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ABSTRACT

Federated reinforcement learning (FedRL) enables multiple agents to collabora-
tively learn a policy without sharing their local trajectories collected during agent-
environment interactions. However, in practice, the environments faced by dif-
ferent agents are often heterogeneous, leading to poor performance by the single
policy learned by existing FedRL algorithms on individual agents. In this paper,
we take a further step and introduce a personalized FedRL framework (PFEDRL)
by taking advantage of possibly shared common structure among agents in hetero-
geneous environments. Specifically, we develop a class of PFEDRL algorithms
named PFEDRL-REP that learns (1) a shared feature representation collabora-
tively among all agents, and (2) an agent-specific weight vector personalized to
its local environment. We analyze the convergence of PFEDTD-REP, a particu-
lar instance of the framework with temporal difference (TD) learning and linear
representations. To the best of our knowledge, we are the first to prove a linear
convergence speedup with respect to the number of agents in the PFEDRL setting.
To achieve this, we show that PFEDTD-REP is an example of the federated two-
timescale stochastic approximation with Markovian noise. Experimental results
demonstrate that PFEDTD-REP, along with an extension to the control setting
based on deep Q-networks (DQN), not only improve learning in heterogeneous
settings, but also provide better generalization to new environments.

1 INTRODUCTION

Federated reinforcement learning (FedRL) (Nadiger et al., 2019; Liu et al., 2019; Xu et al., 2021;
Zhang et al., 2022a; Jin et al., 2022; Khodadadian et al., 2022; Yuan et al., 2023; Salgia & Chi,
2024; Woo et al., 2024; Zheng et al., 2024; Lan et al., 2024) has recently emerged as a promising
framework that blends the distributed nature of federated learning (FL) (McMahan et al., 2017)
with reinforcement learning’s (RL) ability to make sequential decisions over time (Sutton & Barto,
2018). In FedRL, multiple agents collaboratively learn a single policy without sharing individual
trajectories that are collected during agent-environment interactions, protecting each agent’s privacy.

One key challenge facing FedRL is environment heterogeneity, where the collected trajectories may
vary to a large extent across agents. To illustrate, consider a few existing applications of FL: on-
device NLP applications (e.g., next word prediction, sentence completion, web query suggestions,
and speech recognition) from Internet companies (Hard et al., 2018; Yang et al., 2018; Wang et al.,
2023b), on-device recommender or ad prediction systems (Maeng et al., 2022; Krichene et al., 2023),
and Internet of Things applications like smart healthcare or smart thermostats (Nguyen et al., 2021;
Imteaj et al., 2022; Zhang et al., 2022b; Boubouh et al., 2023). Note that all of the above (1) exist in
settings with environment heterogeneity (heterogeneous users, devices, patients, or homes) and (2)
could potentially benefit from an RL problem formulation.

As a result, if all agents collaboratively learn a single policy, which most existing FedRL frameworks
do, the learned policy might perform poorly on individual agents. This calls for the design of
a personalized FedRL (PFEDRL) framework that can provide personalized policies for agents in
different environments. Nevertheless, despite the recent advances in FedRL, the design of PFEDRL
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Table 1: Comparison of existing FedRL frameworks in terms of noise; environments (Homo: Ho-
mogeneous, Hetero: Heterogeneous); using representations (Rep.L) or not; timescale (TS), single or
two-TS (two) updates; multiple local updates or not; personalization across agents or not; and with
or without linear convergence speedup guarantee.

Method Noise Env. Rep.L TS Local updates Personalized Linear speedup
FedTD & FedQ (Khodadadian et al., 2022) Markov Homo. ✗ Single ✓ ✗ ✓

FedTD (Dal Fabbro et al., 2023) Markov Homo. ✗ Single ✗ ✗ ✓
FedTD (Wang et al., 2023a) Markov Hetero. ✗ Single ✓ ✗ ✓

QAvg & PAvg (Jin et al., 2022) i.i.d. Hetero. ✗ Single ✗ ✗ ✗
FedQ (Woo et al., 2023) Markov Hetero. ✗ Single ✓ ✗ ✓
A3C (Shen et al., 2023) Markov Homo. ✗ Two ✗ ✗ ✓

FedSARSA (Zhang et al., 2024) Markov Hetero. ✗ Single ✓ ✗ ✓

PFEDRL-REP Markov Hetero. ✓ Two ✓ ✓ ✓

and its performance analysis remains, to a large extent, an open question. Motivated by this, the first
inquiry we aim to answer in this paper is:

Can we design a PFEDRL framework for agents in heterogeneous environments that not
only collaboratively learns a useful global model without sharing local trajectories, but
also learns a personalized policy for each agent?

We address this question by viewing the PFEDRL problem in heterogeneous environments as N par-
allel RL tasks with possibly shared common structure. This is inspired by observations in centralized
learning (Bengio et al., 2013; LeCun et al., 2015) and federated or decentralized learning (Collins
et al., 2021; Tziotis et al., 2023; Xiong et al., 2024), where leveraging shared (low-dimensional)
representations can improve performance. A theoretical understanding of using shared representa-
tions amongst heterogeneous agents has received recent emphasis in the standard supervised FL (or
decentralized learning) setting (Collins et al., 2021; Tziotis et al., 2023; Xiong et al., 2024).

However, a theoretical analysis of PFEDRL with shared representations is more subtle because
each agent in PFEDRL collects data by following its own policy (thereby generating a Markovian
trajectory) and simultaneously updates its model parameters. This is in stark contrast to the standard
FL paradigm, where data is typically collected in an i.i.d. fashion. Our second research question is:

How do the shared representations affect the convergence of PFEDRL under Markovian
noise, and is it possible to achieve an N -fold linear convergence speedup?

Despite the recent progress in the standard supervised FL setting (Collins et al., 2021; Tziotis et al.,
2023; Xiong et al., 2024), to the best of our knowledge, this question is still open in the context of
learning personalized policies in FedRL under Markovian noise (see Table 1). Motivated by these
open questions, our main contributions are:

• PFEDRL-REP framework. We propose PFEDRL-REP, a new PFEDRL framework with shared
representations. PFEDRL-REP learns a global shared feature representation collaboratively among
agents through the aid of a central server, along with agent-specific parameters for personalizing to
each agent’s local environment. The PFEDRL-REP framework can be paired with a wide range of
RL algorithms, including both value-based and policy-based methods with arbitrary feature repre-
sentations.

• Linear speedup for TD learning. We then introduce PFEDTD-REP, an instantiation of the
above PFEDRL-REP framework for TD learning (Sutton & Barto, 2018). We analyze its con-
vergence in a linear representation setting, proving the convergence rate of PFEDTD-REP to be
Õ
(
N−2/3(T + 2)−2/3

)
, where N is the number of agents and T is the number of communication

rounds. This implies a linear convergence speedup for PFEDTD-REP with respect to the number
of agents, a highly desirable property that allows for massive parallelism in large-scale systems. To
our knowledge, this is the first linear speedup result for PFEDRL with shared representations under
Markovian noise, providing a theoretical answer to the empirical observations in Mnih et al. (2016)
that federated versions of RL algorithms yield faster convergence. To show this result, we make use
of two-timescale stochastic approximation theory and address the challenges of Markovian noise
through a Lyapunov drift approach.
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2 PROBLEM FORMULATION

In this section, we first review the standard FedRL framework and then introduce our proposed
PFEDRL-REP framework, which incorporates personalization and shared representations. Let N
and T be the number of agents and communication rounds, respectively. Denote [N ] as the set of
integers {1, . . . , N} and ∥ · ∥ as the l2-norm. We use boldface to denote matrices and vectors.

2.1 PRELIMINARIES: FEDERATED REINFORCEMENT LEARNING

A FedRL system with N agents interacting with N independent heterogeneous environments is
modeled as follows. The environment of agent i ∈ [N ] is a Markov decision process (MDP)Mi =
⟨S,A, Ri, P i, γ⟩, where S andA are finite state and action sets, Ri is the reward function, P i is the
transition kernel, and γ ∈ (0, 1) is the discount factor. Suppose agent i is equipped with a policy
πi : S → ∆(A) (a mapping from states to probability distributions over A). At each time step k,
agent i is in state sik and takes action aik according πi( · |sik), resulting in reward Ri(sik, a

i
k). The

environment then transitions to a new state sik+1 according to P i(·|sik, aik). This sequence of states
and actions forms a Markov chain, the source of the aforementioned Markovian noise. In this paper,
this Markov chain is assumed to be unichain, which is known to asymptotically converge to a steady
state. We denote the stationary distribution as µi,πi

.

The value of πi in environmentMi is defined as V i,πi

(s) = Eπi

[∑∞
k=0 γ

kRi(sik, a
i
k) | si0 = s

]
. In

realistic problems with large state spaces, it is infeasible to store V i,πi

(s) for all states, so function
approximation is often used. One example is V i,πi

(s) ≈ ΦΦΦ(s)θθθ, whereΦΦΦ ∈ R|S|×d is a state feature
representation and θθθ ∈ Rd is an unknown low-dimensional weight vector.

One intermediate goal in RL is to estimate the value function corresponding to a policy π using
trajectories collected from the environment. This task is called policy evaluation, and one widely
used approach is temporal difference (TD) learning (Sutton, 1988). The FedRL version of TD
learning is called FedTD (Khodadadian et al., 2022; Dal Fabbro et al., 2023; Wang et al., 2023a),
where N agents collaboratively evaluate a single policy π by learning a common (non-personalized)
weight vector θθθ, using trajectories collected from N different environments. More precisely, we
have πi ≡ π and θθθi ≡ θθθ,∀ i ∈ [N ]. Given a feature representation ΦΦΦ(s),∀s, this can be formulated
as the following optimization problem:

min
θθθ

1

N

N∑
i=1

Es∼µi,π

∥∥ΦΦΦ(s)θθθ − V i,π(s)
∥∥2 . (1)

Due to space constraints, we focus our presentation on the policy evaluation problem. Note that
policy evaluation is an important part of RL and control, since it is a critical step for methods
based on policy improvement. Our proposed PFEDRL framework (see Algorithm 1) can be directly
applied to control problems as well, but we relegate these discussions to Section 5 and Appendix C.

2.2 PERSONALIZED FEDRL WITH SHARED REPRESENTATIONS

Since the local environments are heterogeneous across the N agents, the aforementioned FedRL
methods (in Section 2.1) that aim to learn a common weight vector θθθ may perform poorly on in-
dividual agents. This necessitates the search for personalized local weight vectors θθθi that can be
learned collaboratively among N agents in N heterogeneous environments (without sharing their
locally collected trajectories). As alluded to earlier, we view the personalized FedRL (PFEDRL)
problem as N parallel RL tasks with possibly shared common structure, and we propose that the
agents collaboratively learn a common features representation ΦΦΦ in addition to a personalized lo-
cal weights θθθi. Specifically, the value function of agent i is approximated as V i,πi ≈ f i(θθθi,ΦΦΦ),
where f i(·, ·) is a general function parameterized by these two unknown parameters.1 The policy

1The approximation f i(θθθi,ΦΦΦ) is general and can take on various forms, including as linear approximations
or neural networks. For instance, it can be represented as a linear combination of ΦΦΦ and θθθi, i.e., f i(θθθi,ΦΦΦ) :=
ΦΦΦθθθi in TD with linear function approximation (Bhandari et al., 2018). In addition, f i(θθθi,ΦΦΦ) can represent a
deep neural network; see, e.g., our extension of PFEDRL to control problems and its instantiation with DQN
(deep Q-networks) (Mnih et al., 2015) in Section 5 and Appendix C.
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Algorithm 1 PFEDRL-REP: A General Description
Input: Sampling policy πi,∀i ∈ [N ];

1: Initialize the global feature representation ΦΦΦ0 and local weight vector θθθi0, ∀i ∈ [N ] randomly;
2: for round t = 0, 1, . . . , T − 1 do
3: for agent 1, . . . , N do
4: θθθit+1 = WEIGHT UPDATE(ΦΦΦt, θθθ

i
t, αt,K);

5: ΦΦΦi
t+1/2 = FEATURE UPDATE(ΦΦΦt, θθθ

i
t+1, βt);

6: end for
7: Server computes the new global feature representation ΦΦΦt+1 = 1

N

∑N
i=1ΦΦΦ

i
t+1/2.

8: end for

evaluation problem of (1) can be updated for this new setting as:

min
ΦΦΦ

1

N

N∑
i=1

min
{θθθi,∀i}

Es∼µi,πi

∥∥∥f i(θθθi,ΦΦΦ(s))− V i,πi

(s)
∥∥∥2 , (2)

where N agents collaboratively learn a shared feature representation ΦΦΦ via a server, along with a
personalized local weight vector {θθθi,∀i} using local trajectories at each agent.
Remark 2.1. The learning of a shared feature representation ΦΦΦ in PFEDRL is related to ideas from
representation learning theory (Agarwal et al., 2020; 2023), and this is believed to achieve better
generalization performance with relatively small training data. In conventional FedRL, the feature
representation ΦΦΦ is given and fixed. Indeed, as we numerically verify in Section 4.3, our PFEDRL
presents better generalization performance to new environments.

3 PFEDRL-REP ALGORITHMS

We now propose a class of algorithms called PFEDRL-REP that realize PFEDRL with shared rep-
resentations. PFEDRL-REP alternates comprises of three main steps for each agent at each commu-
nication round: (1) a local weight vector update; (2) a local feature representation update; and (3) a
global feature representation update via the server.

Steps 1 and 2: Local weight and feature representation updates. At round t, agent i performs an
update on its local weight vector given its current global feature representation ΦΦΦt and local weight
vector θθθit. We allow each agent to perform K steps of local weight vector updates. Once the updated
local weight vector θθθit+1 is obtained, each agent i executes a one-step local update on its feature
representation to obtain ΦΦΦi

t+1/2. We represent these updates using the following generic notation:

θθθit+1 = WEIGHT UPDATE(ΦΦΦt, θθθ
i
t, αt,K) and ΦΦΦi

t+1/2 = FEATURE UPDATE(ΦΦΦt, θθθ
i
t+1, βt), (3)

where αt and βt are learning rates for the weight and feature updates, respectively. The generic
functions WEIGHT UPDATE and FEATURE UPDATE will be specialized to the particulars of the un-
derlying RL algorithm: in Section 4 we discuss the case of TD with linear function approximation
in detail, and in Appendix C, we show instantiations of Q-learning and DQN in our framework.

ΦΦΦt+1 =
1

N

N∑
i=1

ΦΦΦi
t+1/2. (4)

Step 3: Server-based global feature representation update.
The server computes an average of the received local feature
representation updates ΦΦΦi

t+1/2 from all agents to obtain the
next global feature representation ΦΦΦt+1 as in (4).

The PFEDRL-REP procedure repeats (3) and (4) and is summarized in Algorithm 1 and Figure 1.
We emphasize that because PFEDRL-REP operates in an RL setting, there is no ground truth for
the value function and learning occurs through interactions with an MDP environment, resulting
in non-i.i.d. data. In contrast, in the standard FL setting (where shared representations have been
investigated), there exists a known ground truth and training data are sampled in an i.i.d. fashion
(Collins et al., 2021; Tziotis et al., 2023; Xiong et al., 2024). The non-i.i.d. (Markovian) data is the
main technical challenge that we need to overcome.
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At the beginning of round t Local Weight Update Local and Global Representation Update

Agent 1 Agent 2 Agent 3

Server
Φ𝑡+1 =

1

3
෍

𝑖=1

3

Φ𝑡+1/2
𝑖

(Φ𝑡 , 𝛉𝑡
1) (Φ𝑡 , 𝛉𝑡

2) (Φ𝑡 , 𝛉𝑡
3)

Env. 1 Env. 2 Env. 3 

(Φ𝑡 , 𝛉𝑡+1
2 ) (Φ𝑡, 𝛉𝑡+1

3 ) (Φ𝑡+1, 𝛉𝑡+1
2 ) (Φt+1, 𝛉𝑡+1

3 )(Φ𝑡 , 𝛉𝑡+1
1 ) (Φ𝑡+1, 𝛉𝑡+1

1 )

Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

Server Server

Φ𝑡+1/2
1

Φ𝑡+1
Φ𝑡+1 Φ𝑡+1Φ𝑡+1/2

2

Φ𝑡+1/2
3

Env. 1 Env. 2 Env. 3 Env. 1 Env. 2 Env. 3 

Figure 1: An illustrative example of PFEDRL-REP for 3 agents. (a) At the beginning of round
t, each agent i = 1, 2, 3 has a local weight vector θθθit and a global feature representation ΦΦΦt. (b)
Using (ΦΦΦt, θθθ

i
t), each agent i performs a K-step update to obtain θθθit+1 as in (3). Note thatΦΦΦt remains

unchanged at this step. (c) Agent i updates the feature representation by executing a one-step update
to obtain ΦΦΦi

t+1/2 as in (3), which depends on both θθθit+1 and ΦΦΦt. Finally, each agent i shares ΦΦΦi
t+1/2

with the server, which then executes an averaging step as in (4) to produceΦΦΦt+1. Updated parameters
are highlighted in red, while shared parameters (the global feature representation) are in blue.

