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GRAPH COARSENING WITH NEURAL NETWORKS

Chen Cai ∗ Dingkang Wang † Yusu Wang ‡

ABSTRACT

As large-scale graphs become increasingly more prevalent, it poses significant
computational challenges to process, extract and analyze large graph data. Graph
coarsening is one popular technique to reduce the size of a graph while main-
taining essential properties. Despite rich graph coarsening literature, there is only
limited exploration of data-driven methods in the field. In this work, we lever-
age the recent progress of deep learning on graphs for graph coarsening. We first
propose a framework for measuring the quality of coarsening algorithm and show
that depending on the goal, we need to carefully choose the Laplace operator on
the coarse graph and associated projection/lift operators. Motivated by the obser-
vation that the current choice of edge weight for the coarse graph may be sub-
optimal, we parametrize the weight assignment map with graph neural networks
and train it to improve the coarsening quality in an unsupervised way. Through ex-
tensive experiments on both synthetic and real networks, we demonstrate that our
method significantly improves common graph coarsening methods under various
metrics, reduction ratios, graph sizes, and graph types. It generalizes to graphs of
larger size (25× of training graphs), is adaptive to different losses (differentiable
and non-differentiable), and scales to much larger graphs than previous work.

1 INTRODUCTION

Many complex structures can be modeled by graphs, such as social networks, molecular graphs, bio-
logical protein-protein interaction networks, knowledge graphs, and recommender systems. As large
scale-graphs become increasingly ubiquitous in various applications, they pose significant computa-
tional challenges to process, extract and analyze information. It is therefore natural to look for ways
to simplify the graph while preserving the properties of interest.

There are two major ways to simplify graphs. First, one may reduce the number of edges, known
as graph edge sparsification. It is known that pairwise distance (spanner), graph cut (cut sparsifier),
eigenvalues (spectral sparsifier) can be approximately maintained via removing edges. A key result
(Spielman & Teng, 2004) in the spectral sparsification is that any dense graph of size N can be
sparsified to O(NlogcN/ε2) edges in nearly linear time using a simple randomized algorithm based
on the effective resistance.

Alternatively, one could also reduce the number of nodes to a subset of the original node set. The
first challenge here is how to choose the topology (edge set) of the smaller graph spanned by the
sparsified node set. On the extreme, one can take the complete graph spanned by the sampled
nodes. However, its dense structure prohibits easy interpretation and poses computational overhead
for setting the Θ(n2) weights of edges. This paper focuses on graph coarsening, which reduces the
number of nodes by contracting disjoint sets of connected vertices. The original idea dates back
to the algebraic multigrid literature (Ruge & Stüben, 1987) and has found various applications in
graph partitioning (Hendrickson & Leland, 1995; Karypis & Kumar, 1998; Kushnir et al., 2006),
visualization (Harel & Koren, 2000; Hu, 2005; Walshaw, 2000) and machine learning (Lafon &
Lee, 2006; Gavish et al., 2010; Shuman et al., 2015).

However, most existing graph coarsening algorithms come with two restrictions. First, they are
prespecified and not adapted to specific data nor different goals. Second, most coarsening algorithms
set the edge weights of the coarse graph equal to the sum of weights of crossing edges in the original
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graph. This means the weights of the coarse graph is determined by the coarsening algorithm (of the
vertex set), leaving no room for adjustment.

With the two observations above, we aim to develop a data-driven approach to better assigning
weights for the coarse graph depending on specific goals at hand. We will leverage the recent
progress of deep learning on graphs to develop a framework to learn to assign edge weights in an
unsupervised manner from a collection of input (small) graphs. This learned weight-assignment map
can then be applied to new graphs (of potentially much larger sizes). In particular, our contributions
are threefold.

• First, depending on the quantity of interest F (such as the quadratic form w.r.t. Laplace oper-
ator), one has to carefully choose projection/lift operator to relate quantities defined on graphs
of different sizes. We formulate this as the invariance of F under lift map, and provide three
cases of projection/lift map as well as the corresponding operators on the coarse graph. Interest-
ingly, those operators all can be seen as the special cases of doubly-weighted Laplace operators
on coarse graphs (Horak & Jost, 2013).

• Second, we are the first to propose and develop a framework to learn the edge weights of the coarse
graphs via graph neural networks (GNN) in an unsupervised manner. We show convincing results
both theoretically and empirically that changing the weights is crucial to improve the quality of
coarse graphs.

• Third, through extensive experiments on both synthetic graphs and real networks, we demonstrate
that our method GOREN significantly improves common graph coarsening methods under differ-
ent evaluation metrics, reduction ratios, graph sizes, and graph types. It generalizes to graphs of
larger size (than the training graphs), adapts to different losses (so as to preserve different prop-
erties of original graphs), and scales to much larger graphs than what previous work can handle.
Even for losses that are not differentiable w.r.t the weights of the coarse graph, we show training
networks with a differentiable auxiliary loss still improves the result.

2 RELATED WORK

Graph sparsification. Graph sparsification is firstly proposed to solve linear systems involv-
ing combinatorial graph Laplacian efficiently. Spielman & Teng (2011); Spielman & Srivastava
(2011) showed that for any undirected graph G of N vertices, a spectral sparsifier of G with only
O(NlogcN/ε2) edges can be constructed in nearly-linear time. 1 Later on, the time complexity and
the dependency on the number of the edges are reduced by various researchers (Batson et al., 2012;
Allen-Zhu et al., 2015; Lee & Sun, 2018; 2017).

Graph coarsening. Previous work on graph coarsening focuses on preserving different properties,
usually related to the spectrum of the original graph and coarse graph. Loukas & Vandergheynst
(2018); Loukas (2019) focus on the restricted spectral approximation, a modification of the spec-
tral similarity measure used for graph sparsification. Hermsdorff & Gunderson (2019) develop a
probabilistic framework to preserve inverse Laplacian.

Deep learning on graphs. As an effort of generalizing convolution neural network to the graphs and
manifolds, graph neural networks is proposed to analyze graph-structured data. They have achieved
state-of-the-art performance in node classification (Kipf & Welling, 2016), knowledge graph com-
pletion (Schlichtkrull et al., 2018), link prediction (Dettmers et al., 2018; Gurukar et al., 2019),
combinatorial optimization (Li et al., 2018b; Khalil et al., 2017), property prediction (Duvenaud
et al., 2015; Xie & Grossman, 2018) and physics simulation (Sanchez-Gonzalez et al., 2020).

Deep generative model for graphs. To generative realistic graphs such as molecules and parse
trees, various approaches have been taken to model complex distributions over structures and at-
tributes, such as variational autoencoder (Simonovsky & Komodakis, 2018; Ma et al., 2018), gen-
erative adversarial networks (GAN) (De Cao & Kipf, 2018; Zhou et al., 2019), deep autoregres-
sive model (Liao et al., 2019; You et al., 2018b; Li et al., 2018a), and reinforcement learning type
approach (You et al., 2018a). Zhou et al. (2019) proposes a GAN-based framework to preserve
the hierarchical community structure via algebraic multigrid method during the generation process.
However, different from our approach, the coarse graphs in Zhou et al. (2019) are not learned.

1The algorithm runs in O(M.polylogN) time, where M and N are the numbers of edges and vertices.
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3 PROPOSED APPROACH: LEARNING EDGE WEIGHT WITH GNN

3.1 HIGH-LEVEL OVERVIEW

Minimize

Our input is a non-attributed (weighted or unweighted) graph G =

(V,E). Our goal is to construct an appropriate “coarser” graph Ĝ =

(V̂ , Ê) that preserves certain properties of G. Here, by a “coarser”
graph, we assume that |V̂ | << |V | and there is a surjective map π : V → V̂ that we call the vertex
map. Intuitively, (see figure on the right), for any node v̂ ∈ V̂ , all nodes π−1(v̂) ⊂ V are mapped
to this super-node v̂ in the coarser graph Ĝ. We will later propose a GNN based framework that can
be trained using a collection of existing graphs in an unsupervised manner, so as to construct such
a coarse graph Ĝ for a future input graph G (presumably coming from the same family as training
graphs) that can preserve properties of G effectively.

We will in particular focus on preserving properties of the Laplace operator OG of G, which is by
far the most common operator associated to graphs, and forms the foundation for spectral methods.
Specifically, given G = (V = {v1, . . . , vN}, E) with w : E → R being the weight function for
G (all edges have weight 1 if G is unweighted), let W the corresponding N × N edge-weight
matrix where W [i][j] = w(vi, vj) if edge (vi, vj) ∈ E and 0 otherwise. Set D to be the N × N
diagonal matrix withD[i][i] equal to the sum of weights of all edges incident to vi. The standard (un-
normalized) combinatorial Laplace operator of G is then defined as L = D −W . The normalized
Laplacian is defined as L = D−1/2LD−1/2 = I −D−1/2WD−1/2.

However, to make this problem as well as our proposed approach concrete, various components need
to be built appropriately. We provide an overview here, and they will be detailed in the remainder of
this section.
• Assuming that the set of super-nodes V̂ as well as the map π : V → V̂ are given, one still need

to decide how to set up the connectivity (i.e, edge set Ê) for the coarse graph Ĝ = (V̂ , Ê). We
introduce a natural choice in Section 3.2, and provide some justification for this choice.

• As the graphG and the coarse graph Ĝ have the different number of nodes, their Laplace operators
OG and OĜ of two graphs are not directly comparable. Instead, we will compare F(OG, f) and
F(OĜ, f̂), where F is a functional intrinsic to the graph at hand (invariant to the permutation of
vertices), such as the quadratic form or Rayleigh quotient. However, it turns out that depending on
the choice of F , we need to choose the precise form of the LaplacianOĜ, as well as the (so-called
lifting and projection) maps relating these two objects, carefully, so as they are comparable. We
describe these in detail in Section 3.3.

• In Section 3.4 we show that adjusting the weights of the coarse graph Ĝ can significantly improve
the quality of Ĝ. This motivates a learning approach to learn a strategy (a map) to assign these
weights from a collection of given graphs. We then propose a GNN-based framework to do so in
an unsupervised manner. Extensive experimental studies will be presented in Section 4.

3.2 CONSTRUCTION OF COARSE GRAPH

Assume that we are already given the set of super-nodes V̂ = {v̂1, . . . , v̂n} for the coarse graph
Ĝ together with the vertex map π : V → V̂ – There has been much prior work on computing the
sparsified set V̂ ⊂ V and π (Loukas & Vandergheynst, 2018; Loukas, 2019); and if the vertex map
π is not given, then we can simply define it by setting π(v) for each v ∈ V to be the nearest neighbor
of v in V̂ in terms of graph shortest path distance in G (Dey et al., 2013).

