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Abstract
Motivated by the recent success of time-series
foundation models for zero-shot forecasting, we
present a methodology for in-context fine-tuning
of a time-series foundation model. In particu-
lar, we design a pretrained foundation model that
can be prompted (at inference time) with multiple
time-series examples, in order to forecast a target
time-series into the future. Our foundation model
is specifically trained to utilize examples from
multiple related time-series in its context window
(in addition to the history of the target time-series)
to help it adapt to the specific distribution of the
target domain at inference time. We show that
such a foundation model that uses in-context ex-
amples at inference time can obtain much better
performance on popular forecasting benchmarks
compared to supervised deep learning methods,
statistical models, and other time series founda-
tion models. Interestingly, our in-context fine-
tuning approach even matches the performance
of a foundation model that is explicitly fine-tuned
on the target domain.

1. Introduction
Time-series data is ubiquitous in several domains such as
retail, finance, manufacturing, healthcare, and the natural
sciences. In many of these domains, time-series forecasting,
i.e., predicting time-series into the future, is a critical prob-
lem – for example, in applications like retail forecasting, cli-
mate and weather predictions, and traffic forecasting. In the
last decade, deep learning approaches (Salinas et al., 2020;
Oreshkin et al., 2020; Sen et al., 2019) have become popular
in forecasting, often outperforming statistical approaches
like ARIMA (Box & Jenkins, 1968). However, until re-
cently, deep learning approaches for forecasting have ad-
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hered to the traditional supervised machine learning frame-
work of having to train a forecasting model on task-specific
training data, before being able to perform forecasting for
that task. On the other hand, in Natural Language Process-
ing (NLP), Large Language Models (LLMs) (Radford et al.,
2019; Brown et al., 2020) have shown the promise of foun-
dation models: a single pretrained model can perform well
and adapt to tasks like translation, code generation during
inference time in a zero-shot or few-shot manner.

Motivated by the success in NLP, there has been significant
work in recent years on time-series foundation models for
forecasting, ranging from re-purposing LLMs directly for
forecasting (Gruver et al., 2023) to fine-tuning pretrained
LLMs on time-series data (Zhou et al., 2023; Chang et al.,
2023) to pretraining time-series foundation models from
scratch (Das et al., 2024; Goswami et al., 2024; Woo et al.,
2024; Ansari et al., 2024; Garza & Mergenthaler-Canseco,
2023). The last approach, in particular, has been shown
to obtain strong zero-shot accuracy, rivaling the best super-
vised models trained specifically for the target datasets.

Several of these papers (Zhou et al., 2023; Ansari et al.,
2024; Goswami et al., 2024) have shown an opportunity
for further accuracy improvement by fine-tuning of their
pretrained models on target datasets. However, this breaks
the zero-shot paradigm that precisely makes these time-
series foundation models so appealing to practitioners who
do not want to build training pipelines. This raises a natural
question: Can we recover the benefits of fine-tuning a time-
series foundation model by providing examples from a target
dataset at inference time?

At the same time, the first generation of time-series foun-
dation models lack some of the desirable features of LLMs
with respect to in-context learning: the zero-shot perfor-
mance of an LLM can be greatly improved at inference
time by using its context window for prompting techniques
such as few-shot (Brown et al., 2020), chain-of-thought (Wei
et al., 2022b) or instruction tuning (Wei et al., 2022a). These
papers have shown emergent in-context learning abilities for
LLMs. In particular, if we prompt them with related exam-
ples and demonstrations then ask a specialized question, the
model is able to reason similarly for the question at hand.

In this work, we study a methodology to enable similar in-
context ability for time-series foundation models i.e. being
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able to prompt the model with time-series examples from the
target domain, and recover the benefits of domain-specific
fine-tuning. We refer to this as in-context fine-tuning.1

We train a foundation model that lets us forecast a time-
series by providing in its context window not just the his-
torical values of the time-series, but also examples from
other related time-series that could help the model adapt, at
inference time, to the distribution of the target time-series.
For example, consider a highway traffic prediction system
that stores hourly data from the last week, in order to predict
the future hourly traffic for a particular highway. Consider
a time-series foundation model that has not seen data in
pretraining that captures the temporal patterns in this traffic
data. Then, simply prompting the model with the previous
week’s traffic time-series for that highway might not be
enough to obtain accurate zero-shot performance. However,
adding to the prompt historical traffic data from other high-
ways and weeks, might help the model better adapt to the
traffic data distribution.

The main contributions of our paper are as follows:

(i) We introduce the study of in-context fine-tuning for time-
series foundation models, and propose the use of prompts
that not only include the usual history of the target time-
series for forecasting, but also include related time-series
examples in-context.

We propose a methodology for training such a model by
starting from a base time-series foundation model and con-
tinue pretraining it with in-context examples. Our training is
decoder-only (Liu et al., 2018) and can adapt to varying his-
tory and horizon lengths (up to a certain maximum history)
and to a varying number of related time-series examples in
the context window (again up to a certain maximum number
of examples). The resulting model can then learn to borrow
patterns from these related examples to perform better on
the target forecasting task.

(ii) We empirically evaluate the benefits of in-context fine-
tuning using our foundation model, and show that in-context
fine-tuning can lead to better zero-shot performance on pop-
ular forecasting benchmarks as compared to supervised deep
learning methods, statistical models as well as other foun-
dation models. In particular, on a well known forecasting
benchmark, comprised of 23 datasets not included in the
pretaining of our foundation models, we show that our in-

1Terminology: In the LLM domain, this notion is also called
“few-shot learning” (Brown et al., 2020), “few-shot prompting” (Ye
& Durrett, 2022), or “in-context tuning” (Chen et al., 2022). Also,
borrowing from LLM literature, we will refer to the generic abil-
ity of pretrained foundation models to learn from information in
their context window at inference time as “in-context learning”.
Additionally, we will refer to pretrained models that do not need
gradient-updates via explicit training or tuning for an unseen target
dataset as “zero-shot”.

Figure 1. Analogous to few-shot prompting of a foundation LLM
(left), we train a time-series foundation model to support few-shot
prompting with an arbitrary number of related in-context time-
series examples (right). The dashed box encloses the full context
window/prompt.

context fine-tuned model is 6.8% better than the base model
we start from, while also being 5% better than the next best
baseline. More importantly, (and perhaps surprisingly), it
achieves similar performance to that obtained by explicitly
fine-tuning the base model on the training split of every
dataset in the benchmark.