4 PFEDTD-REP WITH LINEAR REPRESENTATION

We present PFEDTD-REP, an instance of PFEDRL-REP paired with TD learning and analyze its
convergence in a linear representation setting.

4.1 PFEDTD-REP: ALGORITHM DESCRIPTION

Here, the goal of N agents is to collaboratively solve problem (2) when the underlying RL algorithm
is TD learning. We first need to specify WEIGHT UPDATE and FEATURE UPDATE of Algorithm 1
for the case of TD. At time step k, the state of agent i is sik, and its value function can be denoted
as V (sik) = ΦΦΦ(sik)θθθ

i in a linear representation setting. By the standard one-step Monte Carlo
approximation used in TD, we compute V̂ (sik) = rik + γΦΦΦ(sik+1)θθθ

i. The TD error is defined as

δik := V̂ (sik)− V (sik) = rik + γΦΦΦ(sik+1)θθθ
i −ΦΦΦ(sik)θθθ

i. (5)

The goal of agent i is to minimize the following loss function for every sik ∈ S

Li(ΦΦΦ(sik), θθθ
i) =

1

2

∥∥V (sik)− V̂ (sik)
∥∥2, (6)

with V̂ (sik) treated as a constant. We now denote the Markovian observations of agent i at the
k-th time step of communication round t as Xi

t,k := (sit,k, r
i
t,k, s

i
t,k+1). Note that the observa-

tion sequences {Xi
t,k,∀t, k} differ across agents in heterogeneous environments. We assume that

{Xi
t,k,∀t, k} are statistically independent across all agents.

Local weight vector update. As in line 4 of Algorithm 1, given the current global feature represen-
tation ΦΦΦt, each agent i takes K local update steps on its local weight vector θθθit as

θθθit,k = θθθit,k−1 + αt g(θθθ
i
t,k−1,ΦΦΦt, X

i
t,k−1), (7)

for k ∈ [K], where g(θθθit,k−1,ΦΦΦt, X
i
t,k−1) is the negative stochastic gradient of the loss function

Li(ΦΦΦt(s
i
t,k−1), θθθ

i
t,k−1) with respect to θθθ, given the current feature representation ΦΦΦt:

g(θθθit,k−1,ΦΦΦt, X
i
t,k−1) := −∇θθθLi(ΦΦΦt(s

i
t,k−1), θθθ

i
t,k−1) = δit,k−1ΦΦΦt(s

i
t,k−1)

⊺. (8)

Since there are K steps of local updates, we denote θθθit+1 := θθθit,K . We further add a norm-scaling
(i.e., clipping) step for the updated weight vectors θθθit+1, i.e., enforcing ∥θθθit+1∥ ≤ B, to stabilize the
update. This is essential for the finite-time convergence analysis in Section 4.2, and this technique is
widely used in conventional TD learning with linear function approximation (Bhandari et al., 2018).

Local feature representation update. As in line 5 of Algorithm 1, given the updated local weight
vector θθθit+1, agent i then executes a one-step local update on the global feature representation:

ΦΦΦi
t+1/2 = ΦΦΦt + βth(θθθ

i
t+1,ΦΦΦt, {Xi

t,k−1}Kk=1), (9)

5
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where h(θθθit+1,ΦΦΦt, {Xi
t,k−1}Kk=1) is the negative stochastic gradient of the loss Li(ΦΦΦt(s

i
t,k−1), θθθ

i
t+1)

with respect to the current global feature representation ΦΦΦt, satisfying

h(θθθit+1,ΦΦΦt, X
i
t,k−1) := −∇ΦΦΦLi(ΦΦΦt(s

i
t,k−1), θθθ

i
t+1) = δit,k−1θθθ

i
t+1

⊺
. (10)

Server-based global feature representation update. As in line 7 of Algorithm 1, the server then
averages the received local feature representation updates in (9) to obtain the next global feature
representation:

ΦΦΦt+1 = ΦΦΦt + βt ·
1

N

N∑
j=1

h(θθθjt+1,ΦΦΦt, {Xi
t,k−1}Kk=1). (11)

The full pseudo-code of PFEDTD-REP is given in Appendix B.

4.2 CONVERGENCE ANALYSIS

The coupled updates in (7) and (11) can be viewed as a federated nonlinear two-timescale stochastic
approximation (2TSA) (Doan, 2021) with Markovian noise, with θθθit updating on a faster timescale
and ΦΦΦt on a slower timescale. We aim to establish the finite-time convergence rate of the 2TSA
coupled updates (7) and (11). This is equivalent to finding a solution pair (ΦΦΦ∗, {θθθi,∗,∀i}) such that2

Esit∼µi,sit+1∼P i
πi (·|sit)[g(θθθ

i,∗,ΦΦΦ∗, Xi
t)] = 0 and Esit∼µi,sit+1∼P i

πi (·|sit)[h(θθθ
i,∗,ΦΦΦ∗, Xi

t)] = 0 (12)

hold for all Markovian observations Xi
t . Here, µi is the unknown stationary distribution of state sit

of agent i at t, and P i
πi is the transition kernel of agent i under policy πi.

Although the root (ΦΦΦ∗, {θθθi,∗,∀i}) of the nonlinear 2TSA in (7) and (11) is not unique due to simple
permutations (rotations), it is proved in Tsitsiklis & Van Roy (1996) that the standard TD iterates
converge asymptotically to a vector θθθ∗ given a fixed feature representationΦΦΦ almost surely, where θθθ∗
is the unique solution of a certain projected Bellman equation. Hence, for agent i, in order to study
the stability of θθθi when the feature representation ΦΦΦ is fixed, we note that there exists a mapping
θθθi = yi(ΦΦΦ) that maps ΦΦΦ to the unique solution of Esit∼µi,sit+1∼P i

πi (·|sit)[g(θθθ
i,ΦΦΦ, Xi

t)] = 0.

Inspired by Doan (2020), the finite-time analysis of a 2TSA boils down to the choice of two step
sizes {αt, βt,∀t} and a Lyapunov function that couples the two iterates in (7) and (11). We first
define the following two error terms:

Φ̃ΦΦt = ΦΦΦt −ΦΦΦ∗ and θ̃θθ
i

t = θθθit − yi(ΦΦΦt), ∀i ∈ [N ], (13)

which together characterizes the coupling between {θθθit+1,∀i} and ΦΦΦt. If {θ̃θθ
i

t+1,∀i} and Φ̃ΦΦt go to
zero simultaneously, the convergence of ({θθθit+1,∀i},ΦΦΦt) to ({θθθi,∗,∀i},ΦΦΦ∗) can be established.
Thus, to prove the convergence of ({θθθit+1,∀i},ΦΦΦt) of the 2TSA in (7) and (11) to its true value
(ΦΦΦ∗, {θθθi,∗,∀i}), we define the following weighted Lyapunov function to explicitly couple the fast
and slow iterates

M({θθθit+1,∀i},ΦΦΦt) := ∥ΦΦΦt −ΦΦΦ∗∥2 + βt−1

αt

1

N

N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2. (14)

Remark 4.1. Note that the Lyapunov function (14) for 2TSA does not inherently require the solution
to be unique. If multiple solutions or equilibria exist, the Lyapunov function should still be able to
show that the system will converge to one of these possible equilibria, ensuring that the system’s
state does not diverge and eventually stabilizes at some equilibrium point, which highly depends on
the initialization of ΦΦΦ0. To clarify this, in the rest of this paper, we use ΦΦΦ∗

0 to clearly indicate the
dependence of the initialization of ΦΦΦ, and ΦΦΦ∗ in (14) is interchangeable with ΦΦΦ∗

0, which denotes the
optimum close to the initial point.

2The root (ΦΦΦ∗, {θθθi,∗,∀i}) of the nonlinear 2TSA in (7) and (11) can be established by using the ODE
method following the solution of suitably defined differential equations (Doan, 2021; 2020; Chen et al., 2019)
as in (12).
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Our goal is to characterize the finite-time convergence of E[M({θθθit+1,∀i},ΦΦΦt)], the Lyapunov
function in (14). We start with some standard assumptions first.

Assumption 4.2. The learning rates αt and βt satisfy the following conditions: (i)
∑∞

t=0 αt = ∞,
(ii)
∑∞

t=0 α
2
t < ∞, (iii)

∑∞
t=0 βt = ∞, (iv)

∑∞
t=0 β

2
t < ∞, (v) βt/αt is non-increasing in t, and

(vi) limt→∞ βt/αt = 0.

Assumption 4.3. Agent i’s Markov chain {Xi
t} is irreducible and aperiodic. Hence, there exists a

unique stationary distribution µi (Levin & Peres, 2017) and constants C > 0 and ρ ∈ (0, 1) such
that dTV (P (Xi

k|Xi
0 = x), µi) ≤ Cρk,∀k ≥ 0, x ∈ X , where dTV (·, ·) is the total-variation (TV)

distance (Levin & Peres, 2017).

Remark 4.4. Assumption 4.3 implies that the Markov chain induced by πi admits a unique station-
ary distribution µi. This assumption is commonly used in the asymptotic convergence analysis of
stochastic approximation under Markovian noise (Borkar, 2009; Chen et al., 2019).

We can define the steady-state local TD update direction as

ḡ(θθθi,ΦΦΦ) := Esit∼µi,sit+1∼P i
πi (·|sit)[g(θθθ

i,ΦΦΦ, Xi
t)],

h̄(θθθi,ΦΦΦ) := Esit∼µi,sit+1∼P i
πi (·|sit)[h(θθθ

i,ΦΦΦ, Xi
t)]. (15)

Definition 4.5 (Mixing time, similar to Chen et al. (2019)). First, define the discrepancy term

ξt(θθθ
i,ΦΦΦ, x) = max

{
∥E[g(θθθi,ΦΦΦ, Xi

t) |X0=x]−ḡ(θθθi,ΦΦΦ)∥, ∥E[h(θθθi,ΦΦΦ, Xi
t) |X0=x]−h̄(θθθi,ΦΦΦ)∥

}
.

For δ > 0, the mixing time is defined as

τδ = max
i∈[N ]

min
{
t ≥ 1 : ξk(θθθ

i,ΦΦΦ, x) ≤ δ(∥ΦΦΦ−ΦΦΦ∗∥+ ∥θθθi − yi(ΦΦΦ∗)∥+ 1),∀ k ≥ t,∀ (θθθi,ΦΦΦ, x)
}
,

which describes the time it takes for all agents’ trajectories (Markov chains) to be well-represented
by their stationary distributions.

Lemma 4.6. g(θθθ,ΦΦΦ, X) in (8) is globally Lipschitz continuous w.r.t θθθ and ΦΦΦ uniformly in X , i.e.,
∥g(θθθ1,ΦΦΦ1, X)−g(θθθ2,ΦΦΦ2, X)∥ ≤ Lg(∥θθθ1 − θθθ2∥+ ∥ΦΦΦ1 −ΦΦΦ2∥),∀X ∈ X .

Lemma 4.7. h(θθθ,ΦΦΦ, X) in (10) is globally Lipschitz continuous w.r.t θθθ and ΦΦΦ uniformly in X , i.e.,
∥h(θθθ1,ΦΦΦ1, X)−h(θθθ2,ΦΦΦ2, X)∥ ≤ Lh(∥θθθ1 − θθθ2∥+ ∥ΦΦΦ1 −ΦΦΦ2∥),∀X ∈ X .

Lemma 4.8. yi(ΦΦΦ),∀i is Lipschitz continuous in ΦΦΦ, i.e., ∥yi(ΦΦΦ1)− yi(ΦΦΦ2)∥ ≤ Ly∥ΦΦΦ1 −ΦΦΦ2∥.

For notational simplicity, we let L := max{Lg, Lh, Ly} and assume that L is the common Lipschitz
constant in Lemmas 4.6-4.8 in the follows.
Remark 4.9. The Lipschitz continuity of h guarantees the existence of a solution ΦΦΦ to the equilib-
rium (12) for a fixed θθθ, while the Lipschitz continuity of g and yi ensures the existence of a solution
θθθi of (12) when ΦΦΦ is fixed.

Lemma 4.10. There exists a ω > 0 such that ∀ΦΦΦ, θθθ and ∀ i:

⟨ΦΦΦ−ΦΦΦ∗
0, h̄(y

i(ΦΦΦ),ΦΦΦ)⟩ ≤ −ω∥ΦΦΦ∗
0 −ΦΦΦ∥2,

〈
θθθit − yi(ΦΦΦt−1), ḡ(θθθ

i
t,ΦΦΦt−1)

〉
≤ −ω∥θθθ − yi(ΦΦΦ)∥2.

Remark 4.11. Lemma 4.10 guarantees the stability of the two-timescale update in (7) and (11), and
can be viewed as the monotone property of nonlinear mappings leveraged in Doan (2020); Chen
et al. (2019).

Lemma 4.12. Under Assumption 4.3, and Lemma 4.6 and 4.7, there exist constants C > 0,
ρ ∈ (0, 1) and L1 = max(Lg, Lh,maxX g(θθθ∗,ΦΦΦ∗, X),maxX h(θθθ∗,ΦΦΦ∗, X)) such that τδ ≤
log(1/δ)+log(2L1Cd)

log(1/ρ) , and limδ→0 δτδ = 0.

4.2.1 MAIN RESULTS

We now present our main theoretical results in this work.

Theorem 4.13. Let T ≥ 2τδ for some δ > 0. Suppose that the learning rates are chosen as

αt = α0/(t+ 2)5/6 and βt = β0/(t+ 2),

7
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where α0 ≤ 1/(2L
√
2(1 + L2)), β0 ≤ ω/2, and L = max{Lg, Lh, Ly}. We have

M({θθθiT+2},ΦΦΦT+1) ≤
M({θθθi1},ΦΦΦ0)

(T + 2)2
+

C2

(T + 2)2/3

+
C1

(T + 2)2/3

(
E[∥ΦΦΦ0 −ΦΦΦ∗

0∥2] +
1

N
E

N∑
i=1

∥θθθi1 − yi(ΦΦΦ0)∥2
)
, (16)

with C2 = (4α0β0K
2(3δ2(1 +B2) + L2B2) + 2α2

0(3K
2B2 + 3K2δ2 + 2L2K2B2) + 8α0β0δ

2)
and C1 = (144τ2δK

2L2δ2 + 4L2/N)α0β0.

The first term of the right-hand side of (16) corresponds to the bias due to initialization, which goes
to zero at a rate O(1/T 2). The second term is due to the variance of the Markovian noise. The third
term corresponds to the accumulated estimation error of the two-timescale update. The second and
third terms decay at a rate O(1/T 2/3), and hence dominate the overall convergence rate in (16).
Remark 4.14. Doan (2020) provided the first finite-time analysis for general nonlinear 2TSA under
i.i.d noise, and then extended it to the Markovian noise setting under the assumptions that both
ḡ and h̄ functions are monotone in both parameters (Doan, 2021). Since Doan (2021) leverages
the methods from Doan (2020), it needs a detailed characterization of the covariance between the
error induced by Markovian noise and the residual error of the parameters in (13), rendering the
convergence analysis much more intricate. To address this and inspired by the single-timescale
SA (Srikant & Ying, 2019), we use a Lyapunov drift approach to capture the evolution of two
coupled parameters under Markovian noise, and the characterization of impacts of a norm-scaling
step further distinguishes our work.

Corollary 4.15. Suppose that β0 = o(N−2/3) and that T 2 > N . Then, we have

M({θθθit+2},ΦΦΦt+1) ≤ O
(

1

N2/3(T + 2)2/3

)
.

Remark 4.16. Corollary 4.15 indicates that to attain an ϵ accuracy, it takes O
(
ϵ−3/2

)
steps with a

convergence rateO
(
T−2/3

)
, whileO

(
N−1ϵ−3/2

)
steps with a convergence rateO

(
N−2/3T−2/3

)
(the hidden constants in O(·) are the same). In this sense, we prove that PFEDTD-REP achieves
a linear convergence speedup with respect to the number of agents N , i.e., we can proportionally
decrease T as N increases while keeping the same convergence rate. To our best knowledge, this is
the first linear speedup result for personalized FedRL with shared representations under Markovian
noise, and is highly desirable since it implies that one can efficiently leverage the massive parallelism
in large-scale systems. Recently, Shen et al. (2023) considered a 2TSA in a federated RL setting and
achieved a convergence rate of O

(
T−2/5

)
and thus a sample complexity of O

(
ϵ−5/2

)
. In contrast,

our method can converge quicker and enjoys a lower sample complexity, and the convergence speed
matches the best-known convergence speed for non-linear 2TSA under even i.i.d noise (Doan, 2020).
In addition, we note that single-timescale (SA) methods may enjoy a faster convergence speed and a
lower sample complexity. However, it is known that the 2TSA setting is much more involved than the
SA setting, as there are two parameters to be updated in a coupled and asynchronous manner. To our
best knowledge, there are no existing works in the 2TSA settings that achieve the same convergence
rate or sample complexity as those in the SA settings. It may be an interesting direction to investigate
for the community. Finally, similar to FL settings (Collins et al., 2021), the local step does not hurt
the global convergence with a proper learning rate choice.
Remark 4.17. The gradient tracking technique discussed in Zeng & Doan (2024) could potentially
be effective in handling Markovian sampling and improving the current convergence rate toO(T−1).
However, it is unsure if it can be applied to PFEDRL-REP, i.e., personalized federated reinforce-
ment learning setting with shared representations, where multiple agents are coupled through a cen-
tral server and each agent performs multiple local updates for their personalized weights. In our
PFEDRL-REP framework, multiple agents are coupled through a central server, and each agent
performs multiple local updates for their personalized weights, whereas Zeng & Doan (2024) only
considers single-agent settings under i.i.d. noise. Furthermore, Zeng & Doan (2024) assumes a
second-order variance bound of the stochastic function, while our analysis does not include such
an assumption. Investigating these is out of the scope of this work, which already considers a very
challenging setting.
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Figure 2: Comparisons in a CliffWalking Environment with 3 agents.