To construct edges for the coarse graph Ĝ = (V̂ , Ê) together with the edge weight function ŵ : Ê →
R, instead of using a complete weighted graph over V̂ , which is too dense and expensive, we set Ê
to be those edges “induced” fromGwhen collapsing each cluster π−1(v̂) to its corresponding super-
node v̂ ∈ V̂ : Specifically, (v̂, v̂′) ∈ Ê if and only if there is an edge (v, v′) ∈ E such that π(v) = v̂
and π(v′) = v̂′. The weight of this edge is ŵ(v̂, v̂′) :=

∑
(v,v′)∈E

(
π−1(v̂),π−1(v̂′)

) w(v, v′) where

E(A,B) ⊆ E stands for the set of edges crossing sets A,B ⊆ V ; i.e., ŵ(v̂, v̂′) is the total weights
of all crossing edges in G between clusters π−1(v̂) and π−1(v̂′) in V . We refer to Ĝ constructed
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this way the V̂ -induced coarse graph. As shown in Dey et al. (2013), if the original graph G is the
1-skeleton of a hidden space X , then this induced graph captures the topological of X at a coarser
level if V̂ is a so-called δ-net of the original vertex set V w.r.t. the graph shortest path metric.

Let Ŵ be the edge weight matrix, and D̂ be the diagonal matrix encoding the sum of edge weights
incident to each vertex as before. Then the standard combinatorial Laplace operator w.r.t. Ĝ is
simply L̂ = D̂ − Ŵ .

Relation to the operator of (Loukas, 2019). Interestingly, this construction of the coarse graph
Ĝ coincides with the coarse Laplace operator for a sparsified vertex set V̂ constructed by Loukas
(2019). We will use this view of the Laplace operator later; hence we briefly introduce the construc-
tion of Loukas (2019) (adapted to our setting): Given the vertex map π : V → V̂ , we set a n×N ma-

trix P by P [r, i] =

{
1

|π−1(v̂r)| if vi ∈ π−1(v̂r)

0 otherwise
. In what follows, we denote γr :=

∣∣π−1(v̂r)
∣∣

for any r ∈ [1, n], which is the size of the cluster of v̂r in V . P can be considered as the weighted
projection matrix of the vertex set from V to V̂ . Let P+ denote the Moore-Penrose pseudoinverse
of P , which can be intuitively viewed as a way to lift a function on V̂ (a vector in Rn) to a function
over V (a vector in RN ). As shown in Loukas (2019), P+ is the N × n matrix where P+[i, r] = 1
if and only if π(vi) = v̂r. See Appendix A.2 for a toy example. Finally, Loukas (2019) defines
an operator for the coarsened vertex set V̂ to be L̃V̂ = (P+)TLP+. Intuitively, L̂ operators on
n-vectors. For any n-vector f̂ ∈ Rn, L̃V̂ f̂ first lifts f̂ to a N -vector f = P+f̂ , and then perform L

on f , and then project it down to n-dimensional via (P+)T .

Proposition 3.1. (Loukas, 2019) The combinatorial graph Laplace operator L̂ = D̂ − Ŵ for the
V̂ -induced coarse graph Ĝ constructed above equals to the operator L̃V̂ = (P+)TLP+.

3.3 LAPLACE OPERATOR FOR THE COARSE GRAPH

We now have an input graph G = (V,E) and a coarse graph Ĝ induced from the sparsified node
set V̂ , and we wish to compare their corresponding Laplace operators. However, as OG operates
on RN (i.e, functions on the vertex set V of G) and OĜ operates on Rn, we will compare them by
their effects on “corresponding” objects. Loukas & Vandergheynst (2018); Loukas (2019) proposed
to use the quadratic form to measure the similarity between the two linear operators. In particular,
given a linear operator A on RN and any x ∈ RN , QA(x) = xTAx. The quadratic form has
also been used for measuring spectral approximation under edge sparsification. The proof of the
following result is in Appendix A.2.

Proposition 3.2. For any vector x̂ ∈ Rn, we have that QL̂(x̂) = QL(P+x̂), where L̂ is the com-
binatorial Laplace operator for the V̂ -induced coarse graph Ĝ constructed above. That is, set
x := P+x̂ as the lift of x̂ in RN , then x̂T L̂x̂ = xTLx.

Intuitively, this suggests that if later, we measure the similarity betweenL and some Laplace operator
for the coarse graph Ĝ based on a loss from quadratic form difference, then we should choose the
Laplace operator OĜ to be L̂ and compare QL̂(Px) with QL(x). We further formalize this by
considering the lifting map U : Rn → RN as well as a projection map P : RN → Rn, where
P · U = Idn. Proposition 3.2 suggests that for quadratic form-based similarity, the choices are
U = P+,P = P , and OĜ = L̂. See the first row in Table 1.

Table 1: Depending on the choice ofF (quantity that we want to preserve) andOG, we have different
projection/lift operators and resulting OĜ on the coarse graph.

Quantity F of interest OG Projection P Lift U OĜ Invariant under U

Quadratic form Q L P P+ Combinatorial Laplace L̂ QL(U x̂) = QL̂(x̂)

Rayleigh quotient R L Γ−1/2(P+)
T

P+Γ−1/2 Doubly-weighted Laplace L̂ RL(U x̂) = RL̂(x̂)

Quadratic form Q L D̂1/2PD−1/2 D1/2(P+)D̂−1/2 Normalized Laplace L̂ QL(U x̂) = QL̂(x̂)

On the other hand, eigenvectors and eigenvalues of a linear operator A are more directly related,
via Courant-Fischer Min-Max Theorem, to its Rayleigh quotient RA(x) = xTAx

xT x
. Interestingly, in
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this case, to preserve the Rayleigh quotient, we should change the choice of OĜ to be the following
doubly-weighted Laplace operator for a graph that is both edge and vertex weighted.

Specifically, for the coarse graph Ĝ, we assume that each vertex v̂ ∈ V̂ is weighted by γv̂ :=
|π−1(v̂)|, the size of the cluster from G that got collapsed into v̂. Let Γ be the vertex matrix, which
is the n×n diagonal matrix with Γ[r][r] = γv̂r . The doubly-weighted Laplace operator for a vertex-
and edge-weighted graph Ĝ is then defined as:

L̂ = Γ−1/2(D̂ − Ŵ )Γ−1/2 = Γ−1/2L̂Γ−1/2 = (P+Γ−1/2)TL(P+Γ−1/2).

The concept of doubly-weighted Laplace for a vertex- and edge-weighted graph is not new, see e.g
Chung & Langlands (1996); Horak & Jost (2013); Xu et al. (2019). In particular, Horak & Jost
(2013) proposes a general form of combinatorial Laplace operator for a simplicial complex where
all simplices are weighted, and our doubly-weighted Laplace has the same eigenstructure as their
Laplacian when restricted to graphs. See Appendix A.1 for details. Using the doubly-weighted
Laplacian for Rayleigh quotient based similarity measurement between the original graph and the
coarse graph is justified by the following result (proof in Appendix A.1).

Proposition 3.3. For any vector x ∈ Rn, we have that RL̂(x̂) = RL(P+Γ−1/2x̂). That is, set the

lift of x̂ in RN to be x = P+Γ−1/2x̂, then we have that x̂
T L̂x̂
x̂T x̂

= xTLx
xT x

.

Finally, if using the normalized Laplace L for the original graph G, then the appropriate Laplace
operator for the coarse graph and corresponding projection/lift maps are listed in the last row of
Table 1, with proofs in Appendix A.2.

3.4 A GNN-BASED FRAMEWORK FOR LEARNING FOR CONSTRUCTING THE COARSE GRAPH

Minimize

Figure 1: An illustration of learnable coarsening framework. Existing coarsening algorithm deter-
mines the topology of coarse graph Ĝ, while GOREN resets the edge weights of the coarse graph.

In the previous section, we argued that depending on what similarity measures we use, appropriate
Laplace operator OĜ for the coarse graph Ĝ should be used. Now consider the specific case of
Rayleigh quotient, which can be thought of as a proxy to measure similarities between the low-
frequency eigenvalues of the original graph Laplacian and the one for the coarse graph. As described
above, here we set OĜ as the doubly-weighted Laplacian L̂ = Γ−1/2(D̂ − Ŵ )Γ−1/2.
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The effect of weight adjustments. We develop an iterative algorithm with
convergence guarantee (to KKT point in F.4) for optimizing over edge weights
of Ĝ for better spectrum alignment. As shown in the figure on the right, after
changing the edge weight of the coarse graph, the resulting graph Laplacian
has eigenvalues much closer (almost identical) to the first n eigenvalues of the
original graph Laplacian. More specifically, in this figure,G.e andGc.e stand
for the eigenvalues of the original graph G and coarse graph Ĝ constructed
by the so-called Variation-Edge coarsening algorithm (Loukas, 2019). “After-
Opt” stands for the eigenvalues of coarse graphs when weights are optimized
by our iterative algorithm. See Appendix F for the description of our iterative algorithm, its conver-
gence results, and full experiment results.

A GNN-based framework for learning weight assignment map. The discussions above indicate
that we can obtain better Laplace operators for the coarse graph by using better-informed weights
than simply summing up the weights of crossing edges from the two clusters. More specifically,
suppose we have a fixed strategy to generate V̂ from an input graph G = (V,E). Now given an
edge (v̂, v̂′) ∈ Ê in the induced coarse graph Ĝ = (V̂ , Ê), we model its weight ŵ(v̂, v̂′) by a
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weight-assignment function µ(G|π−1(v̂)∪π−1(v̂′)), where G|A is the subgraph of G induced by a
subset of vertices A. However, it is not clear how to setup this function µ. Instead, we will learn it
from a collection of input graphs in an unsupervised manner. Specifically, we will parametrize the
weight-assignment map µ by a learnable neural networkMθ. See Figure 1 for an illustration.

In particular, we use Graph Isomorphism Network (GIN) (Xu et al., 2018) to represent Mθ. We
initialize the model by setting the edge attribute of the coarse graph to be 1. Our node feature is set
to be a 5-dimensional vector based on LDP (Local Degree Profile) (Cai & Wang, 2018). We enforce
the learned weight of the coarse graph to be positive by applying one extra ReLU layer to the final
output. All models are trained with Adam optimizer with a learning rate of 0.001. See Appendix E
for more details. We name our model as Graph cOarsening RefinemEnt Network (GOREN).

Given a graph G and a coarsening algorithm A, the general form of loss is

Loss(OG,OĜt
) =

1

k

k∑
i=1

|F(OG, fi)−F(O
Ĝt
,Pfi)|, (1)

where fi is signal on the original graph (such as eigenvectors) and Pfi is its projection. We use
O
Ĝt

to denote the operator of the coarse graph during training, while OĜ standing for the operator
defined w.r.t. the coarse graph output by coarsening algorithm A. That is, we will start with OĜ
and modify it to O

Ĝt
during the training. The loss can be instantiated for different cases in Table 1.

For example, a loss based on quadratic form means that we chooseOG,OĜt
to be the combinatorial

Laplacian of G and Ĝt, and the resulting quadratic loss has the form:

Loss(L, L̂t) =
1

k

k∑
i=1

|fTi Lfi − (Pfi)
T L̂t(Pfi)|. (2)

It can be seen as a natural analog of the loss for spectral sparsification in the context of graph coars-
ening, which is also adopted in Loukas (2019). Similarly, one can use a loss based on the Rayleigh
quotient, by choosing F from the second row of Table 1. Our framework for graph coarsening is
flexible. Many different loss functions can be used as long as it is differentiable in the weights of
the coarse graph. we will demonstrate this point in Section 4.4.

