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ABSTRACT

There is an increasing appreciation that one may need to consider multiple mea-
sures of fairness, e.g., considering multiple group and individual fairness notions.
The relative weights of the fairness regularisers are a priori unknown, may be
time varying, and need to be learned on the fly. We consider the learning of
time-varying convexifications of multiple fairness measures with limited graph-
structured feedback.

1 INTRODUCTION

Artificial intelligence has gained widespread popularity and adoption across diverse industries due
to its ability of automatic decision-making processes. In numerous contexts where artificial intel-
ligence permeates various aspects of our lives, from business operations to societal dynamics and
policy formulation, ensuring fairness is of greatest importance to meeting environmental, social, and
governance standards. While for nearly any problem in the field of artificial intelligence, there can
exist multiple measures of individual fairness as well as multiple measures of subgroup fairness.
Often, Subgroup fairness involves multiple protected attributes (e.g., race, sex), creating numerous
combinations of subgroups and corresponding subgroup fairness measures, all of which deserve
consideration. Hence, it becomes essential to take into account the trade-offs among optimising
for multiple fairness measures. There have been designs of systems to balance multiple potentially
conflicting fairness measures (Awasthi et al., 2020; Kim et al., 2020; Lohia et al., 2019).

In the long term, the societal preferences and definitions of fairness are subject to continuous evo-
lution and changes. There have been concerns that naively imposing fairness measures to decision-
making policies can harm minorities as delay effects (Liu et al., 2018c; D’Amour et al., 2020).
Maintaining artificial intelligence models adaptable to dynamic fairness concepts, due to evolving
data distributions, or changing societal norms, has been considered (Bechavod & Roth, 2023; Wen
et al., 2021; Zhang & Liu, 2021; Jabbari et al., 2017) in sequential decision algorithms, using feed-
back or effects to decision-making policies.

Consider, for example, political advertising on the Internet. In some jurisdictions, the current and
proposed regulations of political advertising suggest that the aggregate space-time available to each
political party should be equalised in the spirit of “equal opportunity” 1. It is not clear, however,
whether the opportunity should be construed in terms of budgets, average price per ad, views,
“reach” of the ad, and whether it should correspond to the share of the popular vote in past elections
(e.g., in a previous election with some means of data imputation), the current estimates of voting
preferences (cf. rulings in the US allowing for the participation of only the two leading parties), or
be uniform across all registered parties (cf. the “equal time” rule in broadcast media). See Kop-
pel (1983); Miller (2013); Hiltunen (2021) for standard references and Martinez (2018); MacCarthy
(2020); Jaursch (2020) for an informal discussion. For example, on Facebook, the advertisers need to
declare their affiliation with the political party they support2. Considering multiple political parties,
as per the declaration, and their budgets, one may need to consider multiple fairness measures (e.g.,
differences in average price per ad, differences in spend proportional to the vote share, differences

1In the USA, see the equal opportunity section (315) of the Communications Act of 1934, as amended many
times.

2In the USA, this may become a legal requirement, cf. the Honest Ads Act. Cf. https://www.congress.
gov/bill/115th-congress/senate-bill/1989
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in the reach, etc, and their l1, l2, l∞ norms). Furthermore, most platforms have a very clear measure
of ad revenue, which they wish to balance with some “fairness regularisers” Lu et al. (2020). To
complicate matters further still, the perceptions of the ideal trade-off among the ad revenue and the
fairness regularisers clearly change over time.

Initially, we try to model fair sequential decision algorithms by incorporating feedback from all
kinds of fairness regularisers, which however is generally limited in practice. As mentioned earlier,
fairness measures are not independent from each other: some measures may conflict with each
other, while others may align to some extent. Decisions made in each time step may enhance one
fairness measure but have a negative impact on another. We regard such relation as a (un)directed
graph with nodes being fairness regularisers and available actions, and edges being relation among
these nodes. We consider the edges being time-invariant (in Case I), and time-varying (in Case II)
to model the situations of every-changing social norms of fairness. The works of graph-structured
bandits (Mannor & Shamir, 2011) allow us to integrate the graph representing relationships between
fairness regularisers and actions into the process of fair sequential decision-making.

Our work is inspired by Awasthi et al. (2020) which utilise an incompatibility graph among multiple
fairness regularisers (criteria) and assume that full feedback from all fairness regularisers is avail-
able. Our method consider limited graph-structured feedback with the graph presenting relation
among fairness regularisers and actions.

2 RELATED WORK

2.1 FRAMEWORKS FOR REASONING ABOUT MULTIPLE FAIRNESS MEASURES

Very recently, there have been several attempts at formulating frameworks for reasoning about mul-
tiple fairness measures. The fairness resolution model, proposed in Awasthi et al. (2020), is guided
by the unfairness complaints received by the system and it can be a more practical way to maintain
both group and individual fairness. This work provides a finite-state discrete-time Markov chains
framework that supports multiple fairness measures and takes into account their potential incom-
patibilities. It leads, however, to PSPACE-Complete decision problems, which are hard to solve in
practice, independent of whether P equals NP. Independently, Ospina et al. (2021) proposed a frame-
work that utilises an online algorithm for time-varying networked system optimisation, with the aim
to trade-off human preferences. Particularly, the function of human preference (fairness measure
function) are learned concurrently with the execution, using shape-constrained Gaussian processes.