4.2.2 INTUITIONS AND PROOF SKETCH

We highlight the key ideas and challenges behind the convergence rate analysis of PFEDTD-REP
with two coupled parameters, which is an example of a federated nonlinear 2TSA. With the defined
Lyapunov function in (14), the key is to find the drift between M({θθθit+1,∀i},ΦΦΦt) in the t-th com-
munication round and M({θθθit,∀i},ΦΦΦt−1) in the (t − 1)-th communication round. To achieve this,
we separately characterize the drift between ΦΦΦt+1 and ΦΦΦt, and the drift between θθθit+1 and θθθit,∀i.
We emphasize the three main challenges in characterizing the drift: (i) how to bound the stochastic
gradient with Markovian samples; (ii) how to leverage mixing time τ to handle the biased parame-
ter updates due to Markovian noise; and (iii) how to deal with multiple local updates for the local
weight vector θθθi.

We introduce the mixing time property of MDPs and thus we have that the gap between the bi-
ased gradient at each time step and the true gradient can be bounded when the time step exceeds
the mixing time τ , as defined in Definition 4.5. To characterize the effect of local updates, the
key philosophy is to bound the gradient at the initial local step and the gradient at the final local
steps, which can be done by leveraging the Lipschitz property of those gradient functions in Lem-
mas 4.6, 4.7 and 4.8. See Appendix F.1.1 and Appendix F.1.2 for details. Once we establish the
drift of the Lyapunov function, the remaining task is to select suitable dynamic two-timescale learn-
ing rates {αt,∀t} and {βt,∀t} for the weight vector update in (7) and the feature representation
update in (9), respectively. See Appendix F.1.3 for details. In summary, the 2TSA under PFEDRL
setting with multiple agents, Markovian samples, and multiple local updates, highly differentiates
our work from existing works, e.g., Doan (2020; 2021); Srikant & Ying (2019) (see discussions in
Remark 4.14).

4.3 NUMERICAL EVALUATION

We empirically evaluate the performance of PFEDTD-REP. We consider a tabular CliffWalking
environment (Brockman et al., 2016) with a 4 × 12 grid world, where 3 agents evaluate 3 different
policies. The dimension for the feature representation and weight vector is set to be 6. We compare
PFEDTD-REP with (i) “TD”: each agent independently leverages the conventional TD without com-
munication; and (ii) “FedTD” without personalization (Khodadadian et al., 2022; Dal Fabbro et al.,
2023) as listed in Table 1. As shown in Figure 2a, PFEDTD-REP ensures personalization among
all agents while FedTD tends to converge uniformly among all agents. Further, PFEDTD-REP at-
tains values much closer to the ground-truth achieved by TD for each agent compared to FedTD;
and PFEDTD-REP converges much faster than TD. For instance, agent 1 only needs 50 episodes to
converge under PFEDTD-REP, while it takes more than 150 episodes to converge under TD, as illus-
trated in Figure 2b. The improved convergence performance of PFEDTD-REP further supports our
theoretical findings that leveraging shared representations not only provides personalization among
agents in heterogeneous environments but yield faster convergence.

5 APPLICATION TO CONTROL PROBLEMS

In this section, we briefly discuss how our proposed PFEDRL-REP framework can be applied to the
control problems in RL. More details are provided in Appendices C.3 (i.e., Algorithm 4) and G.
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(b) Acrobot environment.

Figure 3: Comparisons in control problems.

PFEDDQN-REP (an instance of PFEDRL-REP paired with DQN) leverages shared representa-
tions to learn a common feature space that captures the underlying dynamics and features relevant
across different but related tasks encountered by various agents. In PFEDDQN-REP, the target net-
work is a critical component that provides stability to the learning process by serving as a relatively
static benchmark for calculating the loss during training updates (Mnih et al., 2015). The target
network’s architecture mirrors that of the main network, including the shared representation model.
However, its parameters are updated less frequently. This setup ensures that the calculated target val-
ues, which guide the policy updates, are based on a consistent representation of the environment’s
state, as encoded by the shared representation model. The synergy between the target network and
the representation model is thus central to achieving stable and convergent learning. In Line 13
of Algorithm 4, the algorithm performs a scheduled update of the shared representation ΦΦΦ of the
main network’s parameters with the guidance of the target network. In Line 18 of Algorithm 4, for
every Ttarget times, the algorithm performs a scheduled update of the target network’s parameters
by copying over the parameters from the main network. This step is essential for maintaining the
stability of the learning process, as it ensures that the target values against which the policy updates
are computed remain consistent and reflective of the most recent knowledge encoded in the shared
representation. The update frequency is carefully chosen to balance learning stability with model
adaptiveness.

Numerical Evaluation. We consider a modified CartPole environment (Brockman et al., 2016) by
changing the length of pole to create different environments (Jin et al., 2022). Specifically, we con-
sider 10 agents with varying pole length from 0.38 to 0.74 with a step size of 0.04. We compare
PFEDDQN-REP with (i) a conventional DQN that each agent learns its own environment inde-
pendently; (ii) a federated version DQN (FedDQN) that allows all agents to collaboratively learn a
single policy (without personalization); (iii) two federated algorithms without personalizing FedQ-K
(Khodadadian et al., 2022), LFRL (Liu et al., 2019); and (iv) two personalized algorithms PerDQ-
NAvg (Jin et al., 2022) and FedAsynQ-ImAvg (Woo et al., 2023). We randomly choose one agent
and present its performance in Figure 3a. Again, we observe that our PFEDDQN-REP obtains larger
reward than benchmarks without personalization, thanks to our personalized policy; and achieves the
maximized return much faster than existing personlalized algorithms due to leveraging only partial
information among agents. We further evaluate the effectiveness of shared representation learned
by PFEDDQN-REP when generalizes it to a new agent. As shown in Figure 3a, PFEDDQN-REP
generalizes quickly to the new environment. Similar observations can be made from Figure 3b using
Acrobot environments (see details in Appendix G). In summary, the significance of our PFEDRL-
REP framework lies in its superior performance in heterogeneous environments compared to existing
algorithms that do not incorporate personalization. Additionally, our PFEDRL-REP framework also
enables quick adaptation to new, previously unobserved environments.

Limitations and Open Problems. In this paper, we characterize the finite-time convergence rate for
PFEDTD-REP with linear feature representation. However, our analysis is not directly applicable
to the control problems (e.g., PFEDQ-REP, an instance of PFEDRL-REP with Q-learning) since
Q-learning is not a linear operation with respect to the shared representation and local weights.
Additionally, Q-learning is typically combined with deep neural networks, where the Q-function is
approximated by a neural network as in PFEDDQN-REP. It is important to note that even for the
single-agent Q-learning with neural network function approximation, the finite-time convergence of
neural weights is not well-studied. The complexity is further compounded in personalized federated
RL frameworks, where multiple agents share a common representation while maintain personalized
local weights. Given the promising experimental results on control, whether we can provide a bound
for PFEDQ-REP either with linear or neural feature representations remains an open problem.
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A RELATED WORK

Single-Agent Reinforcement Learning. RL is a machine learning paradigm that trains agents to
make sequences of decisions by rewarding desired behaviors and/or penalizing undesired ones in a
given environment (Sutton & Barto, 2018). Starting from Temporal Difference (TD) Learning (Sut-
ton, 1988), which introduced the concept of learning from the discrepancy between predicted and
actual rewards through episodes, the widely used Q-Learning (Watkins & Dayan, 1992) emerged,
advancing the field with an off-policy algorithm that learns action-value functions and enables pol-
icy improvement without needing a model of the environment. Later on, the introduction of Deep
Q-Networks (DQN) (Mnih et al., 2015) marked a significant leap, integrating deep neural networks
with Q-Learning to handle high-dimensional state spaces, thus enabling RL to tackle complex prob-
lems. Subsequently, policy-based algorithms such as Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) and deep Deterministic Policy Gradients (DDPG) (Silver et al., 2014), leverage
the Actor-Critic framework to provide more stable and robust ways to directly optimize the policy,
overcoming challenges related to action space and variance.

Federated Reinforcement Learning. Jin et al. (2022) introduced a FedRL framework with N
agents collaboratively learning a policy by averaging their Q-values or policy gradients. Khodada-
dian et al. (2022) provided a convergence analysis of federated TD (FedTD) and Q-learning (FedQ)
when N agents interact with homogeneous environments. A similar FedTD was considered in
Dal Fabbro et al. (2023), and expanded to heterogeneous environments in Wang et al. (2023a). Woo
et al. (2023) analyzed (a)synchronous variants of FedQ in heterogeneous settings, and an asyn-
chronous actor-critic method was considered in Shen et al. (2023) with linear speedup guarantee
only under i.i.d. samples. Zhang et al. (2024) provided a finite-time analysis of FedSARSA with
linear function approximation (i.e., fixed feature representation). To facilitate personalization in het-
erogeneous settings, Jin et al. (2022) proposed a heuristic personalized FedRL method where agents
share a common model, but make use of individual environment embeddings. There is also a related
paper Fan et al. (2021), which considers a special setting where each agent can be Byzantine and
suffers random failure in every round. In Fan et al. (2021), convergence was established based on
i.i.d. noise.

Personalized Federated Learning (PFL). In contrast to standard FL where a single model is
learned, PFL aims to learn N models specialized for N local datasets. Many PFL methods have been
developed, including but not limited to multi-task learning (Smith et al., 2017), meta-learning (Chen
et al., 2018), and various personalization techniques such as local fine-tuning (Fallah et al., 2020),
layer personalization (Arivazhagan et al., 2019), and model compression (Bergou et al., 2022). An-
other line of work (Collins et al., 2021; Xiong et al., 2024) leveraged the common representation
among agents in heterogeneous environments to guarantee personalized models for federated super-
vised learning.

Representation Learning in MDP. Representation learning aims to transform high-dimensional
observation to low-dimensional embedding to enable efficient learning, and has received increas-
ing attention in Markov decision processs (MDP) settings, such as linear MDPs (Jin et al., 2020),
low-rank MDPs (Modi et al., 2021; Agarwal et al., 2020) and block MDPs (Zhang et al., 2022c).
However, it is open in the context of leveraging representation learning in PFedFL. In this work,
we prove that representation augmented PFedFL forms a general framework as a federated two-
timescale stochastic approximation with Markovian noise, which differs significantly from existing
works, and hence necessitates different proof techniques.

Multi-Agent Reinforcement Learning vs. Federated Reinforcement Learning. The advent
of Multi-Agent Reinforcement Learning (MARL) expanded RL’s applications, allowing multiple
agents to learn from interactions in cooperative, competitive, or mixed settings, opening new avenues
for complex applications and research (Zhang et al., 2021). Multi-agent Reinforcement Learning
(MARL) addresses scenarios where multiple agents operate within a shared or interrelated environ-
ment, potentially engaging in both cooperative and competitive behaviors. The complexity arises
from each agent needing to consider the strategies and actions of others, making the learning pro-
cess highly dynamic. Federated Reinforcement Learning (FedRL)(Qi et al., 2021), contrasts with
MARL by focusing on privacy-preserving, distributed learning across agents that do not share their
raw data. Instead, these agents might contribute towards a centralized learning model without com-
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Algorithm 2 PFEDTD-REP

1: Input: Sampling policy πi,∀i ∈ [N ];
2: Initialize θθθi0 = 000, Si

0,∀i ∈ [N ], and randomly generate ΦΦΦ ∈ R|S|×d with each row being
unit-norm vector;

3: for t = 0, 1, ..., T − 1 do
4: for i = 1, . . . , N do
5: for k = 1, . . . ,K do
6: Sample observations Xi

t,k−1;
7: Set θθθit,k = θθθit,k−1 + αtg(θθθ

i
t,k−1,ΦΦΦt, X

i
t,k−1);

8: end for
9: Scale ∥θθθit+1∥ to B if ∥θθθit+1∥ > B, otherwise keep it unchanged;

10: Set ΦΦΦi
t+1/2 = ΦΦΦt + βth(θθθ

i
t+1,ΦΦΦt, {Xi

t,k−1}Kk=1);

11: Normalize ΦΦΦi
t+1/2 as ΦΦΦi

t+1/2 ←
ΦΦΦi

t+1/2

∥ΦΦΦi
t+1/2

∥ ;

12: end for
13: ΦΦΦt+1 = 1

N

∑N
i=1ΦΦΦ

i
t+1/2.

14: end for

promising individual data privacy, addressing the unique challenges of learning from decentralized
data sources.

B PSEUDOCODE OF PFEDTD-REP

In this section, we present the pseudocode of PFEDQ-REP as summarized in Algorithm 2.

C APPLICATION TO CONTROL TASKS IN RL

The Q-function of agent i in environment Mi under policy πi is defined as Qi,πi

(s, a) =
Eπi

[∑∞
k=0 γ

kRi(sik, a
i
k)|si0 = s, ai0 = a

]
. When the state and action spaces are large, it is com-

putationally infeasible to store Qi,πi

(s, a) for all state-action pairs. One way to deal with is to
approximate the Q-function as Qi,πi

(s, a) ≈ ΦΦΦ(s, a)θθθ, where ΦΦΦ ∈ R|S|×|A|×d is a feature repre-
sentation corresponding to state-actions, and θθθ ∈ Rd is a low-dimensional unknown weight vector.
When ΦΦΦ is given and known, this falls under the paradigm of RL or FedRL with function approxi-
mation.

C.1 PRELIMINARIES: CONTROL IN FEDERATED REINFORCEMENT LEARNING

Another task in RL is to search for an optimal policy, which is called a control problem, and one
commonly used approach is Q-learning (Watkins & Dayan, 1992). Under the FedRL framework,
the goal of a control problem is to let N agents collaboratively learn a policy π∗ that performs
uniformly well across N different environments, i.e., π∗ = argmaxπ

1
N

∑N
i=1 Eπi

[
V i,πi

(si0)|si0 ∼
d0
]
, where d0 is the common initial state distribution in these N environments. Similar to (1),

this can be formulated as the optimization problem in (17) to collaboratively learn a common (non-
personalized) weight vector θθθ ≡ θθθi,∀i ∈ [N ] when the feature representation ΦΦΦ(s, a),∀s, a are
given.

L(θθθ) := min
θθθ

1

N

N∑
i=1

E
s∼µi,π∗

a∼π∗(·|s)

∥∥∥ΦΦΦ(s, a)θθθ −Qi,π∗
(s, a)

∥∥∥2 . (17)

Again, we use the superscript i to highlight heterogeneous environments P i among agents.
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C.2 CONTROL IN PERSONALIZED FEDRL WITH SHARED REPRESENTATIONS

The control problem in (17) aims to learn ΦΦΦ and {θθθi,∀i} simultaneously among all N agents via
solving the following optimization problem:

L(ΦΦΦ, {θθθi,∀i}) := min
ΦΦΦ

1

N

N∑
i=1

min
{θθθi,∀i}

E
s∼µi,πi,∗

a∼πi,∗(·|s)

∥∥∥f i(θθθi,ΦΦΦ(s, a))−Qi,πi,∗
(s, a)

∥∥∥2 . (18)

C.3 ALGORITHMS

In this subsection, we present two realizations of our proposed PFEDRL-REP in Algorithm 1, one is
PFEDQ-REP as summarized in Algorithm 3, federated Q-learning with shared representations, and
the other is PFEDDQN-REP as outlined in Algorithm 4, federated DQN with shared representations.