Finally, given a collection of training graphsG1, . . . , Gm, we will train for parameters in the module
Mθ to minimize the total loss on training graphs. When a test graph Gtest is given, we simply
apply Mθ to set up weight for each edge in Ĝtest, obtaining a new graph Ĝtest,t. We compare
Loss(OGtest ,OĜtest,t

) against Loss(OGtest ,OĜtest
) and expect the former loss is smaller.

4 EXPERIMENTS

In the following experiments, we apply six existing coarsening algorithms to obtain the coarsened
vertex set V̂ , which are Affinity (Livne & Brandt, 2012), Algebraic Distance (Chen & Safro, 2011),
Heavy edge matching (Dhillon et al., 2007; Ron et al., 2011), as well as two local variation methods
based on edge and neighborhood respectively (Loukas, 2019), and a simple baseline (BL); See
Appendix D for detailed descriptions. The two local variation methods are considered to be state-
of-the-art graph coarsening algorithms Loukas (2019). We show that our GOREN framework can
improve the qualities of coarse graphs produced by these methods.

4.1 PROOF OF CONCEPT

Table 2: The error reduction after applying GOREN.

Dataset Affinity Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

Airfoil 91.7% 88.2% 86.1% 43.2% 73.6%
Minnesota 49.8% 57.2% 30.1% 5.50% 1.60%
Yeast 49.7% 51.3% 37.4% 27.9% 21.1%
Bunny 84.7% 69.1% 61.2% 19.3% 81.6%

As proof of concept, we show that GOREN
can improve common coarsening meth-
ods on multiple graphs (see C.2 for de-
tails). Following the same setting as Loukas
(2019), we use the relative eigenvalue er-
ror as evaluation metric. It is defined
as 1

k

∑k
i=1
|λ̂i−λi|
λi

, where λi, λ̂i denotes
eigenvalues of combinatorial Laplacian L

for G and doubly-weighted Laplacian L̂ for Ĝ respectively, and k is set to be 40. For simplicity,
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Table 3: Loss: quadratic loss. Laplacian: combinatorial Laplacian for both original and coarse
graphs. Each entry x(y) is: x = loss w/o learning, and y = improvement percentage.

Dataset BL Affinity Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

Sy
nt

he
tic

BA 0.44 (16.1%) 0.44 (4.4%) 0.68 (4.3%) 0.61 (3.6%) 0.21 (14.1%) 0.18 (72.7%)
ER 0.36 (1.1%) 0.52 (0.8%) 0.35 (0.4%) 0.36 (0.2%) 0.18 (1.2%) 0.02 (7.4%)
GEO 0.71 (87.3%) 0.20 (57.8%) 0.24 (31.4%) 0.55 (80.4%) 0.10 (59.6%) 0.27 (65.0%)
WS 0.45 (62.9%) 0.09 (82.1%) 0.09 (60.6%) 0.52 (51.8%) 0.09 (69.9%) 0.11 (84.2%)

R
ea

l

CS 0.39 (40.0%) 0.21 (29.8%) 0.17 (26.4%) 0.14 (20.9%) 0.06 (36.9%) 0.0 (59.0%)
Flickr 0.25 (10.2%) 0.25 (5.0%) 0.19 (6.4%) 0.26 (5.6%) 0.11 (11.2%) 0.07 (21.8%)
Physics 0.40 (47.4%) 0.37 (42.4%) 0.32 (49.7%) 0.14 (28.0%) 0.15 (60.3%) 0.0 (-0.3%)
PubMed 0.30 (23.4%) 0.13 (10.5%) 0.12 (15.9%) 0.24 (10.8%) 0.06 (11.8%) 0.01 (36.4%)
Shape 0.23 (91.4%) 0.08 (89.8%) 0.06 (82.2%) 0.17 (88.2%) 0.04 (80.2%) 0.08 (79.4%)

this error is denoted as Eigenerror in the remainder of the paper. Denote the Eigenerror of graph
coarsening method as l1 and Eigenerror obtained by GOREN as l2. In Table 2, we show the error-
reduction ratio, defined as l1−l2

l1
. The ratio is upper bounded by 100% in the case of improvement

(and the larger the value is, the better); but it is not lower bounded.

Since it is hard to directly optimize Eigenerror, the loss function we use in our GOREN set to be
the Rayleigh loss Loss(OG,OĜt

) = 1
k

∑k
i=1 |F(OG, fi) − F(O

Ĝt
,Pfi)| where F is Rayleigh

quotient, P = Γ−1/2(P+)T and OĜt
being doubly-weighted Laplacian L̂t. In other words, We

use Rayleigh loss as a differentiable proxy for the Eigenerror. As we can see in Table 2, GOREN
reduces the Eigenerror by a large margin for training graphs, which serves as a sanity check for our
framework, as well as for using Rayleigh loss as a proxy for Eigenerror. Due to space limit, see
Table G.1 for full results where we reproduce the results in Loukas (2019) up to small differences.
In Table 5, we will demonstrate this training strategy also generalizes well to unseen graphs.

4.2 SYNTHETIC GRAPHS

We train the GOREN on synthetic graphs from common graph generative models and test
on larger unseen graphs from the same model. We randomly sample 25 graphs of size
{512, 612, 712, ..., 2912} from different generative models. If the graph is disconnected, we keep
the largest component. We train GOREN on the first 5 graphs, use the 5 graphs from the rest 20
graphs as the validation set and the remaining 15 as test graphs. We use the following synthetic
graphs: Erdős-Rényi graphs (ER), Barabasi-Albert Graph (BA), Watts-Strogatz Graph (WS), ran-
dom geometric graphs (GEO). See Appendix C.1 for datasets details.

For simplicity, we only report experiment results for the reduction ratio 0.5. For complete results of
all reduction ratios (0.3, 0.5, 0.7), see Appendix G. We report both the loss Loss(L, L̂) of different

algorithms (w/o learning) and the relative improvement percentage defined as Loss(L,L̂)−Loss(L,L̂t)

Loss(L,L̂)

when GOREN is applied, shown in parenthesis. As we can see in Table 3, for most methods, trained
on small graphs, GOREN also performs well on test graphs of larger size across different algorithms
and datasets – Again, the larger improvement percentage is, the larger the improvement by our
algorithm is, and a negative value means that our algorithm makes the loss worse. Note the size of
test graphs are on average 2.6× the size of training graphs. For ER and BA graphs, the improvement
is relatively smaller compared to GEO and WS graphs. This makes sense since ER and BA graphs
are rather homogenous graphs, leaving less room for further improvement.

4.3 REAL NETWORKS

We test on five real networks: Shape, PubMed, Coauthor-CS (CS), Coauthor-Physics (Physics), and
Flickr (largest one with 89k vertices), which are much larger than datasets used in Hermsdorff &
Gunderson (2019) (≤ 1.5k) and Loukas (2019) (≤ 4k). Since it is hard to obtain multiple large
graphs (except for the Shape dataset, which contains meshes from different surface models) coming
from similar distribution, we bootstrap the training data in the following way. For the given graph,
we randomly sample a collection of landmark vertices and take a random walk of length l starting
from selected vertices. We take subgraphs spanned by vertices of random walks as training and
validation graphs and the original graph as the test graph. See Appendix C.3 for dataset details.
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Table 4: Loss: quadratic loss. Laplacian: normalized Laplacian for original and coarse graphs. Each
entry x(y) is: x = loss w/o learning, and y = improvement percentage.

Dataset BL Affinity Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

Sy
nt

he
tic

BA 0.13 (76.2%) 0.14 (45.0%) 0.15 (51.8%) 0.15 (46.6%) 0.14 (55.3%) 0.06 (57.2%)
ER 0.10 (82.2%) 0.10 (83.9%) 0.09 (79.3%) 0.09 (78.8%) 0.06 (64.6%) 0.06 (75.4%)
GEO 0.04 (52.8%) 0.01 (12.4%) 0.01 (27.0%) 0.03 (56.3%) 0.01 (-145.1%) 0.02 (-9.7%)
WS 0.05 (83.3%) 0.01 (-1.7%) 0.01 (38.6%) 0.05 (50.3%) 0.01 (40.9%) 0.01 (10.8%)

R
ea

l

CS 0.08 (58.0%) 0.06 (37.2%) 0.04 (12.8%) 0.05 (41.5%) 0.02 (16.8%) 0.01 (50.4%)
Flickr 0.08 (-31.9%) 0.06 (-27.6%) 0.06 (-67.2%) 0.07 (-73.8%) 0.02 (-440.1%) 0.02 (-43.9%)
Physics 0.07 (47.9%) 0.06 (40.1%) 0.04 (17.4%) 0.04 (61.4%) 0.02 (-23.3%) 0.01 (35.6%)
PubMed 0.05 (47.8%) 0.05 (35.0%) 0.05 (41.1%) 0.12 (46.8%) 0.03 (-66.4%) 0.01 (-118.0%)
Shape 0.02 (84.4%) 0.01 (67.7%) 0.01 (58.4%) 0.02 (87.4%) 0.0 (13.3%) 0.01 (43.8%)

Table 5: Loss: Eigenerror. Laplacian: combinatorial Laplacian for original graphs and doubly-
weighted Laplacian for coarse ones. Each entry x(y) is: x = loss w/o learning, and y = improve-
ment percentage. † stands for out of memory.

Dataset BL Affinity Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

Sy
nt

he
tic

BA 0.36 (7.1%) 0.17 (8.2%) 0.22 (6.5%) 0.22 (4.7%) 0.11 (21.1%) 0.17 (-15.9%)
ER 0.61 (0.5%) 0.70 (1.0%) 0.35 (0.6%) 0.36 (0.2%) 0.19 (1.2%) 0.02 (0.8%)
GEO 1.72 (50.3%) 0.16 (89.4%) 0.18 (91.2%) 0.45 (84.9%) 0.08 (55.6%) 0.20 (86.8%)
WS 1.59 (43.9%) 0.11 (88.2%) 0.11 (83.9%) 0.58 (23.5%) 0.10 (88.2%) 0.12 (79.7%)

R
ea

l

CS 1.10 (18.0%) 0.55 (49.8%) 0.33 (60.6%) 0.42 (44.5%) 0.21 (75.2%) 0.0 (-154.2%)
Flickr 0.57 (55.7%) † 0.33 (20.2%) 0.31 (55.0%) 0.11 (67.6%) 0.07 (60.3%)
Physics 1.06 (21.7%) 0.58 (67.1%) 0.33 (69.5%) 0.35 (64.6%) 0.20 (79.0%) 0.0 (-377.9%)
PubMed 1.25 (7.1%) 0.50 (15.5%) 0.51 (12.3%) 1.19 (-110.1%) 0.35 (-8.8%) 0.02 (60.4%)
Shape 2.07 (67.7%) 0.24 (93.3%) 0.17 (90.9%) 0.49 (93.0%) 0.11 (84.2%) 0.20 (90.7%)

As shown in the bottom half of Table 3, across all six different algorithms, GOREN significantly
improves the result among all five datasets in most cases. For the largest graph Flickr, the size of test
graphs is more than 25× of the training graphs, which further demonstrates the strong generalization.