Alternatively, one could consider approaches from multi-objective optimisation (MOO), where key
recent references include Zhang et al. (2021) who consider dynamic MOO, but do not provide any
guarantees on the performance of the algorithms. This, in turn, is based on a long history of work on
convexifications (Sun et al., 2001, e.g.) in MOO. There is also related work across many applications
of MOO, such as in Mathematical Finance Li & Ng (2000).

2.2 GRAPH-STRUCTURED BANDITS

Once we formulate our framework, we present algorithms applicable therein, which draw upon the
work on online non-smooth convex optimisation Zinkevich (2003). We refer to Cesa-Bianchi &
Lugosi (2006); Shalev-Shwartz et al. (2011); Hazan (2016) for recent book-length introductions. In
the case of graph-structured feedback, there are numerous algorithms summarised in Table 1, which
are based on the tradition of online convex optimisation with bandit-feedback Kleinberg (2004);
Agarwal et al. (2010); Bubeck et al. (2015); Hazan & Li (2016); Ito (2020). We discuss these in
more detail later and in the Supplementary Material.

3 OUR FRAMEWORK FOR REASONING WITH MULTIPLE FAIRNESS
REGULARISERS

As the need for additional notions of model fairness, and the establishment of a trade-off among
them increases, it is necessary to build up a comprehensive framework for reasoning about multiple
fairness regularisers, especially when not all regularisers can be fully satisfied simultaneously. Let
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Algorithm Reference Regret (allowing for minor variations)

ELP Mannor & Shamir (2011)
ExpBan Mannor & Shamir (2011) O(

√
χ̄(G) log(k)T )

Exp3-Set Alon et al. (2013) Õ(
√
αT log d)

UCB-N Caron et al. (2012) Expected regret parametrised by clique covers
Exp3-Dom Alon et al. (2013)
Exp3-IX Kocák et al. (2014) Stochastic feedback graph
UCB-LP Buccapatnam et al. (2014) Stochastic feedback graph
Exp3.G Alon et al. (2015) Tight bounds for some cases
Exp3-WIX Kocák et al. (2016) Õ(

√
α∗T )

Algorithm 1 Cohen et al. (2016) Tight bounds for some cases matching Alon et al.
(2015)

BARE Carpentier & Valko (2016)
Exp3-DOM Alon et al. (2017) O

(
log(K)

√
log(KT )

∑
t∈[T ] mas(Gt)

)
ELP.P Alon et al. (2017) O

(√
log(K/δ)

∑
t∈[T ] mas(Gt)

)
w.p. 1− δ

TS Tossou et al. (2017)
TS Liu et al. (2018b) Optimal bayesian regret bounds
OMD Arora et al. (2019) Switching costs
TS+UCB Lykouris et al. (2020)
IDS Liu et al. (2018a)
UCB-NE Hu et al. (2020) Non-directed graphs
UCB-DSG Cortes et al. (2020) Pseudo-regret bounds

Li et al. (2020) Cascades in the stochastic f.g.
OSMDE Chen et al. (2021) O((δ∗ log(|V |))1/3T 2/3)

Lu et al. (2021) Adversarial corruptions

Table 1: An overview of the algorithms for the model with graph-structured feedback. mas(Gt) is
the size of the maximal acyclic graph in Gt, χ is the colouring number, δ∗ is the weak domination
number, α is the independence number, α∗ is the effective independence number.

us consider discretised time and T be the number of time steps (rounds). Let [T ] = 1, . . . , T . The
set of vertices includes action vertices Va = {a1, . . . , aI} and fairness regulariser vertices Vf =
{f1, . . . , fJ}. Further, we assume there exists a possibly time-varying, (un)directed compatibility
graph Gt = (Va, Vf , E

t), where edges Et represent the (possibly) time varying relation among the
multiple actions and fairness regularisers vertices Va, Vf .

We follow Alon et al. (2015) to define the neighbourhood of action vertices. A directed edge from an
action vertex ai to a regulariser vertex f j represents that conducting action ai will affect regulariser
f j . This relation is captured by in-neighbours Nt

in(f j) of a regulariser vertex f j , in equation 1,
defined as a subset of action vertices which could affect f j in round t. On the other hand, a directed
edge from an action vertex ai1 to another action vertex ai2 represents that conducting action ai1 will
disclose the reward if conducting action ai2. This relation is captured by out-neighbours Nt

out(a
i)

of an action vertex ai, in equation 1, defined as a subset of action vertices whose reward will be
disclosed if we conduct ai in round t.

Nt
out(a

i) := {an|an ⊆ Va, (ai → an) ∈ Et}, (1)

Nt
in(f j) := {an|an ⊆ Va, (an → f j) ∈ Et}. (2)

Each regulariser vertex f j is characterised by a state s(j,t) ∈ S in round t. The state s(j,t) evolves if
any in-neighbours of regulariser vertex f j are conducted, as in equation 3:

s(j,t) = P
(
s(j,t−1); a(i,t), i ∈ Nt

in(f j)
)
, (3)

where P is the state evolution function and a(i,t) ∈ {0, 1} is the value of action vertex ai ∈ A ⊂ R+

in round t. The values of action vertices are chosen with
∑
i∈[I] a

i,t ≤ 1, for all t ∈ [T ]. The
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reward rt is comprised of revenue and a concave combination of weighted rewards from regularisers.
Overall,

rt
(
a(i,t), i ∈ [I]

)
:= ct

(
s(i,t), . . . , s(J,t)

