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Abstract

We propose a geometric scattering-based graph neural network (GNN) for approxi-
mating solutions of the NP-hard maximum clique (MC) problem. We construct
a loss function with two terms, one which encourages the network to find highly
connected nodes and the other which acts as a surrogate for the constraint that the
nodes form a clique. We then use this loss to train an efficient GNN architecture
that outputs a vector representing the probability for each node to be part of the
MC and apply a rule-based decoder to make our final prediction. The incorporation
of the scattering transform alleviates the so-called oversmoothing problem that is
often encountered in GNNs and would degrade the performance of our proposed
setup. Our empirical results demonstrate that our method outperforms represen-
tative GNN baselines in terms of solution accuracy and inference speed as well
as conventional solvers like Gurobi with limited time budgets. Furthermore, our
scattering model is very parameter efficient with only ∼ 0.1% of the number of
parameters compared to previous GNN baseline models.

1 Introduction

The success of Graph Neural Networks (GNNs) for a variety of machine learning tasks [Scarselli
et al., 2008, Gori et al., 2005, Kipf and Welling, 2016, Gilmer et al., 2017] has sparked interests in
using GNNs to solve graph combinatorial optimization (CO) problems [Li et al., 2018a, Karalias and
Loukas, 2020]. For example, Joshi et al. [2019] introduces a GNN-based method for approximately
solving the travelling salesman problem (TSP), while Karalias and Loukas [2020] approximate
solutions of the maximum clique (MC) problem. Solving such problems in an end-to-end fashion via
GNNs is challenging for several reasons. First of all, many CO problems are provably either NP-hard
or NP-complete. Therefore, learning CO solvers in a supervised or semi-supervised fashion can be
computationally infeasible since the cost of generating the ground truth labels grows exponentially
with the problem size. Second, the solution to the CO problems must satisfy a number of constraints
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Figure 1: Illustration of our model pipeline. We use a scattering-based GNN to learn a discriminative
node representation and use a decoder to extract the MC from the learned representation.

or limitations (e.g. belonging to a clique). Although these constraints can be imposed during training
time, there is still no guarantee that these constraints are still satisfied at test time. Furthermore,
solving graph combinatorial problems largely depends on the expressive power of GNNs. Many
GNNs aggregate information via local averaging, which can be interpreted as a smoothing operation.
This degrades the expressive power of GNNs and results in the so-called oversmoothing problem [Li
et al., 2018b] where neighboring nodes have similar representations and are difficult to distinguish
from each other. This is problematic if a node that is not in the solution set borders many points that
are in the solution set.

The purpose of this paper is to use a geometric scattering-based GNN to fast approximate the solution
of the maximum clique (MC) problem, that is to find the largest complete subgraph contained within
a large graph G. This problem has many applications including pattern recognition and knowledge
discovery. For instance, finding the maximum clique of the related connection graphs can be used to
handle object recognition tasks [Horaud and Skordas, 1989]. It is also tightly related to biological
applications, such as helping to solve genome-scale elucidation of biological networks [Zhang et al.,
2005]. Our use of geometric scattering, rather than a more traditional GNN is motivated by recent
work [Wenkel et al., 2022] showing that the geometric scattering transform can help overcome the
oversmoothing problem via the use of band-pass wavelet filters in conjunction with GCN-type filters.
This is particularly important in the context of the MC problem because it is critical to distinguish a
point which connects to many members of the clique from an actual member of the clique. As we
shall show, our method, which utilizes band-pass wavelet filters is able to better detect the border
between the MC and the rest of the graph. This parallels the traditional use of wavelets as edge
detectors in image processing [Grossmann, 1988].

Our method uses a two-phase strategy shown in Figure 1. We first use an unsupervised learning
model to generate an efficient representation of how likely each node is to be part of the maximum
clique. Then, this representations is fed into a constraint-preserving decoder to generate the maximum
clique. Ideally, given a graph G with n nodes, we would build a representation p ∈ [0, 1]n where the
nodes in the maximum clique are assigned the value 1 (True) while all other nodes are assigned 0
(False), so that we can ‘cut’ the MC from the graph via O(n) operations. In practice, we will build a
representation which assigns large probabilities to the maximum clique nodes and small probabilities
to the other nodes. This will allow us to extract the maximum clique by choosing the vertices where p
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Figure 2: Illustration of the oversmoothing problem. Left: A discriminative representation, which
can be interpreted as a probability for each node to belong to the maximum clique or not. Right: Due
to the oversmoothing problem, the GNN generates a smooth representation, making MC and non-MC
nodes difficult to discriminate.
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is large. As illustrated in Figure 2, this approach works best if p is not excessively smooth. However,
so-called oversmoothing is a known limitation of many GNN models [Li et al., 2018b]. Figure 2 (a)
presents a situation where oversmoothing does not occur. The signal p is much larger on the nodes
(1, 2, 3, 4, 6), which form the maximum clique, than it is on the other nodes (5, 7, 8). Therefore,
the decoder can easily find the MC by, e.g., setting a threshold. Figure 2 (b), on the other hand,
illustrates a situation in which oversmoothing occurs and p exhibits less variability. Indeed, there are
no blue colored nodes at all. In this setting, it is nearly impossible to distinguish node 7, which does
not belong to the maximum clique, from the nodes 1, 6, and therefore extracting the MC from p is
difficult if not impossible.

