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Abstract001

Existing approaches to fine-grained emotion002
classification (FEC) often operate in Euclidean003
space, where the flat geometry limits the abil-004
ity to distinguish semantically similar emo-005
tion labels (e.g., annoyed vs. angry). While006
prior research has explored hyperbolic geome-007
try to capture fine-grained label distinctions,008
it typically relies on predefined hierarchies009
and overlooks semantically confusable nega-010
tives. In this work, we propose HyCoEM, a011
semantic alignment framework that leverages012
the Lorentz model of hyperbolic space. Our013
approach jointly embeds text and label repre-014
sentations into hyperbolic space via the expo-015
nential map, and employs a contrastive loss to016
bring text embeddings closer to their true la-017
bels while pushing them away from adaptively018
selected, semantically similar negatives. This019
enables the model to learn label embeddings020
without relying on a predefined hierarchy and021
better captures subtle distinctions by incorpo-022
rating information from both positive and chal-023
lenging negative labels. Experimental results024
on two benchmark FEC datasets demonstrate025
the effectiveness of our approach over baseline026
methods.1027

1 Introduction028

Fine-grained emotion classification (FEC) is a029

single-label task that assigns each text to a specific030

emotion from a set of closely related categories.031

Unlike coarse emotion recognition, which uses a032

small set of basic emotions (Ekman et al., 1999),033

FEC involves a larger and more nuanced label034

space. For instance, the two largest FEC datasets035

include up to 27 (Demszky et al., 2020) and 32036

(Rashkin et al., 2019) emotion categories. Many037

of these labels exhibit subtle semantic differences,038

such as between guilty and ashamed, making FEC039

particularly challenging. Despite this complexity,040

1Code is available at:https://anonymous.4open.
science/r/HyCoEM-8725/

recognizing fine-grained emotions is essential for 041

capturing subtle human expressions and enabling 042

more empathetic AI interactions. 043

Existing FEC approaches typically operate in 044

Euclidean space, where the flat geometry makes it 045

difficult to distinguish emotion labels with overlap- 046

ping semantics (e.g., fear and remorse) (Yin and 047

Shang, 2022; Suresh and Ong, 2021). In contrast, 048

hyperbolic space, with its negative curvature and 049

exponential growth of distances, is better suited to 050

embed fine-grained emotions with subtle distinc- 051

tions. The HypEmo (Chen et al., 2023) method 052

utilizes hyperbolic space to learn label representa- 053

tions from a predefined emotion hierarchy (Parrott, 054

2001). However, this reliance on a fixed struc- 055

ture can be limiting, as emotion labels may not 056

always conform to a strict parent–child organiza- 057

tion. Moreover, its cross-entropy loss is weighted 058

solely by the distance to the positive label, over- 059

looking semantically similar negatives that may 060

still mislead the model during prediction. 061

We propose HyCoEM, a semantic alignment 062

framework that leverages the Lorentz model of hy- 063

perbolic space. The model uses RoBERTa (Liu 064

et al., 2019) as the text encoder and treats label 065

embeddings as learnable parameters. During train- 066

ing, both text and label embeddings are projected 067

into hyperbolic space via the exponential map. To 068

guide alignment, we apply a contrastive loss that 069

pulls each text embedding closer to its correct label 070

while pushing it away from semantically similar 071

negative labels. These negatives are adaptively se- 072

lected for each sample based on geodesic distance 073

in hyperbolic space. The contrastive loss is then 074

used to weight the cross-entropy loss, enabling 075

the model to focus more on samples with weak 076

text–label alignment. We adopt the Lorentz model 077

for its numerical stability and reduced geometric 078

distortion compared to other hyperbolic formula- 079

tions (Nickel and Kiela, 2018; Chen et al., 2022). 080

Our training setup follows a hybrid design simi- 081
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lar to HypEmo: contrastive supervision is applied082