2. Related Work
As mentioned previously, there has been a spurt of re-
cent work on time-series foundation models for forecasting.
These approaches can be broadly divided into three cate-
gories. (i) Prompting LLMs like GPT-4 to directly predict
the future of a numerical series encoded as text. This was
investigated in LLMTime (Gruver et al., 2023); despite
the initial promise subsequent works have shown that such
approaches can be lacking in accuracy (Woo et al., 2024;
Das et al., 2024). (ii) Fine-tuning pretrained LLMs like
GPT2 on time-series data with adapter layers (Zhou et al.,
2023; Chang et al., 2023). These approaches have mostly
been shown to work well in the dataset-to-dataset transfer
learning setting (rather than in the zero-shot setting), and
they are also disadvantaged from having to use excessively
large models due to their LLM backbones. (iii) Pretraining
transformer based models from scratch on huge volumes of
time-series data, which seems to be the most promising ap-
proach towards times-series foundation models (Das et al.,
2024; Garza & Mergenthaler-Canseco, 2023; Ansari et al.,
2024; Woo et al., 2024; Goswami et al., 2024). Indeed,
some of these models have shown superior zero-shot accu-
racy when compared to supervised deep forecasters even on
datasets that are outside of their pretraining set.

Some of the above papers, e.g., (Ansari et al., 2024;
Goswami et al., 2024), have additionally shown that their
pretrained models’ performance can be further improved by
fine-tuning the model on examples from the target dataset.
While this supervised fine-tuning results in improved per-
task accuracy, this practice breaks the zero-shot paradigm
in terms of requiring extra training on the target dataset.

In the NLP domain, a defining property of a foundation
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LLM is its ability to be further adapted to domain-specific
tasks through either fine-tuning or prompting. In particular,
LLMs have been shown to perform in-context learning on
a variety of downstream NLP tasks by prompting them
with a natural language instruction (Radford et al., 2019)
and a few demonstrations or examples of the task. This
phenomenon is also referred to as few-shot learning (Brown
et al., 2020). Subsequent works (Min et al., 2022a; Chen
et al., 2022) have proposed fine-tuning a pretrained LLM
to obtain better performance on few-shot learning prompts.
Other papers (Min et al., 2022b; Wei et al., 2023) have
empirically investigated how few-shot learning works in
LLMs. More recently, Shi et al. (2024) explored a similar
idea for in-context pretraining, where they pretrain an LLM
on sequences of related documents. This in-context learning
ability is widely recognized as being associated with the
stacked transformers used in the LLMs, and their theoretical
properties are studied in a more precise sense (Garg et al.,
2022; Von Oswald et al., 2023; Ahn et al., 2024) for simpler
function classes such as linear regression.

Despite the commonality between time-series foundation
models and LLMs, it is not obvious how (or even if) the phe-
nomenon of few-shot learning for NLP tasks carry over
to the time-series setting. There is no clear definition
of few-shot learning in terms of a time-series foundation
model. In fact, prior pretrained time-series foundation mod-
els like (Ansari et al., 2024; Das et al., 2024; Garza &
Mergenthaler-Canseco, 2023) do not provide a clear way for
prompting with anything other than the past values of a time-
series in the context window. The MOIRAI model (Woo
et al., 2024) supports the functionality of any-variate fore-
casting, which allows the model to take as input arbitrary
number of variates (up to a certain maximum). While one
could provide in-context examples as additional variates,
their approach is mostly aimed at multi-variate datasets.
Nevertheless, we also compare with this model in Table 1.

3. Problem Definition
Time-series foundation models aim to build a general pur-
pose forecaster that can take in a past history of a target
forecasting task, y1:L = {y1, y2, · · · yL}, where we look
back L time-steps and map them to a forecast ŷL+1:L+H ,
for a horizon length of H . The aim is to have ŷL+1:L+H as
close as possible to the unseen future yL+1:L+H according
to some well defined error metric. Such a model can be
thought of as a function,

g : y1:L → ŷL+1:L+H (1)

which is capable for handling different values of L and H .

In this work, we aim to further enhance the abilities of
such models by enriching their context. In addition to the
target task’s history y1:L, we add up to n − 1 in-context

Figure 2. An example prediction task. The three black dashed lines
(separators) separate the three in-context examples {y(i)

1:Ti
}i∈[3]

and the history y1:L. The goal is to predict the horizon yL+1:L+H

of the history y1:L.

examples of the form {y(1)
1:T1

,y
(2)
1:T2

, · · ·y(n−1)
1:Tn−1

} that can
represent the past time-points of other related time-series
(with possibly varying lengths T1, · · · , Tn−1). In the case
of our motivating example of highway traffic prediction,
y1:L is a week of hourly traffic data on that highway, and
{y(1)

1:T1
,y

(2)
1:T2

, · · ·y(n−1)
1:Tn−1

} are traffic data on n− 1 nearby
highways. We plot an example prediction task with three
in-context examples in Figure 2.

Therefore, the enhanced forecasting problem is aimed at
training a model f ,

f :
(
y
(1)
1:T1

,y
(2)
1:T2

, · · ·y(n−1)
1:Tn−1

,y1:L

)
→ ŷL+1:L+H . (2)

As before, our time-series foundation model should be able
to handle different values of L and H . Additionally it
should be able to support any number of in-context ex-
amples (n − 1) ranging from zero to a maximum value.
With some abuse of notation, let us index the target task’s
forecasting history and horizon as the n-th example i.e.
y
(n)
1:Tn

:= y1:L+H , where Tn = L + H . Therefore, our
decoder-only model will work with n examples of the form
{y(1)

1:T1
,y

(2)
1:T2

, · · · ,y(n)
1:Tn

} which are drawn from related

time-series. Henceforth, we will refer to {y(i)
1:Ti

}ni=1 as the
context (synonymous with prompt) supplied to the model.

4. Model Architecture
Motivated by the strong zero-shot performance achieved by
stacked transformer models in decoder-only mode for time-
series forecasting, we propose to adapt a base TimesFM
model (Das et al., 2024) to leverage the additional infor-
mation available via in-context examples. In particular,
we first pretrain TimesFM in its original fashion to obtain
a base checkpoint TimesFM (base). We then modify the
model architecture and continue pretraining from TimesFM
(base) using training data with in-context examples (we call
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Figure 3. TimesFM-ICF employs the decoder-only architecture for time-series prediction with in-context examples.

this phase continued pretraining) to obtain a new pretrained
foundation model TimesFM-ICF.

Adapting their model architecture to make use of the in-
context examples is somewhat delicate, and requires modifi-
cations to the original model. A depiction of our proposed
model architecture is given in Figure 3. As in their model,
our model partitions each example into non-overlapping
input patches, and uses a shared input residual block (a
one-hidden layer perceptron with skip connection, see Das
et al. (2023)), to embed each patch as a token before feeding
the tokens into the stacked transformers in a decoder-only
fashion. The output embeddings are mapped to the next
output patches via another shared output residual block.

To teach the model to use the new in-context examples, we
adapt the original TimesFM architecture to better handle
(1) the in-context example separators, (2) the cross-example
attention, and (3) the positional encoding (by applying no
positional encoding when pretraining TimesFM (base), see
Appendix A.3). Despite these changes, we are still able
to leverage the TimesFM (base) checkpoint, which was
pretrained for forecasting given just the history of the target
time-series. We describe the key details of our architecture
design below.

