image captioning, the absence of robust metrics for the automatic and quantitative evaluation of
fine-grained granularity in captions is a notable gap. We posit that qualitative evaluations serve as
accurate reflections of the knowledge inherent in the target domain, and that fine-grained models,
as exemplified in Table 1, could generate detailed captions. As shown in Figure 1(left), the source
data is used to train PLMs, while the target data is utilized to fine-tune these PLMs. To manage
the disparity between both domains, we implement domain adaptation tuning, which can provide
further insights such as the distribution of tokens used.

KLAFT, seq2seq Cornia et al. (2020); Huang et al. (2019); Chen et al. (2022) and prefix-based
image captions Mokady et al. (2021); Tsimpoukelli et al. (2021); Wang et al. (2022b), as shown in
Figure 1(center left), comprise a vision encoder, which converts an image into visual information,
and a text decoder. KLAFT focuses on the sub-networks within PLMs, each of which encapsulates
specific knowledge influencing token distribution and token embedding representation.

KLAFT’s concept is the ”knowledge differences”, which can be source vs target domain and visual
vs textual, can be bridged by fine-grained alignment, thereby enhancing the explanatory power of
the generated captions. This idea motivates the design of a Mapping Layer (MaL) and a Modified
Attention Mechanism (MAM) for knowledge alignment, as illustrated in Figure 1(center right).
We interpret knowledge as hidden representation h∗,∗, and domain-specific knowledge as domain-
specific tokens. We employ latent discrete variables to detect hidden representations as sub-networks
and define their weight in the PLM. This approach maintains a global statistical view akin to topic
models and adapts the PLM by adjusting this weight to match the target data.

To generate expressive descriptions, we design a Topic Control Mechanism (TCM) to emphasize
the target domain-specific knowledge. Since the motivation for this framework is its application
to diverse PLMs, we place both MAM and TCM between the top layer of the Transformer blocks
and the LM Head. TCM distinguishes this knowledge from the rest, making it more accessible
for exploitation in training tasks such as Token Topic Modeling (TTM), Masked Region Modeling
(MRM), and Text Image Matching (TIM). This mechanism allows KLAFT to highlight the target-
related knowledge, the knowledge lift. By employing these tasks and different masks shown in
Figure 1(right), KLAFT guides PLMs to generate texts that encompass all elements (i.e., visual,
source, and target), thereby reflecting the target knowledge in expressive text.
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3.2 VISION ENCODER AND MAPPING LAYER (MAL)

Mapping Layer (MaL) projects the output of the vision encoder into the same space as the output
of the text decoder so that the text decoder can understand this output like the textual tokens of this
decoder. Recent VLMs Li et al. (2023b); Liu et al. (2023a) already do this, so MaL is an option.
To apply various image object detection networks or other VLMs, the vision encoder is designed to
accept both methods and work with the text decoder seamlessly. We call the length of the final output
of the vision encoder, the hidden representations, HL ∈ RIpf×dpf , where HL is visual knowledge,
Ipf is the prefix length and dpf is the dimension size.

MaL is placed on the vision encoder to map hidden representation vector HL = [hL,1, · · ·, hL,Ipf ] ∈
RIpf×dpf to give it the same dimension as the size of token embedding, dh. Motivated by the
well-known mapping methods of deep-learning schemes, we propose three candidates for mapping
functions of MaL and embed the visual tokens HI ∈ RIpf×dh as follows:

HI =


hL,tWpf simple transform for hL,t ∈ HL

MLPl(HL) MLP if Ipf > 1

Tral(HL) Transformer if Ipf > 1,
(1)

where Wpf ∈ Rdpf×dh are learnable weights, MLPl() is the multi-layer perceptron with l layers,
and Tral() is the bi-directional Transformer with l layers. When Ipf > 1, our pre-ablation analysis
confirms that MLPl() attains better performance at a lower cost than Tral(). KLAFT optimizes the
image embeddings by aligning visual and textual in the same space through ITM.