)
+
∑
j∈[J]

w(j,t)f j
(
s(j,t)

)
, (4)

where ct(·) denotes performance criterion, e.g., revenue, as a function of states of regularisers. The
fairness reward from the regulariser f j in round t is a function of its state s(j,t), denoted fk(s(j,t)),
with weights w(j,t). Note that ct, w(j,t) could be time-invariant or time-varying. Please refer to the
Supplementary Materials for a table of notation. Within this general framework, we consider:

• Limited graph-structured feedback: While we do not know ct, w(j,t), P , we are given
the compatibility graph Gt in the beginning of each round, where Gt could be time-invariant
or time-variant. We decide {a(i,t)}i∈[I] and then observe some rewards associated with
action vertices in Nt

out(a
i), where a(i,t) > 0, according to Gt. This limited feedback is

utilised for the next round.

Notice that in the limited-feedback case, Awasthi et al. (2020) introduced a compatibility graph of
regulariser vertices only in the fairness context. It considers a sequence of fairness reward, as a
function of regulariser vertices’ states, received at each time step, which reflect users’ perceptions
of fairness regarding outcomes, and is a function of its current state. On the other hand, we could
also include the real fairness outcomes as feedback because there might be some distance between
users’ perceptions and reality.

Suppose Algorithm A is used to decide {a(i,t)}i∈[I] in each round, we have the overall reward
R(A) :=

∑
t∈[T ] r

t
(
a(i,t), i ∈ [I]

)
. We consider two types of regrets:

• Dynamic regret: the difference between the cumulative reward of A and that of the best
sequence of actions {k(i,t)}i∈[I],t∈[T ], k(i,t) ∈ {0, 1} chosen in hindsight, thus OPTD −
R(A), where

OPTD = max∑
k(i,t)|≤1

∑
t∈[T ]

rt
(
k(i,t), i ∈ [I]

)
. (5)

• Weak regret: the difference between the cumulative reward of A and that of the best
single action {k(i)}i∈[I], k(i) ∈∈ {0, 1} chosen in hindsight, applied at all time steps, thus
OPTW −R(A), where

OPTW = max∑
k(i)|≤1

∑
t∈[T ]

rt
(
k(i), i ∈ [I]

)
. (6)

4 MOTIVATING EXAMPLES

Let us revisit the example of political advertising on the Internet, which we mentioned in the in-
troduction. Let us consider two major political parties, e.g., Conservative and Liberal parties, and
several third-party candidates in a jurisdiction, where political advertisements on social networking
sites are regulated.

Figure 1(a) give a general example of the compatibility graph, with 3 action vertices, 3 regulariser
vertices and 9 subgroup regulariser vertices. Particularly, according to definitions of edges, action
vertex a1 could potentially affect {f1, f1

1 , f
2
1 , f

3
1 } and the rewards associated with a2, a3 would be

disclosed if we conduct a1. It could model the situation where 3 regularisers of political advertising
f1, f2, f3 required dollar spent, reach, number of shares to be equalised respectively (“equal op-
portunity”). Those subgroup regularisers vertices f1

k , f
2
k , f

3
k required dollar spent, reach, number of

shares of party k to be within certain ranges, respectively. There might be a lot more actions but here
we consider a1, a2, a3 as selling one unit of advertising space-time to Conservative party, Liberal
party, and third-party candidates.

As another example, let us consider the same action vertices (I = 3) but three new regulariser ver-
tices (J = 3) whose states s(j,t) is a representation of how much of the advertising space-time (e.g.,
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the number of shares) has been allocated to the political party j until round t. we suppose that the ini-
tial states of these regulariser vertices are {s(j,0)}j∈[J] = [0, 0, 0]. If the regularisers suggest the al-
location {s(j,t)}j∈[J] to be proportional to the the share of the popular vote, one may set regularisers
f1, f2, f3 to be requiring the two major parties and all third-party candidates to get an equalised al-
location of political ads on a social media platform. That is, s(j,t)/

∑
j∈[J] s

(j,t) = 1/J for j ∈ [J ].
Then in each round, each regulariser f j returns a penalty, i.e., the minus reward, for the allocation of
the associated party j being away from its target share, such that f j(s(j,t)) = −

∣∣∣s(j,t)− s(j,t)∑
j∈[J] s

(j,t)

∣∣∣.
The revenue of the platform is assumed to be ct

(
s(i,t), . . . , s(J,t)

)
:= (Ct)

′
s([J],t), where Ct ∈ RJ

is the revenue vector and (Ct)
′

is the transpose of (Ct). Let us consider T = 2, and the revenue
vector Ct for the two rounds to be:

C1 = [0 1 0] , C2 = [1 0 0] . (7)

Here, we would like to learn the trade-off between the regularisers and the revenue of the platform,
only with the single scalar weight w(j,t) = 0.1. The value of action vertices are binary, i.e. a(i,t) ∈
{0, 1}, with

∑
i∈[I] a

(i,t) ≤ 1, which depending on the discretisation of time, and may be single
advertisements or all advertisements auctioned off within a given time slot. Correspondingly, the
state transmission function P is set to be s(j,t) = s(j,t−1) + a(j,t).

OPTD: In the example above, the best sequence of actions would choose a different ai, i ∈ I
within the budget B = 1 of each round. Perhaps it could conduct a1 in the first round and a2 in the
second round, with the corresponding actions and states being equation 8.