Algorithm 3 PFEDQ-REP

Input: Sampling policy πi,∀i ∈ [N ].
1: Initialize θθθi0 = 000, and si0,∀i ∈ [N ], and randomly generate ΦΦΦ ∈ R|S||A|×d with each row being

unit-norm vector.
2: for t = 0, 1, ..., T − 1 do
3: for i = 1, . . . , N do
4: for k = 1, . . . ,K do
5: Sample observations Xi

t,k−1 = (sit,k, s
i
t,k−1, a

i
t,k−1);

6: With fixed ΦΦΦt, update θθθit,k ← θθθit,k−1 + αt · (rit,k−1 + γmaxaΦΦΦt(s
i
t,k+1, a)θθθ

i
t,k−1 −

ΦΦΦt(s
i
t,k−1)θθθ

i
t,k−1) ·ΦΦΦt(s

i
t,k−1, a

i
t,k−1);

7: end for
8: Scale ∥θθθit+1∥ to B if ∥θθθit+1∥ > B, otherwise keep it unchanged.
9: if (s, a) ∈ Xi

t,k,∃k ∈ {0, . . . ,K − 1} then
10: UpdateΦΦΦi

t+1/2(s, a) = ΦΦΦi
t(s, a)+βt(r(s, a)+γmaxaΦΦΦt(s

′, a)θθθit+1−ΦΦΦt(s, a)
⊺θθθit+1) ·

θθθit+1;
11: else
12: ΦΦΦi

t+1/2(s, a) = ΦΦΦi
t(s, a);

13: end if
14: Normalize ΦΦΦi

t+1/2 as ΦΦΦi
t+1/2 ←

ΦΦΦi
t+1/2

∥ΦΦΦi
t+1/2

∥ ;

15: end for
16: ΦΦΦt+1 ← 1

N

∑N
i=1ΦΦΦ

i
t+1/2,∀i ∈ [N ].

17: end for

D FIGURE ILLUSTRATIONS

We present some figures to further highlight the proposed personalized FedRL (PFEDRL) frame-
work with shared representations.

Schematic framework of conventional FedRL. We begin by introducing the conventional FedRL
framework (Khodadadian et al., 2022), where N agents collaboratively learn a common policy (or
optimal value functions) via a server while engaging with homogeneous environments. Each agent
generates independent Markovian trajectories, as depicted in Figure 4.

Schematic framework for our proposed PFEDRL with shared representations. We introduce
our proposed personalized FedRL (PFEDRL) framework with shared representations in Figure 5.
In PFEDRL, N agents independently interact with their own environments and execute actions
according to their individual RL component parameterized byΦΦΦ and θθθi. Each agent i performs local
update on its local weight vector θθθi, while jointly updating the global shared feature representation
ΦΦΦ through the server. Similarly, the update follows the Markovian trajectories.

Motivation of Personalized FedRL. In the following, we also want to provide some examples
showing that the conventional FedRL framework may fail, as depicted in Figure 6. In Figure 6a,
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Algorithm 4 PFEDDQN-REP

Initialize: The parameters (ΦΦΦ, θθθi) for each Q network Qi(s, a), the replay buffer Ri, and copy
the same parameter from Q network to initialize the target Q network Qi,′(s, a) for agent i,∀i ∈
[N ];

1: for episode e = 1, . . . , E do
2: Get the initial state of the environment;
3: for t = 0, 1, ..., T − 1 do
4: for i = 1, . . . , N do
5: for k = 1, . . . ,K do
6: Select action at,k−1 according to ϵ-greedy policy with the current network

Qi(st,k−1, a);
7: Execute action at,k−1, receive the reward r(st,k−1, at,k−1), and the environment state

transits to st,k;
8: Store the tuple (st,k−1, at,k−1, r(st,k−1, at,k−1, st,k) into the replay bufferRi;
9: Sample N data tuples from the replay bufferRi;

10: Update the local weight θθθi(t, k) by minimizing the loss compared with the target
network Qi,′ with fixed representation ΦΦΦt;

11: end for
12: Sample N data tuples from replay bufferRi;
13: Update representation model locally by minimizing the loss compared with the target

network Qi,′ with fixed weights θθθt+1, and yield ΦΦΦi
t+1/2;

14: end for
15: Average the representation model from all agents, i.e., ΦΦΦt+1 := 1

N

∑N
i=1ΦΦΦ

i
t+1/2;

16: end for
17: if mod(t, Ttarget) = 0 then
18: update the target network Qi,∗ be copy the up-to-date parameters of Q network Qi, ∀i ∈

[N ];
19: end if
20: end for

Figure 4: Schematic representation of FedRL, where N agents interact with homogeneous environ-
ments.

we provide an example where three agents assess distinct policies within the same environment.
In the traditional FedRL framework, agents exchange the evaluated value functions via a central
server, leading to a unified consensus on value functions for three different policies. This enforced
consensus on value functions, despite the diversity in policies, is not optimal. In another scenario
depicted in Figure 6b, three agents each interact with their unique environments. The objective
for each agent is to learn an optimal policy tailored to its specific environment. However, within
the traditional FedRL framework, the central server mandates a uniform policy across all three
agents, which clearly contradicts the intended goal of achieving environment-specific optimization.
This highlights the necessity for personalized decision-making, a feature that conventional FedRL
frameworks do not accommodate.
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Figure 5: Our proposed PFEDRL-REP framework where N agents independently interact with
their own environments and take actions according to their individual RL component parameterized
by ΦΦΦ and θθθi. Agent i locally update weight vector θθθi while jointly updating the shared feature
representation ΦΦΦ through the central server. The update follows the Markovian trajectories.

(a) Agents evaluate difference policies in the same
environment.

(b) Agents learn optimal policies for heterogeneous
environments.

Figure 6: An illustrative example with three agents that demonstrates the conventional FedRL frame-
work fails to work.

Example of RL components that fit the proposed PFEDRL with shared representations. In the
following, we aim to showcase examples of RL components that are compatible with our proposed
PFEDRL framework featuring shared representations. An illustrative example of this framework is
presented in Figure 7. It is important to note that both the DQN architecture in Figure 7a and the
policy gradient (PG) approach in Figure 7b seamlessly integrate into our proposed framework. This
integration is achieved by designating the parameters of the feature extraction network as the shared
feature representation ΦΦΦ, and the parameters of the fully connected network, which either predict
the Q-values or determine the policy, as the local weight vector θθθ. This arrangement underscores the
adaptability of our framework to various RL methodologies, facilitating personalized learning while
maintaining a common foundation of shared representations.

E PROOF OF LEMMAS IN SECTION 4.2

E.1 PROOF OF LEMMA 4.6

Proof. Recall that for any observation X = (s, a, s′), the function g(θθθ,ΦΦΦ, X) defined in (8) is
expressed as

g(θθθ,ΦΦΦ, X) := (r(s, a) + γΦΦΦ(s′)θθθ −ΦΦΦ(s)θθθ) ·ΦΦΦ(s)⊺,
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(a) When DQN meets the proposed framework. (b) When PG meets the proposed framework.

Figure 7: An illustrative example for the proposed framework. Notice that both the DQN in (a) and
policy gradient (PG) in (b) can be fitted into the proposed framework by treating the parameters of
the feature extraction network as the shared feature representation ΦΦΦ and the parameter of the fully
connected network which maps to the Q value of policy as the local weight vector θθθ.

and hence we have the following inequality for any parameter pairs (θθθ1,ΦΦΦ1) and (θθθ2,λλλ2) with
X = (s, a, s′),

∥g(θθθ1,ΦΦΦ1, X)− g(θθθ2,ΦΦΦ2, X)∥
= ∥(r(s, a) + γΦΦΦ1(s

′)θθθ1 −ΦΦΦ1(s)θθθ1) ·ΦΦΦ1(s)
⊺ − (r(s, a) + γΦΦΦ2(s

′)θθθ2 −ΦΦΦ2(s)θθθ2) ·ΦΦΦ2(s)
⊺∥

(a1)

≤ ∥(γΦΦΦ1(s
′)θθθ1 −ΦΦΦ1(s)θθθ1) ·ΦΦΦ1(s)

⊺ − (γΦΦΦ1(s
′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ1(s)

⊺∥
+ ∥(γΦΦΦ1(s

′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ1(s)
⊺ − (γΦΦΦ2(s

′)θθθ2 −ΦΦΦ2(s)θθθ2) ·ΦΦΦ2(s)
⊺∥

(a2)

≤ ∥(γΦΦΦ1(s
′)θθθ1 −ΦΦΦ1(s)θθθ1)− (γΦΦΦ1(s

′)θθθ2 −ΦΦΦ1(s)θθθ2)∥ · ∥ΦΦΦ1(s)∥
+ ∥(γΦΦΦ1(s

′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ1(s)
⊺ − (γΦΦΦ2(s

′)θθθ2 −ΦΦΦ2(s)θθθ2) ·ΦΦΦ2(s)
⊺∥

(a3)

≤ (1 + γ) ∥θθθ1 − θθθ2∥+ ∥(γΦΦΦ1(s
′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ1(s)

⊺ − (γΦΦΦ2(s
′)θθθ2 −ΦΦΦ2(s)θθθ2) ·ΦΦΦ2(s)

⊺∥
(a4)

≤ (1 + γ) ∥θθθ1 − θθθ2∥+ ∥(γΦΦΦ1(s
′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ1(s)

⊺ − (γΦΦΦ1(s
′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ2(s)

⊺∥
+ ∥(γΦΦΦ1(s

′)θθθ2 −ΦΦΦ1(s)θθθ2) ·ΦΦΦ2(s)
⊺ − (γΦΦΦ2(s

′)θθθ2 −ΦΦΦ2(s)θθθ2) ·ΦΦΦ2(s)
⊺∥

(a5)

≤ (1 + γ) ∥θθθ1 − θθθ2∥+
∥∥∥(γΦΦΦ1(s

′)θθθ2 −ΦΦΦ1(s)θθθ2)
∥∥∥ · ∥∥∥ΦΦΦ1(s)−ΦΦΦ2(s)

∥∥∥
+ ∥(γΦΦΦ1(s

′)θθθ2 −ΦΦΦ1(s)θθθ2)− (γΦΦΦ2(s
′)θθθ2 −ΦΦΦ2(s)θθθ2)∥ · ∥ΦΦΦ2(s)∥

(a6)

≤ (1 + γ)
∥∥∥θθθ1 − θθθ2

∥∥∥+ ∥∥∥(γΦΦΦ1(s
′)θθθ2 −ΦΦΦ1(s)θθθ2)

∥∥∥ · ∥ΦΦΦ1(s)−ΦΦΦ2(s)∥

+ ∥ΦΦΦ1(s
′)−ΦΦΦ2(s

′)∥ · ∥γθθθ2∥+ ∥ΦΦΦ1(s)−ΦΦΦ2(s)∥ · ∥θθθ2∥
≤ (1 + γ) ∥θθθ1 − θθθ2∥+ (2 + 2γ) ∥θθθ2∥ · ∥ΦΦΦ1 −ΦΦΦ2∥
(a7)

≤ Lg (∥θθθ1 − θθθ2∥+ ∥ΦΦΦ1 −ΦΦΦ2∥) ,

(a1) is due to the fact that ∥x + y∥ ≤ ∥x∥ + ∥y∥,∀x,y ∈ Rd, (a2) holds due to ∥x · y∥ ≤
∥x∥ · ∥y∥,∀x,y ∈ Rd, (a3) comes from the fact and ∥ΦΦΦ1(s)∥ ≤ 1, ∥ΦΦΦ2(s)∥ ≤ 1∀s. (a4) − (a6)
holds for the same reason as (a1) − (a3). The last inequalty (a7) comes from the fact that θθθ is
bounded by norm B and by setting Lg := max(1 + γ, (2 + 2γ)B).

E.2 PROOF OF LEMMA 4.7

Proof. Recall that for any observation X = (s, a, s′), the function h(θθθ,ΦΦΦ, X) defined in (10) is
expressed as

h(θθθ,ΦΦΦ, X) := (r(s, a) + γΦΦΦ(s′)θθθ −ΦΦΦ(s)θθθ) · θθθ⊺,

and hence we have the following inequality for any parameter pairs (θθθ1,ΦΦΦ1) and (θθθ2,λλλ2) with
X = (s, a, s′),

∥h(θθθ1,ΦΦΦ1, X)− h(θθθ2,ΦΦΦ2, X)∥
= ∥(r(s, a) + γΦΦΦ1(s

′)θθθ1 −ΦΦΦ1(s)θθθ1) · θθθ⊺1 − (r(s, a) + γΦΦΦ2(s
′)θθθ2 −ΦΦΦ2(s)θθθ2) · θθθ⊺2∥
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(b1)

≤ ∥(γΦΦΦ1(s
′)θθθ1 −ΦΦΦ1(s)θθθ1) · θθθ⊺1 − (γΦΦΦ2(s

′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺1∥
+ ∥(γΦΦΦ2(s

′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺1 − (γΦΦΦ2(s
′)θθθ2 −ΦΦΦ2(s)θθθ2) · θθθ⊺2∥

(b2)

≤ ∥(γΦΦΦ1(s
′)θθθ1 −ΦΦΦ1(s)θθθ1)− (γΦΦΦ2(s

′)θθθ1 −ΦΦΦ2(s)θθθ1)∥ · ∥θθθ1∥
+ ∥(γΦΦΦ2(s

′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺1 − (γΦΦΦ2(s
′)θθθ2 −ΦΦΦ2(s)θθθ2) · θθθ⊺2∥

(b3)

≤ (1 + γ)∥θθθ1∥2 · ∥ΦΦΦ1 −ΦΦΦ2∥+ ∥(γΦΦΦ2(s
′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺1 − (γΦΦΦ2(s

′)θθθ2 −ΦΦΦ2(s)θθθ2) · θθθ⊺2∥
(b4)

≤ (1 + γ)∥θθθ1∥2 · ∥ΦΦΦ1 −ΦΦΦ2∥+ ∥(γΦΦΦ2(s
′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺1 − (γΦΦΦ2(s

′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺2∥
+ ∥(γΦΦΦ2(s

′)θθθ1 −ΦΦΦ2(s)θθθ1) · θθθ⊺2 − (γΦΦΦ2(s
′)θθθ2 −ΦΦΦ2(s)θθθ2) · θθθ⊺2∥

(b5)

≤ (1 + γ)∥θθθ1∥2 · ∥ΦΦΦ1 −ΦΦΦ2∥+ ∥(γΦΦΦ2(s
′)θθθ1 −ΦΦΦ2(s)θθθ1)∥ · ∥θθθ1 − θθθ2∥

+ ∥(γϕϕϕ2(s
′)θθθ1 −ΦΦΦ2(s)θθθ1)− (γΦΦΦ2(s

′)θθθ2 −ΦΦΦ2(s)θθθ2)∥ · ∥θθθ2∥
(b6)

≤ (1 + γ)∥θθθ1∥2 · ∥ΦΦΦ1 −ΦΦΦ2∥+ (1 + γ)∥θθθ1∥ · ∥θθθ1 − θθθ2∥+ (1 + γ)∥θθθ2∥ · ∥θθθ1 − θθθ2∥
≤ (1 + γ)∥θθθ1∥2 · ∥ΦΦΦ1 −ΦΦΦ2∥+ (1 + γ)(∥θθθ1∥+ ∥θθθ2∥) · ∥θθθ1 − θθθ2∥
(b7)

≤ Lh(∥θθθ1 − θθθ2∥+ ∥ΦΦΦ1 −ΦΦΦ2∥),

(b1) is due to the fact that ∥x + y∥ ≤ ∥x∥ + ∥y∥,∀x,y ∈ Rd, (b2) holds due to ∥x · y∥ ≤
∥x∥ · ∥y∥,∀x,y ∈ Rd, (b3) comes from the fact and ∥ΦΦΦ1(s)∥ ≤ 1, ∥ΦΦΦ2(s)∥ ≤ 1∀s. (b4) − (b6)
holds for the same reason as (b1) − (b3). The last inequalty (b7) comes from by setting Lh :=
max((1 + γ)B2, (2 + 2γ)B).

E.3 PROOF OF LEMMA 4.8

Proof. Due to the norm-scale step (step 9) in Algorithm 2, we have

∥yi(ΦΦΦ1)− yi(ΦΦΦ2)∥ ≤ max
(∥θθθ∥≤B,∥θθθ′∥≤B)

∥θθθ − θθθ′∥ ≤ 2B. (19)

Since the representation matrices ΦΦΦ1 and ΦΦΦ2 are of unit-norm in each row, there exists a positive
constant Ly such that

∥yi(ΦΦΦ1)− yi(ΦΦΦ2)∥ ≤ Ly∥ΦΦΦ1 −ΦΦΦ2∥. (20)

E.4 PROOF OF LEMMA 4.10

Proof. In the TD learning setting for our PFEDTD-REP, at time step k, the state of agent i is sik,
and its value function can be denoted as V (sik) = ΦΦΦ(sik)θθθ

i in a linear representation, where ΦΦΦ(sik)
is a feature vector and θθθi is a weight vector. The goal of agent i is to minimize the following loss
function for every sik ∈ S:

Li(ΦΦΦ(sik), θθθ
i) =

1

2

∣∣∣V (sik)− V̂ (sik)
∣∣∣2 ,

with V̂ (sik) = rik + γΦ(sik+1)θ
i being a constant. Therefore, to update ΦΦΦ(s) and θθθ, we just take

the natural gradient descent. Specifically, we update θθθ according to (7) by taking a gradient descent
step with respect to θθθ, with fixed ΦΦΦ. Similarly, we update ΦΦΦ(s) according to (9) by taking a gradient
descent step with respect to ΦΦΦ(s), with fixed θθθ.