3.3 MODIFIED ATTENTION MECHANISM (MAM)

To clarify the differences between visual and textual knowledge on the textual level of given image-
text pairs, we modify a self-attention mechanism, MAM, to control the attention between visual
features and text as illustrated in Figure 1(right). The text decoder is responsible for generating the
next token of the output caption, conditioned on both previously generated tokes and visual tokens,
HI , converting the text sequence into the text data, and feeding it, H0 = [e1, · · ·, e|x|], to the next
layer. It yields the final output, Hl ∈ Rdh×|x|, textual knowledge, like the vision encoder, where dh,
and |x| are the hidden dimension, and the number of textual tokens, respectively. While visual tokens
and textual tokens can influence other tokens like cross-attention, they should exercise influence only
with tokens of the same type like self-attention. In order to balance this influence, MAM unifies two
different attention masks, Mc,Ms ∈ R(Ipf+|x|)×(Ipf+|x|), as illustrated in Figure 1(right).

This balance is automatically controlled by the gate matrix, Bc ∈ R(Ipf+|x|)×(Ipf+|x|), to set the
relative strengths of the vision encoder layer, HI , and text decoder layer, HT (=HL), on top of each
layer. We gain the query, key, value, Q,K,V, from HI ⊕HT like other Transformer models, and
define MAM using masks shown in Figure 1(right) as:

MAM(Q,K,V) = Bc ⊗ softmax(
QKT

√
dk

+Mc)V + (1−Bc)⊗ softmax(
QKT

√
dk

+Ms)V,

Bc = σ(A)I(σ(A) > µ),A = [HI ⊕HT ]Wb +Cb,

(2)

where ⊗ denotes component-wise multiplication, and Wb ∈ Rdh×(Ipf+|x|) and Cb ∈
R(Ipf+|x|)×(Ipf+|x|) are learnable weights, µ is gate threshold value, and I is the indicator func-
tion that returns 1 if the inner statement is true and 0 otherwise. This function aims to mitigate
overfitting by suppressing small values and inducing sparse activation. It applies bidirectional at-
tention between visual and textual tokens, where, M∗(i, j) ∈ M∗ = 0 allows the i-th position to
attend to the j-th position whereas Mij = −∞ prevents it from attending. KLAFT represents both
visual and textual information in the same space through MAL, and feeds MAM(Q,K,V) to a
feedforward layer with ReLU activation Nair & Hinton (2010).

While the Modified Attention Mechanism shares conceptual similarities with those commonly seen
in VisualGPT Chen et al. (2022), vision-language models (VLMs), it not only aligns images and
text but also differentiates between visual versus textual and source versus target domains. This dual
alignment enables more precise internal knowledge extraction, crucial for enhancing model perfor-
mance. The mathematical formulation, although inspired by traditional self-attention, is uniquely
tailored to address these dual alignment challenges, thereby offering a novel contribution to the field.
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3.4 TOPIC CONTROL MECHANISM (TCM)

TCM is designed to highlight the target domain instead of overwriting the parameters of PLMs. Un-
like PEFTs, TCM is placed just below the token verbalizer to model the uncertainty in the generative
process, after mitigating the discrepancy between the source and the target domain knowledge. This
placement ensures that TCM captures the contextual interdependencies between tokens.

In NLP, language models are trained for tasks that require text generation Bengio et al. (2003).
Given text sequence xd = {xd,1, · · ·, xd,|xd|} and dataset D = {x1, · · ·, xD}, models are pre-
trained by maximizing the likelihood under forward autoregressive factorization. Since we focus on
the differences between the source and target, and the difference in their distributions, as shown in
Figure 1(left) and explained in 3.1, KLAFT trains PLMs by moving these distributions closer to the
distributions observed in the target domain, i.e., topic lift. This text generation process is given by:

LTCM (θ) = −
|D|∑
d=1

|x|∑
t=1

log

K∑
zt=1

Pθ(xd,t|xd,1:t−1, zt)Pθ(zt|xd,1:t−1), (3)

where θ represents model parameters and zt indicates the topic of the t-th token, K is the number
of topics, Pθ(zt|xd,1:t−1) is the prior distribution over topic z, and Pθ(xd,t|xd,1:t−1, zt) is the ”gen-
erative” distribution over tokes, V. In Figure 1(left), the ratio of domain (top), and the distribution
(bottom) corresponds to Pθ(zt|xd,1:t−1), and Pθ(xd,t|xd,1:t−1, zt), respectively. This formulation
ensures that text xd can be generated by a random process involving z: (1) zt is first generated from
the conditional distribution Pθ(zt|xd,1:t−1). (2) xd,t is finally generated from Pθ(xd,t|xd,1:t−1, zt).
Since global distributions do not require additional learning, TCM finds target-specific distributions
through topics, and updates them, Pθ(zt|xd,1:t−1) and Pθ(xd,t|zt, xd,1:t−1), in fine-tuning.