4.1. Separators for In-Context Examples

Our context window contains in-context examples from
different time-series. Hence the model needs to be able to
separate these, since naı̈ve concatenation can confuse the
model. Consider the example in Figure 4. If we naı̈vely
concatenate multiple in-context examples (e.g., linear trends,

Figure 4a) together, then the combination of these trends
may appear to the model as an entirely different time-series
(e.g., a triangle wave, Figure 4b). Therefore, we choose
to insert a common learnable separator token after each in-
context example. We visually depict these separators as the
dashed lines in Figure 4a. When feeding examples to the
decoder, we sequentially pass each tokenized patch of each
time-series example to the model, followed by the separator
token at the end of an example; depicted in Figure 3.

(a) Multiple linear trends. (b) A triangular wave.

Figure 4. Concatenating in-context examples together without sep-
arators can confuse the model: multiple linear trends look like a
triangular wave if concatenated naı̈vely.

4.2. Cross-Example Attention

In order to allow our model to distinguish between different
in-context examples, we allow the transformer to attend
(causally) to all previous patches including the separator to-
kens. Note that, if the model did not attend to the separator
tokens, then we could never hope to distinguish between the
two scenarios from Figure 4a and Figure 4b. By attending
to the previous separator tokens, the model can potentially
distinguish how many in-context examples have been pro-
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cessed so far.

Although at the input to the stacked transformer we use a
common separator token to separate the examples, the out-
put tokens corresponding to the positions of these separator
tokens can play a much more nuanced role as we proceed
through the subsequent transformer layers. As the output
tokens corresponding to these separator tokens causally at-
tend to all previous tokens, after several transformer layers
these tokens can, for instance, potentially summarize the
information in all the patches corresponding to their exam-
ple and/or convey the separation boundaries of the different
in-context examples to the model.

4.3. Overall Model

Since our model builds upon the TimesFM architecture (Das
et al., 2024), we introduce a similar notation style for ease
of exposition. The model processes in-context examples
in the following fashion. Starting with an example input
{y(1)

1:T1
, . . . ,y

(n)
1:Tn

}, each example y
(i)
1:Ti

is partitioned into
input patches of length p:

ỹ
(i)
j = y

(i)
p(j−1)+1:pj ∀j ∈ [⌈Ti/p⌉] and i ∈ [n].

As in (Das et al., 2024), our model takes an additional
padding mask m

(i)
1:Ti

to ensure that it makes good predic-
tions on time-series which are not a multiple of the patch
length p. Analogously to the partitioning of the example
inputs, we partition the padding masks as:

m̃
(i)
j = m

(i)
p(j−1)+1:pj ∀j ∈ [⌈Ti/p⌉] and i ∈ [n].

Given these patches and masks, we feed each patch ỹ
(i)
j

through a common MLP embedding layer to obtain tokens:

t
(i)
j = InputResidualLayer(ỹ

(i)
j ⊙ (1− m̃

(i)
j )).

We will slightly abuse notation by denoting the separator
token σ as t(i)⌈Ti/p⌉+1 = σ, and let the mask for the separator

token m̃
(i)
⌈Ti/p⌉+1 = 0 (i.e., the separator tokens are never

masked). Write Ji = ⌈Ti/p⌉+1, the total number of patches
belonging to the example y

(i)
1:Ti

.

After tokenizing the input patches, we feed the tokens, to-
gether with a learnable separator token σ, autoregressively
to the stacked transformer layers in decoder-only mode.
We take ṁ

(i)
j to be the last entry of m̃(i)

j
2, and denote the

sequence of token/mask pairs corresponding to example i as

t̃
(i)
1:j = ((t

(i)
1 , ṁ

(i)
1 ), . . . , (t

(i)
j , ṁ

(i)
j )) ∀j ∈ [Ji].

2Intuitively, ṁ(i)
j indicates whether or not patch ỹ

(i)
j is masked

from the right. We attend only to patches which are not padded
from the right, and have at least one unpadded values (see Ap-
pendix A.2)

Then, the output of the stacked transformer layer for token
t
(i)
j can be described as:

o
(i)
j = StackedTransformer(t̃

(1)
1:J1

, . . . , t̃
(i−1)
1:Ji−1

, t̃
(i)
1:j).

We emphasize the output o(i)
j for token t

(i)
j defined above

depends on (i) all previous (unmasked) tokens t(i
′)

j′ , i′ < i

and j′ ∈ [⌈Ti′/p⌉], (ii) the i−1 separator tokens t(i
′)

⌈Ti′/p⌉+1 =

σ for i′ < i, and (iii) the tokens t̃(i)1:j for the current example.

Finally, we feed the outputs o
(i)
j for each example i with

patch j from the stacked transformer through a residual
block to obtain the predicted time-series:

ŷ
(i)
pj+1:pj+h = OutputResidualLayer(o

(i)
j ).

This corresponds to the model’s prediction of the next h
steps (output patch length) of y(i)

pj+1:pj+h.

We use the same loss function as original TimesFM model.

5. Continued Pretraining Data
As mentioned before, we start with TimesFM (base) which
was pretrained on a diverse corpus of about 400B time-
points (see Table 3 in Appendix A.2 and Das et al. (2024)
for more details on the datasets). We then continue pretrain-
ing it on training data containing in-context examples.

5.1. Context Generation

We convert individual datasets to generate contexts with
in-context examples that the model sees during the contin-
ued pretraining. Recall that the original TimesFM model
is trained up to a maximum history length of Lmax = 512.
During the training of TimesFM (base) a time-series of
length T = Lmax +h is loaded for back propagation where
h = 128 is the output patch length. Therefore, we choose
T as the maximum length of our n in-context examples.
For any time-series in a particular dataset, we use win-
dowing with a shift of 1 to generate examples of length
T i.e. for a time-series y1:M the possibles examples are
{y1:T ,y2:T+1, · · ·yM−T+1:M}. For time-series that are
less than T in length, we generate padded examples as de-
tailed in Appendix A.2. Now these examples are packed in
groups of n to form the context. We consider two kinds of
grouping:

Times-series level: For a long time-series, we can split the
original time-series into shorter time-series examples, each
of length T , then select n of those shorter examples to form
the context{y(i)

1:T }ni=1 for the original time-series.

Dataset level: For each dataset, we can group any n seg-
ments of length T from any of the time-series in that dataset,
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to form a context. For instance, a set of n segments from
any of the time-series from the Electricity dataset could be
grouped to form a context {y(i)

1:T }ni=1.

Both time-series level and dataset level groupings guarantee
that the grouped examples have similar patterns to borrow
from each other.

5.2. Dataset Mixture

We choose all datasets in Table 3 (the dataset list used to
train TimesFM (base)) other than the four Wiki datasets to
generate in-context examples for continued training. The
Wiki datasets contain millions of time-series that correspond
to a wide variety of articles, which need not be related to
each other.

For the remaining datasets, we set the number of examples
in each context as n = 50 and generate contexts from both
time-series level and dataset level grouping. Note that if all
the time-series in a dataset have a total of N examples, then
generating all

(
N
n

)
such contexts is intractable. Therefore,

we randomly generate 20N such groups of n examples as
our training contexts.

