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Abstract

Large Language Models (LLMs) have achieved remarkable performance across tasks but
remain energy-intensive due to dense matrix operations. Spiking neural networks (SNNs)
improve energy efficiency by replacing dense matrix multiplications with sparse accumu-
lations. Their sparse spike activity enables efficient LLMs deployment on edge devices.
However, prior SNN-based LLMs often sacrifice performance for efficiency, and recovering
accuracy typically requires full pretraining, which is costly and impractical. To address this,
we propose SpikingMamba, an energy-efficient SNN-based LLMs distilled from Mamba that
improves energy efficiency with minimal accuracy sacrifice. SpikingMamba integrates two
key components: (a) SI-LIF, a signed-integer spiking neuron that preserves semantic polarity
through signed multi-level spike representations. (b) A training-exclusive Smoothed Gra-
dient Compensation (SGC) path mitigating quantization loss while preserving spike-driven
efficiency. We employ a single-stage distillation strategy to transfer the zero-shot ability
of pretrained Mamba and further enhance it via reinforcement learning (RL). Experiments
show that SpikingMamba-1.3B achieves a 4.76× energy benefit, with only a 4.78% zero-
shot accuracy gap compared to the original Mamba. The model achieves a further 2.55%
accuracy improvement after RL, narrowing the performance gap from 4.78% to 2.23%.
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1 Introduction

Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks and
domains (Li et al., 2025; Jiang et al., 2023; Liu et al., 2024; Team et al., 2023; Touvron et al., 2023; Chen
et al., 2024a; Geiping et al., 2025; Jimenez et al., 2023; Wang et al., 2024b). However, their computational
and energy requirements grow rapidly with scale, limiting their deployment in latency and energy constrained
environments (Argerich & Patiño-Martínez, 2024).

These limitations stem largely from the fact that most modern LLMs are built on decoder-only Trans-
former architectures, where the self-attention mechanism incurs quadratic O(L2) complexity during infer-
ence. Transformer-based LLMs execute inference with a prefill stage followed by an autoregressive decoding
stage (Touvron et al., 2023). In both stages, the self-attention mechanism suffers from quadratic O(L2)
complexity with respect to sequence length L (Yang et al., 2023). Additionally, the autoregressive decoding
requires maintaining a growing Key-Value (KV) cache during inference, leading to O(L) memory overhead.
These limitations lead to inefficient computation, especially for long-context inference.

To address the quadratic cost of attention, the recently proposed Mamba architecture (Gu & Dao, 2023;
Dao & Gu, 2024) replaces attention with a selective state space model (SSM). This design achieves linear-
time O(L) sequence modeling while requiring only O(1) memory during autoregressive generation (Wang
et al., 2024a), eliminating KV caching and improving efficiency for long-context and edge scenarios. However,
despite these architectural improvements, Mamba still relies heavily on dense matrix multiplications, making
energy consumption a critical bottleneck, especially on battery-powered or embedded devices (Xing et al.,
2025).

To address this challenge, we propose SpikingMamba, a spiking large language model that combines the
architectural efficiency of Mamba with the energy-saving advantages of SNNs. Rather than training a spiking
model from scratch, we distill SpikingMamba from a pretrained Mamba2 using a single-stage self-distillation
strategy. However, naive LIF neurons struggle to preserve semantic information during distillation, leading to
degraded feature representations and suboptimal performance. To overcome this, we design a SI-LIF neuron
and a Smoothed Gradient Compensation path for SpikingMamba modeling. Together, these components
improve distillation quality while maintaining the sparse, low-power nature of SNNs. Our contributions
are summarized:

• We propose SpikingMamba, a recurrent spiking LLMs that integrates a novel Signed Integer
Integrate-and-Fire (SI-LIF) neuron. This design enhances feature representation for distillation
by introducing negative activations, forming a ternary spiking scheme that better captures the mag-
nitude and polarity of semantic representations.

• We introduce the Smoothed Gradient Compensation (SGC) path to mitigate quantization-induced
representational fidelity loss from spikes. This auxiliary path operates exclusively during training,
preserving spike-driven inference advantages. When applied to just 3 layers, SGC path improves
1.3B SpikingMamba’s zero-shot accuracy by 0.8% on average.

• We propose Single-Stage Self-Distillation strategy, combining KL divergence on logits with hidden-
state alignment loss, effectively transferring zero-shot ability from Mamba without full pretraining.
Additionally, SpikingMamba is compatible with RL methods such as DPO (Rafailov et al., 2024)
and KTO (Ethayarajh et al., 2024), which further enhance performance with tiny cost.

• In experiments on a 1.3B-parameter model, SpikingMamba achieves a ∼4.76× energy benefit over
Mamba2, while maintaining commonsense zero-shot accuracy within a 4.78% degradation margin
after distillation. With reinforcement learning, SpikingMamba achieves a further 2.55% accuracy
improvement, using fewer than 10 GPU-hours.
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2 Related Work

2.1 Mamba and Distillation.

The Mamba (Gu & Dao, 2023) architecture and its successor Mamba2 (Dao & Gu, 2024) have been proposed
as efficient recurrent alternatives to Transformers for sequence modeling. Leveraging structured state space
models (SSMs), they eliminate O(L2) quadratic attention and O(L) KV caching, while achieving performance
on par with or better than Transformers of similar size (Wang et al., 2024a). Their recurrent structure and
constant memory make Mamba-based LLMs well-suited for edge deployment. Therefore, recent studies such
as MambaInLLaMA (Wang et al., 2024a), LoLCats (Zhang et al., 2024) and Llamba (Bick et al., 2025)
explore distilling Transformer-based LLMs into Mamba-based models with minimal training cost.

2.2 SNNs for LLMs and Mamba

Improving LLM efficiency remains a fundamental challenge for edge deployment (Qu et al., 2025; Cai et al.,
2024). Quantization reduces model size and compute, yet activation quantization is difficult due to high-
magnitude outliers in LLMs, often inducing severe accuracy loss under low-bit settings (Lin et al., 2024;
Yu et al., 2025). Additionally, quantization does not alleviate the inherent energy cost of dense matrix
multiplications. In contrast, spiking neural networks (SNNs) utilize binary, event-driven activations that
exhibit both spatial and temporal sparsity. For example, prior work reports spike rates as low as 20% (Tang
et al., 2024a), this sparsity translates to significant savings in computation and I/O bandwidth, replacing
dense MAC operations with sparse Accumulations (AC). These properties make SNNs a promising direction
for energy-efficient inference.