Following Eq (3), TCM maps hidden representation vector HL = [hL,1, · · ·, hL,|x|] ∈ Rdh×|x|,
knowledge, onto topic vector z ∈ RK , and then projects this topic vector into the topic-specific
distribution over tokes. This yields Eq (3) by defining topic matrix, WTZ ∈ Rdh×K , and word
generation function, F(hL,t, zt), where V is vocabulary size. We apply these matrices to hL, t ∈
R|x|×dh in the text decoder. Given the above, we gain Pθ(zt|xd,1:t−1) and Pθ(xd,t|xd,1:t−1, zt) as
follows:

Pθ(zt|xd,1:t−1) ∝ Softmax(LayerNorm(hL,t)WTZ), Pθ(xd,t|xd,1:t−1, zt) ∝ F(hL,t, zt) (4)

where WTZ are learnable weights. As with F(hL,t, zt), we use the existing LMH of PLMs. Moti-
vated by the conventional activation functions of deep learning, three transformations (e.g., addition,
multiplication, and affine), we branch off hL,t and convert it as the only network in the subnetworks:

F(hL,t, zt = z) = LMH(hL,t), hL,t =

{
hL,t residual if z = 0

(1− ω)hL,t + ωgzaddition if z > 0
(5)

where LMH() is the language model head of the base PLM, gz ∈ Rdh , Wz ∈ Rdh×dh , and
bz ∈ Rdh are the topic z specific learnable weights. To preserve the source knowledge of PLM,
TCM is designed to retain the pre-trained hidden representations, denoted as hL,t, when z = 0,
instead of overwriting the parameters, otherwise facilitates the accumulation of gradient updates
throughout the fine-tuning process, similar to the approach used in LoRA Hu et al. (2022). How-
ever, it differs in 1) using only hL,t ∈ HL in Eq (5), 2) shifting the weight rather than dimensionality
reduction. Our ablation analysis demonstrated that the addition operation yielded the best perfor-
mance over functions (hL,t ⊗ gz multiplication, hL,tWz + bz affine), leading us to incorporate it
into Eq (5). The transformation of Eq (3) is facilitated by the introduction of the topic matrix. The
previous Transformer-block can be decomposed into the product of WTZ and F(hL,t) as shown in
Eq (4). While these subnetworks are akin to the concept of Mixture of Experts (MoE) Szymanski &
Lemmon (1993), where different combinations of model blocks are utilized depending on the task,
KLAFT adds this functions, (1−ω)hL,t+ωgz (z > 0), to an existing network, hL,t (z = 0), rather
than creating new networks, where the number of topics corresponds to the number of experts.

While topics can be considered as a quantized sample of the underlying token distribution, we define
Eq (5) as a differentiable function that is end-to-end learnable together with training (i.e., backprop-
agation with cross-validation over tokens and training tasks). This ensures that KLAFT can update
topic-related parameters through other hidden parameters. Collapsed Gibbs sampling, which is
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employed in topic models, needs higher computational cost and trick used in the Variational Au-
toEncoder (VAE) Kingma & Welling (2014). As the blue token could be replaced by the green
token in Figure 1(center left), this design allows PLMs to highlight knowledge that might otherwise
have been suppressed, thus preventing catastrophic forgetting Mccloskey & Cohen (1989); Mi et al.
(2020).

4 TRAINING OBJECTIVES OF KEIC

Token Topic Modeling (TTM): Motivated by the masked language model (MLM) of Vaswani et al.
(2017), this training task allows topic z to capture the contextual interdependence between tokens in
the decoder, while avoiding obvious local optima when the decoder simply generates latent vectors
that encode only the corresponding token. To avoid this undesired local optimum, we randomly
apply token-level dropout to an entire token when computing the posterior. This technique ensures
that the model has to learn how to use contextual information. Different from MLM, TTM employs
L2 instead of the log-likelihood to measure the similarity between tokens on topics.