4.4 OTHER LOSSES

Other differentiable loss. To demonstrate that our framework is flexible, we adapt GOREN to the
following two losses. The two losses are both differentiable w.r.t the weights of coarse graph.

(1) Loss based on normalized graph Laplacian: Loss(L, L̂t) = 1
k

∑k
i=1 |fTi Lfi− (Pfi)T L̂t(Pfi)|.

Here {fi} are the set of first k eigenvectors of the normalized Laplacian L of original grpah G,
and P = D̂1/2PD−1/2. (2) Conductance difference between original graph and coarse graph.
Loss = 1

k

∑k
i=1 |ϕ(Si) − ϕ(π(Si))|. ϕ(S) is the conductance ϕ(S) :=

∑
i∈S,j∈S̄ aij

min(a(S),a(S̄))
where

a(S) :=
∑
i∈S
∑
j∈V aij . We randomly sample k subsets of nodes S0, ..., Sk ⊂ V where |Si| is

set to be a random number sampled from the uniform distribution U(|V |/4, |V |/2). Due to space
limits, we present the result for conductance in Appendix G.3.

Following the same setting as before, we perform experiments to minimize two different losses.
As shown in Table 4 and Appendix G.3, for most graphs and methods, GOREN still shows good
generalization capacity and improvement for both losses. Apart from that, we also observe the
initial loss for normalized Laplacian is much smaller than that for standard Laplacian, which might
be due to that the fact that eigenvalues of normalized Laplacian are in [0, 2].

Non-differentiable loss. In Section 4.1, we use Rayleigh loss as a proxy for training but the Eigen-
error for validation and test. Here we train GOREN with Rayleigh loss but evaluate Eigenerror on
test graphs, which is more challenging. Number of vectors k is 40 for synthetic graphs and 200 for
real networks. As shown in Table 5, our training strategy via Rayleigh loss can improve the eigen-
value alignment between original graphs and coarse graphs in most cases. Reducing Eigenerror is
more challenging than other losses, possibly because we are minimizing a differentiable proxy (the
Rayleigh loss). Nevertheless, improvement is achieved in most cases.
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Table 6: Model comparison between MLP and GOREN . Loss: quadratic loss. Laplacian: combina-
torial Laplacian for both original and coarse graphs. Each entry x(y) is: x = loss w/o learning, and
y = improvement percentage.

Dataset Ratio BL Affinity Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.27 (46.2%) 0.04 (4.1%) 0.04 (-38.0%) 0.43 (31.2%) 0.02 (-403.3%) 0.06 (67.0%)
WS + MLP 0.5 0.45 (62.9%) 0.09 (64.1%) 0.09 (15.9%) 0.52 (31.2%) 0.09 (31.6%) 0.11 (58.5%)

0.7 0.65 (70.4%) 0.15 (57.6%) 0.14 (31.6%) 0.67 (76.6%) 0.15 (43.6%) 0.16 (54.0%)

0.3 0.27 (46.2%) 0.04 (65.6%) 0.04 (-26.9%) 0.43 (32.9%) 0.02 (68.2%) 0.06 (75.2%)
WS + GOREN 0.5 0.45 (62.9%) 0.09 (82.1%) 0.09 (60.6%) 0.52 (51.8%) 0.09 (69.9%) 0.11 (84.2%)

0.7 0.65 (73.4%) 0.15 (78.4%) 0.14 (66.7%) 0.67 (76.6%) 0.15 (80.8%) 0.16 (83.2%)

0.3 0.13 (76.6%) 0.04 (-53.4%) 0.03 (-157.0%) 0.11 (69.3%) 0.0 (-229.6%) 0.04 (-7.9%)
Shape + MLP 0.5 0.23 (78.4%) 0.08 (-11.6%) 0.06 (67.6%) 0.17 (83.2%) 0.04 (44.2%) 0.08 (-1.9%)

0.7 0.34 (69.9%) 0.17 (85.1%) 0.1 (73.5%) 0.24 (65.8%) 0.09 (74.3%) 0.13 (85.1%)

0.3 0.13 (86.8%) 0.04 (79.8%) 0.03 (69.0%) 0.11 (69.7%) 0.0 (1.3%) 0.04 (73.6%)
Shape + GOREN 0.5 0.23 (91.4%) 0.08 (89.8%) 0.06 (82.2%) 0.17 (88.2%) 0.04 (80.2%) 0.08 (79.4%)

0.7 0.34 (91.1%) 0.17 (94.3%) 0.1 (74.7%) 0.24 (95.9%) 0.09 (64.6%) 0.13 (84.8%)

4.5 ON THE USE OF GNN AS WEIGHT-ASSIGNMENT MAP.

Recall that we use GNN to represent a edge-weight assignment map for an edge (û, v̂) between
two super-nodes û, v̂ in the coarse graph Ĝ. The input will be the subgraph Gû,v̂ in the original
graph G spanning the clusters π−1(û), π−1(v̂), and the crossing edges among them; while the
goal is to compute the weight of edge (û, v̂) based on this subgraph Gû,v̂ . Given that the input is
a local graph Gû,v̂ , a GNN will be a natural choice to parameterize this edge-weight assignment
map. Nevertheless, in principle, any architecture applicable to graph regression can be used for this
purpose. To better understand if it is necessary to use the power of GNN, we replace GNN with the
following baseline for graph regression. In particular, the baseline is a composition of mean pooling
of node features in the original graph and a 4-layer MLP with embedding dimension 200 and ReLU
nonlinearity. We use mean-pooling as the graph regression component needs to be permutation
invariant over the set of node features. However, this baseline ignores the detailed graph structure
which GNN will leverage. The results for different reduction ratios are presented in the table 6.
We have also implemented another baseline where the MLP module is replaced by a simpler linear
regression module. The results are worse than those of MLP (and thus also GNN) as expected, and
therefore omitted from this paper.

As we can see, MLP works reasonably well in most cases, indicating that learning the edge weights
is indeed useful for improvement. On the other hand, we see using GNN to parametrize the map
generally yields a larger improvement over the MLP, which ignores the topology of subgraphs in the
original graph. A systematic understanding of how different models such as various graph kernels
(Kriege et al., 2020; Vishwanathan et al., 2010) and graph neural networks affect the performance is
an interesting question that we will leave for future work.

5 CONCLUSION

We present a framework to compare original graph and the coarse one via the properly chosen
Laplace operators and projection/lift map. Observing the benefits of optimizing over edge weights,
we propose a GNN-based framework to learn the edge weights of coarse graph to further improve
the existing coarsening algorithms. Through extensive experiments, we demonstrate that our method
GOREN significantly improves common graph coarsening methods under different metrics, reduction
ratios, graph sizes, and graph types.
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A CHOICE OF LAPLACE OPERATOR

A.1 LAPLACE OPERATOR ON WEIGHTED SIMPLICIAL COMPLEX

Its most general form in the discrete case, presented as the operators on weighted simplicial com-
plexes, is:

Lupi = W−1
i BTi Wi+1Bi Ldowni = Bi−1W

−1
i−1B

T
i−1Wi

where Bi is the matrix corresponding to the coboundary operator δi, and Wi is the diagonal ma-
trix representing the weights of i-th dimensional simplices. See (Horak & Jost, 2013) for details.
When restricted to the graph (1 simplicial complex), we recover the most common graph Laplacians
as special case of Lup0 . Note that although the Lupi and Ldowni is not symmetric, we can always
symmetrize them by multiple a properly chosen diagonal matrix and its inverse from left and right
without altering the spectrum.

A.2 MISSING PROOFS
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Minimize

Figure 2: A toy example.

We provide the missing proofs regarding the properties of the projec-
tion/lift map and the resulting operators on the coarse graph.

Recall as an toy example, a coarsening algorithm will take graph
on the left in figure A.2 and generate a coarse graph on the right,

with coarsening matrix P =

[
1/3 1/3 1/3 0 0 0
0 0 0 1/3 1/3 1/3

]
, P+ =


1 0
1 0
1 0
0 1
0 1
0 1

, Γ =

[
3 0
0 3

]
, Π =


1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
1/3 1/3 1/3 0 0 0
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3

. Π in general is a N ×N block matrix of

rank n. All entries in each block Πj is equal to 1
γj

where γj =
∣∣π−1(v̂j)

∣∣.
Table 7: Depending on the choice ofF (quantity that we want to preserve) andOG, we have different
projection/lift operators and resulting OĜ on the coarse graph.
Quantity F of interest OG Projection P Lift U OĜ Invariant under U

Quadratic form Q L P P+ Combinatorial Laplace L̂ QL(U x̂) = QL̂(x̂)

Rayleigh quotient R L Γ−1/2(P+)
T

P+Γ−1/2 Doubly-weighted Laplace L̂ RL(U x̂) = RL̂(x̂)

Quadratic form Q L D̂1/2PD−1/2 D1/2(P+)D̂−1/2 Normalized Laplace L̂ QL(U x̂) = QL̂(x̂)

We first make an observation about projection and lift operator, P and U .

Lemma A.1. P ◦ U = I. U ◦ P = Π.

Proof. For the first case, it’s easy to see P ◦ U = PP+ = I and U ◦ P = P+P = Π.

For the second case, P ◦ U = Γ−1/2(P+)TP+Γ−1/2 = Γ−1/2ΠΓ−1/2 = I.
U ◦ P = P+Γ−1(P+)T = I .

For the third case,

P ◦ U = D̂1/2PD−1/2D1/2(P+)D̂−1/2

= D̂1/2P (P+)D̂−1/2

= D̂1/2ID̂−1/2 = I.

U ◦ P = D1/2(P+)D̂−1/2D̂1/2PD−1/2

= D1/2(P+)PD−1/2

= D1/2ΠD−1/2 = Π.

Now we prove the three lemmas in the main paper.

Proposition A.2. For any vector x̂ ∈ Rn, we have that QL̂(x̂) = QL(P+x̂). In other words, set
x := P+x̂ as the lift of x̂ in RN , then x̂T L̂x̂ = xTLx.

Proof. QL(U x̂) = (U x̂)TLU x̂ = x̂(P+)TLP+x̂T = x̂T L̂x̂ = QL̂(x̂)

14



Published as a conference paper at ICLR 2021

Proposition A.3. For any vector x ∈ Rn, we have that RL̂(x̂) = RL(P+Γ−1/2x̂). That is, set the

lift of x̂ in RN to be x = P+Γ−1/2x̂, then we have that x̂
T L̂x̂
x̂T x̂

= xTLx
xT x

.

Proof. By definition RL(U x̂) = QL(U x̂)
||U x̂||22

, RL(x) =
QL̂(x)

||x||22
. We will prove the lemma by showing

QL(U x̂) = QL(x) and ||U x̂||22 = ||x||22.