in hyperbolic space, while the cross-entropy loss083

is computed in Euclidean space. However, unlike084

HypEmo, our method does not rely on a prede-085

fined label hierarchy. Instead, it learns label em-086

beddings directly from data, guided by contrastive087

alignment. Moreover, since the contrastive loss088

reflects how well a text aligns with its correct label089

relative to semantically similar negatives, it pro-090

vides a more informative weighting signal than the091

isolated text–label distance used in HypEmo.092

2 Related Work093

Prior studies on FEC have largely focused on mod-094

eling within Euclidean space. (Khanpour and095

Caragea, 2018) use lexicon-derived features for096

emotion detection in health-related posts. (Yin097

et al., 2020) apply syntactic self-attention to bet-098

ter capture sentiment composition. (Mekala et al.,099

2021) use generative models with coarse emo-100

tion labels, while (Sosea and Caragea, 2021)101

use emotion-specific masking during pretraining.102

(Suresh and Ong, 2021) propose a label-aware con-103

trastive loss that modulates sample influence based104

on model confidence. (Yin and Shang, 2022) en-105

hance semantic separation via whitening transfor-106

mation and nearest-neighbor retrieval. (Chen et al.,107

2023) adopts a hybrid approach by modeling label108

representations in hyperbolic space while encoding109

text inputs in Euclidean space. (Zhang et al., 2024)110

propose a GNN-based method that captures seman-111

tic and temporal patterns through anchor graphs112

built over token representations.113

3 Hyperbolic geometry for Lorentz Model114

Let u = (us, ut) ∈ Rn+1, where us ∈ Rn is115

the space-like component and ut ∈ R is the time-116

like component. The Lorentzian inner product117

is defined as: ⟨u,v⟩L = ⟨us,vs⟩ − utvt, where118

⟨·, ·⟩ denotes the Euclidean inner product. The119

Lorentzian norm is ∥u∥L =
√
⟨u,u⟩L. The n-120

dimensional Lorentz model Hn with curvature −k121

is represented as a submanifold of Rn+1, defined as:122

Hn =
{
u ∈ Rn+1 : ⟨u,u⟩L = −1/k, ut > 0

}
,123

where all vectors in Hn satisfy the constraint124

ut =
√
1/k + ∥us∥2. The geodesic distance de-125

notes the shortest path between two points on Hn126

and is given by:127

d(u,v) =
√

1/k cosh−1(−k⟨u,v⟩L) (1)128

At any point p ∈ Hn, the tangent space TpHn129

Figure 1: Architecture of HyCoEM. The forward pass
generates label-aware features. During training, a con-
trastive loss is computed in hyperbolic space, which is
used to weight the cross-entropy loss.

is a Euclidean vector space consisting of all vec- 130

tors in Rn+1 that are orthogonal to p as: TpHn = 131{
q ∈ Rn+1 : ⟨p,q⟩L = 0

}
. For q ∈ TpHn, the 132

exponential map projects the vector onto the hy- 133

perboloid Hn as: 134

expp(q) = cosh(
√
k∥q∥L)p+

sinh(
√
k∥q∥L)√

k∥q∥L
q (2) 135

In this study, we fix p at the origin O = 136

[0,
√
1/k], where the space components are zero 137

and the time-like component is
√
1/k. 138

4 Methodology 139

This section describes the components of our pro- 140

posed framework. Fig. 1 illustrates the overall ar- 141

chitecture. 142

4.1 Label-aware feature 143

We use RoBERTa to encode the input text. For a 144

document D, the encoded token representations are 145

given by: X = fenc(D), where X ∈ Rs×h, with s 146

representing the token sequence length and h de- 147

noting the feature size. To compute the label-aware 148

feature, we apply a label-text attention mechanism 149

using a learnable parameter matrix WL ∈ Rh×c, 150

where c is the number of labels: 151

A = XWL; F = softmax(AT )X (3) 152

The resulting matrix F ∈ Rc×h is then vectorized 153

to obtain F ′ ∈ Rch×1 and fed into a classifier. The 154

logit vector z ∈ Rc is computed as: 155

F ′ = vectorize(F ); z = WT
c F ′ + b (4) 156

where Wc ∈ Rch×c and b ∈ Rc represent the 157

weights and bias of the classifier. 158
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4.2 Projection onto the Lorentz Hyperboloid159