LTTM (θ) =

|D|∑
d=1

∑
t∼xd

||hL,t − h̃L,t||22, h̃L,t = (1− ω)hL,t + ωgz, (6)

where hL,t, gz , and ω are shown in Eq (5). When ω = 0, the pre-ablation analysis showed that we
could minimize only LTTM , but not optimize LKLAFT (θ) in Eq (9). Then, this value results in
reducing the overall performance, as shown in Table 4 and Table 5.

Masked Region Modeling (MRM): As each image is converted into a sequence of visual regions,
vk = vk,1, · · ·,vk,Ipf

, like textual tokens, we apply MRM Chen et al. (2020) if |Ipf | >1. We
denote the image region, and the mask indices as m ∈ NM , and randomly sample visual regions
and mask out these regions with the probability of 15%. KLAFT is trained to predict the masked
regions based on observations of their surrounding regions vk,\m, by minimizing this function:

LMRM (θ) = E(v)∼Ifθ(vk,m|vk,\m), fθ(vk,m|vk,\m) = ||v̂k,m − vk,m||22, (7)

where v̂k,m corresponds hI,m in Eq (1), and fθ is the multi-layer perceptron. The error between the
actual visual and the predicted feature is quantified to optimize the parameters of MaL.

Image Text Matching (ITM): The objective of ITM is to learn the relationship between images and
texts at the instance level. Unlike other ITM of UNITER Chen et al. (2020) and ViLBERT Lu et al.
(2019), we employ a triplet objective-based function to evaluate the similarities between images and
texts, and use [CLS] as shown in Figure 1. The special token, [CLS], which is used by Transformer-
encoder based models to encode a given input as a whole and gain its representation. However, the
text decoder does not have this special token. To overcome this issue, KLAFT appends [CLS] to the
end of each image and text, respectively. This addition ensures that KLAFT can obtain an instance-
level representation of the image, va, and its text, vx, respectively, and can apply the contrastive
loss.

Given image vector va as an anchor attribute embedding, and its corresponding text vector, vx, as
a positive embedding, and the other text vector, vy as a negative embedding, triplet loss tunes the
model such that the distance between va and vx is smaller than the distance between za and vy .
Mathematically, this objective minimizes the following loss function:

LITM (θ) = max
(va,vx,vy)∼B

(||va − vx|| − ||va − vy||+ ϵ, 0), (8)

where B is each batch, || • || is a distance metric and ϵ is the margin that ensures that vx is at least ϵ
closer to va than vy , and the sampling targets are batch units. We compared two loss functions, the
triplet objective-based function and the contrastive loss function, in preliminary experiments, and
confirms that the former outperformed the latter. The MaL focuses on transforming input features to
align with the model’s requirements, enhancing learning and generalization. In contrast, contrastive
learning is a self-supervised technique that learns representations by contrasting positive and nega-
tive pairs. This is an important task as it helps to bridge the differences between visual and textual
knowledge on the instance level, and optimize the parameters using two methods, MaL and TCM.

To optimize these parameters and close the difference between the pre-training and the fine-tuning
process, KLAFT optimize the model loss in the tuning process. Using (6,7,8), we can insert Eq (3)
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into the loss function, L(θ), that is defined as the sum of these objective functions and is optimized
in the fine-tuning stage:

LKLAFT (θ) = λMRMLMRM (θ)︸ ︷︷ ︸
encoder

+λITMLITM (θ)︸ ︷︷ ︸
encoder−decoder

+LTCM (θ) + λTTMLTTM (θ)︸ ︷︷ ︸
decoder

,
(9)

where θ is the parameter set of KLAFT, λMRM , λITM and λTTM are hyper parameters to balance
the importance of MRM, ITM, and TTM, respectively. We adopt Adaptive Moment Estimation
(Adam) (Kingma & Ba, 2015) over mini-batches, and the dropout strategy (Srivastava et al., 2014)
to update parameter and optimize networks.