Next, we show the convexity of the loss functionLi(ΦΦΦ(sik), θθθ
i) with respect to the feature representa-

tionΦΦΦ(sik) under a fixed θθθi. Since the estimated value function is approximated as V (sik) = ΦΦΦ(sik)θθθ
i,

where θθθi is a fixed parameter. Taking the second-order derivative of Li(ΦΦΦ(sik), θθθ
i) w.r.t. ΦΦΦ(sik) will

involve θθθiθθθi⊺, which is a positive semi-definite matrix as long as θθθi ̸= 000. Positive semi-definiteness
of the Hessian implies convexity. Hence, Li(ΦΦΦ(sik), θθθ

i) is convex on ΦΦΦ(sik) under a fixed θi. This
property holds vice versa, i.e., Li(ΦΦΦ(sik), θθθ

i) is convex on θθθi under a fixed ΦΦΦ(sik).
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Recall that the optimal solution ΦΦΦ∗
0 and θθθ∗ is defined as the set of possible values that make the

expectation of stochastic gradient g and h tends to be 0, as defined in (12), which is analogy to
make the first-order gradient of loss function be 0 and achieve the local minima. The inequalities in
Lemma 4.10 denote that the updates made to the feature matrixΦΦΦ for fixed θθθ in the first equation and
the parameters θθθ for fixed ΦΦΦ in the second equation is directed towards reducing the deviation from
the optimal solutions close to initial point. As we only care about the solution to make stochastic
gradients be 0, for a fixed θθθ, the loss function L is convex w.r.t. ΦΦΦ, the learning process of ΦΦΦ is
guaranteed to move towards decreasing the difference from an optimal point. This also holds for the
update of θθθ.

E.5 PROOF OF LEMMA 4.12

Proof. Under Lemma 4.6, we have

∥g(θθθ,ΦΦΦ, X)− g(yi(ΦΦΦ∗),ΦΦΦ∗, X)∥ ≤ L(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥),∀i ∈ [N ]. (21)

Similarly, under Lemma 4.7, we have

∥h(θθθ,ΦΦΦ, X)− h(yi(ΦΦΦ∗),ΦΦΦ∗, X)∥ ≤ L(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥),∀i ∈ [N ]. (22)

Let L1 = max(L,maxX g(yi(ΦΦΦ∗),ΦΦΦ∗, X),maxX h(yi(ΦΦΦ∗),ΦΦΦ∗, X)), then according to (21)-(22),
we have

∥g(θθθ,ΦΦΦ)∥ ≤ L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1),

and

∥h(θθθ,ΦΦΦ)∥ ≤ L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1).

Denote hj(θθθ,ϕϕϕ,X) as the j-th element of h(θθθ,ΦΦΦ, X). Following Chen et al. (2019), we can show
that θθθ ∈ Rd, ΦΦΦ ∈ R|S|×d, and x ∈ X ,

∥E[h(θθθ,ΦΦΦ, X)|X0 = x]− Eµ[h(θθθ,ΦΦΦ, X)]∥

≤
d∑

j=1

|E[hj(θθθ,λλλ,X)|X0 = x]− Eµ[h
j(θθθ,ΦΦΦ, X)]|

≤ 2L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1)

d∑
j=1

∣∣∣∣∣E
[

hj(θθθ,ΦΦΦ, X)

2L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥λ− λ∗∥+ 1)

∣∣∣X0 = x

]

− Eµ

[
hj(θθθ,ΦΦΦ, X)

2L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥λ− λ∗∥+ 1)

] ∣∣∣∣∣
≤ 2L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1)dC1ρ

k
1 ,

where the last inequality holds due to Assumption 4.3 with constants C1 > 0 and ρ1 ∈ (0, 1). To
guarantee 2L1(∥θθθ− yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+1)dC1ρ

k
1 ≤ δ(∥θθθ− yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+1), we have

τδ ≤
log(1/δ) + log(2L1C1d)

log(1/ρ1)
. (23)

Using the same procedures we can show that

∥E[g(θθθ,ΦΦΦ, X)|X0 = x]− Eµ[g(θθθ,ΦΦΦ, X)]∥ ≤ 2L1(∥θθθ − yi(ΦΦΦ∗)∥+ ∥ΦΦΦ−ΦΦΦ∗∥+ 1)dC2ρ
k
2 ,

hence we have

τδ ≤
log(1/δ) + log(2L1C2d)

log(1/ρ2)
. (24)

By setting τδ as the largest value in (23) and (24), we arrive at the final result in Lemma 4.12.
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F PROOFS OF MAIN RESULTS

F.1 PROOF OF THEOREM 4.13

For notational simplicity, in the proofs, we use h(θθθit+1,ΦΦΦt) to denote h(θθθit+1,ΦΦΦt, {Xi
t,k−1}Kk=1),

and g(θθθit,k−1,ΦΦΦt) to denote g(θθθit,k−1,ΦΦΦt, X
i
t,k−1). In the following, we first focus on the update of

the global representation ΦΦΦt and characterize the drift of it.

F.1.1 DRIFT OF ΦΦΦt

The drift of ΦΦΦt is given in the following lemma.
Lemma F.1. The drift between ΦΦΦt+1 and ΦΦΦt is given by

E[∥ΦΦΦt+1 −ΦΦΦ∗∥2]

= E[∥ΦΦΦt −ΦΦΦ∗∥2] + β2
t

N2
E

∥∥∥∥∥
N∑
i=1

h(θθθit+1,ΦΦΦt)

∥∥∥∥∥
2


︸ ︷︷ ︸
Term1

+ 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

−1
N

N∑
i=1

h̄(θθθit+1,ΦΦΦt)⟩

]
︸ ︷︷ ︸

Term2

+ 2βtE

[
⟨ΦΦΦt −ΦΦΦ∗,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)− h̄(θθθit+1,ΦΦΦt)⟩

]
︸ ︷︷ ︸

Term3

. (25)

Proof. Based on the update of ΦΦΦt in (11), We have the following equation

E[∥ΦΦΦt+1 −ΦΦΦ∗∥2]− E[∥ΦΦΦt −ΦΦΦ∗∥2]
= E[∥ΦΦΦ∗∥2 + ∥ΦΦΦt+1∥2 − 2⟨ΦΦΦ∗,ΦΦΦt+1⟩]− E[∥ΦΦΦ∗∥2 + ∥ΦΦΦt∥2 − 2⟨ΦΦΦ∗,ΦΦΦt⟩]
= E[∥ΦΦΦt+1∥2]− E[∥ΦΦΦt∥2]− 2⟨ΦΦΦ∗,ΦΦΦt+1 −ΦΦΦt⟩]
= E[⟨ΦΦΦt+1 −ΦΦΦt,ΦΦΦt+1 +ΦΦΦt⟩]− 2⟨ΦΦΦ∗,ΦΦΦt+1 −ΦΦΦt⟩]
= E[⟨ΦΦΦt+1 −ΦΦΦt,ΦΦΦt+1 −ΦΦΦt⟩] + 2E[⟨ΦΦΦt+1 −ΦΦΦt,ΦΦΦt⟩]− 2⟨ΦΦΦ∗,ΦΦΦt+1 −ΦΦΦt⟩]

=
β2
t

N2
E

∥∥∥∥∥
N∑
i=1

h(θθθit+1,ΦΦΦt)

∥∥∥∥∥
2
− 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)⟩

]
, (26)

which directly leads to

E[∥ΦΦΦt+1 −ΦΦΦ∗∥2]

= E[∥ΦΦΦt −ΦΦΦ∗∥2] + β2
t

N2
E

∥∥∥∥∥
N∑
i=1

h(θθθit+1,ΦΦΦt)

∥∥∥∥∥
2
− 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)⟩

]
.

(27)

Rearranging the last term yields the desired result.

In the following, we separately bound Term1 to Term3.

We first bound Term1 as follows.
Lemma F.2. For any t ≥ τ , we have

Term1 ≤ 4β2
t (L

2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2] +
4β2

tL
2

N
E

[
N∑
i=1

∥θθθt+1 − yi(ΦΦΦt)∥2
]
+ 4β2

t δ
2 (28)

Proof. Note that

Term1 =
β2
t

N2
E

∥∥∥∥∥
N∑
i=1

h(θθθit+1,ΦΦΦt)−
N∑
i=1

h(yi(ΦΦΦt),ΦΦΦ
∗) +

N∑
i=1

h(yi(ΦΦΦt),ΦΦΦ
∗)

∥∥∥∥∥
2

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triangular inequality

≤ 2β2
t

N2
E

∥∥∥∥∥
N∑
i=1

h(θθθit+1,ΦΦΦt)−
N∑
i=1

h(yi(ΦΦΦt),ΦΦΦ
∗)

∥∥∥∥∥
2


︸ ︷︷ ︸
Lipschitz of h

+
2β2

t

N2
E

∥∥∥∥∥
N∑
i=1

h(yi(ΦΦΦt),ΦΦΦ
∗)

∥∥∥∥∥
2


(a1)

≤ 2β2
tL

2

N2
E

[
2N

N∑
i=1

∥∥(θθθit+1 − yi(ΦΦΦt))
∥∥2 + 2N2 ∥(ΦΦΦt −ΦΦΦ∗)∥2

]

+
2β2

t

N2
E

∥∥∥∥∥
N∑
i=1

h(yi(ΦΦΦt),ΦΦΦ
∗)−

N∑
i=1

h(yi(ΦΦΦ∗),ΦΦΦ∗) +

N∑
i=1

h(yi(ΦΦΦ∗),ΦΦΦ∗)

∥∥∥∥∥
2


≤ 4β2
tL

2E[∥ΦΦΦ∗ −ΦΦΦt∥2] +
4β2

tL
2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]

+
4β2

t

N2
E

∥∥∥∥∥
N∑
i=1

h(yi(ΦΦΦt),ΦΦΦ
∗)−

N∑
i=1

h(yi(ΦΦΦ∗),ΦΦΦ∗)

∥∥∥∥∥
2


︸ ︷︷ ︸
Lipschitz of h, yi

+
4β2

t

N2
E

∥∥∥∥∥
N∑
i=1

h(yi(ΦΦΦ∗),ΦΦΦ∗)

∥∥∥∥∥
2


(a2)

≤ 4β2
tL

2E[∥ΦΦΦ∗ −ΦΦΦt∥2] +
4β2

tL
2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]

+ 4β2
tL

4E
[
∥ΦΦΦt −ΦΦΦ∗∥2

]
+

4β2
t

N2
E

∥∥∥∥∥
N∑
i=1

h(yi(ΦΦΦ∗),ΦΦΦ∗)−
N∑
i=1

h̄(yi(ΦΦΦ∗),ΦΦΦ∗)

∥∥∥∥∥
2


(a3)

≤ 4β2
t (L

2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2] +
4β2

tL
2

N
E

[
N∑
i=1

∥θθθt+1 − yi(ΦΦΦt)∥2
]
+ 4β2

t δ
2,

where the (a1) is due to ∥
∑N

i=1 xi∥2 ≤ N
∑N

i=1 ∥xi∥2, (a2) is due to the Lipschitz of functions h
and yi, and (a3) holds based on the mixing time property in Definition 4.3.

Next, we bound Term2 in the following lemma.

Lemma F.3. We have

Term2 ≤ βt(L/αt − 2ω)E[∥ΦΦΦ∗ −ΦΦΦt∥2] +
βtαtL

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]
. (29)

Proof. We have

Term2 = 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

−1
N

N∑
i=1

h̄(θθθit+1,ΦΦΦt)⟩

]

= 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

−1
N

N∑
i=1

h̄(yi(ΦΦΦt),ΦΦΦt)⟩

]
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+ 2βtE

⟨ΦΦΦ∗ −ΦΦΦt,
1

N

N∑
i=1

h̄(yi(ΦΦΦt),ΦΦΦt)− h̄(θθθit+1,ΦΦΦt)⟩︸ ︷︷ ︸
Lipschitz of h


≤ 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

−1
N

N∑
i=1

h̄(yi(ΦΦΦt),ΦΦΦt)⟩

]
+ 2βtLE

[
⟨ΦΦΦ∗ −ΦΦΦt,

1

N

N∑
i=1

(yi(ΦΦΦt)− θθθit+1)⟩

]
(b1)

≤ 2βtE

[
⟨ΦΦΦ∗ −ΦΦΦt,

−1
N

N∑
i=1

h̄(yi(ΦΦΦt),ΦΦΦt)⟩

]
+ βtL/αtE[∥ΦΦΦ∗ −ΦΦΦt∥2]

+
βtαtL

N2
E

[
∥

N∑
i=1

(θθθit+1 − yi(ΦΦΦt))∥2
]

(b2)

≤ 2βtE

[
⟨ΦΦΦt −ΦΦΦ∗,

1

N

N∑
i=1

h̄(yi(ΦΦΦt),ΦΦΦt)⟩

]
+ βtL/αtE[∥ΦΦΦ∗ −ΦΦΦt∥2]

+
βtαtL

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]

≤ βt(L/αt − 2ω)E[∥ΦΦΦ∗ −ΦΦΦt∥2] +
βtαtL

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]
,

where (b1) holds because 2xTy ≤ β∥x∥2 + 1/β∥y∥2,∀β > 0, (b2) is due to ∥
∑N

i=1 xi∥2 ≤
N
∑N

i=1 ∥xi∥2, and the last inequality is due to Assumption 4.10.

Next, we bound Term3 in the following lemmas.
Lemma F.4. For all t ≥ τ we have

Term3 ≤ (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)E[∥ΦΦΦt−τ −ΦΦΦt∥2]
+ (6βt/αt + 6βtαtδ

2(1 + L2) + 4βtαtL
2(3 + 4L2))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+
16βtαtL

2 + 6βtαtδ
2

N
E

[
N∑
i=1

∥θθθi,∗ − θθθt+1∥2
]
+ 11βtαtδ

2. (30)

Proof. We first decompose Term3 as follows

Term3 = 2βtE

[
⟨ΦΦΦt −ΦΦΦ∗,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)− h̄(θθθit+1,ΦΦΦt)⟩

]

= 2βtE

[
⟨ΦΦΦt −ΦΦΦt−τ ,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)− h̄(θθθit+1,ΦΦΦt)⟩

]

+ 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)− h̄(θθθit+1,ΦΦΦt)⟩

]

= 2βtE

[
⟨ΦΦΦt −ΦΦΦt−τ ,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)− h̄(θθθit+1,ΦΦΦt)⟩

]
︸ ︷︷ ︸

C1

+ 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)−
1

N

N∑
i=1

h(θθθit+1,ΦΦΦt−τ )⟩

]
︸ ︷︷ ︸

C2
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+ 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt−τ )−
1

N

N∑
i=1

h̄(θθθit+1,ΦΦΦt−τ )⟩

]
︸ ︷︷ ︸

C3

+ 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1

N

N∑
i=1

h̄(θθθit+1,ΦΦΦt−τ )−
1

N

N∑
i=1

h̄(θθθit+1,ΦΦΦt)⟩

]
︸ ︷︷ ︸

C4

.

Next, we bound C1 as

C1 = 2βtE

[
⟨ΦΦΦt −ΦΦΦt−τ ,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)− h̄(θθθit+1,ΦΦΦt)⟩

]

≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + βtαtE

∥∥∥∥∥ 1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)− h̄(θθθit+1,ΦΦΦt) + h̄(yi(ΦΦΦ∗),ΦΦΦ∗)

∥∥∥∥∥
2


≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 2βtαtE

∥∥∥∥∥ 1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)

∥∥∥∥∥
2


+ 2βtαtE

∥∥∥∥∥ 1

N

N∑
i=1

h̄(yi(ΦΦΦ∗),ΦΦΦ∗)− h̄(θθθit+1,ΦΦΦt)

∥∥∥∥∥
2


= βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] +
2βtαt

N2
E

∥∥∥∥∥
N∑
i=1

h(θθθit+1,ΦΦΦt)

∥∥∥∥∥
2


+ 2βtαtE

∥∥∥∥∥ 1

N

N∑
i=1

h̄(yi(ΦΦΦ∗),ΦΦΦ∗)− h̄(θθθit+1,ΦΦΦt)

∥∥∥∥∥
2


Lemma F.2
≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 8βtαt(L

2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+
8βtαtL

2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]
+ 8βtαtδ

2

+ 2βtαtE

∥∥∥∥∥ 1

N

N∑
i=1

h̄(yi(ΦΦΦ∗),ΦΦΦ∗)− h̄(θθθit+1,ΦΦΦt)

∥∥∥∥∥
2


︸ ︷︷ ︸
Lipschitz of h

≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 8βtαt(L
2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+
8βtαtL

2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]
+ 8βtαtδ

2

+ 2βtαtL
2E

∥∥∥∥∥ 1

N

N∑
i=1

2(ΦΦΦ∗ −ΦΦΦt) + 2(θθθit+1 − yi(ΦΦΦ∗))

∥∥∥∥∥
2


≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 8βtαt(L
2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+
8βtαtL

2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]
+ 8βtαtδ

2

+ 4βtαtL
2E[∥ΦΦΦ∗ −ΦΦΦt∥2] +

4βtαtL
2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦ∗)∥2
]

= βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 8βtαt(L
2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2]
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+
8βtαtL

2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]
+ 8βtαtδ

2 + 4βtαtL
2E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+
4βtαtL

2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt) + yi(ΦΦΦt)− yi(ΦΦΦ∗)∥2
]

≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 8βtαt(L
2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+
8βtαtL

2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]
+ 8βtαtδ

2

+ 4βtαtL
2E[∥ΦΦΦ∗ −ΦΦΦt∥2] +

8βtαtL
2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]

+ 8βtαtL
4E[∥ΦΦΦ∗ −ΦΦΦt∥2]

= βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 4βtαtL
2(3 + 4L2)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+
16βtαtL

2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]
+ 8βtαtδ

2,

where the last inequality is due to the Lipschitz of the function yi.