{a(i,1)}i∈[I] = [0 1 0] , {a(i,2)}i∈[I] = [1 0 0] ,

{s(j,1)}j∈[J] = [0 1 0] , {s(j,2)}j∈[J] = [1 1 0] .
(8)

Let s([J],t) be the J-dimensional matrix [s(1,t), . . . , s(J,t)]′. The resulting reward is

OPTD =
∑
t∈[T ]

(Ct)′s([J],t) − 0.1
∑
k∈[K]

f j
(
s(j,t)

)
= 2− 0.1×

(∣∣∣∣1− 1

3

∣∣∣∣+ 2×
∣∣∣∣1− 2

3

∣∣∣∣+ 2× 1

3
+

2

3

)
.

OPTW : If, on the other hand, we were to pick only a single action vertex to be taken in both
rounds t, that is a(i,1) = a(i,2). The corresponding actions and states would be:

{a(i,1)}i∈[I] = {a(i,2)}i∈[I] = [1 0 0] ,

{s(j,1)}j∈[J] = [1 0 0] , {s(j,2)}j∈[J] = [2 0 0] .
(9)

The resulting reward is

OPTW =
∑
t∈[T ]

(Ct)′s([J],t) − 0.1
∑
k∈[K]

f j
(
s(j,t)

)
= 2− 0.1×

(∣∣∣∣1− 1

3

∣∣∣∣+

∣∣∣∣2− 2

3

∣∣∣∣+ 2×
(

1

3
+

2

3

))
.

Limited Feedback: Ct, w(j,t), P are unknown. What we could use is the sequence of limited
feedback of some rewards associated with action vertices in Nt

out(a
i), where a(i,t) > 0, according

to Gt. In this case, Figure 1(c) gives a time-invariant example, which needs to be disclosed before
the first round. According to the definition of edges and (a2 → a3 ∈ Et), if we set a(2,t) = 1, the
reward rt

(
{a(i,t)}i∈[I] = [0, 1, 0]

)
that we actually achieved will be disclosed immediately. At the

same time, we will also observe the reward rt
(
{a(i,t)}i∈[I] = [0, 0, 1]

)
that we could have achieved

if we selected action vertex a3.

Finally, later in the paper (Case II), we will consider the case where the compatibility graph Gt is
time-varying and unknown until the beginning of round t. This could model the situation, where
e.g. a malfunction of certain action vertices.

5



Under review as a conference paper at ICLR 2024

a1

a2

a3

f1
1
f2

1

f3
1 f1

2
f2

2

f3
2 f1

3
f2

3

f3
3

f1

f2

f3

(a)

a1

a2

a3

f1 f2 f3

(b)

a1

a2

a3

f1 f2 f3

(c)

Figure 1: Examples of the compatibility graph with 3 action vertices (green), i.e., a1, a2, a3 and 3
overall regulariser vertices (dark grey), i.e., f1, f2, f3. Additionally, (a) has extra subgroup regu-
lariser vertices (light grey), i.e., f1

k , f
2
k , f

3
k for each subgroup k, k ∈ [1, 2, 3].

5 A MODEL WITH GRAPH-STRUCTURED BANDIT FEEDBACK

Let us consider a non-trivial special case of the general model, which is based on the large body
of work within online convex optimisation with bandit feedback. Starting with Mannor & Shamir
(2011), this line of work introduces a graphical feedback system to model side information available
within online learning. In the graph, a directed edge starts vertex ai and ends vertex aj implies
that by choosing vertex ai (i.e., a(i,t) = 1) the reward associated with both vertices ai, aj will be
revealed immediately. Note that an in-directed edge between vertex ai and vertex jj can be seen as
two directed edge ai → aj and aj → ai. Thus, this line of work offers a middle ground between
the bandits setting and the expert setting. 3

This model applies particularly well to a variety of applications with partial observability of rewards.
Following Mannor & Shamir (2011), there appeared an extensive literature incl. a wealth of beautiful
results Alon et al. (2013; 2015; 2017). See Table 1 for a quick overview. In terms of multiple fairness
regularisers, we model the compatibility graph as an directed, informed and non-stochastic variant
in Alon et al. (2017).

5.1 CASE I: TIME-INVARIANT GRAPH-STRUCTURED BANDIT FEEDBACK

There are a number of algorithms available in the literature. Within the graph-structured feedback,
Mannor & Shamir (2011) considered the ExpBan and ELP algorithms, out of which ELP allows for
time-varying graph. Alon et al. (2015) devise bounds for three cases: strongly observable graphs,
weakly observable graphs, and unobservable graphs. Starting with Mannor & Shamir (2011), their
performance has been analysed such that the bounds are parameterised by structural parameters of
the graphs. See Table 1 for an overview.

In this setting, reward function rt in round t can be an arbitrary function of the history of actions,
thus ct, w(j,t), P can be time-variant, unknown, and their explicit values will not be given after all
rounds. The compatibility graph can be time-variant but disclosed in the beginning of each round.
In round t, right after actions a(i,t) = 1 is decided, not only the reward associated with the action
vertex ai, i.e., rt

(
a(i,t) = 1; a(i†,t) = 0, i† ∈ [I] \ {i}

)
, but also the rewards associated with its

out-neighbours Nt
out(a

i) will be disclosed.