5 EXPERIMENTS

5.1 IMPLEMENTATIONS

We implemented KLAFT by using Pytorch 2.0.11 and will release this code soon. Through experi-
ments, λMRM , λITM and λTTM are set to 0,1, 0,1, and 0.1.

5.2 IMAGE CAPTIONING TASK

We compare it with baselines on the two datasets of MS COCO Lin et al. (2014), and Conceptual
Captions Sharma et al. (2018) for PLMs. As the test data of COCO is not publicly available, we
followed the settings used in Cornia et al. (2020); Huang et al. (2019); Chen et al. (2022), and
converted all sentences to lower case. The validation data set was taken as our test set, and 5000
different image-caption pairs were randomly sampled from the training set as the validation set.
To create the small training data setup for COCO and Conceptual Captions, we randomly sampled
0.1%, 1.0%, and 100.0% image-caption pairs as training data. The procedure was repeated 4 times
with different random seeds.

We compare KLAFT with state-of-the-art models in 6 various settings, S1-6; we followed its setting
(i.e., VisualGPT), and applied it (COCO+Conceptual Captions) to comparisons including baselines
(e.g., AOA, M2 Transformer, and VisualGPT) in S1-S3. For S4-S6, we use only COCO.

Automated evaluation: To evaluate and compare models, we follow prior studies Saha et al. (2018);
Cui et al. (2019), and use BLEU-N Papineni et al. (2002), METEOR Lavie & Agarwal (2007),
ROUGE Lin (2004), CIDEr Vedantam et al. (2015), and SPICE Anderson et al. (2016) metrics to
measure the performance. To evaluate the effect of TCM, we prepared the following metric;

rTCM =
1

|Xt|
∑
i∈Xt

1

|xi|
∑
j∈xi

zij , zij =

{
0 if zij =0
1 else, (10)

where Xt is the set of test captions, xi is the set of tokens in the i-th text, and zij is the topic
indicator in Eq (3). The larger this value is, more topics other than “residual” are selected for each
token, as shown in Eq (3). Table 2 shows that the components of KLAFT enhance PLMs (e.g.,
GPT-2) in (S3 vs S1/S2, and S4 vs S3), and the increase in rTCM confirms that TCM successfully
extracted the target-specific knowledge, and achieved better performance in both S3 and S4. S1-S3
shows that KLAFT is highly efficient in learning under scaled-down data, KLAFT only updates the
representation associated with each topic, which allows it to coexist with PLM without contradicting
the motivation behind it. KLAFT cooperates with the VLMs and contributes to their performance
improvement, as shown in S5 and S6. The results of S4-6 indicate that TCM and TTM could
be effective PEFT methods not only in improving computational efficiency but also in closing the
knowledge differences.

Human evaluation: To compare the fluency of fine-grained captions, we conducted a fluency test
with human annotation on text generated from 100 images randomly sampled from the test set.
The results of KLAFT and the most competitive baseline models were compared. We recruited a
diverse group of annotators, each asked to judge using fluency and adequacy as criteria. Fluency
assesses whether a sentence is grammatically fluent, while adequacy measures the expressiveness of
the caption.

1https://pytorch.org/
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Table 2: Performance Comparison of image captioning models on image-caption pairs: In KLAFT,
ω is defined in Eq (5), K is #topics, AD used in F . In the top row, B-1, B-4, M, R, C, and S denotes
BLEU-1, BLEU-4, METEOR, ROUGE, CIDEr, and SPICE, respectively. The bold value denotes
the statistically superior value, p < 0.01, compared to the best baseline.

Model B-1 B-4 M R C S rTCM

S1: vs seq2seq under fine-tuning GPT-2 over 0.1% training data (COCO+Conceptual Captions)
Transformer Vaswani et al. (2017) 54.4 14.8 16.5 36.0 44.4 7.8 -

M2 Transformer Cornia et al. (2020) 55.0 14.8 16.7 39.5 43.1 7.8 -
AOA Huang et al. (2019) Transformer 56.7 14.5 16.9 34.0 41.0 7.2 -

DLCT Luo et al. (2021) 55.5 14.7 16.9 39.3 43.6 7.7 -
SATIC Zhou et al. (2021) 55.1 14.5 15.6 39.1 43.7 7.8 -