2 Background and Related Work

2.1 Graph Signal Processing

Consider a graph G = (V,E) with a set of nodes (or vertices) V := {v1, . . . , vn} and a set of
undirected edges E ⊂ V × V . For a function x : V → R defined on V , we will, in minor abuse of
notation, identify x with the vector x, where x[i] = x(vi). We let W ∈ Rn×n denote the adjacency
matrix of G and define the symmetric normalized graph Laplacian by L := In−D−1/2 WD1/2,
where di :=

∑n
j=1 W [vi, vj ] is the degree of the node vi and D := diag(d1, ..., dn) ∈ Rn×n is the

degree matrix. We will let qi and λi denote the (normalized) eigenvectors and eigenvalues of L with
Lqi = λiqi, and make use of the eigendecomposition L = QΛQ⊤, where Q is the orthogonal
matrix whose i-th column is the normalized eigenvector qi, and Λ := diag(λ1, ..., λn). Notably,
the eigenvectors q1, . . .qn can be seen as a generalization of Fourier modes in the context of graph
domains with the corresponding eigenvalues representing the increasing frequencies 0 ≤ λ1 ≤ · · · ≤
λn ≤ 2. This link may be established by viewing frequency as a measure of variation, in particular
the variation of (degree-normalized) Fourier modes across edges, i.e.,

λi = q⊤
i Lqi =

∑
{u,v}∈E

(q̃i[u]− q̃i[v])
2,

for q̃i := D−1/2 qi . The graph Fourier transform of a signal vector x is then defined as by x̂[i] =

⟨x,qi⟩ and the inverse Fourier is given by x =
∑n

i=1 x̂[i]qi. Compactly written, we have x̂ = Q⊤x
and x = Qx̂.

In the Euclidean setting, it is known that convolution in the spatial domain corresponds to multiplica-
tion in the Fourier domain. This fact has motivated work such as Shuman et al. [2016], which defines
the convolution of a signal x with a filter g to be the unique vector verifying (ĝ ⋆ x)[i] = ĝ[i]x̂[i],
which implies that

g ⋆x =

n∑
i=1

ĝ[i]x̂[i]qi =

n∑
i=1

ĝ[i]⟨qi,x⟩qi = Q ĜQ⊤ x,

where Ĝ := diag(ĝ) = diag(ĝ[1], . . . , ĝ[n]). When incorporating this notion of convolution into a
graph neural network, a common choice [e.g., Defferrard et al., 2016] is to require the coefficients
ĝ[i] to be polynomials of the eigenvalues λi, i ∈ [n], i.e., ĝ[i] :=

∑
k γkλ

k
i in which case we have

Ĝ =
∑

k γkΛ
k. This allows one to implement convolution in the spatial domain by verifying that

g ⋆ x =
∑

k γkLkx. In particular, the entire method may be implemented without the need to
diagonalize a matrix which is extremely expensive for large graphs.

2.2 Graph Convolutional Networks

In Kipf and Welling [2016], the authors set ĝ[i] := θ(2− λi), where θ is a real number, which yields

gθ ⋆x = θ(2 In−L) = θ
(
In +D−1/2 WD−1/2

)
x . (1)

As the eigenvalues of the above convolutional filter lie in [0,2] and could lead to vanishing or exploding
gradients, the authors then apply a renormalization trick which replaces In +D−1/2 WD−1/2 with
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A := (D+ I)−1/2(W+ I)(D+ I)−1/2. The layer-wise propagation rule of GCN is then defined by

xℓ
j = σ

(Nℓ−1∑
i=1

θℓij Axℓ−1
i

)
,

where xℓ−1
i ∈ Rn is the i-th feature vector in layer ℓ − 1, θℓij are a trainable parameters, xℓ

j is the
j-th feature activation vector in layer ℓ and σ(·) is a nonlinear activation function. We can summarize
this in matrix notation as

Xℓ = σ
(
AXℓ−1 Θℓ

)
, (2)

where Θℓ ∈ RNℓ−1×Nℓ is the weight-matrix of layer ℓ and Xℓ ∈ Rn×Nℓ contains the activations
output by layer ℓ. The GCN model updates node features at every node by averaging over the node
features of the node itself and its neighbors, which enforces similarity throughout node neighborhoods.
This makes nodes increasingly difficult to discriminate for ‘deeper’ models and is widely referred
to as the oversmoothing problem [Li et al., 2018b]. From a graph spectral theory perspective,
oversmoothing is related to low-pass filtering as the filter in Eq. 1 puts larger weights on the low-
frequency spectrum (as 0 ≤ λi ≤ 2). This motivates the idea of using GCN-type low-pass filters in
conjunction with band-pass filters, that can be implemented, for example, using graph scattering [Min
et al., 2020], which we discuss in the following.