Next, we bound C2 as follows.

C2 = 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)−
1

N

N∑
i=1

h(θθθit+1,ΦΦΦt−τ )⟩

]

≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + βtαtE

∥∥∥∥∥ 1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)−
1

N

N∑
i=1

h(θθθit+1,ΦΦΦt−τ )

∥∥∥∥∥
2


︸ ︷︷ ︸
Lipschitz of h

≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + βtαtL
2E[∥ΦΦΦt −ΦΦΦt−τ∥2]

= βt/αtE[∥ΦΦΦt−τ −ΦΦΦt +ΦΦΦt −ΦΦΦ∗∥2] + βtαtL
2E[∥ΦΦΦt −ΦΦΦt−τ∥2]

≤ 2βt/αtE[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2βt/αtE[∥ΦΦΦt −ΦΦΦ∗∥2] + βtαtL
2E[∥ΦΦΦt −ΦΦΦt−τ∥2]

= (2βt/αt + βtαtL
2)E[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2βt/αtE[∥ΦΦΦt −ΦΦΦ∗∥2].

Similarly, C4 is bounded exactly same as C2, i.e.,

C4 ≤ (2βt/αt + βtαtL
2)E[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2βt/αtE[∥ΦΦΦt −ΦΦΦ∗∥2].

Next, we bound C3 as follows.

C3 = 2βtE

[
⟨ΦΦΦt−τ −ΦΦΦ∗,

1

N

N∑
i=1

h(θθθit+1,ΦΦΦt−τ )−
1

N

N∑
i=1

h̄(θθθit+1,ΦΦΦt−τ )⟩

]

≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + βtαt
1

N2
E

∥∥∥∥∥
N∑
i=1

h(θθθit+1,ΦΦΦt−τ )−
N∑
i=1

h̄(θθθit+1,ΦΦΦt−τ )

∥∥∥∥∥
2


Definition 4.3
≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2]

+ βtαt
1

N2
E

(Nδ ∥ΦΦΦt−τ −ΦΦΦ∗∥+Nδ + δ

N∑
i=1

∥∥θθθit+1 − yi(ΦΦΦ∗)
∥∥)2


≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + 3βtαtδ

2E
[
∥ΦΦΦt−τ −ΦΦΦ∗∥2

]
+ 3βtαtδ

2

+
3βtαtδ

2

N
E

[
N∑
i=1

∥∥θθθit+1 − yi(ΦΦΦ∗)
∥∥2]
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= βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + 3βtαtδ
2E
[
∥ΦΦΦt−τ −ΦΦΦ∗∥2

]
+ 3βtαtδ

2

+
3βtαtδ

2

N
E

[
N∑
i=1

∥∥θθθit+1 − yi(ΦΦΦt) + yi(ΦΦΦt)− yi(ΦΦΦ∗)
∥∥2]

≤ βt/αtE[∥ΦΦΦt−τ −ΦΦΦ∗∥2] + 3βtαtδ
2E
[
∥ΦΦΦt−τ −ΦΦΦ∗∥2

]
+ 3βtαtδ

2

+
6βtαtδ

2

N
E

[
N∑
i=1

∥∥θθθit+1 − yi(ΦΦΦt)
∥∥2]+ 6βtαtL

2δ2E
[
∥ΦΦΦt −ΦΦΦ∗∥2

]
≤ (2βt/αt + 6βtαtδ

2)E[∥ΦΦΦt−τ −ΦΦΦt∥2] + (2βt/αt + 6βtαtδ
2 + 6βtαtL

2δ2)E[∥ΦΦΦt −ΦΦΦ∗∥2]

+ 3βtαtδ
2 +

6βtαtδ
2

N
E

[
N∑
i=1

∥∥θθθit+1 − yi(ΦΦΦt)
∥∥2] ,

where the last inequality comes from E[∥ΦΦΦt−τ −ΦΦΦ∗∥2] ≤ 2E[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2E[∥ΦΦΦt −ΦΦΦ∗∥2].
Hence, we have Term3 as follows

Term3 = C1 + C2 + C3 + C4

≤ βt/αtE[∥ΦΦΦt −ΦΦΦt−τ∥2] + 4βtαtL
2(3 + 4L2)E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+
16βtαtL

2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]
+ 8βtαtδ

2

+ (2βt/αt + βtαtL
2)E[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2βt/αtE[∥ΦΦΦt −ΦΦΦ∗∥2]

+ (2βt/αt + 6βtαtδ
2)E[∥ΦΦΦt−τ −ΦΦΦt∥2]

+ (2βt/αt + 6βtαtδ
2 + 6βtαtL

2δ2)E[∥ΦΦΦt −ΦΦΦ∗∥2]

+ 3βtαtδ
2 +

6βtαtδ
2

N
E

[
N∑
i=1

∥∥θθθit+1 − yi(ΦΦΦt)
∥∥2]

+ (2βt/αt + βtαtL
2)E[∥ΦΦΦt−τ −ΦΦΦt∥2] + 2βt/αtE[∥ΦΦΦt −ΦΦΦ∗∥2]

≤ (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)E[∥ΦΦΦt−τ −ΦΦΦt∥2]
+ (6βt/αt + 6βtαtδ

2(1 + L2) + 4βtαtL
2(3 + 4L2))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+
16βtαtL

2 + 6βtαtδ
2

N
E

[
N∑
i=1

∥yi(ΦΦΦt)− θθθit+1∥2
]
+ 11βtαtδ

2,

which completes the proof.

To bound Term3, we need to bound E[∥ΦΦΦt −ΦΦΦt−τ∥2], which is shown in the following lemma.
Lemma F.5. we have ∀t ≥ 2τ

E[∥ΦΦΦt −ΦΦΦt−τ∥2] ≤ 4τ2β2
0/α

2
0E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 8β2

0L
2B2τ2 + 8β2

0δ
2τ2. (31)

Proof. The proof follows similar procedures of proof for Lemma 3 in Dal Fabbro et al. (2023).
Starting with

∥ΦΦΦ∗ −ΦΦΦt+1∥2 = ∥ΦΦΦ∗ −ΦΦΦt∥2 +
β2
t

N2

∥∥∥∥∥
N∑
i=1

h(θθθit+1,ΦΦΦt)

∥∥∥∥∥
2

− 2βt⟨ΦΦΦ∗ −ΦΦΦt,
1

N

N∑
i=1

h(θθθit+1,ΦΦΦt)⟩

≤ (1 + βt/α0)∥ΦΦΦ∗ −ΦΦΦt∥2 +
(βtα0 + β2

t )

N2

∥∥∥∥∥
N∑
i=1

hi
t(θθθ

i
t+1,ΦΦΦt)

∥∥∥∥∥
2

≤ (1 + βt/α0)∥ΦΦΦ∗ −ΦΦΦt∥2 +
2βtα0

N2

∥∥∥∥∥
N∑
i=1

hi
t(θθθ

i
t+1,ΦΦΦt)

∥∥∥∥∥
2

, (32)
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where the first inequality holds due to 2xTy ≤ γ∥x∥2+1/γ∥y∥2,∀γ > 0, and the second inequality
holds since βtα0 ≥ β2

t . We then have the following inequality according to Lemma F.2,

E
[
∥ΦΦΦ∗ −ΦΦΦt+1∥2

]
≤ (1 + βt/α0 + 8βtα0L

2(1 + L2))E
[
∥ΦΦΦ∗ −ΦΦΦt∥2

]
+

8βtα0L
2

N
E

[
N∑
i=1

∥θθθt+1 − yi(ΦΦΦt)∥2
]
+ 8βtα0δ

2

≤ (1 + βt/α0 + 8βtα0L
2(1 + L2))E

[
∥ΦΦΦ∗ −ΦΦΦt∥2

]
+ 8βtα0(L

2B2 + δ2).
(33)

By letting α0 ≤ 1

2L
√

2(1+L2)
, we have βt/α0 ≥ 8βtα0L

2(1 + L2), and hence

E
[
∥ΦΦΦ∗ −ΦΦΦt+1∥2

]
≤ (1 + 2β0/α0)E

[
∥ΦΦΦ∗ −ΦΦΦt∥2

]
+ 8β0α0(L

2B2 + δ2). (34)

Therefore, for all t′ such that t− τ ≤ t′ ≤ t,

E[∥ΦΦΦ∗ −ΦΦΦt′∥2] ≤ (1 + 2β0/α0)
τE[∥ΦΦΦ∗ −ΦΦΦt−τ∥2] + 8β0α0(L

2B2 + δ2)

τ−1∑
ℓ=0

(1 + 2β0/α0)
ℓ.

(35)

Using the fact that (1 + x) ≤ ex (Dal Fabbro et al., 2023), if we let β0/α0 ≤ 1
8τ , we have

(1 + 2β0/α0)
ℓ ≤ (1 + 2β0/α0)

τ ≤ e0.25 ≤ 2,

and
τ−1∑
ℓ=0

(1 + 32β2)ℓ ≤ 2τ.

Hence, we have

E[∥ΦΦΦ∗ −ΦΦΦt′∥2] ≤ 2E[∥ΦΦΦ∗ −ΦΦΦt−τ∥2] + 16β0α0τ(L
2B2 + δ2).

Since ∥ΦΦΦt − ΦΦΦt−τ∥2 ≤ τ
∑t−1

ℓ=t−τ ∥ΦΦΦℓ+1 − ΦΦΦℓ∥2 = τ β2

N2

∑t−1
ℓ=t−τ ∥

∑N
i=1 h

i
ℓ(θθθ

i
ℓ+1,ΦΦΦℓ)∥2, when

t ≥ 2τ , we have ℓ ≥ τ and thus

E[∥ΦΦΦt −ΦΦΦt−τ∥2]

≤ τ
β2

N2

t−1∑
ℓ=t−τ

∥
N∑
i=1

hi
ℓ(θθθ

i
ℓ+1,ΦΦΦℓ)∥2

≤ τ

t−1∑
ℓ=t−τ

((4β2
0(L

2 + L4)E[∥ΦΦΦ∗ −ΦΦΦℓ∥2] + 4β2
0L

2B2τ2 + 4β2
0δ

2τ2

≤ 4β2
0(L

2 + L4)τ2(2E[∥ΦΦΦ∗ −ΦΦΦt−τ∥2] + 16β0α0τ(L
2B2 + δ2)) + 4β2

0L
2B2τ2 + 4β2

0δ
2τ2

= 8β2
0(L

2 + L4)τ2E[∥ΦΦΦ∗ −ΦΦΦt−τ∥2] + 4β2
0L

2B2τ2 + 4β2
0δ

2τ2

≤ τ2β2
0/α

2
0E[∥ΦΦΦ∗ −ΦΦΦt−τ∥2] + 4β2

0L
2B2τ2 + 4β2

0δ
2τ2

≤ 2τ2β2
0/α

2
0E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 2τ2β2

0/α
2
0E[∥ΦΦΦt −ΦΦΦt−τ∥2] + 4β2

0L
2B2τ2 + 4β2

0δ
2τ2.

Since 2τ2β2
0/α

2
0 ≤ 1/2 when β0/α0 ≤ 1

8τ , we have

E[∥ΦΦΦt −ΦΦΦt−τ∥2] ≤ 4τ2β2
0/α

2
0E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 8β2

0L
2B2τ2 + 8β2

0δ
2τ2.

This completes the proof.

Lemma F.6. Term3 is bounded as follows

Term3 ≤ (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)(4τ2β2
0/α

2
0E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 8β2

0L
2B2τ2 + 8β2

0δ
2τ2)

+ (6βt/αt + 6βtαtδ
2(1 + L2) + 4βtαtL

2(3 + 4L2))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+
16βtαtL

2 + 6βtαtδ
2

N
E

[
N∑
i=1

∥θθθi,∗ − θθθt+1∥2
]
+ 11βtαtδ

2.
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Proof. Substituting the bound of E[∥ΦΦΦt−ΦΦΦt−τ∥2] in (31) into Term3 in Lemma F.4 yield the final
results.

Provided Term1 in Lemma F.2, Term2 in Lemma F.3, and Term3 in Lemma F.6, we have the
following lemma to characterize the drift between ΦΦΦt+1 and ΦΦΦt.

Lemma F.7. For t ≥ 2τ , the following holds

E[∥ΦΦΦ∗ −ΦΦΦt+1∥2]
≤ (1 + 4β2

t (L
2 + L4) + (7βt/αt + 2βtαtL

2 + 6βtαtδ
2)4τ2β2

0/α
2
0

+ (6βt/αt + 6βtαtδ
2(1 + L2) + 4βtαtL

2(3 + 4L2)) + βt(L/αt − 2ω))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+
4β2

tL
2 + βtαtL+ 16βtαtL

2 + 6βtαtδ
2

N
E

[
N∑
i=1

∥θθθi,∗ − θθθt+1∥2
]

+ (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)(8β2
0L

2B2τ2 + 8β2
0δ

2τ2) + 4β2
t δ

2 + 11βtαtδ
2.

Proof. Substituting Term1, T erm2 and Term3 back into Lemma F.1, we have

E[∥ΦΦΦ∗ −ΦΦΦt+1∥2]

≤ E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 4β2
t (L

2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt∥2] +
4β2

tL
2

N
E

[
N∑
i=1

∥θθθt+1 − yi(ΦΦΦt)∥2
]
+ 4β2

t δ
2

+ βt(L/αt − 2ω)E[∥ΦΦΦ∗ −ΦΦΦt∥2] +
βtαtL

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]

+ (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)(4τ2β2
0/α

2
0E[∥ΦΦΦ∗ −ΦΦΦt∥2] + 8β2

0L
2B2τ2 + 8β2

0δ
2τ2)

+ (6βt/αt + 6βtαtδ
2(1 + L2) + 4βtαtL

2(3 + 4L2))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+
16βtαtL

2 + 6βtαtδ
2

N
E

[
N∑
i=1

∥θθθi,∗ − θθθt+1∥2
]
+ 11βtαtδ

2

= (1 + 4β2
t (L

2 + L4) + (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)4τ2β2
0/α

2
0

+ (6βt/αt + 6βtαtδ
2(1 + L2) + 4βtαtL

2(3 + 4L2)) + βt(L/αt − 2ω))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+
4β2

tL
2 + βtαtL+ 16βtαtL

2 + 6βtαtδ
2

N
E

[
N∑
i=1

∥θθθi,∗ − θθθt+1∥2
]

+ (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)(8β2
0L

2B2τ2 + 8β2
0δ

2τ2) + 4β2
t δ

2 + 11βtαtδ
2.

This completes the proof.

F.1.2 DRIFT OF θθθit,∀i.

Next, we characterize the drift between θθθit+1 and θθθit.

Lemma F.8. The drift between θθθit+1 and θθθit,∀i is given by

E[∥θθθit+1 − yi(ΦΦΦt)∥2] = E

∥∥∥∥∥θθθit − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθit,k−1,ΦΦΦt)

∥∥∥∥∥
2


︸ ︷︷ ︸
Term4

+ E
[∥∥yi(ΦΦΦt−1)− yi(ΦΦΦt)

∥∥2]︸ ︷︷ ︸
Term5

+ 2E

[〈
θθθit − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθit,k−1,ΦΦΦt), y
i(ΦΦΦt−1)− yi(ΦΦΦt)

〉]
︸ ︷︷ ︸

Term6

.

(36)
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Proof. According to the update of θθθit in (7), we have

E[∥θθθit+1 − yi(ΦΦΦt)∥2] = E

∥∥∥∥∥θθθit − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθit,k−1,ΦΦΦt) + yi(ΦΦΦt−1)− yi(ΦΦΦt)

∥∥∥∥∥
2


= E

∥∥∥∥∥θθθit − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθit,k−1,ΦΦΦt)

∥∥∥∥∥
2


︸ ︷︷ ︸
Term4

+ E
[∥∥yi(ΦΦΦt−1)− yi(ΦΦΦt)

∥∥2]︸ ︷︷ ︸
Term5

+ 2E

[〈
θθθit − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθit,k−1,ΦΦΦt), y
i(ΦΦΦt−1)− yi(ΦΦΦt)

〉]
︸ ︷︷ ︸

Term6

,

(37)

where the second inequality holds due to ∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x,y⟩.