VisualGPT Chen et al. (2022) (τ=0) 57.9 15.7 17.1 41.4 44.3 10.7 -
VisualGPT (τ=0.2) 58.1 16.6 18.3 41.9 45.5 10.9 -

KLAFT(+VisualGPT) (ω=0.2, K=10) 60.5 19.9 20.4 44.6 51.2 13.2 0.22
S2: vs seq2seq under fine-tuning GPT-2 over 1.0% training data (COCO+Conceptual Captions)

M2 Transformer Cornia et al. (2020) 66.3 24.2 20.7 49.2 80.5 12.1 -
DLCT Luo et al. (2021) 66.3 24.9 20.5 48.5 79.9 11.8 -

SATIC Zhou et al. (2021) 66.5 24.3 20.9 48.2 79.7 11.6 -
VisualGPT Chen et al. (2022) (τ=0.2) 68.7 25.3 21.9 49.8 80.7 12.7 -
KLAFT(+VisualGPT) (ω=0.2, K=10) 69.8 26.5 23.1 50.6 82.5 13.8 0.20

S3: vs seq2seq under fine-tuning GPT-2 over 100% training data(COCO+Conceptual Captions)
VisualGPT Chen et al. (2022) (τ=0.2) 69.6 26.7 23.4 50.2 87.5 14.1 -
KLAFT(+VisualGPT) (ω=0.2, K=10) 72.2 28.2 29.2 53.2 116.9 22.7 0.14

S4: vs prefix 100% training data with frozen setting (only COCO)
Frozen Tsimpoukelli et al. (2021) 56.3 25.2 23.1 41.2 97.1 18.4 -

SimVLM Wang et al. (2022b) 61.1 30.3 27.6 44.8 100.3 20.3 -
ClipCap Mokady et al. (2021)(+CLIP) 58.4 28.8 26.8 44.2 103.1 19.7 -
KLAFT(+VisualGPT) (ω=0.2, K=10) 71.9 32.1 28.8 53.5 112.4 21.5 0.32

KLAFT(+CLIP) (ω=0.2, K=10) 71.2 32.1 28.2 54.1 113.8 22.6 0.33
S5: vs VLMs under 100% training data with frozen BERT (only COCO)

BLIP Li et al. (2022) 66.7 30.1 28.6 46.5 108.3 20.5 -
KLAFT(+BLIP) (ω=0.2, K=10) 73.2 34.2 29.1 53.7 110.2 21.1 0.36

S6: frozen VLMs under 100% training (only COCO), Values other than rTCM are rates of increase.
CoCa Yu et al. (2022)+TCM+TTM +8.8 +7.8 +7.6 +6.8 +9.2 +5.8 0.31

BLIP2 Li et al. (2023b)+TCM+TTM +8.2 +8.1 +8.0 +6.4 +8.8 +5.5 0.29
LLaVA Liu et al. (2023a)+TCM+TTM +6.1 +5.7 +5.2 +6.1 +8.3 +4.3 0.21

Table 3: Human evaluation (upper)COCO (lower)Conceptual Captions: In this table, the first, and
the second row corresponds to VisualGPT, and BLIP with KLAFT(ω=0.2, K=10, GPT-2*), respec-
tively, the scores indicate the percentages of win, lose and tie. The bold value denotes the statistically
superior value, p < 0.01, compared to the baseline.

Fluency Adequacy
Win Lose Tie Win Lose Tie

44.12 21.82 34.06 45.32 20.76 33.92
46.02 22.34 31.64 47.15 19.76 34.09
49.74 20.12 30.14 44.28 18.23 37.49
50.22 19.71 30.07 45.31 17.05 37.64

We subjected VisualGPT/BLIP and KLAFT to pairwise comparison, where each pair consisted of
one text generated by VisualGPT/BLIP and the other by KLAFT for the same image. Five annotators
judged which text was better (i.e., win, lose, or tie) based on the two metrics independently. Table 3
shows a clear difference between them. Since KLAFT achieves accuracy comparable to GPT-2
frozen, its components preserve target knowledge as topics and reflect it in producing target-specific
captions. These captions cannot be obtained by token-level substitution.