Recent work on spiking language models follows two main paradigms: converting pretrained ANNs or train-
ing SNNs from scratch. Conversion-based methods, such as SpikingBERT (Bal & Sengupta, 2024), Spike-
BERT (Lv et al., 2023), and SpikeLLM (Xing et al., 2025), reuse pretrained weights but require many
inference timesteps for spike accumulation, increasing latency and energy cost. Alternatively, models like
SpikeGPT (Zhu et al., 2023), SpikingSSMs (Shen et al., 2025), and SpikeLM (Xing et al., 2024b) are trained
from scratch and support sparse computation, but incur high training costs to scale larger models. Table 1
compares these models with different training strategies, neuron step, inference complexity and zero-shot
ability.

Recent efforts have explored combining SNNs with Mamba, primarily in vision tasks such as video under-
standing (Li et al., 2024), event-based classification (Qin & Liu, 2024), action recognition (Chen et al.,
2024b), and point cloud processing (Wu et al., 2025). These methods are vision-centric and typically replace
the activation function with spiking neurons or stack Mamba blocks alongside SNN modules. However,
Mamba was originally designed for language modeling, and its integration with SNNs for energy-efficient
LLMs remains unexplored.

Table 1: Comparison of SNN-based language models. SpikingMamba is the first linear-time SNN LLM at the
billion-parameter scale supporting distillation, low-latency inference, and reinforcement learning. T denotes
the number of repeated computations per token and D denotes an integer range. A larger T leads to higher
inference latency.

Model Size Training Step (T × D) Infer. Comp. Zero-Shot
SpikeBERT (Lv et al., 2023) 109 M 2-stage distill 4 × 1 O(4L2) ✗
SpikingBERT (Bal & Sengupta, 2024) 50 M 3-stage distill 125 × 1 O(125L2) ✗
SpikeLM (Xing et al., 2024b) 194 M 2-stage distill 4 × ±1 O(4L2) ✗
SpikeGPT (Zhu et al., 2023) 216 M Direct + Finetune 1 × 1 O(L) ✗
SpikingSSMs (Shen et al., 2025) 75 M Direct 1 × 1 O(L) ✗
SpikeSSMs (Zhong et al., 2024) 75 M Direct 1 × 1 O(L) ✗
SpikeLLM (Xing et al., 2024a) 7 B - 70 B Quantization 2 × 16 O(32L2) ✓
SpikingMamba (Ours) 1.3 B 1-stage distill + RL 1 × ±4 O(4L) ✓
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3 Preliminary and Motivation

Notation. Throughout the paper and Appendix, vectors and matrices are denoted by bold italic lowercase
and bold capital letters, respectively (e.g., x and W ). For a fully connected layer, y = W x ∈ Rdout , where
W ∈ Rdout×din and x ∈ Rdin . The symbol W:,i denotes the i-th column of matrix, and (

∑
{i|condition} W:,i)

indicates the column-wise sum over indices satisfying the condition. The subscript xt refers to the variable x
at the t-th token, while the bracket x[t] denotes the t-th micro-timestep within neuron dynamics per token.

3.1 Spiking Neurons

The Leaky Integrate-and-Fire (LIF) is one of the most widely adopted neuron models for modeling spiking
behaviors in SNNs (Huang et al., 2024b; Meng et al., 2023). At each timestep t, the neuron at layer l
integrates its postsynaptic current cl[t] with its membrane potential from the previous timestep ul[t − 1]
(Eq 1):

ul[t] =β(ul[t − 1] − Vthsl[t − 1]) + cl[t], (1)
sl[t] =Θ(ul[t] − Vth), (2)

where β ∈ (0, 1) is the decay factor mimicking the leaky mechanism. The postsynaptic current cl[t] is
computed by the synaptic operation ∗ (either fully connected or convolutional) between the weight matrix
W l and the presynaptic spikes sl−1[t] (i.e., cl[t] = W l ∗sl−1[t]). When the membrane potential ul[t] exceeds
a threshold Vth, the neuron emits a binary spike sl[t] ∈ {0, 1} according to the Heaviside step function Θ(x),
which outputs 1 for x ≥ 0 and 0 otherwise, as shown in Eq 2.

To address the quantization errors inherent in standard LIF neurons, Luo et al. (2024) proposed the Integer
Leaky Integrate-and-Fire (I-LIF) neuron. I-LIF emits integer-valued outputs during training and converts
them into binary (0/1) spikes during inference, thereby enhancing training dynamics while preserving spike-
driven inference. Specifically, the spiking function in Eq 2 is modified as:

sl[t] = Clip
(
Round(ul[t]), 0, D

)
, (3)

where Round(·) denotes the rounding function, Clip(x, min, max) restricts x to the range [min, max], and D
is a hyperparameter indicating the maximum integer output. By producing discrete integer outputs during
training (Yao et al., 2025), I-LIF enhances optimization performance while maintaining efficient 0/1 spike-
driven inference at test time, as demonstrated by Luo et al. (2024). The concurrent work SpikingBrain (Pan
et al., 2025) produces integer-valued activations for efficient forward inference. However, this work is designed
exclusively for quantized inference and does not verify end-to-end training.

3.2 Motivation

In Mamba2, over 90% of parameters (e.g., 92.3% in 1.3B) are in the input/output Linear layer, corresponding
to Win and Wout respectively (Further details are provided in the Appendix A and B). The embedding
layer shares parameters with the causal head, but its relative size shrinks as the model scales. Binarizing
embeddings harms token representation and leads to performance loss. Therefore, we only focus on the Linear
layer due to the computational dominance of the Linear layer in Multiply-Accumulate (MAC) operations.
To reduce this computational cost, we insert spiking neurons upstream of input and output projections,
converting dense MACs into sparse Accumulation (AC) operations. The Sparse AC operations refer to
accumulation operations without the multiplication step. This occurs in event-driven spiking computation,
where additions are performed only when spikes are present, therefore leading to sparsity in the operation
count. This design enhances energy efficiency while preserving semantic fidelity.

4 Method

We propose SpikingMamba, an energy-efficient extension of Mamba2 designed to maintain performance with
reduced computational cost. It introduces three novel components: (i) a signed spiking neuron (SI-LIF) that
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Figure 1: (a) Overview of the training architecture. (b) Illustration of the SpikingMamba block. (c)
Illustration of the Smoothed Gradient Compensation path.

captures negative polarity and preserves magnitude during training; (ii) a lightweight Smoothed Gradient
Compensation path that restores essential features lost in the spiking conversion, and (iii) a hybrid training
strategy combining knowledge distillation and to transfer teacher model ability while reinforcement learning
for improving model performance in further. An overview of the full framework is shown in Figure 1(a).