Following the original TimesFM paper, the training data
loader samples 90% real data and 10% synthetic, with the
real data mixture providing equal weights to the groups:
hourly + sub-hourly, daily, weekly, and monthly datasets.
Moreover, we provide equal weights to the two kinds of
examples i.e., time-series level and dataset level.

5.3. In-Context Example Selection

For choosing the 50 examples to be added to the context,
we adopt a very simple strategy of using 5 examples from
the immediate history of the time-series and the remain-
ing examples chosen at random from the history of other
time-series in the same datasets. In Section A.9, we experi-
ment with some other simple example selection strategies.
While we leave a more detailed investigation to future work,
our results show that even naive approaches like random
selection and selecting examples from the immediate his-
tory are sufficient to obtain accuracy gains with in-context
fine-tuning.

6. Experimental Results
Similar to prior works, we report our results on the Chronos
zero-shot benchmarks from Ansari et al. (2024), as well as
rolling-window evaluation of the ETT datasets (Zhou et al.,
2021). No data from these datasets (not even the training
splits) was used in the training of our base model TimesFM
(base), or our in-context fine-tuned model TimesFM-ICF.
Since TimesFM-ICF uses examples of length 512, we report
the numbers of TimesFM (base) with a maximum history

length of 512 unless otherwise specified.

6.1. The Fine-Tuning-per-Dataset Baseline

In all our experiments, we also compare with an ex-
tremely strong baseline TimesFM-FT which is the TimesFM
(base) model fine-tuned on the training split of each dataset
and then evaluated on the corresponding test split. Our main
goal is to study whether TimesFM-ICF can match or surpass
the performance of this baseline but in a zero-shot manner
(without any gradient updates during inference). In both the
benchmarks in Sections 6.2 and 6.3, we perform two kinds
of fine-tuning (i) Full: update all the weights of the models
(ii) Linear Probe (LP): update just the input and output MLP
layers. Then we report the numbers from the best of the two.
The details of fine-tuning are provided in Appendix A.4.

6.2. Out-of-Domain Forecasting

Figure 5. Geometric mean of scaled MASE on the OOD Bench-
mark. This benchmark is essentially the zero-shot benchmark
used in (Ansari et al., 2024), modified slightly to guarantee a
zero-shot evaluation of TimesFM-ICF. Our in-context fine-tuning
approach improves the performance TimesFM (base) over all other
benchmark models, and achieves the same performance as that of
TimesFM-FT , the model which separately fine-tunes TimesFM
(base) on the training split of each task before making predictions.

The Chronos zero-shot benchmark is a collection of 27
datasets of different training and prediction lengths that cov-
ers granularities ranging from minutes to years and domains
including finance, demand forecasting, weather, and traffic.
We report our results on the 23 datasets from this benchmark
that were not used during training of TimesFM-ICF (or the
base model). We will refer to this benchmark as the OOD
Benchmark and provide more details in Appendix A.2.

The datasets contain time-series with vastly different scales,
so we cannot aggregate the raw metrics. Therefore, fol-
lowing Ansari et al. (2024), we calculate the MASE for all
methods and normalize them by the MASE achieved by a
seasonal naive baseline that just repeats the last period’s
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values in the history for the whole horizon. Then we report
the Geometric Mean of these scaled MASE values across
all datasets. Note that when dealing with normalized met-
rics it is better to report the Geometric Mean (Fleming &
Wallace, 1986). We borrow the official numbers for base-
lines from (Ansari et al., 2024) whenever possible. More
details about the benchmark, error metrics and baselines are
provided in Appendix A.6.

We include around 20 baselines including task specific
(trained on the training set of each dataset and then
evaluated) deep learning models such as DeepAR (Sali-
nas et al., 2020), N-BEATS (Oreshkin et al., 2020) and
WaveNet (van den Oord et al., 2016), statistical local (per
time-series) models like as Exponential Smoothing(ETS)
and ARIMA and other leading pretrained foundation models
like Chronos-T5 (Ansari et al., 2024), and LLMTime (Gru-
ver et al., 2023), more in Appendix A.2. Note that we are
unable to compare with MOIRAI (Woo et al., 2024) be-
cause its pretraining data has more than 80% overlap with
this benchmark. We extensively compare with MOIRAI on
long horizon tasks in Section 6.3.

TimesFM-ICF can handle a maximum of 50 examples in
its context. Whenever the time-series is long enough we
include 5 within series examples (including the history of
the time-series to be forecasted on) within the context and
the rest of the examples are gathered randomly from other
time-series in the same dataset (we ablate on a few other
ways of choosing examples in Section A.9). Since there is
randomness during inference, we average over 10 runs and
report the standard error bar.

Results. We summarize our results in Figure 5. We
can observe that unsurprisingly the per dataset fine-tuned
TimesFM-FT is the strongest performer as it starts from a
strong zero-shot model and is further finetuned to adapt to
the dataset at hand. However, it can be seen that TimesFM-
ICF can match the performance of TimesFM-FT completely
out of the box at inference time, when supplied with in-
context examples. Due to this ability TimesFM-ICF im-
proves over TimesFM (base) by 6.8%. Moreover, TimesFM-
ICF is better than the next best baseline, PatchTST by 5%.

Timing-wise, TimesFM-ICF directly utilizes in-context ex-
amples and TimesFM-FT needs to be fine-tuned per dataset.
Although TimesFM-ICF requires more time to perform each
forecast, it overall completes the OOD Benchmark 16x
faster than TimesFM-FT does (25 minutes vs 418 minutes,
see Appendix A.7).

6.3. Long Horizon Forecasting on ETT

A group of long horizon datasets have been commonly used
for benchmarking (mainly) transformer based deep learning
algorithms starting from (Zhou et al., 2021). Some of the

datasets in these benchmarks are in our pretraining datasets
(like Electricity and Traffic). Therefore, for the interest of
zero-shot evaluation we use the 4 Electricity Transformer
Temperature (ETT) datasets, specifically ETTh1, ETTh2
(hourly) and ETTm1, ETTm2 (15 min).

We conduct the same evaluation as in the long se-
quence forecasting evaluation (Woo et al., 2024) on these
datasets, focusing on the task of predicting horizon lengths
96, 192, 336, and 720. We provide rolling validation num-
bers for the test time-period which consists the last 1/5-
th of the time-points. This is standard for these bench-
marks (Nie et al., 2023), where the datasets are split into
train:validation:test in the ratio 7:1:2.

In addition to the evaluations on these datasets from (Woo
et al., 2024, Table 6), we evaluate our TimesFM-ICF against
TimesFM (base), and the TimesFM-FT model discussed in
Section 6.1.