Ablation analysis: To investigate the contributions of components and training tasks on overall
performance, we conducted an ablation analysis. We removed different components of KLAFT
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Table 4: Ablation analysis of KLAFT with frozen GPT-2 on MS COCO with 0.1% training data:
In F , AD, M, and AF denote addition, multiplication, and affine operation in Eq (5), respectively.
CO denotes the excluded component (MAM, TTM, MRM, and ITM), where MAM(w/o) uses con-
ventional masks instead of MAM. B-1, B-4, M, R, C, S, and the bold value takes the meaning as in
Table 3.

components ω K F CO B-1 B-4 M R C S rTCM

TCM:ω
0.2 10 AD - 60.5 19.9 20.4 44.6 51.2 13.2 0.22
0.4 10 AD - 60.7 19.8 20.8 44.7 51.3 14.1 0.28
0.0 10 AD - 58.2 17.1 18.5 41.2 47.8 11.2 0.0

TCM:K
0.2 0(w/o) AD - 58.5 17.2 18.5 42.5 47.8 11.5 0.0
0.2 5 AD - 60.2 19.2 20.2 44.4 50.1 12.9 0.19
0.2 20 AD - 61.2 20.6 21.2 44.9 51.8 13.9 0.25

TCM:F - 10 M - 59.2 19.1 19.8 42.1 49.8 12.7 0.22
- 10 AF - 60.1 19.3 20.1 43.4 50.3 13.0 0.22

MAM(w/o) 0.2 10 AD MAM 58.7 17.4 18.5 42.5 48.2 11.7 0.20

objectives
0.2 10 AD TTM 59.1 18.1 18.6 42.7 48.8 11.8 0.20
0.2 10 AD MRM 59.5 18.6 18.7 42.8 49.1 12.1 0.21
0.2 10 AD ITM 58.8 17.9 19.1 42.5 48.2 12.1 0.20

Table 5: Runtime comparison for fine-tuning: In this table, T is the average wall time of each epoch.
BLIP2 LLaVA TCM+BLIP2* TCM+LLaVA*

T 17.8m 15.3m 10.4m 5.4m

(TCM, MAM) and training tasks (e.g., TTM, MRM, ITM) one by one; the resulting text generation
qualities are shown in Table 4.

This table shows that the setting with all components achieved the best performance. Both addition
and affine yielded similar performance in the TCM comparison. Despite similar effects, the compu-
tation cost of addition is smaller than that of affine, so we set addition as the default function, F , in
Eq 5. We observed a significant decrease in performance when MAM was replaced by conventional
masks (MAM(w/o)).

The number of topics, K, important, and its increase is associated with an increase in TTCM . Too
many topics, however, lead to overfitting. This result supports our hypothesis that both MAM and
TCM contribute to resolving the discrepancy between cross-modal representations. TTM/ITM align
images with text on the token/sequence topic level, bridging their semantic differences through the
test phase, while MAM does so on the hidden layer levels.

Runtime and Case study: The runtimes of two models are evaluated in comparison to TCM, as
detailed in Table 5. In this table, * represents the freezing of the base VLM. The configuration
KLAFT+BLIP2*, TCM+LlaVA* aligns with the S6 in Table2. Despite reusing a slightly larger
number of parameters, TCM exhibits faster convergence than fine-tuning and enhances the perfor-
mance of VLMs. The new parameters introduced in TCM include WTZ in Eq (4) and WZ , gz

in Eq (5), S4. This can be partially attributed to the use of MAM in KLAFT, which replaces the
meshed connectivity typically found in other Transformer-based models Cornia et al. (2020); Chen
et al. (2022). Lastly, a manual error analysis was conducted, leading to the identification of gram-
matically correct captions. An example of this can be observed in Table 1.

5.3 TUNING EVALUATION

We compare TCM with baselines on VQAv2 Goyal et al. (2017), GQA Hudson & Manning (2019),
VisWiz Gurari et al. (2018), SQA Lu et al. (2022b), TVQA Singh et al. (2019), MME Fu et al.
(2023), MMB Liu et al. (2023b), SEED Li et al. (2023a), LLaVA-W Liu et al. (2023a), and MMV Yu
et al. (2023) for fine-tuning methods.