4.1 SpikingMamba Block

To reduce energy consumption in the most computationally expensive parts of the model, SpikingMamba
introduces neurons before both the input and output projection layers. These projections dominate memory
and compute overhead, making them ideal targets for spike-driven optimization.

At each timestep t, the input x[t] ∈ Rdin is passed through a spiking neuron function fSN(·), yielding a sparse
binary activation s[t] = fSN(x[t]) ∈ {0, 1}din . Rather than performing dense matrix-vector multiplication
y[t] = W x[t], where W ∈ Rdout×din is the projection weight, we compute sparse row-wise accumulation over
firing indices i:

y[t] =
∑

{i|s[t]i=1}

W:,i , (4)

where the conditional summation is determined by the sparse binary activation s[t] = fSN(x[t]), which is
produced by the spiking neuron and thus remains implicitly dependent on the input x[t]. This converts
costly MAC operations into efficient AC operations. The sparse spiking pattern further reduces memory
traffic, improving overall compute and I/O efficiency.

4.1.1 SI-LIF Neuron

Existing integer spiking neurons remain mechanistically incomplete for large language models: I-LIF’s strictly
non-negative [0, D] range erases semantic polarity (Luo et al., 2024), whereas ternary neurons (Guo et al.,
2024; Xing et al., 2024b) with ({−1, 0, 1}) impose coarse magnitude discretizations, jointly provoking a
distribution shift that permeates Mamba’s recurrent state.

To rectify this dual defect, we propose the Signed Integer Leaky-Integrate-and-Fire (SI-LIF) neuron, a
bounded signed-integer spike neuron that supports both integer-valued training and spike-driven inference.
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4.1.2 Integer-Valued Training

At each step, the membrane potential is rounded and clipped into a tunable symmetric range:

st = Clip
(
Round(xt), −D, D

)
, (5)

here, D explicitly determines the trade-off in quantization accuracy, while the gradient of st with respect to
xt is approximated using a rectangular surrogate function, which yields zero derivatives outside the interval:

∂st

∂xt
=

{
α, −D ≤ xt ≤ D,
0, otherwise,

(6)

where the scaling factor α denotes the slope of the surrogate gradient. In this work, we adopt α = 1
by default. Compared to I-LIF and ternary neurons, SI-LIF encodes information with both polarity and
amplitude, thereby enhancing the representational capacity of SNNs during training.

4.1.3 Spike-Driven Inference

This paragraph details how the trained SI-LIF neuron performs event-driven inference while maintaining
exact equivalence to the dense transformation yt = W st, where st = SI-LIF(xt) ∈ [−D, D]. To enable the
event-driven inference, we reconstruct the integer st ∈ [−D, D] as binary s[i] ∈ {0, 1} through the neuronal
dynamics of SI-LIF within the micro-timestep i = 1 of an internal temporal window of length D. For
i = 1, . . . , D, the neuronal dynamics strictly obey the discrete-time LIF equations:

v[i] =β(v[i − 1] − Vth · s[i − 1]) + x[i], (7)
s[i] =Θ

(
v[i] − Vth

)
, (8)

where β = 1 for exact reconstruction and s[i] ∈ {0, 1}din denotes the binary spike vector at micro-step i.

Specifically, the x[1] = |xt| at first micro-timestep while x[i] = 0 for other i, where the | · | denotes the
absolute value taken. Consequently, the summation of the spiking sequence equals the integer activation
st produced by SI-LIF during training. The layer output is then recovered exactly by a sparse weighted
summation over the spike train:

yt = W · fSN(xt)︸ ︷︷ ︸
For Training

=
D∑

i=1
W ·

(
sgn(xt)·s[i]

)
=

D∑
i=1

din∑
j=1

(
sgn(xt)jW:,j

)
·s[i]j =

∑
{j|s[i]j=1}

sgn(xt)j · W:,j︸ ︷︷ ︸
For Spike-Driven Inference

, (9)

where the binary spike s[i] is obtained from the dynamic Eq 7-8, then s[i] serves as a selection signal to
choose the corresponding j-th row of the W:,j to summarize together. Further, the sgn(xt) is the single-bit
sign flag. This sign retrieval incurs zero additional cost: the polarity bit is obtained in hardware by a single
XOR with the sign bit of the input, enabling instantaneous sign inversion via bit-flip without additional
arithmetic operation.

Each inner summation corresponds to a row-wise addition triggered exclusively by sparsity active spikes,
thereby replacing the dense MAC (W xt) with at most D times event-driven accumulations while maintaining
exact equivalence. These spike-based computations enable fine-grained signed encoding while maintaining
neuromorphic sparsity.

4.2 Smoothed Gradient Compensation Path

Although SI-LIF neurons capture information from negative activation domains, their quantized charac-
teristics can introduce gradient approximation errors during backpropagation. To alleviate these issues,
we introduce a Smoothed Gradient Compensation (SGC) path (denoted by dashed lines in Figure 1(c)),
which approximates the output of the primary spiking pathway and facilitates model training through its
differentiable nature.
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Specifically, we apply a distributional alignment constraint to enforce semantic consistency. This means that
ensuring both pathways produce similar predictive distributions despite the quantized nature of the SI-LIF
outputs:

LHidden = 1
2T

T∑
t=1

∥softmax(yt) − softmax(y′
t)∥2

2, (10)

where yt = W · fSN(xt) is the output from the spiking pathway, and y′
t = W ′ · fm(xt) is the output from

the SGC path. The projection matrix W ′ ∈ Rd1×d2 is initialized based on W ∈ Rd1×d2 and subsequently
updated through training.

To ensure scale consistency between fm(xt) and the SI-LIF output fSN(xt), a range-preserving mimic func-
tion is introduced:

fm(xt) = D × tanh(xt), (11)

where D is the spike amplitude hyperparameter of SI-LIF neurons. This formulation ensures strict alignment
in dynamic range [−D, D] with the spiking outputs, while enabling smooth gradients ∂LHidden/∂xt to support
parameter optimization. Upon completion of training, only the spiking pathway is retained for event-driven
inference.

4.3 Training Framework

To enable stable and effective training of SpikingMamba without full-scale pretraining, we adopt a learning
framework: (1) knowledge distillation (KD) from a pretrained Mamba2 teacher, and (2) alignment via
reinforcement learning (RL). This combination transfers both logit-level behavior and internal representations
to the spiking model while addressing its representation shift problem.