Let q(i,t) be the probability of observing the reward of action vertex ai in round t, p(i,t) be the
probability of conducting action ai in round t (a(i,t) = 1). In Algorithm 1, p(i,t) is the trade-off

3In the bandits setting, only the loss of the chosen vertices is revealed and the best possible regret of order√
log(K)T , achieved by the Hedge algorithm Freund & Schapire (1997) or Follow the Perturbed Leader

algorithm Kalai & Vempala (2005). On the other hand, the loss of all vertices is revealed in experts setting and
the INF algorithm Audibert et al. (2009) achieves the optimal regret of order

√
KT .
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Algorithm 1 Exponentially-Weighted Algorithm with Linear Programming for the Model with
Graph-Structured Feedback
Input: The number of action vertices I , regulariser vertices J and rounds T , compatibility graph G,
confidence parameter δ ∈ (0, 1), learning rate η ∈ (0, 1/(3I)].
Output: Action and states.
Initialisation: φ([I],1) = 1, t = 1. Let ∆I be the I-dimensional probability simplex, and ξ[I] be a
solution to the linear program

max
ξ[I]∈∆I

min
i∈[I]

∑
n∈Nout(ai)

ξ(n) (10)

1: while t ∈ [T ] do
2: Set p(i,t) := (1−γt)φ(i,t)/Φt+γtξ(i), where Φt =

∑
i∈[I] φ

(i,t), γt = (1+β)η
mini∈[I]

∑
n∈Nout(ai) ξ

(n)

and β = 2η
√

ln(5I/δ)
ln I .

3: Update q(i,t) =
∑
i∈N(k) p

(i,t).
4: Draw one action vertex ai according to distribution p([I],t). Set

a(i,t) = 1; a(i†,t) = 0,∀i† ∈ [I] \ {i}. (11)

5: Observe pairs (n, r(n,t)) for all n ∈ Nout(a
i), in equation 12.

r(n,t) = rt
(
a(n,t) = 1; a(i†,t) = 0, i† ∈ [I] \ {n}

)
,∀n ∈ Nout(a

i). (12)

6: For any n ∈ [I], set estimated reward r̂(n,t) and update φ(n,t+1), as follows

r̂(n,t) =
r(n,t)I{n ∈ Nout(a

i)}+ β

q(n,t)
, (13)

φ(n,t+1) = φ(n,t) exp(η r̂(n,t)) (14)

7: t = t+ 1.
8: end while

between weight φ(i,t) and ξ(i), with an egalitarianism factor γt, where φ(i,t) is the weight for each
action vertex. The relevant weight of an action vertex increases (decreases) when a payoff is good
(bad). ξ(i) in equation 10 represent the desire to pick an action vertex uniformly from each clique
among action vertices in Gt. Then, we can update the importance sampling estimator r̂(i,t) and the
weight φ(i,t) for i ∈ [I], as in (13-14).

We can bound the actual regret with respect to the best single action in hindsight, with probability at
least 1−δ with respective to the user’s internal randomisation. In in the interest of space, we present
the results that are a special case of Theorem 1 below only in the Supplementary Material.

5.2 CASE II: TIME-VARYING GRAPH-STRUCTURED BANDIT FEEDBACK

Finally, let us consider rather a general model, which extends the work on online convex optimisation
with bandit feedback to time-varying graphs Gt describing the feedback. We present the Algorithm 2
for this case in the Supplementary Material. We also show:

Theorem 1 (Informal version). Algorithm 1 achieves weak regret of
Õ
(√

log(I/δ)
∑
t∈[T ] mas(Gt)

)
, where Õ hides only numerical constants and factors loga-

rithmic in the number of actions I and 1/η and mas(Gt) is the size of the maximal acyclic subgraph
in Gt.

The formal version of the theorem and its proof are included in the Supplementary Material, but
essentially follow the work of Alon et al. (2017).
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6 A NUMERICAL ILLUSTRATION

Let us revisit the second Motivating Example of p. 4 and consider two major political parties, i.e.,
Conservative and Liberal parties, and several third-party candidates (J = 3). The states {s(j,t)}j∈[J]

represent how much of the advertising space-time is allocated to each political party j ∈ [J ] in round
t ∈ [T ]. To make the example more interesting, consider three equally-weighted regularisers that
require the two major parties and all third-party candidates to get a 0.3, 0.6, 0.1 share of advertising
space-time on social networking sites respectively, e.g., to match the most recent election results.
Then, s([J],t)/

∑
j∈[J] s

(j,t) = [0.3, 0.6, 0.1]. The three regularisers are all weighted byw(j,t) = 0.1,
for j ∈ [J ], t ∈ [T ]. Each regulariser returns a penalty, i.e., a minus reward, for the state of its
corresponding party (parties) being away from the target share, such that f j(s(j,t)) = |s(j,t) −

s(j,t)∑
j∈[J] s

(j,t) |. The revenue of the platform, is assumed to be ct(s([J],t)) := (Ct)′s([J],t), where

Ct ∈ RJ is the revenue vector. We test our method on the revenue of 3 advertisers and 100, 000
impressions (a 3 × 100, 000 revenue matrix) from the dataset of Lu et al. (2020). Each row of the
revenue matrix represents the revenue vector Ct of one round.