Let eenc ∈ Rh be the encoded text/label vector.160

To project it onto the Lorentz hyperboloid Hh em-161

bedded in Rh+1, we extend it as e = [es, et] =162

[eenc, 0], where the space component is eenc and163

the time component is zero. The vector e is or-164

thogonal to the hyperboloid origin O = [0,
√
1/k]165

under the Lorentzian inner product, and thus lies166

in the tangent space at O. As et = 0, the expo-167

nential map can be used to parameterize only the168

space component es, and the time-like component169

can be recomputed later to satisfy the constraint170

et =
√

1/k + ∥es∥2. Thus, the exponential map171

derived from Eqn. 2 becomes:172

exp0(es) = cosh(
√
k∥e∥L)0+

sinh(
√
k∥e∥L)√

k∥e∥L
es (5)173

where the first term is zero. Furthermore, the174

Lorentzian norm simplifies to the Euclidean norm:175

∥e∥2L = ⟨e, e⟩L = ⟨es, es⟩ − 0 = ∥es∥2. The176

resulting expression after all substitutions is:177

ϕ(es) = exp0(es) =
sinh(

√
k∥es∥)√

k∥es∥
es (6)178

4.3 Loss functions179

4.3.1 Contrastive loss180

We apply contrastive loss in hyperbolic space181

to align the text embedding with its correct la-182

bel and separate it from negatives. For a sam-183

ple Xi ∈ Rs×h, we use the first token ([CLS]),184

xi ∈ Rh, as the text feature. Label features185

are defined as the transpose W⊤
L ∈ Rc×h. Both186

are projected to hyperbolic space via the expo-187

nential map (Eqn. 6) as: xHi = ϕ(αtxi) and188

LH = ϕ(αlW
⊤
L ), where αt and αl are learnable189

scaling factors applied to ensure unit norm before190

projection. The set of hyperbolic label embeddings191

is: LH = {ℓH1 , ℓH2 , . . . , ℓHc}. For each sample-192

label pair (xi, yi), where yi ∈ M (the set of emo-193

tion labels), we select the r labels closest to the text194

(excluding yi) as negatives:195

N (i) = argmin-r
j∈M\{yi}

d(xHi , ℓHj ) (7)196

where d(., .) represents the geodesic distance as de-197

fined in Eqn. 1 and r ≥ 1 is a hyperparameter. This198

adaptive selection provides semantically similar,199

challenging negative labels, enabling contrastive200

loss to push the text away from these confusable201

negatives. Finally, the contrastive loss for sample i 202

is formulated as: 203

CLi = − log

 e
(−d(xHi

,ℓHyi
)/τ)

e
(−d(xHi

,ℓHyi
)/τ)

+
∑

j∈N (i)

e
(−d(xHi

,ℓHj
))/τ)


(8) 204

where τ ∈ R+ is the temperature hyperparameter. 205

4.3.2 Overall Loss 206

The overall loss is a weighted cross-entropy (WCE), 207

where each sample is weighted by its contrastive 208

loss CLi. For a batch of m samples: 209

LossWCE = − 1

m

m∑
i=1

CLi · log
e(z

yi
i )

c∑
j=1

e(z
j
i )

(9) 210

where zji is the logit score for class j. The con- 211

trastive weight CLi is high when the text is either 212

distant from its true label or close to confusable 213

negatives, guiding the model to penalize such cases 214

more strongly. 215

5 Experiments 216

5.1 Experiment Setup 217

5.1.1 Datasets and Evaluation metrics 218

We use two benchmark fine-grained emotion 219

datasets: GoEmotions (GE) (Demszky et al., 2020) 220

with 27 emotion labels, and Empathetic Dialogues 221

(ED) (Rashkin et al., 2019) with 32 emotion labels. 222

We follow the same preprocessing and evaluation 223

setup as prior work (Suresh and Ong, 2021; Chen 224

et al., 2023), including accuracy and weighted F1 225

as evaluation metrics. Further details on dataset 226

statistics are provided in Appendix A. 227

5.1.2 Implementation Details 228

We use the pretrained RoBERTa-base 2 as the text 229

encoder. Text and label features have dimension h, 230

set to 768. The curvature k is a scalar initialized as 231

1, and the scalars αt and αl are initialized as 1/
√
h. 232

All scalars are learned in the logarithmic space as: 233

log(k), log(αt), and log(αl). The negative label 234

set size r is set to 6 for Go Emotions and 8 for 235

Empathetic Dialogues, determined via grid search 236

on the validation set with r ∈ {2, 3, . . . , 10}. τ 237

is fixed at 0.07 for both datasets. During training, 238

the batch size is set to 64, and the Adam optimizer 239

is used with a learning rate of 1e-5. We train the 240

model end-to-end using PyTorch. Training stops if 241

2https://huggingface.co/FacebookAI/
roberta-base
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neither accuracy nor weighted F1 improves on the242