2.3 Graph Scattering

The graph scattering transform [Gama et al., 2019, Zou and Lerman, 2019, Gao et al., 2019] is a
wavelet-based model for machine learning on graphs. Unlike the one-hop localized low-pass filters
used in GCN, which aim to promote smoothness between neighboring nodes, these wavelets are
band-pass filters, which in turn incorporate long-range dependencies through the large spatial support
of the used aggregations. The scattering transform is based upon raising the lazy random walk matrix

P :=
1

2

(
In +WD−1

)
to different powers in order to capture the diffusion geometry of the graph G at various time scales.
In particular, subtracting such powers allows us to detect changes in these diffusion geometries.
Following the lead of Coifman and Maggioni [2006], for k ∈ N0, we define a wavelet matrix
Ψk ∈ Rn×n at scale 2k by

Ψ0 := In−P, Ψk := P2k−1

−P2k , k ≥ 1. (3)

Intuitively, at every node, these diffusion wavelets can be seen as a comparison operation that
calculates the difference of the averaged features of two neighborhoods of different sizes (namely sizes
2k−1 and 2k). The geometric scattering transform is constructed through an alternating cascade on
wavelet filters and pointwise nonlinearities σ : R→ R, a so-called scattering path p := (k1, . . . , km)
that outputs

Upx := Ψkm
◦ σ ◦Ψkm−1

· · ·σ ◦Ψk2
◦ σ ◦Ψk1

x. (4)

3 Model

Our method is centered around three main components, (i) a hybrid scattering-GCN model M
(Sec. 3.1-3.3) that transforms a small set of simple node-level statistics represented by the matrix
X ∈ Rn×d to a probability vector p ∈ [0, 1]n representing the probabilities that each node is part of
the maximum clique, (ii) an easy-to-optimize unsupervised loss function L (Sec. 3.4) that is small for
“good” probability vectors p⋆; and (iii) a rule-based decoder D (Sec. 3.5) that maps the probability
vector to the maximum clique C⋆ ⊂ V of G.

X
M−→ p

L←→ p⋆ D−→ C⋆

3.1 Embedding Module

The input of our model is a node feature matrix X ∈ Rn×d, containing d features for each node. In
our experiments, we set d = 3 and let the features be the eccentricity, the clustering coefficient, and
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the logarithm of the degree of each node. The encoder transforms the node features to dh-dimensional
embeddings H0 using a multi-layer perceptron (MLP) memb : Rd → Rdh , i.e., H0 := memb(X),
which will be used as the input to the diffusion module introduced in the next subsection.

3.2 Diffusion Module

The diffusion module consists of a cascade of K ∈ N aggregation (or diffusion) layers with operations
that are chosen for each node via an attention mechanism. Our network is based upon the framework
introduced in Wenkel et al. [2022]. However, an important deviation is to store the initial node
representation H0 and every intermediate node representation Hℓ, 1 ≤ ℓ ≤ K, in a list of readouts.

In each layer ℓ, every node has access to node representations from a set a of filters F that contains
a selection of low-pass and band-pass filters. Similar to Wenkel et al. [2022], our band-pass filters
flow,r are modified GCN filters that have the form

flow,r(H
ℓ−1) = Ar Hℓ−1 (5)

and are parameterized by the power r ≥ 1 of the matrix A. Similarly, we define the scattering filter
fband,k of order k according to

fband,k(H
ℓ−1) = Ψk H

ℓ−1 . (6)