We consider three action vertices a1, a2, a3 (I = 3) as selling one unit of advertising space-time to
Conservative party, Liberal party, and third-party candidates. Further, We set the state transmission
function s(n,t) = s(n,t−1) + a(n,t), and the initial states for all parties s([J],0) = [0, 0, 0]. For
instance, if we conduct action a(1,t) = 1, then s(1,t) = s(1,t−1) + 1 but s(j,t) = s(j,t−1) for
j = 2, 3. In this case, although only the state s(1,t) changes, the penalties from the all regularisers
f2(s(2,t)), f3(s(3,t)) change correspondingly. Therefore, there must be directed edges from each
action vertex to all regulariser vertices in the compatibility graph, such as Figure 1(b) and 1(c).

For Algorithm 1 and 2, the values of learning rate and confidence parameter η, δ are randomly chosen
from the range of [0, 1/3I] and [0.1/4], respectively. A compatibility graph, with maximum acyclic
subgraph less than 2 among all action vertices, is randomly generated in each trial for Algorithm 1,
and in each round for Algorithm 2. Let the length of time window be chosen from the range of
[30, 70] with a gap of 5. For each time window (T ), 5 trials are conducted and each trial randomly
takes T rows of the revenue matrix. We illustrate the dynamic (blue) and weak (green) regrets
in Figure 2. The objective values (rewards) of OPTD,OPTW , solved via CVXPY library in three
cases, andR(A1), R(A2) are shown in Figure 3. In both figures, the mean and mean± one standard
deviations across 5 trials are presented by curves with shaded error bands. Our implementation is in
Supplementary Material and will be made public once accepted.

7 CONCLUSIONS

We have introduced a general framework integrating feedback from multiple fairness measures,
some of which may be conflicting, and whose weights and relations among actions and other mea-
sures may change over time.

8
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Figure 2: Dynamic (blue) and weak (green) regrets of Algorithm 1-2 implemented for 5 trials,
with a randomly selected batch of revenue vectors for each trial. The mean regret and mean ± one
standard deviations across 5 trials are presented by curves with shaded error bands.

30 40 50 60 70
Time Window [T]

−300

−250

−200

−150

−100

−50

0

Ob
je

ct
iv

e 
Va

lu
es

 (R
ew

ar
ds

)

Case I

30 40 50 60 70
Time Window [T]

Case II

OPTD
R(A)
OPTW

Figure 3: Rewards of Algorithm 1-2 (grey) and objective values of OPTD (blue), OPTW (green)
implemented for 5 trials, with a randomly selected batch of revenue vectors for each trial. The mean
reward and mean± one standard deviation across 5 trials are presented by curves with shaded error
bands.
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8 APPENDIX

8.1 RELATED WORK

There are many measures of fairness for any single subgroup and many protected attributes (e.g.,
gender, race, ethnicity, income) defining the subgroups. Without attempting to encompass all of the
related literature, let us present some of the most relevant work.

8.1.1 THE CONFLICT BETWEEN GROUP AND INDIVIDUAL FAIRNESS

Especially in the USA, affirmative action policies are often controversial because favouring one
group inevitably involves disadvantaging another Dur et al. (2020). In the suitcase Regents of the
University of California v. Bakke (1978), race is allowed to be one of several factors in college
admission policy. California Proposition 209 prohibits states governmental institutions from con-
sidering race, sex, or ethnicity, specifically in the areas of public employment, public contracting,
and public education. In 2019, the California Senate Constitutional Amendment No. 5 (SCA-5)
asks to eliminate California Proposition 209’s ban on the use of race, sex, etc. Asian Americans
opposed this amendment Wang (2020). Behind those debates is the collision of different fairness
perceptions originating from distinct view on which factors of their performance individuals should
be held accountable for Schildberg-Hörisch et al. (2020).

8.1.2 MEASURES OF FAIRNESS

There are many definitions of fairness, esp. within the applications of fairness to classification. The
statistical definition of fairness is to request a classifier’s statistics, such as raw positive classifica-
tion rate (also sometimes known as statistical parity), false positive, and false negative rates (also
sometimes known as equalised odds), be equalised across the subgroups so that the error caused
by the algorithm be proportionately spread across subgroups. “Demographic parity”, proposed by
Calder et al. (2009), requires the proportion of each segment of a protected class (e.g. gender) should
receive the positive outcome at equal rates. However, it might be unfair in the case of unbalanced
distributions of features between advantaged and disadvantaged subgroups even in the absent of bi-
ases. The notions of “equal odd” in Hardt et al. (2016) and “counterfactual fairness ” of Kusner et al.
(2017) require the predictor to be unrelated to protected attributes. In other words, they can be seen
as the revised version of unawareness that gets rid of the effects of those unobserved features related
to protected attributes. They focus more on accurate prediction of the unbalanced distribution with-
out discrimination. It believes that a predictor is very unlikely to be discriminatory if it only reflects
the real outcomes.

Group fairness only provides an average guarantee for the individuals in a protected group Awasthi
et al. (2020) and is insufficient by itself. Sometimes even the notions of group fairness is maintained,
from the view of an individual, the outcome is unfair. The individual definition asks for constraints
that bind on specific pairs of individuals, rather than on a quantity that is averaged over groups or
in other words, it requires “similar individuals should be treated similarly” Dwork et al. (2011).
This notion requires a similarity metric capturing the ground truth, which requires general and task-
specific agreement on its definition.
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8.1.3 FRAMEWORKS FOR REASONING ABOUT MULTIPLE FAIRNESS MEASURES

Very recently, there have been several attempts at formulating frameworks for reasoning about mul-
tiple fairness measures. The fairness resolution model, proposed in Awasthi et al. (2020), is guided
by the unfairness complaints received by the system and it can be a more practical way to maintain
both group and individual fairness. This work provides a finite-state discrete-time Markov chains
framework that supports multiple fairness regularisers and takes into account their potential incom-
patibilities. It leads, however, to PSPACE-Complete decision problems, which are hard to solve in
practice, independent of whether P equals NP. Independently, Ospina et al. (2021) proposed a frame-
work that utilizes an online algorithm for time-varying networked system optimisation, with the aim
to tradeoff human preferences. Particularly, the function of human preference (fairness regulariser
function) are learned concurrently with the execution, using shape-constrained Gaussian processes.