4.3.1 Distillation Stage

We distillate SpikingMamba via supervised fine-tuning using teacher-generated pseudo-labels. The training
objective includes both output-level and hidden-level alignment:

L = LKL + LHidden, (12)

The first term minimizes the KL divergence between the output distributions of teacher and student:

LKL = 1
T

T∑
t=1

KL
(
p(·|ŷ1:t, x, θT )||p(·|ŷ1:t, x, θS)

)
, (13)

where θT and θS are the teacher and student parameters, respectively. The second term LHidden corresponds
to the hidden state alignment defined in Eq 10, ensuring fidelity of intermediate representations. In practice
in this work, we only incorporate the SGC path on 3 layers with the first layer, middle layer and last layer,
which could balance the training efficiency and performance. Specifically, these correspond to the 1st, 12th,
and 24th layers in the 130M model, and the 1st, 24th, and 48th layers in the 1.3B model, which contain 24
and 48 layers in total, respectively.

4.3.2 Alignment Stage

To further enhance zero-shot reasoning and preference alignment, we apply reinforcement learning using
Direct Preference Optimization (DPO) (Rafailov et al., 2023) and its stabilized variant KTO (Ethayarajh
et al., 2024). Given a prompt x with preferred response yw and dispreferred response yl, DPO maximizes:

πθ = max
θ

E(x,yw,yl)∼D log σ (β · (fw − fl)) , (14)

where fw = log p(yw|x;θ)
p(yw|x;θT ) , fl = log p(yl|x;θ)

p(yl|x;θT ) , σ is the sigmoid function and θT is the reference policy. While
DPO is effective, it is unstable due to local gradient noise and harsh penalization.
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KTO addresses these issues by replacing the pairwise structure with a global reward baseline. For a single
labeled pair (x, y), the reward is r(x, y) = β log p(y|x;θ)

p(y|x;θT ) , which is compared to a dataset-level baseline zref.
The final KTO loss becomes:

LKTO = E(x,y)∼D

[
w(y)

(
1 − σ (sy · (r(x, y) − zref))

)]
, (15)

where sy ∈ {+1, −1} denotes preference labels, and w(y) is a sample weighting function. This allows for
efficient use of both paired and unpaired data while improving training stability.

5 Experiments

To evaluate the effectiveness, efficiency, and generalization capabilities of SpikingMamba, we conduct exper-
iments across multiple settings (The detailed experimental setup is provided in the section 5.1). We first
assess zero-shot accuracy on general reasoning tasks and measure generative performance using perplexity
on standard language modeling benchmarks. Next, we analyze the energy efficiency of SpikingMamba under
various configurations. Finally, ablation studies further validate the contribution of each component and the
distillation pipeline.

5.1 Experimental Setup

Implementation Details. During distillation, we perform supervised fine-tuning on the GenQA (Chen
et al., 2024c), InfinityInstruct (BAAI, 2024), and OpenHermes 2.5 (Teknium, 2023) datasets, following the
single-epoch strategy used in MambaInLLaMA (Wang et al., 2024a). The teacher is a pretrained Mamba2
of the same size, and SpikingMamba is initialized with the corresponding Mamba2 weights. For reinforce-
ment learning (RL), we apply Direct Preference Optimization (DPO) (Rafailov et al., 2024) or its variant
KTO (Ethayarajh et al., 2024) using the UltraFeedback (Cui et al., 2023). All models are trained with the
AdamW optimizer (β = (0.9, 0.98)) and a global batch size of 32, using linear warm-up for the first 1% of
steps followed by cosine annealing. The sequence length is fixed at 2048 tokens, and the embedding layer
remains frozen during training. All experiments are conducted using 8 NVIDIA A100 GPUs with BF16
precision. For the 1.3B model, distillation takes around 42 hours, and RL takes around 1 hour. We use a
fixed learning rate of 1e-3 for distillation and 5e-6 for RL.

Evaluation Datasets. We utilize the open-source LM Evaluation Harness library (Gao et al., 2023)
(from the big-refactor branch) to evaluate six standard tasks: BoolQ accuracy (Clark et al., 2019), PIQA
accuracy (Bisk et al., 2020), HellaSwag (HS) normalized accuracy (Zellers et al., 2019), WinoGrande (WG)
accuracy (Sakaguchi et al., 2021), ARC-Easy and ARC-Challenge (AE and AC) accuracy and normalized
accuracy (Clark et al., 2018). Each task is evaluated by analyzing the probability assigned by the model to
each potential answer choice. We also report perplexity on the WikiText-2 (Merity et al., 2016), C4 (Raffel
et al., 2020), PTB (Marcus et al., 1993) dataset as an additional metric. Perplexity measures how well a
probability model predicts a token, quantitatively measuring the model’s generation power.

Baseline. We primarily compare SpikingMamba against the pretrained Mamba2 baseline. We further
include spike-based language models such as SpikeLLM (Xing et al., 2024a), SpikingSSMs (Shen et al., 2025)
and SpikeGPT (Zhu et al., 2023) for a comprehensive comparison. Although SNNs and quantization are
orthogonal methods, spiking out can be viewed as a 1-bit activation quantization. Thus, we additionally
compare against the 1-bit quantized Mamba (Tang et al., 2024b).

5.2 Main Results

5.2.1 Effectiveness of SpikingMamba

As shown in Table 2, both SI-LIF and the SGC path are critical to retaining Mamba performance in the
spiking setting. Specifically, using the SGC path consistently improves performance compared to variants
without it, indicating its effectiveness in recovering information loss from the SNN path. Furthermore,
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Table 2: Comparison with 1-bit Mamba quantization and SNN-based LLMs. We adopt a unified “step”
notation T × D from Yao et al. (2025), where T is the number of timesteps and D the maximum integer
activation (“D = 1” is LIF, “D > 1” is I-LIF (Yao et al., 2025), “±D” is SI-LIF). T > 1 implies extra T
times repeated computation needed for per token. “P.” denotes parameter count, “T.” indicates training
tokens, and “PT” marks pretrained models. “Diff.” shows average accuracy gap (Red: Performance drop
compared to the ANN model). The SGC denotes whether to use the Smoothed Gradient Compensation
path. While SpikingMambas denotes our fully SNN model, we highlight with Orange background color.