validation set over ten consecutive epochs.243

5.2 Main results244

Table 1 presents the results of our proposed ap-245

proach alongside baseline comparisons (see de-246

tails of baseline methods in Appendix B). The247

first part of the table shows a comparison with248

pretrained language models (BERT (Devlin et al.,249

2019), RoBERTa, ELECTRA (Clark et al., 2020))250

fine-tuned for FEC, in both base and large variants.251

The second part of the table compares with Hy-252

perIM (Chen et al., 2020) and HIDDEN (Chatter-253

jee et al., 2021), which leverage hyperbolic space254

for classification but were not originally trained for255

FEC. Our proposed approach, HyCoEM, signifi-256

cantly outperforms all methods across both these257

sections of the table.258

In the third part of the table, we compare with259

existing FEC methods, namely KNNEC (Yin and260

Shang, 2022), LCL (Suresh and Ong, 2021), and261

HypEmo (Chen et al., 2023). For a fair comparison,262

KNNEC and LCL were trained using RoBERTa263

as the encoder, ensuring all FEC methods use the264

same text backbone. We also include a variant265

of our approach, EucCoEM, which performs con-266

trastive learning in Euclidean space and does not267

use hyperbolic geometry. We did not compare with268

SEAN-GNN (Zhang et al., 2024) as the official269

implementation is not publicly available.270

For our implemented methods (KNNEC, LCL,271

EucCoEM, and HyCoEM), we report the average272

performance across five runs with different seeds.273

Our approach outperforms the second-best method,274

HypEmo, with the same parameter count (125M),275

achieving an improvement of 1.3–1.9% in accuracy276

and 1–1.7% in weighted F1 across the two datasets.277

In contrast, the Euclidean variant, EucCoEM, un-278

derperforms, highlighting the importance of hy-279

perbolic space for learning label embeddings and280

improving text-label alignment.281

5.3 Additional Analysis282

In Table 2, we compare our model with FEC283

baselines on challenging ED subsets identified by284

(Suresh and Ong, 2021), each comprising four con-285

fusable labels (details in Appendix C). Since each286

subset contains four confusable labels, we use the287

other three (excluding the positive) as negatives to288

help the model better distinguish between similar289

emotions. HyCoEM outperforms the second-best290

by 0.9–1.4% in weighted F1 across all subsets.291

Model Go Emotions (GE) Empathetic Dialogues (ED)
Acc Weighted F1 Acc Weighted F1

BERT∗
base 60.9 ± 0.4 62.9 ± 0.5 50.4 ± 0.3 51.8 ± 0.1

RoBERTa∗base 62.6 ± 0.6 64.0 ± 0.2 54.5 ± 0.7 56.0 ± 0.4
ELECTRA∗

base 59.5 ± 0.4 61.6 ± 0.6 47.7 ± 1.2 49.6 ± 1.0
BERT∗

large 64.5 ± 0.3 65.2 ± 0.4 53.8 ± 0.1 54.3 ± 0.1
RoBERTa∗large 64.6 ± 0.3 65.2 ± 0.2 57.4 ± 0.5 58.2 ± 0.3
ELECTRA∗

large 63.5 ± 0.3 64.1 ± 0.4 56.7 ± 0.6 57.6 ± 0.6

HyperIM* 50.2 ± 0.9 49.7 ± 0.7 44.1 ± 1.2 43.6 ± 1.0
HIDDEN* 47.2 ± 1.1 49.3 ± 0.9 42.9 ± 1.4 44.3 ± 1.1

KNNEC 63.8 ± 0.3 64.7 ± 0.8 57.8 ± 0.8 58.7 ± 1.1
LCL 64.1 ± 0.2 64.8 ± 0.3 59.2 ± 0.4 59.3 ± 0.6
HypEmo 65.4 ± 0.2 66.3 ± 0.2 59.6 ± 0.3 61.0 ± 0.3
EucCoEM 64.2 ± 0.5 64.6 ± 0.6 58.9 ± 0.4 59.1 ± 0.3
HyCoEM 66.7 ± 0.4 67.3 ± 0.5 61.5 ± 0.3 62.7 ± 0.4

∆ +1.3% +1% +1.9% +1.7%

Table 1: Comparison of results. The results for methods
marked with (*) are sourced from the HypEmo (Chen
et al., 2023) study. ∆ denotes the improvement com-
pared to the underlined second-best method. ± denotes
standard deviation.