Alternatively, one could consider approaches from multi-objective optimisation (MOO), where key
recent references include Zhang et al. (2021) who consider dynamic MOO, but do not provide any
guarantees on the performance of the algorithms. This, in turn, is based on a long history of work on
convexifications (Sun et al., 2001, e.g.) in MOO. There is also related work across many applications
of MOO, such as in Mathematical Finance Li & Ng (2000).

8.1.4 TECHNICAL TOOLS

Once we formulate our framework, we present algorithms applicable therein, which draw upon the
work on online non-smooth convex optimisation Zinkevich (2003). We refer to Cesa-Bianchi &
Lugosi (2006); Shalev-Shwartz et al. (2011); Hazan (2016) for recent book-length introductions. In
the case of graph-structured feedback, there are algorithms summarised in Table 1, which are based
on the tradition of online convex optimisation with bandit-feedback Kleinberg (2004); Agarwal et al.
(2010); Bubeck et al. (2015); Hazan & Li (2016); Ito (2020). We discuss these in Table 1.

8.2 ALGORITHM OF CASE II

In the setting, the compatibility graph can be time-variant. The Algorithm 2 for case II uses the
similar method as case I but needs to solve a linear program inequation 15 whenever a new graph
comes.

8.3 PROOF OF THEOREM 1

Proof. We want to show that with learning rate η ≤ 1/(3K) sufficiently small such that β ≤ 1/4,
with probability at least 1− δ, we have that Regret(A2) is upper bounded by equation 20, where Õ
hides only numerical constants and factors logarithmic in K and 1/η.

√√√√5 log(
5

δ
)
∑
t∈[T ]

mas(Gt)+12η

√
log(5K/η)

logK

∑
t∈[T ]

mas(Gt)

+Õ
(

1+
√
Tη+Tη2

)(
max
t∈[T ]

mas2(Gt)
)

+
2 log(5K/δ)

η
,

(20)
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Algorithm 2 Exponentially-Weighted Algorithm with Linear Programming for the Model with
Graph-Structured Feedback
Input: The number of action vertices I , regulariser vertices J and rounds T , compatibility graph Gt
in each round, confidence parameter δ ∈ (0, 1), learning rate η ∈ (0, 1/(3I)].
Output: Actions and states.
Initialisation: φ([I],1) = 1, t = 1.

1: while t ∈ [T ] do
2: Receive compatibility graph Gt, out-neighbours Nt

out(a
i), i ∈ [I] and in-neighbours

Nt
in(f j), j ∈ [J ].

3: Let ∆I be the I-dimensional probability simplex, and ξ[I] be a solution to the linear program

max
ξ[I]∈∆I

min
i∈[I]

∑
n∈Nout(ai)

ξ(n) (15)

4: Set p(i,t) := (1−γt)φ(i,t)/Φt+γtξ(i), where Φt =
∑
i∈[I] φ

(i,t), γt = (1+β)η
mini∈[I]

∑
n∈Nout(ai) ξ

(n)

and β = 2η
√

ln(5I/δ)
ln I . Update q(i,t) =

∑
i∈N(k) p

(i,t).

5: Draw one action vertex ai according to distribution p([I],t). Set

a(i,t) = 1; a(i†,t) = 0,∀i† ∈ [I] \ {i}. (16)

6: Observe pairs (n, r(n,t)) for all n ∈ Nout(a
i), where

r(n,t) = rt
(
a(n,t) = 1; a(i†,t) = 0, i† ∈ [I] \ {n}

)
,∀n ∈ Nout(a

i). (17)

7: For any n ∈ [I], set estimated reward r̂(n,t) and update φ(n,t+1), as follows

r̂(n,t) =
r(n,t)I{n ∈ Nout(a

i)}+ β

q(n,t)
, (18)

φ(n,t+1) = φ(n,t) exp(η r̂(n,t)) (19)

8: t = t+ 1.
9: end while

To prove this, we refer to Theorem 9 in Alon et al. (2017). (21-22) use the definition of
Φt, φ(i,t), p(k,t) in Algorithm 1. equation 23 uses inequality exp(x) ≤ 1 + x+ x2.

Φt+1

Φt
=
∑
k∈[K]

φ(k,t+1)

Φt
=
∑
k∈[K]

φ(i,t)

Φt
exp(ηr̂(k,t)) (21)

=
∑
k∈[K]

p(k,t) − γtξ(i,t)

1− γt
exp(ηr̂(k,t)) (22)

≤
∑
k∈[K]

p(k,t)−γtξ(i,t)

1− γt
(

1+ηr̂(k,t)+(ηr̂(k,t))2
)

(23)

≤ 1+
η

1− γt
∑
k∈[K]

(
p(k,t)r̂(k,t)+ηp(k,t)(r̂(k,t))2

)
. (24)

equation 25 uses equation 24 and inequality ln(x) ≤ x− 1.

ln

(
ΦT+1

Φ1

)
=
∑
t∈[T ]

ln

(
Φt+1

Φt

)
≤

∑
t∈[T ]

∑
k∈[K]

η

1− γt
(
p(k,t)r̂(k,t)+ηp(k,t)(r̂(k,t))2

)
.