QL(U x̂) = (U x̂)TLU x̂
= x̂TΓ−1/2(P+)TLP+Γ−1/2x̂

= x̂TΓ−1/2L̂Γ−1/2x̂

= x̂T L̂x̂

= QL̂(x̂)

||U x̂||22 = x̂TΓ−1/2(P+)TP+Γ−1/2x̂ = x̂T x̂ = ||x̂||22. Since both numerator and denominator stay
the same under the action of U , we conclude RL(U x̂) = RL̂(x̂).

Proposition A.4. For any vector x ∈ Rn, we have that QL̂(x) = QL(D1/2P+D̂1/2x). That is, set
the lift of x̂ in RN to be x := D1/2P+D̂1/2x, then we have that x̂T L̂x̂ = xTLx.

Proof.

QL(U x̂) = (U x̂)TLU x̂
= x̂D̂−1/2(P+)TD1/2LD1/2(P+)D̂−1/2x̂

= x̂D̂−1/2(P+)TL(P+)D̂−1/2x̂

= x̂D̂−1/2L̂D̂−1/2x̂

= x̂L̂x̂ = QL̂(x̂)

B MORE RELATED WORK

Graph pooling. Graph pooling (Lee et al., 2019) is proposed in the context of the hierarchical
graph representation learning. DiffPool (Ying et al., 2018) is proposed to use graph neural networks
to parametrize the soft clustering of nodes. Its limitation in quadratic memory is later improved by
(Gao & Ji, 2019; Cangea et al., 2018). All those methods are supervised and tested for the graph
classification task.

Optimal transportation theory. Several recent works adapt the concepts from optimal transporta-
tion theory to compare graphs of different sizes. Garg & Jaakkola (2019) aims to minimize optimal
transport distance between probability measures on the original graph and coarse graph. Maretic
et al. (2019) proposes a framework based on Wasserstein distance between graph signal distributions
in terms of their graph Laplacian matrices. Ma & Chen (2019) replaces supervised loss tailored for
specific downstream tasks with unsupervised ones based on Wasserstein distance. Dong & Sawin
(2020) introduces a novel metric by computing a coordinated pair of optimal transport maps, which
is applicable to graph sketching and graph comparison.

C DATASET

C.1 SYNTHETIC GRAPHS

Erdős-Rényi graphs (ER). G(n, p) where p = 0.1∗512
n

Random geometric graphs (GEO). The random geometric graph model places n nodes uniformly at
random in the unit cube. Two nodes are joined by an edge if the distance between the nodes is at
most radius r. We set r = 5.12√

n
.
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Barabasi-Albert Graph (BA). A graph of n nodes is grown by attaching new nodes each with m
edges that are preferentially attached to existing nodes with high degrees. We set m to be 4.

Watts-Strogatz Graph (WS). It is first created from a ring over n nodes. Then each node in the ring
is joined to its k nearest neighbors (or k − 1 neighbors if k is odd). Then shortcuts are created
by replacing some edges as follows: for each edge (u, v) in the underlying ”n-ring with k nearest
neighbors” with probability p replace it with a new edge (u,w) with a uniformly random choice of
existing node w. We set k, p to be 10 and 0.1.

C.2 DATASET FROM LOUKAS’S PAPER

Yeast. Protein-to-protein interaction network in budding yeast, analyzed by (Jeong et al., 2001). The
network has N = 1458 vertices and M = 1948 edges.

Airfoil. Finite-element graph obtained by airow simulation (Preis & Diekmann, 1997), consisting
of N = 4000 vertices and M = 11, 490 edges.

Minnesota (Gleich, 2008). Road network with N = 2642 vertices and M = 3304 edges.

Bunny (Turk & Levoy, 1994). Point cloud consisting ofN = 2503 vertices andM = 65, 490 edges.
The point cloud has been sub-sampled from its original size.

C.3 REAL NETWORKS

Shape graphs (Shape). Each graph is KNN graph formed by 1024 points sampled from shapes from
ShapeNet where each node is connected 10 nearest neighbors.

Coauthor-CS (CS) and Coauthor-Physics (Physics) are co-authorship graphs based on the Microsoft
Academic Graph from the KDD Cup 2016 challenge. Coauthor CS has N = 18, 333 nodes and
M = 81, 894 edges. Coauthor Physics has N = 34, 493 nodes and M = 247, 962 edges.

PubMed (Sen et al., 2008) has N = 19, 717 nodes and M = 44, 324 edges. Nodes are documents
and edges are citation links.

Flickr (Zeng et al., 2019) has N = 89, 250 nodes and M = 899, 756 edges. One node in the graph
represents one image uploaded to Flickr. If two images share some common properties (e.g., same
geographic location, same gallery, comments by the same user, etc.), there is an edge between the
nodes of these two images.

D EXISTING GRAPH COARSENING METHODS

Heavy Edge Matching. At each level of the scheme, the contraction family is obtained by com-
puting a maximum-weight matching with the weight of each contraction set (vi, vj) calculated as
wij/max{di, dj}. In this manner, heavier edges connecting vertices that are well separated from the
rest of the graph are contracted first.

Algebraic Distance. This method differs from heavy edge matching in that the weight of each can-

didate set (vi, vj) ∈ E is calculated as
(∑Q

q=1 (xq(i)− xq(j))2
)1/2

, where xk is anN -dimensional
test vector computed by successive sweeps of Jacobi relaxation. The complete method is described
by Ron et al. (2011), see also Chen & Safro (2011).

Affinity. This is a vertex proximity heuristic in the spirit of the algebraic distance that was proposed
by Livne & Brandt (2012) in the context of their work on the lean algebraic multigrid. As per the
author suggests, the Q = k test vectors are here computed by a single sweep of a Gauss-Seidel
iteration.

Local Variation. There are two variations of local variation methods, edge-based local variation,
and neighborhood-based local variation. They differ in how the contraction set is chosen. Edge-
based variation is constructed for each edge, while the neighborhood-based variant takes every ver-
tex and its neighbors as contraction set. What two methods have common is that they both optimize
an upper bound of the restricted spectral approximation objective. In each step, they greedily pick
the sets whose local variation is the smallest. See Loukas (2019) for more details.
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Baseline. We also implement a simple baseline that randomly chooses a collection of nodes in the
original graph as landmarks and contract other nodes to the nearest landmarks. If there are multiple
nearest landmarks, we randomly break the tie. The weight of the coarse graph is set to be the sum
of the weights of the crossing edges.

E DETAILS OF THE EXPERIMENTAL SETUP

Feature Initialization. We initialize the the node feature of subgraphs as a 5 dimensional fea-
ture based on a simple heuristics local degree profile (LDP) (Cai & Wang, 2018). For each node
v ∈ G(V ), let DN(v) denote the multiset of the degree of all the neighboring nodes of v, i.e.,
DN(v) = {degree(u)|(u, v) ∈ E}. We take five node features, which are (degree(v), min(DN(v)),
max(DN(v)),mean(DN(v)), std(DN(v))). In other words, each node feature summarizes the degree
information of this node and its 1- neighborhood. We use the edge weight as 1 dimensional edge
feature.

Optimization. All models are trained with Adam optimizer (Kingma & Ba, 2014) with a learning
rate of 0.001 and batch size 600. We use Pytorch (Paszke et al., 2017) and Pytorch Geometric (Fey
& Lenssen, 2019) for all of our implementation. We train graphs one by one where for each graph
we train the model to minimize the loss for certain epochs (see hyper-parameters for details) before
moving to the next graph. We save the model that performs best on the validation graphs and test it
on the test graphs.

Model Architecture. The building block of our graph neural networks is based on the modification
of Graph Isomorphism Network (GIN) that can handle both node and edge features. In particular,
we first linear transform both node feature and edge feature to be vectors of the same dimension. At
the k-th layer, GNNs update node representations by

h(k)
v = ReLU

MLP(k)

 ∑
u∈N (v)∪{v}

h(k−1)
u +

∑
e=(v,u):u∈N (v)∪{v}

h(k−1)
e

 (3)

where N (v) is a set of nodes adjacent to v, and e = (v; v) represents the self-loop edge. Edge
features h(k−1)

e is the same across the layers.

We use average graph pooling to obtained the graph representation from node embeddings, i.e.,
hG = MEAN

({
h

(K)
v |v ∈ G

})
. The final prediction of weight is 1 + ReLu(Φ(hG)) where Φ is a

linear layer. We set the number of layers to be 3 and the embedding dimension to be 50.

Time Complexity. In the preprocessing step, we need to compute the first k eigenvectors of Lapla-
cian (either combinatorial or normalized one) of the original graph as test vectors. Those can be
efficiently computed by Restarted Lanczos Method (Lehoucq et al., 1998) to find the eigenvalues
and eigenvectors.

In the training time, our model needs to recompute the term in the loss involving the coarse graph to
update the weights of the graph neural networks for each batch. For loss involving Laplacian (either
combinatorial or normalized Laplacian), the time complexity to compute the xTLx is O(|E|k)
where |E| is the number of edges in the coarse graph and k is the number of test vectors. For loss
involving conductance, computing the conductance of one subset S ⊂ E is still O(|E|) so in total
the time complexity is also O(|E|k). In summary, the time complexity for each batch is linear in
the number of edges of training graphs. All experiments are performed on a single Intel Xeon CPU
E5-2630 v4@ 2.20GHz × 40 and 64GB RAM machine.

More concretely, for synthetic graphs, it takes a few minutes to train the model. For real graphs like
CS, Physics, PubMed, it takes around 1 hour. For the largest network Flickr of 89k nodes and 899k
edges, it takes about 5 hours for most coarsening algorithms and reduction ratios.

Hyperparameters. We list the major hyperparameters of GOREN below.

• epoch: 50 for synthetic graphs and 30 for real networks.
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• walk length: 5000 for real networks. Note the size of the subgraph is usually around 3500
since the random walk visits some nodes more than once.

• number of eigenvectors k: 40 for synthetic graphs and 200 for real networks.

• embedding dimension: 50

• batch size: 600

• learning rate: 0.001

F ITERATIVE ALGORITHM FOR SPECTRUM ALIGNMENT

F.1 PROBLEM STATEMENT

Given a graph G and its coarse graph Ĝ output by existing algorithmA, ideally we would like to set
edge weight of Ĝ so that spectrum of L̂ (denoted as Lw below) has prespecified eigenvalues λ, i.e,

Lw = U Diag(λ)UT

subject to w ≥ 0, UTU = I
(4)

We would like to make an important note that in general, given a sequence of non decreasing num-
bers 0 = λ1 ≤ λ2, ..., λn and a coarse graph Ĝ, it is not always possible to set the edge weights
(always positive) so that the resulting eigenvalues of graph Laplacian of Ĝ is {0 = λ1, λ2, ..., λn}.
We introduce some notations before we present the theorem. The theorem is developed in the context
of inverse eigenvalue problem for graphs (Barioli & Fallat, 2004; Hogben, 2005; Fallat et al., 2020),
which aims to characterize the all possible sets of eigenvalues that can be realized by symmetric
matrices whose sparsity pattern is related to the topology of a given graph.