We present the MAE loss for each dataset, averaged over
the four horizon lengths 96, 192, 336, 720, in Table 1. For a
detailed breakdown of the MAE losses, see Table 9. Note
that since the MAE is computed on scaled datasets in this
benchmark (Zhou et al., 2021), we can directly report the
arithmetic mean across datasets. We see that TimesFM-
ICF rivals or outperforms TimesFM-FT which was fine-
tuned explicitly on the target dataset’s distribution. More-
over, TimesFM-ICF outperforms or equals the performance
of all other baselines.

6.4. Ablation

6.4.1. NUMBER OF IN-CONTEXT EXAMPLES

An important trade-off between speed and accuracy can be
achieved by the number of in-context examples. We perform
an ablation study of the same using the short context datasets
in the OOD Benchmark i.e., datasets where we can only
get one example per time-series (the one whose future we
are predicting) and the rest of the examples are generated
randomly from all the other time-series across the dataset.
We perform the ablation over these datasets for two reasons
(i) this removes the complication of the example selection
strategy (studied separately later) (ii) short context datasets
are where we know for sure that the positive effects in-
context fine-tuning are coming from few-shot examples
and not from just having a longer context (again studied
separately in the next section). The short context datasets
are listed in Table 5.

We plot the Scaled MASE (GM) vs number of in-context
examples in Figure 6. The same figure also shows the total
inference time3. The experiments are repeated 5 times and

3The inference numbers are reported on TPUv5e with 8 tensor
cores.
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Table 1. MAE of TimesFM-ICF against other supervised and zero-shot methods on ETT Rolling Window, averaged over forecast horizons
{96, 192, 336, 720}. See Table 9 for a detailed breakdown. We bold the numbers which are the best in every row, and including the ones
that are within standard error of the best.

Few-shot Zero-shot Task-specific

TimesFM-ICF TimesFM (Base) Moirai (Small) Moirai (Base) Moirai (Large) TimesFM-FT iTransformer TimesNet PatchTST Crossformer DLinear SCINet FEDformer
Dataset

ETTh1 0.405 0.417 0.424 0.438 0.469 0.407 0.447 0.450 0.454 0.522 0.452 0.647 0.460
ETTh2 0.378 0.396 0.379 0.382 0.377 0.381 0.407 0.497 0.407 0.683 0.515 0.723 0.449
ETTm1 0.378 0.391 0.410 0.388 0.389 0.371 0.410 0.406 0.400 0.495 0.407 0.481 0.452
ETTm2 0.307 0.329 0.341 0.321 0.320 0.306 0.332 0.332 0.326 0.610 0.401 0.537 0.349

Figure 6. Scaled MASE (GM) vs number of in-context examples
over the short context datasets in the OOD Benchmark. We also
plot the total inference time for all the datasets as we vary the
number of examples. All numbers are averaged over 5 runs with
the corresponding one standard error.

the standard error bars are reported. We can see that the
error decreases monotonically as the number of in-context
examples are increased. At the same time, the total inference
time increases, signifying a trade-off.

6.4.2. LONGER HISTORY

In this section, we compare the performance of TimesFM-
ICF with a modified version of TimesFM (base) pretrained4

and evaluated with a longer history L = 2048 which we will
refer to as TimesFM (LH). We provide the aggregate scaled
MASE on the OOD Benchmark in Table 2. We restrict
TimesFM-ICF to use at most 5 in-context examples (of
length 512 each), so it is a fair comparison.

Dataset TimesFM-ICF TimesFM (LH) TimesFM (base)

OOD Benchmark 0.777 0.811 0.834

Table 2. Comparison with longer context TimesFM (LH) model,
which has a maximum history of 2048. We report the Scaled
MASE (GM) on the OOD Benchmark.

We can see that TimesFM (LH) yields a modest 2.4% im-
provement over TimesFM (base) (maximum history of 512)
while TimesFM-ICF yields a 6.8% improvement.

4Pretraining performed in a manner similar to the latest version
of the TimesFM Hugging Face repo.

This shows that our technique of in-context fine-tuning can
be more effective than training a longer history model, espe-
cially when there is a mix of short-history and long-history
time-series. This is because, for in-context fine-tuning,
many short time-series can be packed as in-context exam-
ples inside the context, while for the case of usual long
history training such time-series will just be padded and
most of the context is wasted. As shown in the detailed
results in Table 6, the long history model performs at par
or very slightly better on longer datasets like ERCOT, but
degrades on shorter datasets like CIF and Toursim.

7. Conclusions
In this paper, we introduce a methodology for in-context
fine-tuning of a time-series foundation model for forecast-
ing. In particular, we start with a base foundation model and
adapt it to be able to effectively utilize, at inference time,
not just the history of the target time-series for forecasting,
but also in-context examples from related time-series. Our
results show that in-context fine-tuning can lead to signifi-
cantly better zero-shot performance on popular forecasting
benchmarks compared to the base foundation model and
state-of-the-art supervised models. Furthermore, it even
matches the performance of a version of the base foundation
model that is explicitly fine-tuned on the target domain.

While we have chosen a specific base time-series foundation
model (TimesFM) for our in-context fine-tuning approach,
it would be an interesting direction of future work to study
these adaptations for other base foundation models. It would
also be interesting to study better forms of relative positional
encodings specifically designed for handling in-context ex-
amples and length generalization.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix
A.1. Illustrative Examples

We illustrate visually in Figure 7 how in-context examples can help disambiguate the prediction tasks, by plotting the actual
forecasts from TimesFM-ICF with and without the in-context examples. In the left two figures, the history is not sufficiently
informative for the model to make an accurate prediction. By providing in-context examples together with this short history
(see the right two figures), however, the model is able to make a more accurate forecast.

(a) In-context examples help the history disambiguate between an increasing trend and an oscillating seasonality.

(b) In-context examples help the history disambiguate between an increasing linear trend and a triangular wave.

Figure 7. Two illustrative examples on how in-context examples can help disambiguate the prediction tasks, that likely patterns based
solely on the history can get proved or disproved by the patterns from the in-context examples.

In Figure 8, we plot the forecasts of TimesFM-ICF on the 5 time-series in the Monash Australian Electricity Demand dataset,
operating our model in three modes: 0 in-context examples, 20 (random) in-context examples, and 50 in-context examples
(5 of which are within-series examples). These three configurations have increasingly better MASE scores on this dataset
(with MASE values 1, .9, and .8, respectively). The predictions visually appear to improve with the MASE values.

A.2. Baselines on the OOD Benchmark

For the OOD Benchmark which is derived from the zero-shot Chronos benchmark, we borrow benchmark evaluation
numbers from Table 10 in (Ansari et al., 2024) for our evaluations of the Chronos models, as well as that of LLMTime
(Gruver et al., 2023), ForecastPFN (Dooley et al., 2024), Lag-Llama (Rasul et al., 2023), PatchTST (Nie et al., 2023),
DeepAR (Salinas et al., 2020), WaveNet (van den Oord et al., 2016), TFT (Lim & Zohren, 2021) DLinear (Zeng et al.,
2023), N-HiTS (Challu et al., 2023), N-BEATS (Oreshkin et al., 2020), GPT4TS (Zhou et al., 2023), SCUM (Petropoulos
& Svetunkov, 2020) AutoETS, AutoARIMA, AutoTheta, Naı̈ve, and Seasonal Naı̈ve (Assimakopoulos & Nikolopoulos,
2000).