We next analyze each term in (37). First, we bound Term4 in the following lemma.
Lemma F.9. With t ≥ τ , we have Term4 bounded as

Term4 ≤ (1 + 2βt−1/αt − 2αtKω)E
[∥∥θθθit − yi(ΦΦΦt−1)

∥∥2]
+ (12α2

t δ
2K2 + 6K2δ2α3

t /βt−1)E[∥ΦΦΦt−1 −ΦΦΦ∗∥2]
+ (12α2

t δ
2K2 + 2L2α3

t /βt−1 + 6K2δ2α3
t /βt−1)E[∥ΦΦΦt −ΦΦΦt−1∥2]

+ 6α2
t δ

2K2(1 +B2) + 2α2
tK

2L2B2 + 2L2K2B2α3
t /βt−1 + α3

t /βt−1(3K
2B2 + 3K2δ2).

(38)

Proof. According to the definition of Term4, we have

Term4 = E

∥∥∥∥∥θθθit − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθit,k−1,ΦΦΦt)

∥∥∥∥∥
2


= E
[∥∥θθθit − yi(ΦΦΦt−1)

∥∥2]+ α2
tE

∥∥∥∥∥
K∑

k=1

g(θθθit,k−1,ΦΦΦt)

∥∥∥∥∥
2


+ 2αt

〈
θθθit − yi(ΦΦΦt−1),

K∑
k=1

g(θθθit,k−1,ΦΦΦt)

〉

= E
[∥∥θθθit − yi(ΦΦΦt−1)

∥∥2]+ 2αtE

[〈
θθθit − yi(ΦΦΦt−1),

K∑
k=1

g(θθθit,k−1,ΦΦΦt)

〉]

+ α2
tE

∥∥∥∥∥
K∑

k=1

g(θθθit,k−1,ΦΦΦt)−
K∑

k=1

ḡ(θθθit,k−1,ΦΦΦt) +

K∑
k=1

ḡ(θθθit,k−1,ΦΦΦt)−
K∑

k=1

ḡ(yi(ΦΦΦt),ΦΦΦt)

∥∥∥∥∥
2


≤ E
[∥∥θθθit − yi(ΦΦΦt−1)

∥∥2]+ 2α2
tE

∥∥∥∥∥
K∑

k=1

g(θθθit,k−1,ΦΦΦt)−
K∑

k=1

ḡ(θθθit,k−1,ΦΦΦt)

∥∥∥∥∥
2


︸ ︷︷ ︸
Mixing time property in Definition 4.3

+ 2α2
tE

∥∥∥∥∥
K∑

k=1

ḡ(θθθit,k−1,ΦΦΦt)−
K∑

k=1

ḡ(yi(ΦΦΦt),ΦΦΦt)

∥∥∥∥∥
2

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+ 2αtE

[〈
θθθit − yi(ΦΦΦt−1),

K∑
k=1

g(θθθit,k−1,ΦΦΦt)

〉]
≤ E

[∥∥θθθit − yi(ΦΦΦt−1)
∥∥2]+ 6α2

t δ
2K2E

[
∥ΦΦΦt −ΦΦΦ∗∥2

]
+ 6α2

t δ
2K2(1 +B2) + 2α2

tK
2L2B2

+ 2αtE

[〈
θθθit − yi(ΦΦΦt−1),

K∑
k=1

ḡ(θθθit,k−1,ΦΦΦt)

〉]
︸ ︷︷ ︸

Term41

+ 2αtE

[〈
θθθit − yi(ΦΦΦt−1),

K∑
k=1

g(θθθit,k−1,ΦΦΦt)−
K∑

k=1

ḡ(θθθit,k−1,ΦΦΦt)

〉]
︸ ︷︷ ︸

Term42

, (39)

where the first inequality holds due to the fact that ∥x + y∥2 ≤ 2∥x∥2 + 2∥y∥2, and the second
inequality is due to the mixing time property of function g as in Definition 4.3.

Next, we bound Term41 as

Term41 = 2αtE

[〈
θθθit − yi(ΦΦΦt−1),

K∑
k=1

ḡ(θθθit,k−1,ΦΦΦt)

〉]

= 2αtE

[〈
θθθit − yi(ΦΦΦt−1),

K∑
k=1

ḡ(θθθit,ΦΦΦt−1)

〉]

+ 2αtE

[〈
θθθit − yi(ΦΦΦt−1),

K∑
k=1

ḡ(θθθit,k−1,ΦΦΦt)−
K∑

k=1

ḡ(θθθit,ΦΦΦt−1)

〉]
≤ −2αtKωE

[
∥θθθit − yi(ΦΦΦt−1)∥2

]
+ 2αtE

[〈
θθθit − yi(ΦΦΦt−1),

K∑
k=1

ḡ(θθθit,k−1,ΦΦΦt)−
K∑

k=1

ḡ(θθθit,ΦΦΦt−1)

〉]
≤ −2αtKωE

[
∥θθθit − yi(ΦΦΦt−1)∥2

]
+ βt−1/αtE

[∥∥θθθit − yi(ΦΦΦt−1)
∥∥2]

+ α3
t /βt−1E

∥∥∥∥∥
K∑

k=1

ḡ(θθθit,k−1,ΦΦΦt)−
K∑

k=1

ḡ(θθθit,ΦΦΦt−1)

∥∥∥∥∥
2
 . (40)

In particular, we can bound E
[∥∥∥∑K

k=1 ḡ(θθθ
i
t,k−1,ΦΦΦt)−

∑K
k=1 ḡ(θθθ

i
t,ΦΦΦt−1)

∥∥∥2] as

E

∥∥∥∥∥
K∑

k=1

ḡ(θθθit,k−1,ΦΦΦt)−
K∑

k=1

ḡ(θθθit,ΦΦΦt−1)

∥∥∥∥∥
2


≤ 2L2E
[
∥ΦΦΦt −ΦΦΦt−1∥2

]
+ 2L2E

∥∥∥∥∥
K∑

k=1

θθθt,k−1 − θθθt

∥∥∥∥∥
2


≤ 2L2E
[
∥ΦΦΦt −ΦΦΦt−1∥2

]
+ 2L2KE

[
K∑

k=1

∥θθθt,k−1 − θθθt∥2
]

≤ 2L2E
[
∥ΦΦΦt −ΦΦΦt−1∥2

]
+ 2L2K2B2. (41)

Substituting (41) back into (40), we have Term41 bounded as

Term41 ≤ −2αtKωE
[
∥θθθit − yi(ΦΦΦt−1)∥2

]
+ βt−1/αtE

[∥∥θθθit − yi(ΦΦΦt−1)
∥∥2]

+ α3
t /βt−1(2L

2E
[
∥ΦΦΦt −ΦΦΦt−1∥2

]
+ 2L2K2B2). (42)
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We next bound Term42 as

Term42 = 2αtE

[〈
θθθit − yi(ΦΦΦt−1),

K∑
k=1

g(θθθit,k−1,ΦΦΦt)−
K∑

k=1

ḡ(θθθit,k−1,ΦΦΦt)

〉]
≤ βt−1/αtE

[∥∥θθθit − yi(ΦΦΦt−1)
∥∥2]+ α3

t /βt−1(3K
2B2 + 3K2δ2 + 3K2δ2E[∥ΦΦΦt −ΦΦΦ∗∥2])

≤ βt−1/αtE
[∥∥θθθit − yi(ΦΦΦt−1)

∥∥2]+ α3
t /βt−1(3K

2B2 + 3K2δ2)

+ 6K2δ2α3
t /βt−1E[∥ΦΦΦt−1 −ΦΦΦ∗∥2] + 6K2δ2α3

t /βt−1E[∥ΦΦΦt −ΦΦΦt−1∥2] (43)

Substituting Term41 and Term42 back into (39), we get the final result

Term4 ≤ E
[∥∥θθθit − yi(ΦΦΦt−1)

∥∥2]+ 6α2
t δ

2K2E
[
∥ΦΦΦt −ΦΦΦ∗∥2

]
+ 6α2

t δ
2K2(1 +B2) + 2α2

tK
2L2B2

+ Term41 + Term42

= E
[∥∥θθθit − yi(ΦΦΦt−1)

∥∥2]+ 6α2
t δ

2K2E
[
∥ΦΦΦt −ΦΦΦ∗∥2

]
+ 6α2

t δ
2K2(1 +B2) + 2α2

tK
2L2B2

− 2αtKωE
[
∥θθθit − yi(ΦΦΦt−1)∥2

]
+ βt−1/αtE

[∥∥θθθit − yi(ΦΦΦt−1)
∥∥2]

+ α3
t /βt−1(2L

2E
[
∥ΦΦΦt −ΦΦΦt−1∥2

]
+ 2L2K2B2)

+ βt−1/αtE
[∥∥θθθit − yi(ΦΦΦt−1)

∥∥2]+ α3
t /βt−1(3K

2B2 + 3K2δ2)

+ 6K2δ2α3
t /βt−1E[∥ΦΦΦt−1 −ΦΦΦ∗∥2] + 6K2δ2α3

t /βt−1E[∥ΦΦΦt −ΦΦΦt−1∥2]

≤ (1 + 2βt−1/αt − 2αtKω)E
[∥∥θθθit − yi(ΦΦΦt−1)

∥∥2]
+ (12α2

t δ
2K2 + 6K2δ2α3

t /βt−1)E[∥ΦΦΦt−1 −ΦΦΦ∗∥2]
+ (12α2

t δ
2K2 + 2L2α3

t /βt−1 + 6K2δ2α3
t /βt−1)E[∥ΦΦΦt −ΦΦΦt−1∥2]

+ 6α2
t δ

2K2(1 +B2) + 2α2
tK

2L2B2 + 2L2K2B2α3
t /βt−1

+ α3
t /βt−1(3K

2B2 + 3K2δ2) (44)

This completes the proof.

Next, we bound Term5 in the following lemma.
Lemma F.10. With t ≥ τ , we have Term5 bounded as

Term5 ≤ 4β2
t−1(L

4 + L6)E[∥ΦΦΦ∗ −ΦΦΦt−1∥2] +
4β2

t−1L
4

N
E

[
N∑
i=1

∥θθθt − yi(ΦΦΦt−1)∥2
]
+ 4L2β2

t−1δ
2.

(45)

Proof. We have

Term5 = E
[∥∥yi(ΦΦΦt−1)− yi(ΦΦΦt)

∥∥2] = L2E
[
∥ΦΦΦt −ΦΦΦt−1∥2

]
=

L2β2
t−1

N2
E

∥∥∥∥∥
N∑
i=1

h(θθθit,ΦΦΦt−1)

∥∥∥∥∥
2


≤ 4β2
t−1(L

4 + L6)E[∥ΦΦΦ∗ −ΦΦΦt−1∥2] +
4β2

t−1L
4

N
E

[
N∑
i=1

∥θθθt − yi(ΦΦΦt−1)∥2
]
+ 4L2β2

t−1δ
2,

(46)

where the last inequality holds due to Lemma F.2.
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Next, we bound Term6 in the following lemma.
Lemma F.11. We have Term6 bounded as

Term6 ≤ βt−1/αtTerm4 + αt/βt−1Term5. (47)

Proof.

Term6 = 2E

[〈
θθθit − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθit,k−1,ΦΦΦt), y
i(ΦΦΦt−1)− yi(ΦΦΦt)

〉]

≤ βt−1/αtE

∥∥∥∥∥θθθit − yi(ΦΦΦt−1) + αt

K∑
k=1

g(θθθit,k−1

∥∥∥∥∥
2


︸ ︷︷ ︸
Term4

+ αt/βt−1E
[∥∥yi(ΦΦΦt−1)− yi(ΦΦΦt)

∥∥2]︸ ︷︷ ︸
Term5

(48)

Providing Term4 in Lemma F.9, Term5 in Lemma F.10, and Term6 in Lemma F.11, we have
the following result.
Lemma F.12. For t ≥ τ , the following holds

E[∥θθθit+1 − yi(ΦΦΦt)∥2]

≤

[
(1 + βt−1/αt)

(
(1 + 2βt−1/αt − 2αtKω)

+ (12α2
t δ

2K2 + 2L2α3
t /βt−1 + 6K2δ2α3

t /βt−1)
4β2

t−1L
2

N

)
+ (1 + αt/βt−1)

4β2
t−1L

4

N

]
· E
[∥∥θθθit − yi(ΦΦΦt−1)

∥∥2]
+

[
(1 + βt−1/αt)

(
(12α2

t δ
2K2 + 6K2δ2α3

t /βt−1)

+ (12α2
t δ

2K2 + 2L2α3
t /βt−1 + 6K2δ2α3

t /βt−1)(4βt−1(L
2 + L4))

)

+ (1 + αt/βt−1)4β
2
t−1(L

4 + L6)

]
· E[∥ΦΦΦ∗ −ΦΦΦt−1∥2]

+ (1 + βt−1/αt)
(
(12α2

t δ
2K2 + 2L2α3

t /βt−1 + 6K2δ2α3
t /βt−1)4β

2
t−1δ

2

+ 6α2
t δ

2K2(1 +B2) + 2α2
tK

2L2B2 + 2L2K2B2α3
t /βt−1 + α3

t /βt−1(3K
2B2 + 3K2δ2)

)
+ (1− αt/βt+1) · 4L2β2

t−1δ
2. (49)

Proof. According to (36), we have

E[∥θθθit+1 − yi(ΦΦΦt)∥2] = Term4 + Term5 + Term6

Lemma F.11
≤ (1 + βt−1/αt)Term4 + (1 + αt/βt−1)Term5

≤ (1 + βt−1/αt)

(
(1 + 2βt−1/αt − 2αtKω)E

[∥∥θθθit − yi(ΦΦΦt−1)
∥∥2]

+ (12α2
t δ

2K2 + 6K2δ2α3
t /βt−1)E[∥ΦΦΦt−1 −ΦΦΦ∗∥2]

+ (12α2
t δ

2K2 + 2L2α3
t /βt−1 + 6K2δ2α3

t /βt−1)E[∥ΦΦΦt −ΦΦΦt−1∥2]
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+ 6α2
t δ

2K2(1 +B2) + 2α2
tK

2L2B2 + 2L2K2B2α3
t /βt−1 + α3

t /βt−1(3K
2B2 + 3K2δ2)

)

+ (1 + αt/βt−1)

(
4β2

t−1(L
4 + L6)E[∥ΦΦΦ∗ −ΦΦΦt−1∥2]

+
4β2

t−1L
4

N
E

[
N∑
i=1

∥θθθt − yi(ΦΦΦt−1)∥2
]
+ 4L2β2

t−1δ
2

)
Lemma F.10
≤ (1 + βt−1/αt)

(
(1 + 2βt−1/αt − 2αtKω)E

[∥∥θθθit − yi(ΦΦΦt−1)
∥∥2]

+ (12α2
t δ

2K2 + 6K2δ2α3
t /βt−1)E[∥ΦΦΦt−1 −ΦΦΦ∗∥2]

+ (12α2
t δ

2K2 + 2L2α3
t /βt−1 + 6K2δ2α3

t /βt−1)

·
(
4β2

t−1(L
2 + L4)E[∥ΦΦΦ∗ −ΦΦΦt−1∥2] +

4β2
t−1L

2

N
E

[
N∑
i=1

∥θθθt − yi(ΦΦΦt−1)∥2
]
+ 4β2

t−1δ
2
)

+ 6α2
t δ

2K2(1 +B2) + 2α2
tK

2L2B2 + 2L2K2B2α3
t /βt−1 + α3

t /βt−1(3K
2B2 + 3K2δ2)

)

+ (1 + αt/βt−1)

(
4β2

t−1(L
4 + L6)E[∥ΦΦΦ∗ −ΦΦΦt−1∥2]

+
4β2

t−1L
4

N
E

[
N∑
i=1

∥θθθt − yi(ΦΦΦt−1)∥2
]
+ 4L2β2

t−1δ
2

)

=

[
(1 + βt−1/αt)

(
(1 + 2βt−1/αt − 2αtKω)

+ (12α2
t δ

2K2 + 2L2α3
t /βt−1 + 6K2δ2α3

t /βt−1)
4β2

t−1L
2

N

)
+ (1 + αt/βt−1)

4β2
t−1L

4

N

]
· E
[∥∥θθθit − yi(ΦΦΦt−1)

∥∥2]
+

[
(1 + βt−1/αt)

(
(12α2

t δ
2K2 + 6K2δ2α3

t /βt−1)

+ (12α2
t δ

2K2 + 2L2α3
t /βt−1 + 6K2δ2α3

t /βt−1)(4βt−1(L
2 + L4))

)

+ (1 + αt/βt−1)4β
2
t−1(L

4 + L6)

]
· E[∥ΦΦΦ∗ −ΦΦΦt−1∥2]

+ (1 + βt−1/αt)
(
(12α2

t δ
2K2 + 2L2α3

t /βt−1 + 6K2δ2α3
t /βt−1)4β

2
t−1δ

2

+ 6α2
t δ

2K2(1 +B2) + 2α2
tK

2L2B2 + 2L2K2B2α3
t /βt−1 + α3

t /βt−1(3K
2B2 + 3K2δ2)

)
+ (1 + αt/βt−1) · 4L2β2

t−1δ
2. (50)

This completes the proof.