Next, we want to obtain data-driven scores sf (v) that determine the importance of filter f ∈ F for
node v ∈ V . We set Hℓ

f := f(Hℓ−1) and calculate the scores via an attention mechanism, setting

sℓf := σ
(
Hℓ

f ∥H
ℓ−1

)
aℓ, (7)

where ∥ denotes the concatenation operation. The attention mechanism, at every node, calculates
the dot product of a learned attention vector aℓ ∈ R2dh with the filtered node representation of the
node concatenated to its previous representation. We further deviate from the model in Wenkel et al.
[2022] by rewiring the nonlinearity σ(·) in Eq. 7. They apply it after the multiplication with the
attention vector aℓ similar to the traditional graph attention mechanism [Veličković et al., 2018]. In
contrast, we apply it before the multiplication with the attention vector following the lead of Brody
et al. [2021], who showed this constitutes an even more expressive attention mechanism. The i-th
entry of sℓf ∈ Rn then contains the importance score of filter f for node vi. We normalize the scores
across the filters using the softmax function, i.e., αf (v) = softmaxF (sf (v)), and store the resulting
scores in attention vectors αℓ

f ∈ Rn, f ∈ F . We then update node representations via

Hℓ
agg :=

∑
f∈F

αℓ
f ⊙Hℓ

f . (8)

where ⊙ is the element-wise multiplication (applied separately to each column of Hℓ
f ). Notably, the

softmax function enforces that every node is likely to focus mostly on one single filter. We note
that the method is compatible with multi-head attention but omit further details as it is not necessary
for the present experiments. Finally, we transform the aggregated node representations via an MLP
mℓ : Rdh → Rdh , i.e., Hℓ := mℓ(Hℓ

agg). We repeat the above process for K ∈ N iterations (or
layers) and store the intermediate representations in a list of readoutsR = {Hℓ}Kℓ=0.

3.3 Output Module

In the output module, we combine the information from the list of readoutsR. We first concatenate
the readouts horizontally to

Hcat := ∥Kℓ=0 H
ℓ,

where Hcat ∈ Rn×dh(K+1) and then transform Hcat to a vector h ∈ Rn using an MLP mout :

Rdh(K+1) → R, i.e., h := mout(Hcat). Finally, to obtain a vector of probabilities, we apply min-max
normalization, i.e., p := (h−min(h) · 1n)/(max(h)−min(h)), and interpret the i-th entry of p
as the probability that node vi is part of the maximum clique.
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3.4 Training Loss

We now derive an unsupervised training loss for the maximum clique problem, which was also
obtained by a different derivation in the work of Karalias and Loukas [2020]. Letting Ω denote the set
of cliques of a graph G = (V,E), we note that the task of finding the maximum clique is equivalent
to identifying the clique C ∈ Ω that contains the most edges, i.e., maximizes the objective function

L⋆(C) :=
∑

u,v∈C

wu,v,

where wu,v = 1 if node u and v are connected otherwise 0. Our approach relies on producing a
vector p such that pv ≈ 1 if v is in the maximum clique and pv ≈ 0 otherwise. We consider the
vector x ∈ Rn where xv = 1 if v is in the maximum clique and xv = 0 otherwise. We then model
xv as a Bernoulli random variable where P (xv = 1) = pv . Our goal then becomes to maximize the
expectation

E [L⋆(C)] = E

 ∑
(u,v)∈E

wu,v xu xv

 =
∑

(u,v)∈E

wu,v pu pv = p⊤ Wp . (9)

Maximizing Eq. 9 encourages p to be large on highly connected nodes. However, we also want the
support of p to be concentrated within a clique. This naturally motivates the constrained optimization
problem of minimizing

L1(p) := −p⊤ Wp subject to: supp(p) is contained in a clique.
However, the constraint that p is contained in a clique is hard to enforce directly. In order to
construct a surrogate, we consider the complement graph G = (V ,E). The vertices of G are
taken to be the same as G, i.e., V = V , while the edges are defined by the rule that for u ̸= v
there is an edge between u and v in G if and only if there is not an edge between them in G, i.e.,
E = {(u, v) ∈ V × V : u ̸= v}\E. We denote the adjacency matrix of G by W = (wu,v)u,v∈V ,
and note that

wu,v :=

{
1 if (u, v) /∈ E and u ̸= v,

0 otherwise.

In particular, W has zeros on the diagonal and can be computed from W via W = 1n×n− (I+W).
The following Lemma indicates that a second loss term L2(p) := p⊤ Wp can be used to ensure
that mass is primarily concentrated in a set of nodes that form a clique.
Lemma 1. Consider a graph G = (V,E), a signal p ≥ 0 and define supp(p) := {v ∈ V : pv > 0}.
Then, L2(p) = p⊤ Wp = 0 if and only if there exists a clique C ⊂ V such that the support of p is
contained in C.

Proof. We first assume p⊤ Wp = 0 and suppose for the sake of a contradiction that there exists
no clique C ⊂ V with supp(p) ⊂ C. Then, there exist at least two nodes u0, v0 ∈ supp(p) with
{u0, v0} ̸∈ E. Now, p⊤ Wp =

∑
{u,v}̸∈E pu pv ≥ pu0

pv0
> 0, which is a contradiction.