For a symmetric real n × n matrix M , the graph of M is the graph with vertices {1, ..., n} and
edges {{i, j} | bij 6= 0 and i 6= j}. Note that the diagonal of M is ignored in determining G(M).
Let Sn be the set of real symmetric n × n matrices. For a graph Ĝ with n nodes, define S(Ĝ) ={
M ∈ Sn | G(M) = Ĝ

}
.

Theorem F.1. (Barioli & Fallat, 2004; Hogben, 2005) If T is a tree, for any M ∈ S(T ), the
diameter of T is less than the number of distinct eigenvalues of M .

For any graph Ĝ, its Laplacian (both combinatorial and normalized Laplacian) belongs to S(Ĝ),
the above theorem therefore applies. In other words, given a tree T and given a sequence of non-
decreasing numbers 0 = λ1 ≤ λ2, ...λn, as long as the number of distinct values in sequences is less
than the diameter of T , then this sequence can not be realized as the eigenvalues of graph Laplacian
of T , no matter how we set the edge weights.

Therefore Instead of looking for the a graph with exact spectral alignment with original graph,
which is impossible for some nondecreasing sequences as illustrated by the theorem F.1, we relax
the equality in equation 4 by instead minimizing the ||Lw − U Diag(λ)UT ||2F . We first present
an algorithm for the complete graph Ĝ of size n. This algorithm is essentially the special case of
(Kumar et al., 2019). We then show relaxing Ĝ from the complete graph to the arbitrary graph will
not change the convergence result. Before that, we introduce some notations.

F.2 NOTATION

Definition 1. The linear operator L : w ∈ R
n(n−1)

2
+ → Lw ∈ Rn×n is defined as

[Lw]ij =

 −wi+dj i > j
[Lw]ji i > j∑
i 6=j [Lw]ij i = j

where dj = −j + j−1
2 (2n− j)
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A toy example is given to illustrate the operators, Consider a weight vector w =

[w1, w2, w3, w4, w5, w6]
T , The Laplacian operator L on w gives

Lw =


∑
i=1,2,3 wi −w1 −w2 −w3

−w1

∑
i=1,4,5 wi −w4 −w5

−w2 −w4

∑
i=2,4,6 wi −w6

−w3 −w5 −w6

∑
i=3,5,6 wi


Adjoint operator L∗ is defined to satisfy 〈Lw, Y 〉 = 〈w,L∗Y 〉.

F.3 COMPLETE GRAPH CASE

Recall our goal is to

minimize
w,U

∥∥Lw − U Diag(λ)UT
∥∥2

F

subject to w ≥ 0, UTU = I
(5)

Algorithm 1: Iterative algorithm for edge weight optimization

Input: coarse graph Ĝ, error tolerance ε, iteration limit T
Output: coarse graph with new edge weights

1 Initialize U as random element in orthogonal group O(n,R) and t = 0.
2 while ε is smaller than the threshold or t > T do
3 Update wt+1, U t+1 according to 8 and Lemma F.4
4 Compute Error ε
5 t = t+ 1

6 From wt, output coarse graph with new edge weights.

where λ is the desired eigenvalues of the smaller graph. One choice of λ can be the first n eigenval-
ues of the original graph of size N . w and U are variables of size n(n− 1)/2 and n× n.

The algorithm proceeds by iteratively updating U and w while fixing the other one.

Update for w: It can be seen when U is fixed, minimizing w is equivalent to a non-negative
quadratic problem

minimize
w≥0

f(w) =
1

2
‖Lw‖2F − cTw (6)

which is strictly convex where c = L∗(U Diag(λ)UT ). It is easy to see that the problem is strictly
convex. However, due the the non-negativity constraint for w, there is no closed form solution. Thus
we derive a majorization function via the following lemma.
Lemma F.2. The function f(w) is majorized at wt by the function

g(w|wt) = f(wt) + (w −wt)T∇f(wt) +
L1

2

∥∥w −wt
∥∥2

(7)

where wt is the update from previous iteration an L1 = ‖L‖22 = 2n.

After ignoring the constant terms in 7, the majorized problem of 6 at wt is given

minimize
w≥0

g(w|wt) =
1

2
wTw − aTw, (8)

where a = wt − 1
L1
∇f(wt) and ∇f(wt) = L∗(Lwt)− c

Lemma F.3. From the KKT optimality conditions we can easily obtain the optimal solution to 7 as

wt+1 = (wt − 1

L1
∇f(wt))+

where (x)+ := max(x, 0).
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Update for U : When w is fixed, the problem of optimizing U is equivalent to

minimize
U

tr(UTLwUDiag(λ))

subject to UTU = I
(9)

It can be shown that the optimal U at iteration t is achieved by U t+1 = eigenvectors(Lw).

Lemma F.4. From KKT optimality condition, the solution to 9 is given by U t+1 =
eigenvectors(Lw).

The following theorem is proved at (Kumar et al., 2019).

Theorem F.5. The sequence (wt, U t) generated by Algorithm 1 converges to the set ofKKT points
of 5.

F.4 NON-COMPLETE GRAPH CASE

The only complication in the case of the non-complete graph is that w has only |E| number of free
variables instead of n(n−1)

2 variables as the case of the complete graph. We will argue that w will
stay at the subspace of dimension |E| during the iteration.

For simplicity, given a non-compete graph Ĝ = (V̂ , Ê), let us denote v̂ = [n] = {1, 2, ..., n} and
each edge will be represented as (i, j) where i > j, and i, j ∈ [n]. It is easy to see that we can map
each edge (i, j) (i > j) to k-th coordinate of w via k = Φ(i, j) = i− j + (j−1)(2p−j)

2 .

Let us denote w (to emphasize its dependence on Ĝ, it is also denoted as wĜ later.) to be the same
as w on coordinates that corresponds to edges in G and 0 for the rest entries. In other words,

w[k] =

{
w[k] if Φ−1(k) ∈ E
0 o.w.

Similarly, for any symmetric matrix A of size n× n

A[i, j] =

{
A[i, j] if(i, j) ∈ E or (j, i) ∈ E
0 o.w.

Let us also define a Ĝ-subspace of w (denoted as Ĝ-subspace when there is no ambiguity) as
{w|w ∈ Rn(n−1)/2

+ }. What we need to prove is that if we initialize the algorithm with wĜ in-
stead of w, wt

Ĝ
will remain in the Ĝ-subspace of w for any t ∈ Z+.

First, we have the following lemma.

Lemma F.6. We have

1. Lw = Lw.

2. 〈w1,w2〉 = 〈w1,w2〉 = 〈w1,w2〉.

3. L∗Y = L∗Y

Proof. Lemma 1 and 2 can be proved by definition. Now we prove the last lemma. For any w

∈ R
n(n−1)

2
+ and Y ∈ Rn×n

〈w,L∗Y 〉 = 〈Lw, Y 〉 = 〈Lw, Y 〉 = 〈Lw, Y 〉 = 〈w,L∗Y 〉 = 〈w,L∗Y 〉

where the fourth equation follows from the definition of L∗ and the other equations directly follows
from the previous two lemmas. Therefore L∗Y = L∗Y .
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Figure 3: After optimizing edge weights, we can construct a smaller graph with eigenvalues much
closer to eigenvalues of original graph. G.e and Gc.e stand for the eigenvalues of original graph and
coarse graph output by Variation-Edge algorithm. After-Opt stands for the eigenvalues of graphs
where weights are optimized. The error is measured by the maximum absolute difference over all
eigenvalues of original graph and the coarse graph (after optimization).

Recall that we minimize the following objective when updating wĜ

minimize
wĜ≥0

∥∥LwĜ − U Diag(λ)UT
∥∥2

F

which is equivalent to be

minimize
wĜ≥0

∥∥∥LwĜ − U Diag(λ)UT
∥∥∥2

F
(10)

Now following the same process for the case of complete graph. Equation 10 is equivalent to

minimize
wĜ≥0

f(wĜ) =
1

2
‖LwĜ‖

2
F − cTwĜ

where c = L∗(U Diag(λ)UT ).

Use the same majorization function as the case of complete graph, we can get the following update
rule

Lemma F.7. From the KKT optimality conditions we can easily obtain the optimal solution to as

wt+1

Ĝ
= (wt

Ĝ
− 1

L1
∇f(wt

Ĝ
))+

where (x)+ := max(x, 0) and ∇f(wt
Ĝ

) = L∗(Lwt
Ĝ
− U Diag(λ)UT ).

Since ∇f(wt
Ĝ

) = L∗(Lwt)−A) = L∗(Lwt −A) = L∗(Lwt −A) where A = U Diag(λ)UT ,

therefore wt+1

Ĝ
will remain in the Ĝ-subspace if wt

Ĝ
is in the Ĝ-subspace. Since w0

Ĝ
is initial-

ized inside Ĝ-subspace, by induction wt
Ĝ

stays in the Ĝ-subspace for any t ∈ Z+. Therefore, we
conclude

Theorem F.8. In the case of non-complete graph, the sequence (wt, U t) generated by Algorithm 1
converges to the set of KKT points of 5.

Remark: since for each iteration a full eigendecomposition is conducted, the computational com-
plexity isO(n3) for each iteration, which is certainly prohibitive for large scale application. Another
drawback is that the algorithm is not adaptive to the data so we have to run the same algorithm for
graphs from the same generative distribution. The main takeaway of this algorithm is that it is pos-
sible to improve the spectral alignment of the original graph and coarse graph by optimizing over
edge weights, as shown in Figure 3.
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Table 8: Relative eigenvalue error (Eigenerror) by different coarsening algorithm and the improve-
ment (in percentage) after applying GOREN.

Dataset Ratio Affinity Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.262 (82.1%) 0.208 (64.9%) 0.279 (80.3%) 0.102 (-67.6%) 0.184 (69.6%)
Airfoil 0.5 0.750 (91.7%) 0.672 (88.2%) 0.568 (86.1%) 0.336 (43.2%) 0.364 (73.6%)

0.7 2.422 (96.4%) 2.136 (93.5%) 1.979 (96.7%) 0.782 (78.8%) 0.876 (87.8%)

0.3 0.322 (-5.0%) 0.206 (0.5%) 0.357 (-4.5%) 0.118 (-5.9%) 0.114 (-14.0%)
Minnesota 0.5 1.345 (49.8%) 1.054 (57.2%) 0.996 (30.1%) 0.457 (5.5%) 0.382 (1.6%)

0.7 4.290 (70.4%) 3.787 (76.6%) 3.423 (58.9%) 2.073 (55.0%) 1.572 (38.1%)

0.3 0.202 (10.4%) 0.108 (5.6%) 0.291 (1.4%) 0.113 (6.2%) 0.024 (-58.3%)
Yeast 0.5 0.795 (49.7%) 0.485 (51.3%) 1.080 (37.4%) 0.398 (27.9%) 0.133 (21.1%)

0.7 2.520 (60.4%) 2.479 (72.4%) 3.482 (52.9%) 2.073 (58.9%) 0.458 (45.9%)

0.3 0.046 (32.6%) 0.217 (50.0%) 0.258 (74.4%) 0.007 (-328.5%) 0.082 (74.8%)
Bunny 0.5 0.085 (84.7%) 0.372 (69.1%) 0.420 (61.2%) 0.057 (19.3%) 0.169 (81.6%)

0.7 0.182 (84.6%) 0.574 (78.6%) 0.533 (75.4%) 0.094 (45.7%) 0.283 (73.9%)

G MORE RESULTS

We list the full results from Section 4.4 for loss involving normalized Laplacian and conductance.