Zero-shot Accuracy (%) (↑)
Model P. T. (↓) SNN SGC Step BoolQ PIQA HSNorm WG AE ACNorm Avg. Diff.
Mamba2 130M - PT - 1 55.63 64.85 35.13 52.17 47.31 24.40 46.58 -
SpikingMambas 130M 7 B ✓ ✗ 1 × ±4 51.01 61.10 31.44 51.62 46.59 22.78 44.09 -2.49
SpikingMambas 130M 7 B ✓ ✓ 1 × ±4 53.27 62.19 31.32 51.78 45.96 22.27 44.47 -2.12
Mamba2 1.3B - PT - 1 64.34 73.72 59.94 61.09 64.18 33.11 59.40 -
Bi-LLM (Mamba) (Huang et al., 2024a) 1.3B 1260 B ✗ - - 40.10 55.40 29.60 50.70 30.60 21.80 38.03 -21.36
Bi-Mamba (Tang et al., 2024b) 1.3B 1260 B ✗ - - 62.00 69.20 43.10 53.70 43.90 24.40 49.38 -10.01
SpikingMambas 1.3B 7 B ✓ ✗ 1 × 4 59.45 68.61 44.89 54.70 61.83 29.78 53.21 -6.19
SpikingMambas 1.3B 7 B ✓ ✗ 1 × ±4 58.78 69.53 48.85 54.22 62.58 29.18 53.86 -5.54
SpikingMambas 1.3B 7 B ✓ ✓ 1 × ±4 59.60 70.34 48.66 55.72 63.44 29.95 54.62 -4.78
LLAMA1-7B 7B - PT - 1 73.08 77.47 73.00 67.07 52.48 41.46 64.09 -
SpikeLLM (Xing et al., 2024a)2025’ ICLR 7B - ✓ - 2 × 16 65.45 41.67 32.51 64.37 56.59 54.3 52.48 -11.57

Mamba2 + DPO 1.3B - ✗ - 1 63.64 73.23 61.22 60.69 64.02 37.03 59.97 -
SpikingMambas + DPO 1.3B - ✓ ✗ 1 × ±4 61.80 69.86 50.15 53.99 63.26 31.14 55.03 -4.94
SpikingMambas + DPO 1.3B - ✓ ✓ 1 × ±4 62.23 70.73 52.39 57.14 63.64 35.32 56.91 -2.49
Mamba2 + KTO 1.3B - - - 1 60.55 73.78 61.67 61.48 66.12 35.41 59.84 -
SpikingMambas + KTO 1.3B - ✓ ✗ 1 × ±4 63.61 70.46 52.12 56.59 65.28 32.34 56.73 -3.11
SpikingMambas + KTO 1.3B - ✓ ✓ 1 × ±4 62.72 71.33 52.20 56.27 66.29 34.22 57.17 -2.23

the proposed SI-LIF neuron, which supports both positive and negative spike amplitudes, outperforms the
I-LIF variant that only produces positive spikes, demonstrating the benefit of richer activation dynamics.
Compared to 7B SpikeLLM, 1.3B SpikingMamba exhibits a 4.78% performance drop in zero-shot accuracy
while SpikeLLM-7B drops 11.57%. Importantly, SpikingMamba-1.3B achieves 54.62% zero-shot performance
with just 7B tokens for distillation, while Bi-Mamba-1.3B achieves 49.38% in contrast to the 1280B tokens
needed. Under the same training conditions, the SpikingMamba from 54.62% improves to 56.91% and
57.17% after DPO and KTO reinforcement learning, achieving 2.29% and 2.55% improvement, while Mamba2
improves only 0.57% and 0.44%, which indicates the SNN-based LLM could potentially benefit more from
reinforcement learning than the ANN-based LLM.

5.2.2 Comparison to SNNs Training from Scratch

Table 3 further evaluates the zero-shot generalization ability of SpikingMamba against SNN-based language
models trained from scratch. Despite not being specifically tuned on WikiText datasets, SpikingMamba
achieves (T × D = 1 × ±4) lower perplexity than fully-trained SNN language models such as SpikeGPT
and SpikingSSMs. This shows that by leveraging a pretrained teacher and an efficient distillation process,
SpikingMamba can preserve zero-shot performance at a significantly lower training cost.

5.2.3 Perplexity

We analyze the perplexity (The lower is better) across datasets, including WikiText-2 (Merity et al., 2016),
C4 (Raffel et al., 2020), PTB (Marcus et al., 1993) as done in Bi-Mamba (Tang et al., 2024b). We observe a
consistent performance hierarchy across configurations (SI-LIF > I-LIF (Yao et al., 2025) > LIF) as shown
in Table 4. This trend highlights the importance of ternary spikes for SNN-based LLMs modeling. The same
trend also persists at the 130M scale (Further details are provided in the Supplementary Materials). While
Bi-Mamba requires 1260B tokens and a larger teacher model, our method achieves comparable or better
perplexity (e.g., 25.11 vs. 28.9 on PTB) using only 7B tokens and the same model size, demonstrating the
efficiency of our distillation approach.
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Table 3: Comparison with spiking language models on WikiText-103, measured in token-level perplexity
(PPL) (↓). SpikeGPT (Zhu et al., 2023) and SpikingSSMs (Shen et al., 2025) are trained on the WikiText
datasets, while SpikingMamba reports zero-shot results without any additional training or finetuning on
these datasets.

Model SNN Parameters WikiText-103 PPL (↓)
GPT2 Small (Radford et al., 2019) ✗ 124M 29.41
GPT2 Medium (Radford et al., 2019) ✗ 346M 26.37
Mamba2 (Dao & Gu, 2024) ✗ 130M 19.56
SpikeGPT (Zhu et al., 2023) ✓ 216M 39.75
SpikingSSMs (Shen et al., 2025) ✓ 75M 33.94
SpikeSSMs (Zhong et al., 2024) ✓ 75M 33.18
SpikingMamba (Ours) ✓ 130M 26.32

Table 4: The perplexity under the different configurations. “P.” means the model parameters. “SGC” denotes
using the Smoothed Gradient Compensation path. “Step” means a different neuron (“D > 1” is I-LIF (Yao
et al., 2025), “±D” is SI-LIF).

Parameters SGC Step Wiki2 (↓) C4 (↓) PTB (↓)
Mamba2 1.3B - 1 10.42 14.78 17.72
GPTQ-3bit (Frantar et al., 2022) 1.3B - 1 29.3 37.3 56.5
GPTQ-2bit (Frantar et al., 2022) 1.3B - 1 1.2e+6 1.3e+6 1.0e+6
BiLLM (Huang et al., 2024a) 1.3B - 1 4943.2 4013.6 3540.8
Bi-Mamba (Tang et al., 2024b) 1.3B - 1 12.6 13.6 28.9
SpikingMamba 1.3B ✗ 1 × 1 31.71 36.87 52.25
SpikingMamba 1.3B ✗ 1 × 4 17.90 23.45 30.19
SpikingMamba 1.3B ✗ 1 × ±4 15.79 21.01 26.20
SpikingMamba 1.3B ✓ 1 × ±4 15.17 20.66 25.44

5.3 Energy Analysis

SpikingMamba offers significant energy efficiency advantages over Mamba during inference. To quantify
these benefits, we compare the energy efficiency ratio (EA/ES) between Mamba2 and SpikingMamba across
different model sizes and neuron types (Additional details are provided in the Appendix C). As shown
in Figure 2, larger models benefit more from spike-driven computation due to the proportion of linear
projection increasing as the model scale. Across neuron types, LIF yields the highest efficiency due to
its strict binarization, followed by I-LIF and SI-LIF. While SI-LIF slightly sacrifices efficiency, it enables
significantly higher expressiveness and lower accuracy loss, highlighting a practical trade-off.