Following the evaluation settings 2, we apply LoRA Hu et al. (2022), qLoRA Dettmers et al. (2023),
BITFIT Zaken et al. (2022), VL-Adapter Sung et al. (2022b), MixPHM Jiang & Zheng (2023), and
LST (Ladder Side-Tuning) Sung et al. (2022a) to LLaVA. Since the VLM encompasses the MAM of

2https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md
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Table 6: CIDEr Evaluation Results (Relative Improvement) over LLaVA-1.5 with Vicuna-7B with
dh = 4096 and 32 Blocks: Parameters is the number of parameters updated in fine-tuning process

Dataset TCM(K = 10) LoRA qLoRA BITFIT VL-Adapter MixPHM LST
VQAv2 0.14 0.10 0.08 0.05 0.12 0.13 0.09
GQA 0.16 0.12 0.09 0.06 0.14 0.15 0.10

VisWiz 0.17 0.14 0.10 0.07 0.16 0.17 0.11
SQA 0.15 0.11 0.08 0.05 0.13 0.14 0.09

TVQA 0.17 0.13 0.09 0.06 0.15 0.16 0.10
MME 0.19 0.15 0.11 0.07 0.17 0.18 0.12
MMB 0.18 0.12 0.09 0.06 0.14 0.15 0.10
SEED 0.22 0.16 0.12 0.08 0.18 0.19 0.13

LLaVA-W 0.20 0.14 0.10 0.07 0.16 0.17 0.11
MMV 0.19 0.13 0.09 0.06 0.15 0.16 0.10

Parameters 4096 81920 81920 4096 40960 40960 40960

the KLAFT, we apply only the TCM to measure the effectiveness of the PEFT. As CIDEr Vedantam
et al. (2015) measures consensus between generated captions and human annotations, we use this
metric to measure the effect and show results in Table 6. This table shows that TCM is more effective
than other PEFTs for the small number of parameters to be updated.

6 DISCUSSION AND LIMITATIONS

As shown in Figure 1, MAM ensures that KLAFT can share the space between images and texts
while bridging the differences between visual information and textual information. TCM explicitly
extracts this information, reducing the semantic differences between source and target data, and
better reflects the target data in text decoding. Table 3 and 4 support the conclusion that our fine-
grained framework guides PLMs to bridge the knowledge differences, while Table 3 implies that
KLAFT can output fine-grained captions. These results imply that these captions cannot be obtained
by token-level substitution. Its advantages are to 1) support various image object detection networks
in PLMs, as shown in Figure 1, and 2) make the best use of both knowledge while freezing PLMs.

KLAFT, its components (TCM, MAM), and their objective functions (TTM, MRM, ITM) apply to
other multi-modal tasks consisting of a combination of other type data (e.g., audio-text), without
losing generality, since they successfully fill the knowledge differences while retaining the capabil-
ities of PLMs without limiting the domain. Determining the appropriate topic number involves the
use of nonparametric Bayesian methods, and will be one of our future works.

We defined rTCM to confirm the effectiveness of TCM, and the subnetworks defined in Tables 2 and
4 were used, as well as in the quantitative evaluation. Future work is needed to develop generally
available data sets and quantitative indicators that can be evaluated without the burden and bias for
evaluators in qualitative assessment of expressive image captions, as shown in Tables 1 and 3.

The proposed method has limitations related to the proximity of the data sets and the challenge
of qualitative evaluation. It is not very effective when the target and source data sets are similar,
meaning that the knowledge is similar. Additionally, it is difficult to find an appropriate data set for
caption evaluation with explanatory power. For instance, requesting enough evaluators for medical
images is difficult to ensure statistical significance, and the reproducibility of experiments is low.

7 CONCLUSION

We proposed a fine-grained framework, KLAFT, that fine-tunes PLMs toward generating expressive
image captions. The novelty of KLAFT is in focusing on the knowledge differences and closing
them through both knowledge alignment and lift. Unlike traditional PEFT methods, KEIC dynam-
ically leverages sub-networks within PLMs, resulting in superior expressive and knowledge-rich
captions. Experiments show that KLAFT contributes to 1) bridging differences by interpreting the
fine-grained interaction and knowledge alignment, and 2) generating fine-grained captions by high-
lighting the target domain knowledge inherited from PLMs using knowledge lift.
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