G.1 DETAILS ABOUT SECTION 4.1

We list the full details of Section 4.1.

G.2 DETAILS ABOUT SECTION 4.2 AND 4.3

We list the full details of Section 4.2 and 4.3.

G.3 DETAILS ABOUT SECTION 4.4.

We list the full details of Section 4.4.

G.4 DETAILS ABOUT EIGENERROR

We list the Eigenerror for all datasets when the objective function is Loss(L, L̂).

H VISUALIZATION

We visualize the subgraphs corresponding to randomly sampled edges of coarse graphs. For ex-
ample, in WS graphs, some subgraphs have only a few nodes and edges, while other subgraphs
have some common patterns such as the dumbbell shape graph. For PubMed, most subgraphs have
tree-like structures, possibly due to the edge sparsity in the citation network.

In Figure H, we visualize the weight difference between coarsening algorithms with and without
learning. We also plot the eigenvalues of coarse graphs, where the first 40 eigenvalues of the original
graph are smaller than the coarse ones. After optimizing edge weights via GOREN, we see both
methods produce graphs with eigenvalues closer to the eigenvalues of the original graphs.
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Table 9: Loss: quadratic loss. Laplacian: combinatorial Laplacian for both original and coarse
graphs. Each entry x(y) is: x = loss w/o learning, and y = improvement percentage. BL stands for
the baseline.

Dataset Ratio BL Affinity Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.36 (6.8%) 0.22 (2.9%) 0.56 (1.9%) 0.49 (1.7%) 0.06 (16.6%) 0.17 (73.1%)
BA 0.5 0.44 (16.1%) 0.44 (4.4%) 0.68 (4.3%) 0.61 (3.6%) 0.21 (14.1%) 0.18 (72.7%)

0.7 0.21 (32.0%) 0.43 (16.5%) 0.47 (17.7%) 0.4 (19.3%) 0.2 (48.2%) 0.11 (11.1%)

0.3 0.25 (28.7%) 0.08 (24.8%) 0.05 (21.5%) 0.09 (15.6%) 0.0 (-254.3%) 0.0 (60.6%)
CS 0.5 0.39 (40.0%) 0.21 (29.8%) 0.17 (26.4%) 0.14 (20.9%) 0.06 (36.9%) 0.0 (59.0%)

0.7 0.46 (55.5%) 0.57 (36.8%) 0.33 (36.6%) 0.28 (29.3%) 0.18 (44.2%) 0.09 (26.5%)

0.3 0.26 (35.4%) 0.36 (36.6%) 0.2 (29.7%) 0.1 (18.6%) 0.0 (-42.0%) 0.0 (2.5%)
Physics 0.5 0.4 (47.4%) 0.37 (42.4%) 0.32 (49.7%) 0.14 (28.0%) 0.15 (60.3%) 0.0 (-0.3%)

0.7 0.47 (60.0%) 0.53 (55.3%) 0.42 (61.4%) 0.27 (34.4%) 0.25 (67.0%) 0.01 (-4.9%)

0.3 0.16 (5.3%) 0.17 (2.0%) 0.08 (4.3%) 0.18 (2.7%) 0.01 (16.0%) 0.02 (33.7%)
Flickr 0.5 0.25 (10.2%) 0.25 (5.0%) 0.19 (6.4%) 0.26 (5.6%) 0.11 (11.2%) 0.07 (21.8%)

0.7 0.28 (21.0%) 0.31 (12.4%) 0.37 (18.7%) 0.33 (11.3%) 0.2 (17.2%) 0.2 (21.4%)

0.3 0.17 (13.6%) 0.06 (6.2%) 0.03 (9.5%) 0.1 (4.7%) 0.01 (18.8%) 0.0 (39.9%)
PubMed 0.5 0.3 (23.4%) 0.13 (10.5%) 0.12 (15.9%) 0.24 (10.8%) 0.06 (11.8%) 0.01 (36.4%)

0.7 0.31 (41.3%) 0.23 (22.4%) 0.14 (8.3%) 0.14 (-491.6%) 0.16 (12.5%) 0.05 (21.2%)

0.3 0.25 (0.5%) 0.41 (0.2%) 0.2 (0.5%) 0.23 (0.2%) 0.01 (4.8%) 0.01 (5.9%)
ER 0.5 0.36 (1.1%) 0.52 (0.8%) 0.35 (0.4%) 0.36 (0.2%) 0.18 (1.2%) 0.02 (7.4%)

0.7 0.39 (3.2%) 0.55 (2.5%) 0.44 (2.0%) 0.43 (0.8%) 0.23 (2.9%) 0.29 (10.4%)

0.3 0.44 (86.4%) 0.11 (65.1%) 0.12 (81.5%) 0.34 (80.7%) 0.01 (0.3%) 0.14 (70.4%)
GEO 0.5 0.71 (87.3%) 0.2 (57.8%) 0.24 (31.4%) 0.55 (80.4%) 0.1 (59.6%) 0.27 (65.0%)

0.7 0.96 (83.2%) 0.4 (55.2%) 0.33 (54.8%) 0.72 (90.0%) 0.19 (72.4%) 0.41 (61.0%)

0.3 0.13 (86.6%) 0.04 (79.8%) 0.03 (69.0%) 0.11 (69.7%) 0.0 (1.3%) 0.04 (73.6%)
Shape 0.5 0.23 (91.4%) 0.08 (89.8%) 0.06 (82.2%) 0.17 (88.2%) 0.04 (80.2%) 0.08 (79.4%)

0.7 0.34 (91.1%) 0.17 (94.3%) 0.1 (74.7%) 0.24 (95.9%) 0.09 (64.6%) 0.13 (84.8%)

0.3 0.27 (46.2%) 0.04 (65.6%) 0.04 (-26.9%) 0.43 (32.9%) 0.02 (68.2%) 0.06 (75.2%)
WS 0.5 0.45 (62.9%) 0.09 (82.1%) 0.09 (60.6%) 0.52 (51.8%) 0.09 (69.9%) 0.11 (84.2%)

0.7 0.65 (73.4%) 0.15 (78.4%) 0.14 (66.7%) 0.67 (76.6%) 0.15 (80.8%) 0.16 (83.2%)
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Table 10: Loss: quadratic loss. Laplacian: normalized Laplacian for both original and coarse graphs.
Each entry x(y) is: x = loss w/o learning, and y = improvement percentage. BL stands for the
baseline.

Dataset Ratio BL Affinity Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.06 (68.6%) 0.07 (73.9%) 0.08 (80.6%) 0.08 (79.6%) 0.06 (79.4%) 0.01 (-15.8%)
BA 0.5 0.13 (76.2%) 0.14 (45.0%) 0.15 (51.8%) 0.15 (46.6%) 0.14 (55.3%) 0.06 (57.2%)

0.7 0.22 (17.0%) 0.23 (5.5%) 0.24 (10.8%) 0.24 (9.7%) 0.23 (5.4%) 0.17 (36.8%)

0.3 0.04 (50.2%) 0.03 (44.1%) 0.01 (-7.0%) 0.03 (50.1%) 0.0 (-135.0%) 0.01 (-11.7%)
CS 0.5 0.08 (58.0%) 0.06 (37.2%) 0.04 (12.8%) 0.05 (41.5%) 0.02 (16.8%) 0.01 (50.4%)

0.7 0.13 (57.8%) 0.1 (36.3%) 0.09 (21.4%) 0.09 (29.3%) 0.05 (11.6%) 0.04 (10.8%)

0.3 0.05 (32.3%) 0.04 (5.4%) 0.02 (-16.5%) 0.03 (69.3%) 0.0 (-1102.4%) 0.0 (-59.8%)
Physics 0.5 0.07 (47.9%) 0.06 (40.1%) 0.04 (17.4%) 0.04 (61.4%) 0.02 (-23.3%) 0.01 (35.6%)

0.7 0.14 (60.8%) 0.1 (52.0%) 0.06 (20.9%) 0.07 (29.9%) 0.04 (11.9%) 0.02 (39.1%)

0.3 0.05 (-29.8%) 0.05 (-31.7%) 0.05 (-21.8%) 0.05 (-66.8%) 0.0 (-293.4%) 0.01 (13.4%)
Flickr 0.5 0.08 (-31.9%) 0.06 (-27.6%) 0.06 (-67.2%) 0.07 (-73.8%) 0.02 (-440.1%) 0.02 (-43.9%)

0.7 0.08 (-55.3%) 0.07 (-32.3%) 0.04 (-316.0%) 0.07 (-138.4%) 0.03 (-384.6%) 0.04 (-195.6%)

0.3 0.03 (13.1%) 0.03 (-15.7%) 0.01 (-79.9%) 0.04 (-3.2%) 0.01 (-191.7%) 0.0 (-53.7%)
PubMed 0.5 0.05 (47.8%) 0.05 (35.0%) 0.05 (41.1%) 0.12 (46.8%) 0.03 (-66.4%) 0.01 (-118.0%)

0.7 0.09 (58.0%) 0.09 (34.7%) 0.07 (68.7%) 0.07 (21.2%) 0.08 (67.2%) 0.03 (43.1%)

0.3 0.06 (84.3%) 0.06 (82.0%) 0.05 (76.8%) 0.06 (80.5%) 0.03 (65.2%) 0.04 (80.8%)
ER 0.5 0.1 (82.2%) 0.1 (83.9%) 0.09 (79.3%) 0.09 (78.8%) 0.06 (64.6%) 0.06 (75.4%)

0.7 0.12 (59.0%) 0.14 (52.3%) 0.12 (55.7%) 0.13 (57.1%) 0.08 (25.1%) 0.09 (50.3%)

0.3 0.02 (73.1%) 0.01 (-37.1%) 0.01 (-4.9%) 0.02 (64.8%) 0.0 (-204.1%) 0.01 (-22.0%)
GEO 0.5 0.04 (52.8%) 0.01 (12.4%) 0.01 (27.0%) 0.03 (56.3%) 0.01 (-145.1%) 0.02 (-9.7%)

0.7 0.05 (66.5%) 0.02 (39.8%) 0.02 (42.6%) 0.04 (66.0%) 0.01 (-56.2%) 0.02 (0.9%)

0.3 0.01 (82.6%) 0.0 (41.9%) 0.0 (25.6%) 0.01 (87.3%) 0.0 (-73.6%) 0.0 (11.8%)
Shape 0.5 0.02 (84.4%) 0.01 (67.7%) 0.01 (58.4%) 0.02 (87.4%) 0.0 (13.3%) 0.01 (43.8%)

0.7 0.03 (85.2%) 0.01 (78.9%) 0.01 (58.2%) 0.02 (87.9%) 0.01 (43.6%) 0.01 (59.4%)

0.3 0.03 (78.9%) 0.0 (-4.4%) 0.0 (-7.2%) 0.04 (73.7%) 0.0 (-253.3%) 0.01 (60.8%)
WS 0.5 0.05 (83.3%) 0.01 (-1.7%) 0.01 (38.6%) 0.05 (50.3%) 0.01 (40.9%) 0.01 (10.8%)

0.7 0.07 (84.1%) 0.01 (56.4%) 0.01 (65.7%) 0.07 (89.5%) 0.01 (62.6%) 0.02 (68.6%)
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Table 11: Loss: conductance difference. Each entry x(y) is: x = loss w/o learning, and y =
improvement percentage. † stands for out of memory error.