Introducing SGC (striped bars) slightly increases computation but reduces spike rates in most cases, es-
pecially in input projections, leading to an overall net energy gain. This effect holds even with SI-LIF
neurons, where semantic fidelity is better preserved. Reinforcement learning (green bars) via DPO or KTO
further improves accuracy without affecting energy use, since the architecture remains unchanged. Together,
these results show that SGC and RL can be combined with SI-LIF to maintain high energy efficiency while
narrowing the accuracy gap with the full Mamba2.

5.4 Ablation Study

We perform ablation studies to systematically evaluate the impact of key components in SpikingMamba,
including the Neuron ablation, SGC integration, loss design and training framework. The results reveal
which factors are critical for achieving competitive performance.

SpikingMamba Architecture. Table 5 shows that both Smoothed Gradient Compensation path and SI-
LIF contribute significantly to performance. This ablation study on the 1.3B SpikingMamba model SI-LIF
with 1 × ±4 and I-LIF 1 × 4). Removing the SGC path with a 0.76% performance drop. But replacing the
SI-LIF with the I-LIF neuron results in a consistent drop in accuracy with 1.41%. Furthermore, SI-LIF best
matches the Mamba2 block’s output distribution, while LIF and I-LIF’s positive-only spiking cause polarized
outputs (Further details are provided in the Appendix D and E).
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Figure 2: The inference energy efficiency ratio (EA/ES) of SpikingMamba under various configurations (EA:
energy of Mamba2, ES: energy of SpikingMamba). Colors denote model size, striped bars indicate SGC path
usage, and marker shapes indicate neuron types. Detailed data and fire rate are provided in Appendix C.

Table 5: Neuron ablation study on 1.3B Model.

Method SGC Neuron Avg. (%) Diff.
SpikingMamba-1.3B ✓ SI-LIF 54.62 -
SpikingMamba-1.3B ✗ SI-LIF 53.86 -0.76
SpikingMamba-1.3B ✗ I-LIF 53.21 -1.41
SpikingMamba-1.3B ✗ LIF 48.35 -6.27

Table 6: Ablation study on the distillation loss.

Method LKL SGC Avg. Diff.
SpikingMamba-130M ✓ ✓ 44.47 -
SpikingMamba-130M w/o SGC ✓ ✗ 44.09 -0.38
SpikingMamba-1.3B ✓ ✓ 54.62 -
SpikingMamba-1.3B w/o SGC ✓ ✗ 53.86 -0.76
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Figure 3: The Energy-accuracy tradeoff for
130M and 1.3B models under different spike
neurons. Marker size indicates model scale.

Distillation Loss. Table 6 presents an ablation study on the
distillation losses, highlighting that both components are es-
sential. The combination of LKL and SGC (LHidden) yields the
best results, while omitting either loss harms performance. For
the 130M and 1.3B models, omitting SGC (LHidden) resulted in
accuracy degradation of 0.38% and 0.76%, respectively. This
scaling trend suggests that larger models benefit more signifi-
cantly from hidden-state alignment loss.

Energy Accuracy Tradeoff. Figure 3 illustrates how vary-
ing the integer spike range affects the energy–accuracy balance
in both the 130M and 1.3B model configurations. To ensure fair
comparison, all results in Figure 3 exclude the SGC module,
which is specifically designed for SI-LIF and would otherwise
confer an inherent advantage. Expanding the neuron range D,
either by increasing its magnitude or by introducing symmet-
ric negative values, consistently leads to higher accuracy while
simultaneously reducing the energy ratio (EANN/ESNN). The trend is even more pronounced in the 1.3B
model, indicating that broader integer spike ranges enhance representational capacity without compromising
energy efficiency. Note that increasing D improves accuracy, but it also introduces additional latency during
inference.

Training Framework w/o SGC Path. Notably, the Smoothed Gradient Compensation (SGC) path
delivers substantial performance gains despite minimal implementation, introduced in merely three layers.
While the framework maintains functionality without SGC, evidenced by a moderate accuracy decline from
54.62% to 53.86%, its integration reveals significant synergistic effects with reinforcement learning. Crucially,
KTO preference optimization achieves 57.17% accuracy with SGC versus 56.73% without, demonstrating a
0.44% absolute improvement. This confirms SGC’s role as a gradient compensation mechanism that enhances
reward-driven adaptation during alignment tuning.
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6 Conclusion

We propose SpikingMamba for enabling energy-efficient inference of LLMs. By replacing dense projections
with sparse spiking operations and compensating with a lightweight Smoothed Gradient Compensation
path, SpikingMamba significantly reduces computation. A simple distillation and alignment strategy al-
lows adaptation from a pretrained model without full retraining. Extensive experiments demonstrate that
SpikingMamba achieves substantial energy efficiency improvements with minimal performance degradation
across common language reasoning benchmarks.
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A Mamba2 Block

The Mamba2 (Dao & Gu, 2024) architecture consists of L stacked layers. At each layer, given the input
ut ∈ RD at time step t, the processing begins with a unified input projection:

u′
t = utWin ∈ R(2H·P +2N+H), (16)

zt, x′
t, B′

t, C ′
t, ∆′

t = Split(u′
t), (17)

where Win ∈ RD×(2H·P +2N+H) is the input linear projection, D is the model dimension, and H, P, N are
the number of heads, dimension of each head and state dimension, respectively. The hyperparameter often
keeps the relationship with H · P = 2D. The projected features u′

t are then split across heads and along
channels. We reshape the activation to obtain input x

′(d)
t ∈ RP , and ∆′(d)

t ∈ R for each head d = 1, . . . , H,
The input-dependent variables for each head are computed as:

α
(d)
t = exp(−∆(d)

t exp(A(d))) ∈ R,

C
(d)
t = σ(Conv1d(C ′

t)) ∈ RN ,

B
(d)
t = σ(Conv1d(B′

t)) ∈ RN ,

x
(d)
t = σ(Conv1d(x′(d)

t )) ∈ RP ,

where ∆(d)
t = Softplus(∆′(d)

t + ∆(d)
bias) ∈ R, and σ(·) is the SiLU activation and Conv1d denotes short causal

convolution. The hidden state update and per-head output are computed as:

h
(d)
t = h

(d)
t−1(α(d)

t I) + (∆(d)
t B

(d)
t ) ⊗ x

(d)
t ∈ RN×P , (18)

o
(d)
t = C

(d)
t h

(d)
t + D(d) ⊙ x

(d)
t ∈ RP , (19)

yt = Norm
(

Concat(o(1)
t , . . . , o

(H)
t ) ⊙ zt

)
∈ RH·P , (20)

y′
t = ytWout ∈ RD, (21)

where ⊗ denotes the outer product, D(d) ∈ RP and ∆(d) ∈ R are trainable parameters, Norm(·) denotes
RMS normalization (Zhang & Sennrich, 2019), and Wout ∈ RH·P ×D is the output projection matrix.

B Activation Statistics

To better understand the internal activation behavior of Mamba2, we visualize the distribution and structure
of intermediate activations in Figures 4 and 5, and quantitatively evaluate their impact on model performance
in Table 7.

Figures 4 show the layer-wise distributions of ut and yt across the 24-layer Mamba2-130M model. While ut

values are relatively centered and stable across layers, yt exhibits increasingly high-magnitude activation in
deeper layers, with a wide dynamic range. Figure 5 further confirms this by visualizing the token-wise and
channel-wise activation values, where yt shows sparse but extreme peaks.

To simulate spike-based activations, we clamp the maximum activation value per channel to either 0 or 1,
mimicking a spiking output. Table 7 shows that this binarization leads to significant performance degradation
across all tasks up to a 9.7% drop in average accuracy, demonstrating that high-magnitude activations play
a critical role in preserving semantic fidelity. Notably, both ut and yt contribute to this effect, though the
impact of clamping yt is more severe due to its broader variance.

These results highlight a key challenge in deploying spike-based LLMs: naive binarization of positive acti-
vations leads to substantial loss in representational capacity, motivating our design of ternary neurons and
auxiliary paths to preserve high-value semantics.
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Figure 4: Activation distributions in Mamba2: (a) input projection ut (Eq 16), (b) output projection yt

(Eq 21)

0 100 200 300 400 500 600 700
Channel

0

100

200

300

400

500

To
ke

n

Mamba2-130m (winogrande task: Activation u)

6

4

2

0

2

4

6

A
ct

iv
at

io
n 

Va
lu

e

(a) ut statistics

0 200 400 600 800 1000 1200 1400
Channel

0

100

200

300

400

500

To
ke

n

Mamba2-130m (winogrande task: Activation y)

400

200

0

200

400

A
ct

iv
at

io
n 

Va
lu

e

(b) yt statistics

Figure 5: Activation statistics across channels and tokens in Mamba2: (a) input projection ut (Eq 16), (b)
output projection yt (Eq 21).

C Energy Computation

C.1 Energy Details

To quantify the energy efficiency of SpikingMamba compared to the original Mamba2 model, we present
detailed energy consumption statistics for all layers in both the 130M and 1.3B model variants. Table 8
shows the total energy cost across major components such as input/output projection and SSM (state space
model) for the 130M model. Similarly, Table 9 presents results for the 1.3B model, where we include settings
with and without Smoothed Gradient Compensation (SGC) path and reinforcement learning (DPO/KTO).
The detailed computation ref from Section C.2.

The energy is computed using a breakdown of core components, with the total cost measured in arbitrary
units that are consistent across model types. The EA/ES ratio in the final column captures the relative
energy efficiency, where EA represents the energy of the original Mamba2 model, and ES corresponds to
SpikingMamba under each variant. Notably, SpikingMamba configurations consistently reduce energy by
2.9–4.7× in the 130M model and up to 4.7-9.8× in the 1.3B model.

Table 7: Zero-shot accuracy obtained by setting the maximum activation in each channel to 1 or 0.

HellaSwag PiQA Arc-E Arc-C BoolQ WinoGrande Avg. (%) Diff. (%)
Mamba2-130m 35.22 64.25 47.31 24.06 54.62 52.25 46.29 -

ymax = 0 27.93 53.16 31.44 24.15 40.18 51.54 38.07 -8.22
ymax = 1 25.84 53.37 27.48 23.72 37.83 52.80 36.84 -9.45
umax = 0 26.18 50.60 26.22 25.34 40.24 50.83 36.57 -9.72
umax = 1 24.50 49.56 25.93 27.47 49.27 49.80 37.76 -8.53
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Table 8: The total energy consumption of the 130M model. The I-LIF is set as T × D = 1 × 4, SI-LIF is set
as T × D = 1 × ±4. “SGC” means whether to use a smoothed gradient compensation path during training.

SGC Step frin frout In Proj. Out Proj. SSM Others Total (↓) EA
ES

(↑)

Mamba2 - 1 - - 284.2067 130.2331 82.7476 1.4733 498.6607 1
SpikingMamba ✗ 1 × 1 0.3180 0.1583 17.6826 4.0259 82.7476 1.4733 105.9294 4.7075
SpikingMamba ✗ 1 × 4 0.3294 0.0509 73.1770 5.1878 82.7476 1.4733 162.5858 3.0671
SpikingMamba ✗ 1 × ±4 0.3498 0.1215 77.8034 12.3835 82.7476 1.4733 174.4078 2.8592
SpikingMamba ✓ 1 × ±4 0.3476 0.1236 77.3141 12.5975 82.7476 1.4733 174.1325 2.8637

Table 9: The total energy consumption of the 1.3B model. The I-LIF is set as T × D = 1 × 4, SI-LIF is set
as T × D = 1 × ±4. “SGC” means whether to use a smoothed gradient compensation path during training.

SGC Step frin frout In Proj. Out Proj. SSM Others Total (↓) EA
ES

(↑)

Mamba2 - 1 - - 3849.1128 1852.2046 441.3204 7.4809 6150.1188 1
SpikingMamba ✗ 1 × 1 0.1605 0.1483 120.8705 53.7421 441.3204 7.4809 623.4140 9.8652
SpikingMamba ✗ 1 × 4 0.2196 0.0156 661.5119 22.6130 441.3204 7.4809 1132.9263 5.4285
SpikingMamba ✗ 1 × ±4 0.2529 0.0612 761.8833 88.6691 441.3204 7.4809 1299.3588 4.7332
SpikingMamba ✓ 1 × ±4 0.2499 0.0619 752.7860 89.7272 441.3204 7.4809 1291.3147 4.7627
+ DPO ✓ 1 × ±4 0.2533 0.0633 760.0157 93.0612 441.3204 7.4809 1301.8783 4.7240
+ KTO ✓ 1 × ±4 0.2523 0.0624 763.0280 91.7566 441.3204 7.4809 1303.5860 4.7178

Table 10: Energy Evaluation for Mamba2 block.