We omit the Moirai (Woo et al., 2024) evaluations from this benchmark, since this model’s training data has more than 80%
overlap with the benchmark.
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Figure 8. Visualization of TimesFM-ICF predictions on the Monash Australian Electricity dataset
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We conduct the remaining evaluations ourselves, using the datasets available at this URL from the Chronos authors. We
detail the datasets used in our evaluation in Table 4. To ensure our evaluations are zero-shot, we omit the M4 Quarterly, M4
Yearly5, Traffic6, and Weather7 datasets from the Chronos zero-shot benchmark.

We give a detailed breakdown in Appendix A.6.

A.3. Details of Pretraining TimesFM (base)

We start from the model architecture in Das et al. (2024) then create TimesFM (base) with 16 attention heads, 50 layers,
an input patch length of 32 and output patch length of 128. The model dimension is set to 1280. We use the learning rate
schedule in (Vaswani et al., 2017) with peak learning rate of 5e− 4. The hidden dims of both the residual block and the
FFN in the transformer layers are set as the same as model dimensions. We keep layer norm in transformer layers but not in
the residual blocks. The pretraining datasets are detailed in Table 3.

The only difference between the model in Das et al. (2024) and our base model is that we use No Positional Encodings
(NoPE) instead of the absolute positional encoding (Vaswani et al., 2017).

Based on the findings in Haviv et al. (2022), we create the pretrained TimesFM (base) checkpoint with NoPE, in contrast to
the absolute positional encodings (Vaswani et al., 2017) used in the original TimesFM model. We note that we can achieve
the same accuracy reported in the original TimesFM paper without using any positional encodings. Indeed it has been
hypothesized in Haviv et al. (2022) that the presence of causal attention itself can encode positional information when there
are more than one stacked transformer layers.

The advantages of NoPE for our continued pretraining are two fold: (i) NoPE models usually have better length generalization,
which is particularly important here since we increase the prompt length by adding in-context examples to the context. (ii) If
we use the original absolute positional encodings used in (Das et al., 2024), the meaning of these positional encodings in the
base model would be different from their meaning during the continued pretraining with in-context examples. This could
cause problems for the continued pretraining phase.

Empirically, NoPE leads to no loss in accuracy on validation during training, and works on par with other positional
encodings that generalize length, e.g., FIRE (Li et al., 2024), see Figure 9.

A.4. Details of TimesFM-FT: Fine-Tuning Per Dataset

On both the OOD Benchmark and the Long Horizon ETT, we also compare with TimesFM-FT which fine-tunes on the train
split for every dataset and the forecasting on the corresponding test split. For all our fine-tuning runs, we use a batch size of
16 and (1) up to 10k iterations for the OOD Benchmark and (2) up to 100k for the Long Horizon ETT. We use a maximum
learning rate of 1e-3, with 500-step linear warm-up and exponential decay. Note that this means that the fine-tuned model
will see many more training examples than the in-context examples given to our model. For the fine-tuning runs, we use
the same decoder only loss function that was used in the original pretraining of TimesFM (base). We do two kinds of
fine-tuning:

• Full: All weights in the model are updated during fine-tuning.

• Linear Probing (LP): We hold the transformer weights fixed and only update the parameters in the input and output
residual blocks.

A.5. Additional Details of TimesFM-ICF

We continue to train TimesFM-ICF model from TimesFM (base). Therefore, most of the parameters in the model remain the
same. Here, are the key training details that are unique to TimesFM-ICF:

• Separator Token: We have a trainable separator token that is also updated during the continued pretraining. The token
is nothing but a learnt embedding whose dimension is equal to the model dimension i.e. 1280 in our case.

5https://github.com/Mcompetitions/M4-methods
6https://zenodo.org/record/4656132
7https://zenodo.org/record/4654822
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• Number of Examples: We use a maximum of n = 50 in-context examples for each context during training.

• Padding: In short datasets like M4 yearly and quarterly, each time-series might have number of time-points much less
than T = 640. Sometimes the number of time-points are even less than our input patch length p = 32. For such cases,
a whole time-series can fit into one of the n examples and they are preprocessed in the following manner:

– If the length of the time-series l is less than p, we left pad with k padding time-points such that p < k + l < 2p.
This is because we want the decoder only model to predict something meaningful for the second patch after seeing
the first patch and if not, is penalized by the loss on the second patch. If the l > p, we do not need to perform this
left padding.

– Lastly, we right pad such that the length of the total padded example is T = 640.
– Note that the last patch in such examples would be padded from the right, i.e., they will have real time-series

values for the first few points and padding for the rest. We make sure that such incomplete from the right patches
are not attended by subsequent tokens belonging to examples coming after.

The continued pretraining datasets are detailed in Table 3.

A.6. OOD Benchmark Detailed Results

We give a detailed breakdown of the zero-shot evaluations on the datasets from Table 4 (displayed in Figure 5) in Table 6
with additional baselines as mentioned in Appendix A.2. We report the mean absolute scaled error (MASE) (Hyndman
& Koehler, 2006), which, for a given time-series y1:L+H = (y1, . . . , yL, . . . , yL+H) with context L and horizon H and
seasonality parameter S, together with a predicted time-series ŷL+1:L+H = (ŷL+1, . . . , ŷL+H), is defined as the mean
absolute error for the forecast normalized by the seasonal naı̈ve forecast error on the context:

MASE(ŷL+1:L+H ,y1:L+H) =
L− S

H

∑L+H
t=L+1 |ŷt − yt|∑L−S
t=1 |yt − yt+S |

.

Each evaluation of TimesFM-ICF is averaged over 10 random seeds, where the randomness corresponds to the random
selection of in-context examples used to make predictions. The reported MASE numbers are averaged over the five
evaluations of the dataset. The confidence intervals in Table 6 correspond to one standard deviation of the 5 evaluations,
averaged over the dataset.

Since TimesFM (base) supports probabilistic forecasting, in Table 7, we additionally report the weighted quantile loss
(WQL), which averages the quantile loss QLα of (Koenker & Hallock, 2001) over quantiles α ∈ {0.1, 0.2, . . . , 0.9}. The
quantile loss is defined as follows: given quantile α ∈ (0, 1) and predicted quantiles q(α) = (q

(α)
L+1, . . . , q

(α)
L+H) for a

time-series y with context L and horizon H , the quantile loss at level α of an observation yt is:

QLα(q
α
t , yt) =

{
α(yt − q

(α)
t ) if yt > q

(α)
t

(1− α)(q
(α)
t − yt) otherwise

The weighted quantile loss over a dataset D, where each yi ∈ D has a predicted quantile q
(α)
i , is given by:

WQLα =
2
∑

i∈|D|
∑L+H

t=L+1
QLα(q

α
i,t, yi,t)∑

i∈|D|
∑L+H

t=L+1 |yi,t|

Then, the weighted quantile loss is the average of WQLα over α ∈ {0.1, 0.2, . . . , 0.9}.