For the opposite direction, we assume that there exists a clique C ⊂ V such that supp(p) ⊂ C.
Hence, every pair of distinct nodes in supp(p) is connected by an edge and consequently wu,v = 0 for
all u, v ∈ supp(p). Thus, p⊤ Wp =

∑
u,v∈V wu,v pu pv =

∑
u,v∈supp(p) wu,v pu pv = 0.

In light of Eq. 9 and Lemma 1, we now define our training loss as

L(p) := L1(p) + βL2(p) = −pT Wp+β pT Wp . (10)
We note that the loss function decomposes into two terms. The first term, L1, encourages the
allocation of mass at highly connected nodes, while the second term L2 encourages most of the mass
of p to be contained in a clique. Moreover, β is a hyper-parameter which is used to balance the
contributions of the two terms. As mentioned, an almost identical loss function was already used
in Karalias and Loukas [2020] with further details discussed in Appendix C.

Similar to many other GNN applications it is desirable to use the sparsity of the graph G and hence
also W. We note that, although a sparse W signifies a dense W, we can efficiently evaluate the
second loss term as pT Wp = (

∑n
v=1 pv)

2 − pT Wp−
∑n

v=1 p
2
v .
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Algorithm 1 Maximum Clique Decoder
1: Input: Probability vector p, graph G with n nodes, number of samplers κ, sample length τ .
2: Output: Predicted maximum clique Ĉ of size |Ĉ|.
3: Order nodes via permutation π : V → [n] such that pπ−1(1) ≥ pπ−1(2) ≥ · · · ≥ pπ−1(n).
4: for j = 1 to κ do
5: Ĉj ← {π−1(j)}
6: for i = 2 to τ − κ do
7: if Ĉj ∪ {π−1(j + i)} forms a clique then
8: Ĉj ← Ĉj ∪ {π−1(j + i)}
9: end if

10: end for
11: end for
12: Ω̂← {Ĉ1, . . . , Ĉκ}
13: Ĉ ← argmaxC∈Ω̂ |C|

3.5 Decoder

In order to extract the maximum clique from p, we use a greedy decoder detailed in in Algorithm 1.
Our algorithm creates a set Ω = {Ĉj}κj=1 of κ cliques and then selects the Ĉj with largest cardinality.
To construct each Ĉj , we first create a sorting function π : V → {1, . . . , |V |} which puts the
nodes in descending order, so pπ−1(1) ≥ . . . ≥ pπ−1(n) . Each Ĉj starts as a single node π−1(j).
We then consider τ − j additional candidates, π−1(j + 1), . . . , π−1(τ) and accept each candidate
node vcanditate if Ĉj ∪ {vcandidate} forms a clique. This is tested by verifying that x⊤ Wx = 0 for
x :=

∑
v∈Ĉj∪{vcandidate} 1v. We remark that in order for our decoder to predict the true maximum

clique exactly, we must choose the parameters τ and κ such that there exists a j, 1 ≤ j ≤ κ, such
that j ≤ π−1(i) ≤ τ for all vi in the MC. On simple datasets, such as IMDB, it suffices to set κ = 1.
More complex datasets such as Twitter require larger values of κ. Importantly, we note that the Ĉj

can be computed in parallel, so increasing the value of κ does not create major scalability issues. We
note that setting the hyperparameters of the decoder requires some prior knowledge of the largest
sizes of the maximum cliques present in the data, which we tune using the validation set.

4 Results

4.1 Baselines

We compare our hybrid scattering model against other neural network-based methods, an inte-
ger programming-based solver and a traditional heuristic. For the the neural networks, Erdös’
GNN [Karalias and Loukas, 2020] and RUN-CSP [Toenshoff et al., 2021], the authors provide two
implementations, one optimized towards computational speed (fast), and the other optimized for
best approximation score (accurate). In order to highlight the contribution of our hybrid scattering
model, we also provide results for a pure low-pass model, which only uses GCN-type filters [Kipf
and Welling, 2016] followed by our decoder module. We further report results for the integer-
programming method Gurobi 9.0 [Gurobi Optimization, LLC, 2022]. Finally, we compare to a
traditional heuristic [Grosso et al., 2008], a local search procedure with η1 random restarts, where an
initial clique is continuously modified and possibly improved by neighbourhood search operations
until some termination condition occurs. The heuristic is iterated for a maximum of η2 iterations. We
denote the method for different hyperparameter configurations as Heuristic(η1, η2).

4.2 Datasets

We evaluate our model on three popular real-world graph learning datasets, namely IMDB, COL-
LAB [Yanardag and Vishwanathan, 2015] and TWITTER [Yan et al., 2008]. To further explore how
our model performs relative to other methods on more challenging and larger graphs, we introduce
two new datasets consisting of graphs generated according to the approach in Xu et al. [2005]. The
first dataset (SMALL) contains graphs of slightly larger size (∼180 nodes on average) compared to the
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Table 1: Maximum clique test approximation score (mean ± std.) and avg. prediction time measured
in seconds per graph (in brackets) on real-world datasets compared to the different baselines. In our
decoder, we set κ equal to 1, 1 and 10 for IMDB, COLLAB and TWITTER, respectively. We provide
results for Gurobi 9.0 with 4 different time budgets, and for the heuristic with different configurations.