Dataset Ratio BL Affinity Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.11 (82.3%) 0.08 (78.5%) 0.10 (74.8%) 0.10 (74.3%) 0.09 (79.3%) 0.11 (83.6%)
BA 0.5 0.14 (69.6%) 0.13 (31.5%) 0.14 (37.4%) 0.14 (33.9%) 0.13 (34.3%) 0.13 (56.2%)

0.7 0.22 (48.1%) 0.20 (11.0%) 0.21 (22.4%) 0.21 (20.0%) 0.20 (13.2%) 0.21 (47.8%)

0.3 0.10 (81.0%) 0.09 (74.7%) 0.10 (74.3%) 0.10 (72.5%) 0.09 (76.4%) 0.12 (79.0%)
ER 0.5 0.13 (64.0%) 0.14 (33.8%) 0.14 (33.6%) 0.14 (32.5%) 0.14 (31.9%) 0.12 (1.4%)

0.7 0.20 (43.4%) 0.19 (10.1%) 0.20 (17.6%) 0.20 (17.2%) 0.19 (23.4%) 0.17 (15.7%)

0.3 0.10 (91.2%) 0.09 (87.0%) 0.10 (84.8%) 0.10 (85.5%) 0.10 (84.6%) 0.11 (92.3%)
GEO 0.5 0.12 (88.1%) 0.13 (33.9%) 0.13 (32.6%) 0.13 (37.6%) 0.13 (35.3%) 0.13 (90.1%)

0.7 0.21 (86.7%) 0.17 (21.9%) 0.19 (25.2%) 0.19 (27.3%) 0.19 (27.8%) 0.11 (72.4%)

0.3 0.10 (82.3%) 0.10 (86.8%) 0.09 (85.8%) 0.09 (86.3%) 0.09 (84.8%) 0.09 (92.0%)
Shape 0.5 0.14 (33.2%) 0.13 (34.7%) 0.13 (34.6%) 0.13 (37.7%) 0.13 (40.8%) 0.12 (89.8%)

0.7 0.17 (41.4%) 0.19 (23.4%) 0.20 (27.7%) 0.20 (34.0%) 0.20 (34.3%) 0.11 (76.8%)

0.3 0.10 (86.7%) 0.09 (82.1%) 0.10 (84.3%) 0.10 (82.9%) 0.09 (81.9%) 0.10 (90.5%)
WS 0.5 0.13 (80.8%) 0.13 (31.2%) 0.13 (33.1%) 0.13 (27.7%) 0.13 (34.0%) 0.13 (86.5%)

0.7 0.19 (45.3%) 0.19 (19.3%) 0.19 (27.0%) 0.19 (26.6%) 0.20 (27.1%) 0.11 (12.8%)

0.3 0.11 (75.8%) 0.08 (86.8%) 0.12 (71.4%) 0.11 (62.6%) 0.11 (76.7%) 0.14 (87.9%)
CS 0.5 0.14 (48.3%) 0.12 (16.7%) 0.15 (50.0%) 0.11 (-7.2%) 0.11 (6.7%) 0.09 (9.6%)

0.7 0.26 (40.1%) 0.22 (29.0%) 0.24 (35.0%) 0.24 (41.0%) 0.23 (35.2%) 0.17 (28.8%)

0.3 0.10 (81.7%) 0.07 (79.2%) 0.11 (73.6%) 0.10 (73.7%) 0.11 (79.0%) 0.13 (4.4%)
Physics 0.5 0.13 (20.5%) 0.19 (39.7%) 0.15 (27.8%) 0.16 (31.7%) 0.15 (25.4%) 0.11 (-22.3%)

0.7 0.24 (60.2%) 0.16 (26.1%) 0.23 (15.3%) 0.24 (16.5%) 0.23 (11.2%) 0.20 (35.9%)

0.3 0.12 (42.8%) 0.10 (0.4%) 0.18 (3.6%) 0.18 (-0.2%) 0.19 (0.9%) 0.11 (26.4%)
PubMed 0.5 0.15 (19.7%) 0.19 (1.3%) 0.24 (-12.9%) 0.39 (3.7%) 0.39 (11.8%) 0.16 (16.0%)

0.7 0.25 (27.3%) 0.33 (0.8%) 0.36 (0.0%) 0.31 (33.2%) 0.28 (35.3%) 0.23 (14.1%)

0.3 0.11 (62.6%) † 0.13 (52.5%) 0.13 (54.7%) 0.12 (74.2%) 0.16 (58.3%)
Flickr 0.5 0.09 (-34.5%) † 0.15 (3.1%) 0.16 (3.4%) 0.15 (19.9%) 0.13 (-6.7%)

0.7 0.19 (35.6%) † 0.20 (6.0%) 0.28 (-3.1%) 0.29 (5.3%) 0.12 (-25.4%)
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Table 12: Loss: Eigenerror. Laplacian: combinatorial Laplacian for original graphs and doubly-
weighted Laplacian for coarse graphs. Each entry x(y) is: x = loss w/o learning, and y = improve-
ment percentage. † stands for out of memory error.

Dataset Ratio BL Affinity Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.19 (4.1%) 0.1 (5.4%) 0.12 (5.6%) 0.12 (5.0%) 0.03 (25.4%) 0.1 (-32.2%)
BA 0.5 0.36 (7.1%) 0.17 (8.2%) 0.22 (6.5%) 0.22 (4.7%) 0.11 (21.1%) 0.17 (-15.9%)

0.7 0.55 (9.2%) 0.32 (12.4%) 0.39 (10.2%) 0.37 (10.9%) 0.21 (33.0%) 0.28 (-29.5%)

0.3 0.46 (16.5%) 0.3 (56.9%) 0.11 (59.1%) 0.23 (38.9%) 0.0 (-347.6%) 0.0 (-191.8%)
CS 0.5 1.1 (18.0%) 0.55 (49.8%) 0.33 (60.6%) 0.42 (44.5%) 0.21 (75.2%) 0.0 (-154.2%)

0.7 2.28 (16.9%) 0.82 (57.0%) 0.66 (53.3%) 0.73 (38.9%) 0.49 (73.4%) 0.34 (63.3%)

0.3 0.48 (19.5%) 0.35 (67.2%) 0.14 (65.2%) 0.2 (57.4%) 0.0 (-521.6%) 0.0 (20.7%)
Physics 0.5 1.06 (21.7%) 0.58 (67.1%) 0.33 (69.5%) 0.35 (64.6%) 0.2 (79.0%) 0.0 (-377.9%)

0.7 2.11 (19.1%) 0.88 (72.9%) 0.62 (66.7%) 0.62 (64.9%) 0.31 (70.3%) 0.01 (-434.0%)

0.3 0.33 (20.4%) † 0.16 (7.8%) 0.16 (9.1%) 0.02 (63.0%) 0.04 (-88.9%)
Flickr 0.5 0.57 (55.7%) † 0.33 (20.2%) 0.31 (55.0%) 0.11 (67.6%) 0.07 (60.3%)

0.7 0.86 (85.2%) † 0.6 (32.6%) 0.57 (38.7%) 0.23 (92.2%) 0.21 (40.7%)

0.3 0.56 (5.6%) 0.27 (13.8%) 0.13 (17.4%) 0.34 (10.6%) 0.06 (-0.4%) 0.0 (31.1%)
PubMed 0.5 1.25 (7.1%) 0.5 (15.5%) 0.51 (12.3%) 1.19 (-110.1%) 0.35 (-8.8%) 0.02 (60.4%)

0.7 2.61 (8.9%) 1.12 (19.4%) 2.24 (-149.8%) 4.31 (-238.6%) 1.51 (-260.2%) 0.27 (75.8%)

0.3 0.27 (-0.1%) 0.35 (0.4%) 0.15 (0.6%) 0.18 (0.5%) 0.01 (5.7%) 0.01 (-10.4%)
ER 0.5 0.61 (0.5%) 0.7 (1.0%) 0.35 (0.6%) 0.36 (0.2%) 0.19 (1.2%) 0.02 (0.8%)

0.7 1.42 (0.8%) 1.27 (2.1%) 0.7 (1.4%) 0.68 (0.3%) 0.29 (3.5%) 0.33 (10.2%)

0.3 0.78 (43.4%) 0.08 (80.3%) 0.09 (77.1%) 0.27 (82.2%) 0.01 (-524.6%) 0.1 (82.5%)
GEO 0.5 1.72 (50.3%) 0.16 (89.4%) 0.18 (91.2%) 0.45 (84.9%) 0.08 (55.6%) 0.2 (86.8%)

0.7 3.64 (30.4%) 0.33 (86.0%) 0.25 (86.7%) 0.61 (93.0%) 0.15 (88.7%) 0.32 (79.3%)

0.3 0.87 (55.4%) 0.12 (88.6%) 0.07 (56.7%) 0.29 (80.4%) 0.01 (33.1%) 0.09 (84.5%)
Shape 0.5 2.07 (67.7%) 0.24 (93.3%) 0.17 (90.9%) 0.49 (93.0%) 0.11 (84.2%) 0.2 (90.7%)

0.7 4.93 (69.1%) 0.47 (94.9%) 0.27 (68.5%) 0.71 (95.7%) 0.25 (79.1%) 0.34 (87.4%)

0.3 0.7 (32.3%) 0.05 (84.7%) 0.04 (58.9%) 0.44 (37.3%) 0.02 (75.0%) 0.06 (83.4%)
WS 0.5 1.59 (43.9%) 0.11 (88.2%) 0.11 (83.9%) 0.58 (23.5%) 0.1 (88.2%) 0.12 (79.7%)

0.7 3.52 (45.6%) 0.18 (77.7%) 0.17 (78.2%) 0.79 (82.8%) 0.17 (90.9%) 0.19 (65.8%)
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Sampled subgraphs for ws Sampled subgraphs for pubmeds

Figure 4: A collection of subgraphs corresponding to edges in coarse graphs (WS and PubMed)
generated by variation neighborhood algorithm. Reduction ratio is 0.7 and 0.9 respectively.
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Figure 5: The first row illustrates the weight difference for local variation neighborhood (left) and
heavy edge (right) with 0.5 as the reduction ratio. Blue (red) edges denote edges whose learned
weights is smaller (larger) than the default ones. The second row shows the first 40 eigenvalues of
the original graph Laplacian, coarse graph w/o learning, and coarse graph w/ learning.
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