Model subseta subsetb subsetc subsetd

RoBERTabase 56.9 64.6 55.6 79.1
LCL 58.8 66.1 57.1 80.3
HypEmo 63.1 69.3 59.9 81.0
HyCoEm 64.0 70.4 61.3 82.2

∆ +0.9% +1.1% +1.4% +1.2%

Table 2: Weighted F1 scores on the most challeng-
ing subsets of the ED dataset, as proposed by (Suresh
and Ong, 2021). ∆ denotes the improvement over the
second-best method.

We demonstrate the encoder-agnostic nature of 292

our approach in Appendix D. A t-SNE visualiza- 293

tion of the learned text representations, highlight- 294

ing improved separation of confusable emotion la- 295

bels in HyCoEM compared to other methods, is 296

presented in Appendix E. We further ablate key 297

design choices of HyCoEM in Appendix F, includ- 298

ing the role of contrastive loss, the impact of label 299

initialization, the effect of adaptive negative label 300

selection, and the choice of hyperbolic geometry 301

variant. 302

6 Conclusion 303

We propose HyCoEM for FEC, leveraging con- 304

trastive learning in hyperbolic space to align a text 305

with its emotion label while separating it from con- 306

fusable negatives. The contrastive loss helps learn 307

label embeddings without a predefined hierarchy 308

and serves as a weighting signal for cross-entropy 309

loss, penalizing weak text-label alignments. Com- 310

parisons with baselines show that HyCoEM im- 311

proves performance on benchmark datasets. 312
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A Details on Datasets431