Operation # Operations × # Energy
In Proj. (4D + 2N + H) × D × EMM
Out Proj. D × 2D × EMM
dtB H × ((P × 1) × (1 × N)) × EMM
C ∗ ht H × (P × N) × EMM
Conv1d (2D + 2N) × 4 × EMM

Act 3 × (2D) × EEM
xtD H × P × EEM
xdB H × P × N × EEM
Adt H × EEM
Aht H × P × N × EEM
Norm 2D × EEM
y ∗ act(z) 2D × EEM

dt + dtbias H × EADD
Aht + xdB H × P × N × EADD
y + Dx H × P × EADD

C.2 Detail Computation

Tables 10–12 provide the exact computational formulations used for energy estimation, the operation mainly
refers to Appendix A. These are derived based on the number of operations per module and their associated
energy costs for different operation types. All operations assume a 32-bit floating-point implementation on
45nm technology, where matrix multiplication EMM = 4.6pJ , element-wise multiplication EEM = 3.7pJ and
addition EADD = 0.9pJ (Horowitz, 2014).

Table 10 details the computation of energy consumption for Mamba2, listing core operations in each block
such as projections, state transitions, and nonlinear components. Table 11 extends this to SpikingMamba
using LIF neurons, where the energy is scaled by spike rates (fr), SGC path and spike-based neuron op-
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Table 11: Energy Evaluation for SpikingMamba with LIF.

Operation # Operations × # Energy
In Proj. frin × (4D + 2N + H) × D × EADD
Out Proj. frout × D × 2D × EADD
dtB H × ((P × 1) × (1 × N)) × EMM
C ∗ ht H × (P × N) × EMM
Conv1d (2D + 2N) × 4 × EMM

Act 3 × (2D) × EEM
xD H × P × EEM
xdB H × P × N × EEM
Adt H × EEM
Aht H × P × N × EEM
Norm 2D × EEM
y ∗ act(z) 2D × EEM

dt + dtbias H × EADD
Aht + xdB H × P × N × EADD
y + Dx H × P × EADD

Spiking Neuron1 (D + D) × EEM + (D + D) × EADD
Spiking Neuron2 (2D + 2D) × EEM + (2D + 2D) × EADD

Table 12: Energy Evaluation for SpikingMamba with I-LIF and SI-LIF, where frin = #Spikein
T ×k×D , frout =

#Spikeout
T ×k×2D .

Operation # Operations × # Energy
In Proj. k × frin × (4D + 2N + H) × D × EADD
Out Proj. k × frout × D × 2D × EADD
dtB H × ((P × 1) × (1 × N)) × EMM
C ∗ ht H × (P × N) × EMM
Conv1d (2D + 2N) × 4 × EMM

Act 3 × (2D) × EEM
xD H × P × EEM
xdB H × P × N × EEM
Adt H × EEM
Aht H × P × N × EEM
Norm 2D × EEM
y ∗ act(z) 2D × EEM

dt + dtbias H × EADD
Aht + xdB H × P × N × EADD
y + Dx H × P × EADD

erations are accounted for explicitly. Table 12 generalizes further to SpikingMamba with I-LIF and SI-LIF
neurons. Here, separate spike rates frin and frout are introduced to model the proportion of spike activations
relative to dense inputs/outputs, allowing precise modeling of spiking sparsity effects.

Together, these tables form the analytical backbone of the energy evaluations reported in the main text and
demonstrate how sparsity and low-rank approximations contribute to overall energy reduction in Spiking-
Mamba.
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D Experimental Details

Table 13 presents the detailed zero-shot accuracy values and perplexity corresponding to the results reported
in the main text.

Table 13: The energy consumption with different configurations. "P." means the model parameters. Step
means T × D for Spiking Neuron. The standard LIF is 1 × 1, when D > 0 means using I-LIF, while ±D
means using SI-LIF.

P. r Step Total Energy (↓) EA
ES

(↑) Wiki2 (↓) C4 (↓) PTB (↓)

Mamba2 130M - 1 498.6607 1 20.04 25.23 35.11
SpikingMamba 130M ✗ 1 × 1 105.9294 4.7075 55.76 55.97 89.74
SpikingMamba 130M ✗ 1 × 4 162.5858 3.0671 32.12 36.70 54.36
SpikingMamba 130M ✗ 1 × ±4 172.5421 2.8901 28.55 33.62 48.26
Mamba2 1.3B - 1 6150.1188 1 10.42 14.78 17.72
SpikingMamba 1.3B ✗ 1 × 1 623.4140 9.8652 31.71 36.87 52.25
SpikingMamba 1.3B ✗ 1 × 4 1132.9263 5.4285 17.90 23.45 30.19
SpikingMamba 1.3B ✗ 1 × ±4 1299.3538 4.7332 15.79 21.01 26.20
GPTQ-3bit 1.3B - 1 N/A N/A 29.3 37.3 56.5
GPTQ-2bit 1.3B - 1 N/A N/A 1.2e+6 1.3e+6 1.0e+6
BiLLM 1.3B - 1 N/A N/A 4943.2 4013.6 3540.8
Bi-Mamba 1.3B - 1 N/A N/A 12.6 13.6 28.9

E Block Activation Distribution Analysis

To further analyze the impact of different spiking neuron configurations, we visualize the activation distri-
butions of hidden outputs from the final block across multiple 130M models. Figures 6–8 show histograms
of activation values (x-axis) and their frequency (y-axis) for three model groups, each compared against the
same pretrained baseline (Pretrained Mamba2).

In Figure 6, the LIF model exhibits severe output polarization due to its binary firing nature. Figure 7 demon-
strates that I-LIF reduces this binarization effect through continuous activations. However, its positive-only
outputs still lead to a skewed distribution. Finally, Figure 8 shows that SI-LIF, which supports both positive
and negative outputs, resolves the polarization issue entirely.
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Figure 6: Activation distribution comparison for LIF-based models.
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Figure 7: Activation distribution comparison for I-LIF (1 × 4) models.
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Figure 8: Activation distribution comparison for SI-LIF (1 × ±4) models.
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