(25)
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For a fixed single action on vertex vk, we have

ln

(
ΦT+1

Φ1

)
≥ ln

(
φ(k,T+1)

Φ1

)
=

ln

(
φ(k,1) exp(η

∑
t∈[T ] r̂

(k,t))

K

)
=η

∑
t∈[T ]

r̂(k,t)−lnK.

(26)

From Azuma’s inequality, Chernoff bound and Freedman’s inequality, we have the upper bound of
regret with probability at least 1 − δ in equation 27. Then, equation 28 is obtained by combining
(25-26). By substituting condition β = Õ(η), γt = Õ (ηmas(Gt)) ∈ [η, 1/2], we get the upper
bound in equation 20, where Õ ignores factors depending logarithmically on K and 1/δ.∑
t∈[T ]

r(k,t) − r(It,t)

≤

∑
t∈[T ]

r̂(k,t) −
∑
t∈[T ]

∑
k∈[K]

p(k,t)r̂(k,t)

+
ln(k/δ)

β
+

√
T ln(K/δ)

2
(27)

+

√
2 ln(1/δ)

∑
t∈[T ]

mas(Gt) + β
∑
t∈[T ]

mas(Gt) + Õ
(

max
t∈[T ]

mas(Gt)
)

≤ η

1−maxt∈[T ] γt

∑
t∈[T ]

∑
k∈[K]

(
p(k,t)(r̂(k,t))2 + γtp(k,t)r̂(k,t)

)
+

lnK

η
(28)

+
ln(k/δ)

β
+

√
T ln(K/δ)

2
+

√
2 ln(1/δ)

∑
t∈[T ]

mas(Gt) + β
∑
t∈[T ]

mas(Gt) + Õ
(

max
t∈[T ]

mas(Gt)
)
.

8.4 DETAILS OF THE NUMERIC ILLUSTRATION

We represent the experimental results associated with Figure 3 in another format, as in Figure ??.
Note that the problem of OPTD,OPTW in three cases are the same because we are using the same
dataset. Therefore, we illustrate the objective values (rewards) of OPTD across three cases as purple
and those of OPTW as pink. The rewards from Algorithm ??-3 are presented as blue, green and
yellow respectively. Further, the bubble displays the reward across 5 trials against the length of time
window, with its centre showing the mean reward and radius showing one standard derivation.
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Symbol Meaning
T the number of rounds.
I the number of action vertices.
J the number of regulariser vertices.
[T ], [0, T − 1] [T ] = 1, . . . , T and [0, T − 1] = 0, 1, . . . , T − 1.
G,Gt time-invariant and time-variant compatibility graphs.
ai an action vertex.
f j a regulariser vertex.
Va the set of action vertices, and Va = {a1, a2, . . . , aI}.
Vf the set of regulariser vertices, and Vf = {f1, f2, . . . , fJ}.
ai1 → ai2 a directed edge from ai1 to ai2. If action ai1 is conducted, the reward associ-

ated with ai2 will be disclosed together with ai1.
ai → f j a directed edge from ai to f j . It means that conducting action ai can affect

regulariser f j .
Nt

out(a
i) the out-neighbours of action vertex ai, defined in equation 1.

Nt
in(f j) the in-neighbours of regulariser vertex f j , defined in equation 2.

E,Et the set of time-invariant and time-variant (un)directed edges.
a(i,t) the indicator of choosing action vertex ai in round t (a(i,t) = 1) or not

(a(i,t) = 0).
s(j,t) the state of regulariser vertex f j in round t
s([J],t), s(j,[T ]) the vector of [s(1,t), . . . , s(J,t)] and [s(j,1), . . . , s(j,T )] respectively.
P the state transmission function, defined in equation 3.
rt(a(i,t), i ∈ [I]) the reward obtained in round t.
c(s(j,t), j ∈ [J ]) the function of performance criterion, e.g., revenue.
Ct the revenue vector in round t.
w(j,t) the weight of regulariser f j in round t.
A,A1, A2 an algorithm.
R(A) the cumulative reward of the Algorithm A. R(A) :=

∑
t∈[T ] r

t(a(i,t), i ∈
[I]), where {a(i,t)}i∈[I] is decided by Algorithm A.

OPTD the best sequence of actions chosen in hindsight, defined in equation 5.
OPTW the best single action chosen in hindsight, defined in equation 6.

Algorithms

q(i,t) the probability of observing the reward associated with action vertex ai in
round t.

p(i,t) the probability of selecting action vertex ai in round t.
φ(i,t) the weight for each action vertex in Algorithm 1 and 2. It increases (de-

creases) when a payoff is good (bad).
ξ(i,t) the rates that represent the desire to pick an vertex uniformly from each clique

in G or Gt, defined in equation 10.
γt an egalitarianism factor controlling the trade-off between weight φ(i,t) and

ξ(i,t).
δ the confidence parameter in Algorithm 1 and 2.
η the learning rate in Algorithm 1 and 2.
r̂(n,t) the importance sampling estimator of rewards, as in equation 13.

Table 2: An overview of the notation
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