F.1.3 FINAL STEP OF PROOF FOR THEOREM 4.13

Now, we are ready to proof the desired result in Theorem 4.13.
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According to the definition of Lyapunov function in (14), We have

M({θθθit+2},ΦΦΦt+1) = ∥ΦΦΦt+1 −ΦΦΦ∗∥2 + βt

αt+1
· 1
N

N∑
i=1

∥θθθit+2 − yi(ΦΦΦt+1)∥2

≤ (1 + 4β2
t (L

2 + L4) + (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)4τ2β2
0/α

2
0

+ (6βt/αt + 6βtαtδ
2(1 + L2) + 4βtαtL

2(3 + 4L2)) + βt(L/αt − 2ω))E[∥ΦΦΦt −ΦΦΦ∗∥2]

+
4β2

tL
2 + βtαtL+ 16βtαtL

2 + 6βtαtδ
2

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]

+ (7βt/αt + 2βtαtL
2 + 6βtαtδ

2)(8β2
0L

2B2τ2 + 8β2
0δ

2τ2) + 4β2
t δ

2 + 11βtαtδ
2

+
βt

αt+1
·

[
(1 + βt/αt+1)

(
(1 + 2βt/αt+1 − 2αt+1Kω)

+ (12α2
t+1δ

2K2 + 2L2α3
t+1/βt + 6K2δ2α3

t+1/βt)
4β2

tL
2

N

)
+ (1 + αt+1/βt)

4β2
tL

4

N

]

· 1
N

E

[
N∑
i=1

∥∥θθθit+1 − yi(ΦΦΦt)
∥∥2]

+

[
(1 + βt/αt+1)

(
(12α2

t+1δ
2K2 + 6K2δ2α3

t+1/βt)

+ (12α2
t+1δ

2K2 + 2L2α3
t+1/βt + 6K2δ2α3

t+1/βt)(4βt(L
2 + L4))

)

+ (1 + αt+1/βt)4β
2
t (L

4 + L6)

]
· E[∥ΦΦΦ∗ −ΦΦΦt∥2]

+ (1 + βt/αt+1)
(
(12α2

t+1δ
2K2 + 2L2α3

t+1/βt + 6K2δ2α3
t+1/βt)4β

2
t δ

2

+ 6α2
t+1δ

2K2(1 +B2) + 2α2
t+1K

2L2B2 + 2L2K2B2α3
t+1/βt + α3

t+1/βt(3K
2B2 + 3K2δ2)

)
+ (1 + αt+1/βt) · 4L2β2

t δ
2

]
. (51)

To simplify the notations, we define
D1 := (4β2

t (L
2 + L4) + (7βt/αt + 2βtαtL

2 + 6βtαtδ
2)4τ2β2

0/α
2
0

+ (6βt/αt + 6βtαtδ
2(1 + L2) + 4βtαtL

2(3 + 4L2)) + βtL/αt)

+
βt

αt+1

[
(1 + βt/αt+1)

(
(12α2

t+1δ
2K2 + 6K2δ2α3

t+1/βt)

+ (12α2
t+1δ

2K2 + 2L2α3
t+1/βt + 6K2δ2α3

t+1/βt)(4βt(L
2 + L4))

)

+ (1 + αt+1/βt)4β
2
t (L

4 + L6)

]
, (52)

and
D2 := 4β3

t /αt+1L
2 + α2

tL+ 16α2
tL

2 + 6αtαtδ
2

+

[(
(2βt/αt+1) + (12α2

t+1δ
2K2 + 2L2α3

t+1/βt + 6K2δ2α3
t+1/βt)

4β2
tL

2

N

)
+ (1 + αt+1/βt)

4β2
tL

4

N

]

+

[
βt/αt+1

(
(1 + 2βt/αt+1 − 2αt+1Kω)
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+ (12α2
t+1δ

2K2 + 2L2α3
t+1/βt + 6K2δ2α3

t+1/βt)
4β2

tL
2

N

)
+ (1 + αt+1/βt)

4β2
tL

4

N

]
. (53)

Since D1 is of higher orders of o(βt) and D2 is of higher order of o(αt+1), we can let D1 ≤ ωβt

and D2 ≤ Kωαt+1. Therefore, we have
M({θθθit+2},ΦΦΦt+1) ≤ (1− ωβt)M({θθθit+1},ΦΦΦt)

+ (144τ2K2L2δ2 + 4L4/N)βtαt+1

[
E[∥ΦΦΦt −ΦΦΦ∗∥2] + 1

N
E

[
N∑
i=1

∥∥θθθit+1 − yi(ΦΦΦt)
∥∥2]]

+ 4αt+1βtK
2(3δ2(1 +B2) + L2B2) + 2α2

t+1(3K
2B2 + 3K2δ2 + 2L2K2B2) + 8αt+1βtδ

2

≤ (1− ωβt)M({θθθit+1},ΦΦΦt)

+ (144τ2K2L2δ2 + 4L2/N)βtαt

[
E[∥ΦΦΦt −ΦΦΦ∗∥2] + 1

N
E

[
N∑
i=1

∥∥θθθit+1 − yi(ΦΦΦt)
∥∥2]]

+ 4αtβtK
2(3δ2(1 +B2) + L2B2) + 2α2

t (3K
2B2 + 3K2δ2 + 2L2K2B2) + 8αtβtδ

2, (54)
where the first inequality holds by omitting the higher order of learning rates, and the second in-
equality holds due to the decreasing learning rates of αt.

We now set the proper decaying learning rates. Let αt = α0/(t + 2)5/6 and βt = β0/(t + 2). We
then have

(t+ 2)2 · (1− ωβt) = (t+ 2)2(1− ωβ0)/(t+ 2) ≤ (t+ 1)2, (55)
if ωβo < 2. In addition, we have the following inequalities

(t+ 2)2 · αtβt ≤ α0β0(t+ 2)1/3,

(t+ 2)2 · α2
t = α2

0(t+ 2)2.

Hence, multiplying both sides with (t+ 2)2, we have
(t+ 2)2M({θθθit+2},ΦΦΦt+1) ≤ (t+ 1)2M({θθθit+1},ΦΦΦt)

+ (144τ2K2L2δ2 + 4L2/N)α0β
0(t+ 2)1/3

[
E[∥ΦΦΦt −ΦΦΦ∗∥2] + 1

N
E

[
N∑
i=1

∥θθθit+1 − yi(ΦΦΦt)∥2
]]

+ (4α0β0K
2(3δ2(1 +B2) + L2B2) + 2α2

0(3K
2B2 + 3K2δ2 + 2L2K2B2) + 8α0β0δ

2)(t+ 2)1/3.

Summing the above equation from t = 0, . . . , T , we have
(T + 2)2M({θθθit+2},ΦΦΦt+1) ≤M({θθθi1},ΦΦΦ0)

+ (144τ2K2L2δ2 + 4L2/N)α0β
0(T + 2)4/3

[
E[∥ΦΦΦ0 −ΦΦΦ∗∥2] + 1

N
E

[
N∑
i=1

∥θθθi1 − yi(ΦΦΦ0)∥2
]]

+ (4α0β0K
2(3δ2(1 +B2) + L2B2) + 2α2

0(3K
2B2 + 3K2δ2 + 2L2K2B2) + 8α0β0δ

2)(T + 2)4/3.

Dividing both sides by (T + 2)2, we have

M({θθθit+2},ΦΦΦt+1) ≤
M({θθθi1},ΦΦΦ0)

(T + 2)2

+ (144τ2K2L2δ2 + 4L2/N)α0β0(T + 2)−2/3

[
E[∥ΦΦΦ0 −ΦΦΦ∗∥2] + 1

N
E

[
N∑
i=1

∥θθθi1 − yi(ΦΦΦ0)∥2
]]

+ (4α0β0K
2(3δ2(1 +B2) + L2B2) + 2α2

0(3K
2B2 + 3K2δ2 + 2L2K2B2) + 8α0β0δ

2)(T + 2)−2/3.

This completes the proof.

F.2 PROOF OF COROLLARY 4.15

If α0 = β0 = o(N−1/3K−1/2), we have

M({θθθit+2},ΦΦΦt+1) ≤ O
(

1

(T + 2)2
+

1

N2/3(T + 2)2/3
+

1

K2N5/3(T + 2)2/3
+

1

K2N2/3(T + 2)2/3

)
,

which is dominated by O
(

1
N2/3(T+2)2/3

)
if T 2 > N .

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 2: Parameter setting
Parameter Description
Input size 4

Hidden size 128× 128× 128
Output size 2

Activation function ReLu
Number of episodes 500

Batch size 64
Discount factor 0.98

ϵ greedy parameter 0.01
Target update 30

Buffer size 10000
Minimal size 500
Learning rate 0.002, decays every 100 episodes
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Figure 8: Comparison of control by DQN, FedDQN and PFEDDQN-REP in Cartpole Environments.

G ADDITIONAL EXPERIMENT DETAILS

Compute resources. The experiments are performed on a computer with Intel 14900k CPU with
48GB of RAM. No GPU is involved.

PFEDDQN-REP in CartPole Environment. We evaluate the performance PFEDDQN-REP in a
modified CartPole environment (Brockman et al., 2016). Similar to Jin et al. (2022), we change the
length of pole to create different environments. Specifically, we consider 10 agents with varying
pole length from 0.38 to 0.74 with a step size of 0.04. We compare PFEDDQN-REP with (i) a
conventional DQN that each agent learns its own environment independently; and (ii) a federated
version DQN (FedDQN) that allows all agents to collaboratively learn a single policy (without per-
sonalization). We randomly choose one agent and present its performance in Figure 3(top)(a). The
results of the other agents are presented in Figure 8. Again, we observe that our PFEDDQN-REP
achieves the maximized return much faster than the conventional DQN due to leveraging shared
representations among agents; and obtains larger reward than FedDQN, thanks to our personalized
policy. We further evaluate the effectiveness of shared representation learned by PFEDDQN-REP
when generalizes it to a new agent. As shown in Figure 3(top)(b), our PFEDDQN-REP generalizes
quickly to the new environment. Detailed parameter settings can be found in Table 2.
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Figure 9: Comparison of control by DQN, FedDQN and PFEDDQN-REP in Acrobot Environments.

PFEDDQN-REP in Acrobot Environment. We further evaluate FEDDQN-REP in a modified
Acrobot environment (Brockman et al., 2016). The pole length is adjusted with [-0.3, 0.3] with
a step size of 0.06, and the pole mass with be adjusted accordingly (Jin et al., 2022). The same
two benchmarks are compared as in Figure 3(top). The parameter setting remains the same except
number of episodes decreases to 100. Similar observations can be made from Figure 3(bottom) and
Figure 9 as those for the Cartpole enviroments.
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H ADDITIONAL EXPERIMENTAL RESULTS FOR ICLR REBUTTALS

H.1 MORE COMPLEX ENVIRONMENT: HOPPER

We consider another environment, Hopper from Gym, whose state and action space are both con-
tinuous. To induce heterogeneity within between the agents’ environments, we vary the length of
legs to be 0.02+0.001 · i, where i is the i-th agent, while keeping other parameters (such as healthy
reward, forward reward, and control cost (the l2 cost function to penalize large actions), the same.
We increase the number of agents to 20, and plot the return with respect to the number of frames. In
addition to training, we also generate a new sampled transition to validate the algorithms’ ability to
generalize.

In order to fit the algorithm to the continuous setting, we modified the proposed algorithm to
a DDPG-based algorithm, similar to the DQN-related benchmarks. For FedQ-K, LFRL and
FedAsynQ-ImAvg, we discretize the state and action spaces. Similar to Cartpole and Acrobot envi-
ronments, our proposed PFedDDPG-Rep achieves the best reward and generalizes to new environ-
ments quickly, as shown in Figure 10.
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Figure 10: Hopper environment.
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H.2 VERIFYING THE LINEAR SPEEDUP RESULT

We now verify the main theoretical result empirically. In the personalized setting, verifying this re-
sult is not as straightforward as in the non-personalized setting because Theorem 4.13 and Corollary
4.15 hold when parameters defined across environments (e.g., τδ , C, and others) remain constant as
the number of agents (environments) increases.

To properly address this issue, we design an experiment that duplicates 2 initial environments with
pole lengths 0.36 and 0.42. We duplicate these two environments with 2, 3, 4, and 5 times, thereby
obtaining situations with N = 2, 4, 6, 8, 10. Because of this duplication, we know that the across-
environment parameters (e.g., τδ , C, and others) remain constant.

As shown in Figure 11, as we increase the number of agents, we see an approximate linear relation-
ship in the convergence time. Of course, note that in practice, there is certain amount of unavoidable
overhead in the experiments, which means the speedup will not be exactly as efficient as predicted
by theory.
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Figure 11: Linear speedup for cartpole with duplicates of environments.
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H.3 COMPUTATION AND WORST CASE PERSONALIZATION ERROR TRADE OFF

We now show another experiment that quantifies the tradeoff between computation and personal-
ization quality, which we define as the worst case personalization error across agents:

max
i∈[N ]

Es∼µi,πi

∥∥∥f i(θθθi,ΦΦΦ(s))− V i,πi

(s)
∥∥∥2 . (56)

The intuition behind this metric is that if all agents achieve good estimation error, then this metric is
small (meaning we have personalized well), but if some agents perform poorly while others perform
well, then this metric will be large (detecting that we did not personalize well).

We vary the number of agents from 2 to 10 and examine naive DQN that runs independently on
each environment, FedDQN (no personalization), and PFedDQN-Rep (our approach). In the left
panel of Figure 12, we show the computational resources needed to run each algorithm, while the
right panel shows the personalization quality. We notice that for naive DQN, we can achieve no
personalization error at the cost of high computation. At the other end of the spectrum, FedDQN
leverages parallelization and reduces the computation, but has high personalization error. Finally,
our algorithm, PFedDQN-Rep achieves the best of both worlds: low computation, while attaining
low personalization error.
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Figure 12: Computation versus worst case personalization error trade off.
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H.4 THE EFFECT OF ENVIRONMENT DISCREPANCY ON PERSONALIZATION ERROR

Recall that in the previous Hopper experiment, we vary the length of legs to be 0.02 + 0.001 · i,
where i is the i-th agent and 0.001 · 10 = 0.01 is the maximum pole length discrepancy between
environments. In this section, we vary the maximum pole length discrepancy between 0 (all 10
environments are identical) to 0.04 (the environments have substantial differences).

We compare the performance of the three algorithms that include personalization, PerDQNAvg,
FedAsymQ-ImAvg, and PFedDQN-Rep (ours). The results are in Figure 13.

We notice that as the discrepancy increases, all algorithm encounter degradations in personalization
quality (measured in terms of the worst case personalization error defined in (56)), but our proposed
algorithm achieves the least degradation.

Figure 13: Worst case personalization error with varying pole length discrepancy across environ-
ments.
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H.5 ANOTHER LOOK AT PERSONALIZATION

Here, we give another look at how personalization is achieved by PFedRL-Rep. We first compute
the cosine similarity matrix of transition probabilities between pairs of agents. This represents the
similarity of environments between any two agents. After the algorithm converges, we compute the
cosine similarity matrix for the policy layer (last layer) of the neural network. This represents the
similarity of the learned policy between any two agents.

In Figures 14 and 15, we observe that all agents reach their unique personalization, and the cosine
similarity of personalization layer shows close distribution as the similarity of transition probability.
This essentially means for environments of similar transition probability matrices, their personaliza-
tion layer will reach similar stage. Since the agents share the representation layer, the heatmap stays
identical.
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(b) Personalization layer heatmap.
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(c) Representation layer heatmap.

Figure 14: Heatmap of Cartpole environment.
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Figure 15: Heatmap of Acrobot environment.
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H.6 MORE STATISTICS OF THE EMPIRICAL RESULTS

We report the return average, variance average, return median and total running time for 10 environ-
ments for Cartpole and Acrobot environments. Among all algorithms, our PFedDQN-Rep achieves
the best return average and median, with top variance and running time, as summarized in Tables 3
and 4. We also provide a zoom-in shortened plot for both environments to show the quick adaptation
speed when sharing representations as in Figure 16.

Table 3: Statistics for Cartpole environment.
Algorithm Return average Variance average Return median Total running time(s)

PFedDQN-Rep 143 43 154 466
DQN 135 54 127 3840

FedDQN 101 67 88 387
FedQ-K 112 34 107 490
LFRL 117 47 99 434

PerDQNAvg 127 48 131 520
FedAsynQ-ImAvg 119 51 117 501

Table 4: Statistics for Acrobot environment.
Algorithm Return average Variance average Return median Total running time(s)

PFedDQN-Rep -42 37 -29 618
DQN -63 67 -57 5854

FedDQN -714 162 -625 571
FedQ-K -213 41 -202 621
LFRL -207 58 -194 676

PerDQNAvg -295 64 -277 602
FedAsynQ-ImAvg -191 36 -186 664
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(a) Cartpole environment.

0 10 20 30
Episode

(a) Return pole length 0.3

-1

-0.5

0

R
et

ur
n

103

0 10 20 30
Episode

(b) Generalization pole length 0.36

-1

-0.5

0

R
et

ur
n

103

PFedDQN-Rep DQN FedDQN FedQ-K
LFRL PerDQNAvg FedAsynQ-ImAvg

(b) Acrobot environment.

Figure 16: Shortened plot for cartpole and acrobot environment.
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