GoEmotions (GE) (Demszky et al., 2020) and Em-432

pathetic Dialogues (Rashkin et al., 2019) (ED) are433

two widely recognized benchmark datasets com-434

monly used for fine-grained emotion classification.435

These datasets are considered challenging, as they436

contain a large number of labels with overlapping437

semantics.438

GoEmotions consists of 54,000 Reddit com-439

ments, each annotated with one or more of 27 emo-440

tion categories, along with a neutral class. Similar441

to prior studies (Suresh and Ong, 2021; Chen et al.,442

2023), we include only the single-labeled examples443

and remove the instances with the neutral label.444

After this selection, the dataset contains 23,485 /445

2,956 / 2,984 examples for the train, validation, and446

test splits, respectively.447

The Empathetic Dialogues dataset features multi-448

turn conversations between a speaker and a listener,449

with each conversation labeled with a single emo-450

tion. These conversations can extend up to six451

turns. Similar to prior studies (Suresh and Ong,452

2021; Chen et al., 2023), we use only the first turn453

of each conversation. The dataset contains 24,850454

samples labeled with 32 emotions, split into 19,533455

/ 2,770 / 2,547 examples for the training, validation,456

and test sets, respectively.457

B Details on baseline methods458

We compare our approach with three different cate-459

gories of baseline methods.460

Pretrained language models (PLMS). We fine-461

tuned base and large variants of BERT (Devlin462

et al., 2019), RoBERTa (Liu et al., 2019), and463

ELECTRA (Clark et al., 2020) for FEC.464

Hyperbolic classification methods. These in-465

clude approaches that leverage hyperbolic space466

but were not originally trained for FEC. HyperIM467

(Chen et al., 2020) jointly embeds text and labels468

in hyperbolic space, whereas HIDDEN (Chatterjee469

et al., 2021) learns label embeddings based on la-470

bel co-occurrence information without assuming471

a predefined label hierarchy. Both methods utilize472

the Poincaré ball model of hyperbolic space.473

FEC methods. KNNEC (Yin and Shang, 2022)474

incorporates a whitening transformation along with475

nearest-neighbor retrieval to improve sentence se- 476

mantics. LCL (Suresh and Ong, 2021) uses a label- 477

aware contrastive loss to modulate sample influ- 478

ence based on model confidence. HypEmo (Chen 479

et al., 2023) uses hyperbolic text-label distance to 480

weight the cross-entropy loss. We also include Eu- 481

cCoEM, a variant that operates in Euclidean space, 482

with the rest of the components identical to Hy- 483

CoEM. 484

C Details on Hard Subsets of ED 485

The hard subsets of Empathetic Dialogues (ED), 486

selected by (Suresh and Ong, 2021), represent the 487

most challenging and confusable emotion groups. 488

These were identified by evaluating all possible 489

four-label combinations to find sets with high se- 490

mantic overlap. The selected subsets are: (a) {Anx- 491

ious, Apprehensive, Afraid, Terrified}, (b) {Dev- 492

astated, Nostalgic, Sad, Sentimental}, (c) {Angry, 493

Ashamed, Furious, Guilty}, and (d) {Anticipating, 494

Excited, Hopeful, Guilty}. 495

D Encoder agnostic performance 496

We propose HyCoEM as an encoder-agnostic ap- 497

proach that can improve FEC performance regard- 498

less of the text encoder used. Table 3 compares 499

the weighted F1 scores with and without HyCoEM 500

across different pretrained language models used as 501

text encoders. The results demonstrate that incorpo- 502

rating HyCoEM improves performance across all 503

encoders, highlighting the encoder-agnostic nature 504

of our approach. 505

Dataset Encoder w/o HyCoEM with HyCoEM

GE BERTbase 62.9 66.1
GE RoBERTabase 64.0 67.3
GE ELECTRAbase 61.6 64.5

ED BERTbase 51.8 58.6
ED RoBERTabase 56.0 62.7
ED ELECTRAbase 49.6 58.9

Table 3: Weighted F1 score when HyCoEM is used with
different text encoders

E Visualization of Representations 506

Figure 2 shows t-SNE visualizations of the learned 507

text representations on the ED test set. For fair 508

comparison, t-SNE is applied with default settings 509

across all methods. We compare with a standard 510

cross-entropy variant that shares the same architec- 511

ture as HyCoEM but is trained without contrastive 512
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(a) Standard cross entropy loss (b) HypEmo (c) HyCoEM

Figure 2: Qualitative comparison of learned representations on the ED dataset. For the confusable emotion label
pair afraid and terrified, HyCoEM shows increased separation compared to the other methods.

supervision( Fig. 2(a)), as well as with HypEmo513

(Fig. 2(b)). The analysis focuses on the confus-514

able label pair afraid and terrified. In the standard515

cross-entropy setting, the representations of these516

labels are heavily entangled. In HypEmo, there517

is some improvement, but significant overlap still518

remains. HyCoEM (Fig. 2(c)) shows clearer sep-519

aration between afraid and terrified compared to520

the other two, with reduced entanglement. Thus,521

HyCoEM helps in learning representations that bet-522

ter distinguish semantically similar and confusable523

emotions.524

F Ablation study525

We ablate the key components of our model, with526

results summarized in Table 4. First, removing527

contrastive loss supervision (w/o CL) and training528

the model using only cross-entropy leads to a sub-529

stantial performance drop, highlighting the role530

of contrastive supervision in enhancing semantic531

alignment. Next, we initialized label embeddings532

using the average of RoBERTa token embeddings533

for each label name (Label name init). The ob-534

served decline suggests that random initialization535

is more effective than name-based initialization536

for this task. We also replaced the selection of537

top r negatives based on geodesic distance with538

random sampling ( Random negatives). The under-539

performance of this variant underscores the value540

of adaptive negative selection.541

We further replaced the label-text attention mech-542

anism with simple elementwise multiplication be-543

tween the text feature xi ∈ Rh and the label fea-544

tures W⊤
L ∈ Rc×h, resulting in Fi ∈ Rc×h (w/o545

Label-text att.). The lower performance of this546

Model Go Emotions (GE) Empathetic Dialogues (ED)
Acc Weighted F1 Acc Weighted F1

w/o CL 63.2 ± 0.6 64.1 ± 0.2 54.9 ± 0.7 56.6 ± 0.4
Label name init 64.9 ± 0.5 65.1 ± 0.4 58.7 ± 0.6 59.3 ± 0.2
Random negatives 64.1 ± 0.3 64.9 ± 0.4 55.9 ± 0.6 57.8 ± 0.5
w/o Label-text att. 63.9 ± 0.3 64.4 ± 0.5 55.2 ± 0.7 57.5 ± 0.7
PoincaréCoEM 65.3 ± 0.5 65.8 ± 0.6 59.3 ± 0.5 59.7 ± 0.6
HyCoEM 66.7 ± 0.4 67.3 ± 0.5 61.5 ± 0.3 62.7 ± 0.4

Table 4: Ablation study results for HyCoEM

variant confirms the importance of label-text atten- 547

tion, which computes label-specific features via 548

weighted token aggregation. 549

Finally, we substituted the Lorentz model 550

with the Poincaré ball for hyperbolic projection 551

(PoincaréCoEM). The resulting performance degra- 552

dation demonstrates the superiority of the Lorentz 553

model in our setup. 554
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