Note that, in addition to the detailed results in Tables 6 and 7, we additionally report the geometric mean of the MASE on
each dataset, normalized by the MASE of the seasonal naı̈ve baseline. This geometric mean is then averaged over the 5
evaluation runs. We report both the geometric mean of the 23 datasets from the Chronos zero-shot benchmark for which we
are zero-shot (see Table 4), i.e., that were not used during training of TimesFM-ICF or the base model TimesFM (base), as
“Geometric Mean (ZS)”. We also report the the geometric mean over all 27 datasets from the Chronos zero-shot benchmark
as “Geometric Mean (All)”.
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Table 3. List of datasets included in pretraining TimesFM (base). All datasets except the Wiki datasets are also repurposed for continued
pretraining TimesFM-ICF with in-context examples. The datasets labeled LOTSA are obtained from the LOTSA collection (Woo et al.,
2024). For continued pretraining, the Wiki dataset can be clustered into groups of related articles, and the time-series for each group could
be deemed to form a separate dataset. But we leave such preprocessing of the Wiki dataset for future work and leave these datasets out of
our continued pretraining.

Dataset Granularity # Time series

Synthetic 3,000,000
Electricity Hourly 321
Traffic Hourly 862
Weather (Zhou et al., 2021) 10 Min 42
Favorita Sales Daily 111,840
LibCity (Jiang et al., 2023) 15 Min 6,159
M4 hourly Hourly 414
M4 daily Daily 4,227
M4 monthly Monthly 48,000
M4 quarterly Quarterly 24,000
M4 yearly Yearly 22,739
Wiki hourly Hourly 5,608,693
Wiki daily Daily 68,448,204
Wiki weekly Weekly 66,579,850
Wiki monthly Monthly 63,151,306
Trends hourly Hourly 22,435
Trends daily Daily 22,435
Trends weekly Weekly 22,435
Trends monthly Monthly 22,435
LOTSA Azure VM Traces 5 Min 7,179,194
LOTSA Residential LoadPower 1 Min 6,861,408
LOTSA Borg Cluster Data 5 Min 6,651,848
LOTSA Residential PvPower 1 Min 5,890,848
LOTSA QTraffic 15 Min 4,334,208
LOTSA London Smart Meters 30 Min 2,681,312
LOTSA Taxi 30 Min 2,175,488
LOTSA Solar Power 4 Sec 115,584
LOTSA Wind Power 4 Sec 115,584
LOTSA Kdd2022 10 Min 77184
LOTSA Largest 5 Min 91,005,824
LOTSA Era5 Hourly 728,078,400
LOTSA Buildings Hourly 22,937,600
LOTSA Cmip6 Daily 892,769,472
LOTSA China Air Quality Hourly 593,532
LOTSA Beijing Air Quality Hourly 76,032
LOTSA Subseasonal Daily 165,504
LOTSA Kaggle WebTraffic Weekly Weekly 4,642,016
LOTSA CdC Flu Weekly 9,472
LOTSA Godaddy Monthly 200,640

A.7. Detailed Timing on the OOD Benchmark

We provide the comparison between TimesFM-ICF and TimesFM-FT regarding their benchmark timing and accuracy in
Table 8. For a fair comparison we calculate the time here assuming that fine-tuning and inference tasks on all datasets are
completed in a one-by-one sequential manner. Fine-tuning on each dataset requires more time than applying in-context
examples while does not always guarantee performance over TimesFM-ICF.
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Table 4. Details of the OOD Benchmark: We report our results on the 23 datasets from the Chronos zero-shot benchmark that were not
used during training of TimesFM-ICF or the base model TimesFM (base).

Dataset Category Frequency Num TS MinLen AvgLen MaxLen Horizon

Australian Electricity energy 30min 5 230736 231052 232272 48
Car Parts retail 1M 2674 51 51 51 12
CIF 2016 banking 1M 72 28 98 120 12
Covid Deaths healthcare 1D 266 212 212 212 30
Dominick retail 1D 100014 201 296 399 8
ERCOT Load energy 1H 8 154854 154854 154854 24
ETT (15 Min., Last Window) energy 15min 14 69680 69680 69680 24
ETT (Hourly, Last Window) energy 1H 14 17420 17420 17420 24
Exchange Rate finance 1B 8 7588 7588 7588 30
FRED-MD economics 1M 107 728 728 728 12
Hospital healthcare 1M 767 84 84 84 12
M1 (Monthly) various 1M 617 48 90 150 18
M1 (Quarterly) various 3M 203 18 48 114 8
M1 (Yearly) various 1Y 181 15 24 58 6
M3 (Monthly) various 1M 1428 66 117 144 18
M3 (Quarterly) various 3M 756 24 48 72 8
M3 (Yearly) various 1Y 645 20 28 47 6
M5 retail 1D 30490 124 1562 1969 28
NN5 (Daily) finance 1D 111 791 791 791 56
NN5 (Weekly) finance 1W 111 113 113 113 8
Tourism (Monthly) various 1M 366 91 298 333 24
Tourism (Quarterly) various 1Q 427 30 99 130 8
Tourism (Yearly) various 1Y 518 11 24 47 4

All timing is reported on TPUv5e with 4 tensor cores.

A.8. ETT Rolling Window

We provide the detailed results of the mean absolute error (MAE) of TimesFM-ICF against other supervised and zero-shot
methods on ETT Rolling Window in Table 9. The MAE of a prediction ŷL+1:L+H of a time-series y1:L+H is:

MAE(ŷL+1:L+H ,y1:L+H) =
1

H
∥ŷL+1:L+H − yL+1:L+H∥1.

Note that, in addition to the baselines Table 1, we additionally evaluate against the Moirai (Large) model operating in
multivariate forecasting mode. We refer to Moirai operating in this mode as Moirai-MV. We provide Moirai-MV with a total
of 50 multivariate features – 21 (the maximum possible number for these datasets) from the time-series’ history, and 29
features from randomly selected time series. We select this for several reasons: (i) by selecting the largest possible context
history, we provide the model with the largest possible number of relevant features, (ii) according to (Woo et al., 2024),
Moirai is trained to accommodate at least 50 multivariate features, and (iii) our model is trained to accommodate a maximum
of 50 in-context examples. We choose each multivariate feature to have the same length (512) since both TimesFM-ICF and
Moirai-MV is trained to accommodate such example lengths. Note that we provide exactly the same features/in-context
examples to Moirai-MV and to TimesFM-ICF , for ease of comparison. Moirai-MV’s performance degrades on these
datasets with the additional multivariate features provided.