Dataset IMDB COLLAB TWITTER

ScatteringClique (ours) 1.000 ± 0.000 (4e-3) 0.999 ± 0.014 (0.029) 0.952 ± 0.059 (0.05)
GCN (low-pass) 0.956 ± 0.109 (3e-3) 0.981 ± 0.085 (0.020) 0.887 ± 0.111 (0.04)
Erdős (fast) 1.000 ± 0.000 (0.08) 0.982 ± 0.063 (0.10) 0.924 ± 0.133 (0.17)
Erdős (accurate) 1.000 ± 0.000 (0.10) 0.990 ± 0.042 (0.15) 0.942 ± 0.111 (0.42)
RUN-CSP (fast) 0.823 ± 0.191 (0.11) 0.912 ± 0.188 (0.14) 0.909 ± 0.145 (0.21)
RUN-CSP (acc.) 0.957 ± 0.089 (0.12) 0.987 ± 0.074 (0.19) 0.987 ± 0.063 (0.39)
Gurobi 9.0 (0.1s) 1.000 ± 0.000 (1e-3) 0.982 ± 0.101 (0.05) 0.803 ± 0.258 (0.21)
Gurobi 9.0 (0.5s) 1.000 ± 0.000 (1e-3) 0.997 ± 0.035 (0.06) 0.996 ± 0.019 (0.34)
Gurobi 9.0 (1s) 1.000 ± 0.000 (1e-3) 0.999 ± 0.015 (0.06) 1.000 ± 0.000 (0.34)
Gurobi 9.0 (5s) 1.000 ± 0.000 (1e-3) 1.000 ± 0.000 (0.06) 1.000 ± 0.000 (0.35)
Heuristic(5, 10) 0.912 ± 0.190 (1.0e-2) 0.276 ± 0.222 (0.09) 0.706 ± 0.188 (0.08)
Heuristic(5, 20) 0.972 ± 0.081 (1.5e-2) 0.466 ± 0.274 (0.17) 0.870 ± 0.124 (0.14)
Heuristic(5, 30) 0.998 ± 0.015 (1.8e-2) 0.620 ± 0.299 (0.26) 0.910 ± 0.094 (0.29)
Heuristic(20, 20) 0.973 ± 0.080 (5.8e-2) 0.469 ± 0.277 (0.70) 0.940 ± 0.098 (0.61)
Heuristic(1, 100) 0.919 ± 0.133 (6.0e-3) 0.847 ± 0.257 (0.16) 0.689 ± 0.260 (0.07)
Heuristic(5, 100) 0.997 ± 0.021 (2.7e-2) 0.916 ± 0.201 (0.77) 0.920 ± 0.084 (0.36)

TWITTER dataset (∼132 nodes on average), which is the real-world dataset with the largest graphs.
The second dataset (LARGE) contains significantly larger graphs (∼1324 nodes on average), that are
far more challenging. In each of the two datasets, we have three different classes of hardness (easy,
medium and hard) that are retained for different hardness parameters (0.2, 0.5 and 0.8) following the
approach in Xu et al. [2005]. More details on the datasets can be found in Table 3 in Appendix B.

4.3 Evaluation

To evaluate the different models, we use average test approximation score (mean± standard deviation
across three runs) and the average time needed to approximate the MC across the graphs of a dataset
(in brackets) measured in seconds per graph (s/G). We note that the time requirement of Gurobi 9.0
can exceed the indicated time limit as it only affects a subroutine of the method. On the real-world
datasets and the proposed SMALL dataset, the approximation score of a given graph is computed by
dividing the size of the clique found by the algorithm by the size of the true MC, i.e., if the MC of a
graph has size 10 and the algorithm returns a clique of size 9, it would be given a score of 90%. We
then average these scores across all graphs in each dataset. On the proposed LARGE dataset, the MC
size is unknown because it is virtually impossible to specify. Instead, we use the predicted MC size
from Gurobi 9.0 (0.1s) as a target. Notably, this allows for approximation scores larger than 100% to
arise, which signifies that the model found a better (larger) clique than Gurobi 9.0 (0.1s).

4.4 Experiments

We first look at the three real-world datasets and provide results in Table 1. In the decoder (Section 3.5),
we set κ equal to 1, 1 and 10 for the IMDB, COLLAB and TWITTER dataset, respectively. For
the IMDB dataset, our hybrid approach and most other methods (except RUN-CSP) solve the MC
problem with a perfect (100%) approximation score. However, our model significantly outperforms
the other neural network-based models (Erdös’ GNN and RUN-CSP) with respect to computation
time (although the highly optimized Gurobi solver is slightly faster than our method on this dataset
due to the small graph size). On COLLAB, our model almost reaches perfect performance (99.9%) in
0.029 s/G, outperforming the other neural network based methods in both speed and approximation
score. Some versions of the Gurobi solver are able to achieve 99.9% and 100% approximation
scores, however, they are slower than our method on this dataset. The TWITTER dataset is the most
challenging of the considered real-world datasets. Here, our method achieves the second highest
accuracy among neural networks with 95.2% compared to 98.7% for RUN-CSP (accurate). However,
our method is nearly seven times faster than RUN-CSP (0.05 s/G vs 0.34 s/G). Similarly, while
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there are several versions of Gurobi which achieve higher accuracy, these require at least 0.34 s/G.
In principle, one could utilize faster versions of Gurobi, but those methods would achieve lower
accuracies. For example, Gurobi 9.0 (0.1s) requires four times the time per graph compared to our
method (0.21 s/G vs 0.05 s/G) while achieving a much lower accuracy (80.3% vs 95.2%).

Figure 3 illustrates the differences between our hybrid scattering model and the low-pass GCN-based
model [Kipf and Welling, 2016] and helps explain why the scattering-based model performs better
across all three datasets. It shows that the probability vector p generated by our approach is more
discriminative than the one produced by the low-pass model. When using the low-pass model, most
nodes are assigned high probabilities (marked in red). The decoder cannot tell which nodes have
higher priorities given such a smooth output. This leads to the decoder accepting nodes which are not
part of the MC. If the new clique is not a sub-clique of the MC, this in turn can lead to the decoder
rejecting nodes which are part of the MC. The scattering model on the other hand produces a less
smooth representation. The nodes outside the MC are assigned lower probabilities so that our decoder
can successfully find the MC. This is consistent with previous work [Wenkel et al., 2022] showing
that graph scattering helps to alleviate oversmoothing in node classification. We emphasize that
both models are trained with the same loss function and the same rule-based decoder. Therefore,
the differences illustrated in Figure 3 are the direct result of using a hybrid scattering model. More
comparison between the scattering model and low-pass model can be found in Appendix E.

Figure 3: Comparison of the output probability vector p for our model (left) and the low-pass model
(right) on a graph taken from TWITTER with ground truth MC of size 10. Our approach followed by
our decoder yields the correct clique, while the low-pass model concludes with a clique of size 8.

To further explore how our model performs on harder graphs, we now look at the newly proposed
datasets generated according to the methodology of Xu et al. [2005]. Each dataset contains three
subclasses (easy, medium and hard) and our decoder (Section 3.5) uses different parameters κ (1, 1
and 10), respectively. Here, we present the results of the most challenging LARGE dataset, shown in
Table 2, while the discussion of the results on the SMALL dataset can be found in Appendix D.

Our hybrid scattering model outperforms the other neural network approaches on all three subclasses
(easy, medium and hard) in terms of approximation score and inference time. The gap in approxi-
mation score is larger on medium and hard samples, highlighting the utility of our model for more
complex graphs. At the same time, our model is extremely efficient, exhibiting much lower inference
times than the other neural networks (with the exception of GCN, which is a modified version of our
hybrid model with band-pass filters removed), e.g., inferring the MC on LARGE-hard 12 times faster
than RUN-CSP (accurate), the closest competing neural network. For sufficiently large time budgets,
Gurobi and the heuristic [Xu et al., 2005] can achieve higher accuracies, however at a significantly
higher time cost. For example, on LARGE-hard, only Gurobi 9.0 (50.0s) and Heuristic(5, 100) are
better, however taking on average 131 and 49 times longer to infer the MC, respectively.

Overall, across all considered datasets, we remark that our hybrid model provides considerable
speedup compared to both the other neural networks and to Gurobi for large graphs. We also note
that our model takes fewer parameters than the Erdös’ GNN [Karalias and Loukas, 2020]. They use
a multi-head GNN (8 heads, with 64 hidden units each) for each layer, whereas the MLPs used in
our method have dh = 8 hidden units on all three datasets, without using any multi-head attention
mechanism. This in turn suggests that the use of both GCN filters and scattering filters combined
yields powerful feature extractors that help learn informative node representations with relatively few
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Table 2: MC test approx. score (mean ± std.) and avg. prediction time measured in seconds per
graph (in brackets) on LARGE dataset for our model compared to the different baselines. In our
decoder, we set κ equal to 1, 1 and 10 for the easy, medium and hard graphs, respectively. As ground
truth sizes cannot be estimated for such large graphs, we compare to the cliques found by Gurobi 9.0
(0.1s). As explained in Sec. 4.3, the inference time of Gurobi can exceed the indicated time budget.

Dataset LARGE-easy LARGE-medium LARGE-hard

ScatteringClique (ours) 1.002 ± 0.053 (0.25) 1.045 ± 0.171 (0.18) 1.102 ± 0.225 (0.46)
GCN (low-pass) 0.997 ± 0.088 (0.23) 0.925 ± 0.181 (0.16) 0.829 ± 0.302 (0.40)
Erdős (fast) 0.969 ± 0.103 (1.08) 0.924 ± 0.210 (1.61) 0.895 ± 0.246 (1.96)
Erdős (accurate) 0.994 ± 0.067 (4.74) 0.943 ± 0.113 (5.62) 0.975 ± 0.086 (5.50)
RUN-CSP (fast) 0.925 ± 0.082 (1.65) 0.895 ± 0.173 (2.53) 0.985 ± 0.134 (1.44)
RUN-CSP (accurate) 0.985 ± 0.072 (4.72) 0.913 ± 0.169 (4.69) 1.034 ± 0.159 (5.58)
Gurobi 9.0 (0.1s) 1.000 ± 0.000 (10.5) 1.000 ± 0.000 (10.6) 1.000 ± 0.000 (9.46)
Gurobi 9.0 (0.5s) 1.000 ± 0.000 (12.1) 1.000 ± 0.000 (11.0) 1.000 ± 0.000 (9.97)
Gurobi 9.0 (1.0s) 1.000 ± 0.000 (12.7) 1.000 ± 0.000 (11.1) 1.000 ± 0.000 (10.1)
Gurobi 9.0 (5.0s) 1.000 ± 0.000 (16.4) 1.000 ± 0.000 (14.7) 1.000 ± 0.000 (14.2)
Gurobi 9.0 (20.0s) 1.005 ± 0.070 (30.0) 1.094 ± 0.290 (29.4) 1.016 ± 0.122 (29.0)
Gurobi 9.0 (50.0s) 1.009 ± 0.082 (65.9) 1.276 ± 0.431 (55.4) 1.335 ± 0.459 (60.3)
Heuristic(5, 10) 0.326 ± 0.039 (1.6) 0.331 ± 0.050 (2.1) 0.311 ± 0.072 (2.2)
Heuristic(5, 20) 0.619 ± 0.008 (3.2) 0.617 ± 0.097 (4.5) 0.575 ± 0.130 (4.6)
Heuristic(5, 30) 0.895 ± 0.008 (4.9) 0.880 ± 0.121 (6.7) 0.813 ± 0.185 (7.1)
Heuristic(20, 20) 0.623 ± 0.075 (12.9) 0.630 ± 0.095 (17.8) 0.593 ± 0.136 (18.5)
Heuristic(1, 100) 0.975 ± 0.050 (2.7) 0.972 ± 0.259 (3.7) 0.948 ± 0.399 (4.6)
Heuristic(5, 100) 0.999 ± 0.003 (13.8) 1.149 ± 0.351 (18.8) 1.296 ± 0.483 (22.9)

parameters. In fact, the Erdös’ GNN model contains 1,880,709 parameters for each dataset, while we
only use 1,297 parameters for Twitter, 705 for IMDB and 1,001 for COLLAB, respectively. This
corresponds to 0.07%, 0.04% and 0.05% of the parameter counts of Erdös’ GNN, while achieving
better performance in terms of both inference time and accuracy. Further, since the K-layer GCN-type
model has time complexity O(K|E|dh +Knd2h) [Wu et al., 2020], it is important to reduce dh. We
use dh = 8 (and no multi-head attention), resulting in low time complexity and thus faster inference.

5 Conclusion

In this paper, we show the expressive power of GNNs can be critical for solving graph CO problems.
Our results suggest that low-pass models that generally enforce smoothness over graph neighbor-
hoods due to oversmoothing, make the nodes indistinguishable, which leads to unfavorable node
representations for the MC problem. Inspired by the geometric scattering transform, we propose an
efficient scattering-based GNN to overcome the oversmoothing problem. We use a two-term loss
function (previously derived by a different method in Karalias and Loukas [2020]), which encourages
our network to find a set of nodes that are both highly connected and contained within a clique, which
in conjunction mimic the otherwise hard to optimize problem of finding maximum cliques. Our
model produces efficient node representations that enable us to approximate the maximum clique at
a fast speed using a constrain-preserving greedy decoder. Overall, our performance is competitive
with other neural network-based methods on common benchmark datasets, while largely reducing
the number of parameters and computation time. When run on larger and more complex graphs, our
hybrid scattering model outperforms other neural network approaches.
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