We remark, however, that the performance degradation of the Moirai-MV model may be explained by a subtle distinction
between in-context examples and multivariate features. All multivariate features used when training Moirai are assumed to
be temporally aligned. By contrast, the in-context examples provided during our evaluations are from different time-windows.
Thus, by providing in-context examples as multivariate features for Moirai-MV, we are evaluating the model outside of its
intended use. Nonetheless, we include this result in the appendix (with this caveat) to demonstrate that naı̈vely concatenating
related time-series as multivariate features may not work out-of-the-box.
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Table 5. Part of the OOD Benchmark which only has room for one in-context example per time-series. The is used for the ablation study
in Section 6.4.1. We exclude Dominick as evaluation takes a significant amount of time on that dataset especially when averaged over
multiple runs.

Dataset Category Frequency Num TS MinLen AvgLen MaxLen Horizon

Car Parts retail 1M 2674 51 51 51 12
CIF 2016 banking 1M 72 28 98 120 12
Covid Deaths healthcare 1D 266 212 212 212 30
FRED-MD economics 1M 107 728 728 728 12
Hospital healthcare 1M 767 84 84 84 12
M1 (Monthly) various 1M 617 48 90 150 18
M1 (Quarterly) various 3M 203 18 48 114 8
M1 (Yearly) various 1Y 181 15 24 58 6
M3 (Monthly) various 1M 1428 66 117 144 18
M3 (Quarterly) various 3M 756 24 48 72 8
M3 (Yearly) various 1Y 645 20 28 47 6
M5 retail 1D 30490 124 1562 1969 28
NN5 (Daily) finance 1D 111 791 791 791 56
NN5 (Weekly) finance 1W 111 113 113 113 8
Tourism (Monthly) various 1M 366 91 298 333 24
Tourism (Quarterly) various 1Q 427 30 99 130 8
Tourism (Yearly) various 1Y 518 11 24 47 4

Table 6. OOD Benchmark (MASE)
Category Pretrained Models (Few Shot) Pretrained Models (Zero Shot) Pretrained Models (Other) Task Specific Models Local Models

Model TimesFM-ICL TimesFM (Base) TimesFM-LH Chronos-T5 (Large) Chronos-T5 (Base) Chronos-T5 (Small) Chronos-T5 (Mini) Chronos-GPT2 LLMTime ForecastPFN Lag-Llama TimesFM-FT PatchTST DeepAR WaveNet TFT DLinear N-HiTS N-BEATS GPT4TS SCUM AutoETS AutoTheta AutoARIMA Seasonal Naive Naive

Australian Electricity 0.805 ± 0.010 1.529 1.313 1.333 1.319 1.399 1.114 1.310 1.186 2.158 1.635 0.753 0.871 1.473 0.997 0.810 1.278 0.794 0.828 1.161 1.427 2.391 0.897 1.393 1.253 2.362
Car Parts 0.868 ± 0.0002 0.922 0.922 0.906 0.899 0.887 0.891 0.881 - 2.657 0.816 0.867 0.803 0.798 0.817 0.799 0.879 0.803 0.803 0.891 1.157 1.185 1.229 - 1.201 -
CIF 2016 0.877 ± 0.003 0.948 0.947 0.986 0.981 0.989 1.051 1.046 1.384 3.588 2.235 0.860 1.537 1.363 1.309 1.553 1.145 1.389 1.440 0.960 0.907 0.957 1.002 1.006 1.289 1.263
Covid Deaths 44.279 ± 0.077 47.399 47.391 42.550 42.687 42.670 43.621 48.215 32.143 91.515 78.456 39.904 36.465 38.203 102.457 30.635 40.418 31.771 31.730 75.909 33.595 38.114 45.407 31.705 46.912 46.912
Dominick 0.900 ± 0.0002 0.935 0.935 0.818 0.816 0.819 0.833 0.820 - 3.274 1.250 0.835 0.867 0.851 0.812 0.800 0.880 0.782 0.782 1.813 0.891 0.885 1.016 - 0.871 0.871
ERCOT Load 0.669 ± 0.013 0.633 0.690 0.617 0.550 0.573 0.588 0.561 1.319 3.975 0.834 0.644 0.553 1.197 0.780 0.690 0.651 0.615 0.648 0.558 1.308 2.826 1.306 1.284 0.761 4.234
ETT (15 Min.) 0.653 ± 0.004 0.767 0.615 0.741 0.739 0.710 0.792 0.796 1.042 1.138 0.967 0.742 0.652 0.874 1.339 0.962 0.724 0.643 0.659 0.574 0.673 1.183 0.583 0.879 1.169 1.164
ETT (Hourly) 0.801 ± 0.003 0.838 0.853 0.735 0.789 0.789 0.797 0.768 1.232 1.833 1.002 0.798 0.729 0.814 1.509 0.875 0.695 0.811 0.782 0.768 0.850 1.139 0.900 0.977 0.932 1.651
Exchange Rate 1.632 ± 0.036 2.113 1.970 2.375 2.433 2.252 2.030 2.335 1.743 7.583 3.087 1.871 1.540 1.615 3.105 2.361 1.459 2.041 2.149 2.709 1.749 1.643 1.648 1.882 1.740 1.874
FRED-MD 0.610 ± 0.003 0.653 0.492 0.500 0.486 0.496 0.483 0.468 0.513 2.621 2.283 0.592 0.745 0.621 0.849 0.929 0.713 0.696 0.635 0.693 0.492 0.544 0.566 0.473 1.101 0.622
Hospital 0.752 ± 0.0004 0.780 0.780 0.810 0.810 0.815 0.817 0.831 0.861 1.775 0.939 0.763 0.859 0.804 0.857 0.799 0.940 0.781 0.760 0.793 0.748 0.760 0.761 0.820 0.921 0.968
M1 (Monthly) 1.013 ± 0.0015 1.052 1.052 1.090 1.117 1.169 1.174 1.182 1.415 2.172 1.875 1.083 1.208 1.122 1.266 1.326 1.369 1.333 1.236 1.198 1.023 1.072 1.099 1.153 1.314 1.468
M1 (Quarterly) 1.652 ± 0.005 1.709 1.709 1.713 1.739 1.764 1.785 1.785 1.802 9.931 3.036 1.704 1.920 1.741 1.904 2.144 1.943 2.061 2.043 1.958 1.602 1.710 1.683 1.770 2.078 1.952
M1 (Yearly) 4.299 ± 0.008 3.591 3.592 4.301 4.624 4.659 4.958 4.751 4.077 23.089 7.149 3.284 4.042 3.685 4.727 4.316 11.565 5.568 6.212 3.675 3.571 4.110 3.697 3.870 4.894 4.894
M3 (Monthly) 0.837 ± 0.001 0.832 0.832 0.857 0.868 0.885 0.900 0.930 0.996 2.240 1.846 0.811 1.225 0.943 0.950 0.916 1.161 0.899 0.883 0.950 0.827 0.869 0.861 0.933 1.146 1.175
M3 (Quarterly) 1.140 ± 0.002 1.201 1.202 1.181 1.199 1.256 1.289 1.241 1.450 10.176 2.886 1.161 1.264 1.209 1.257 1.160 1.572 1.202 1.147 1.448 1.135 1.125 1.130 1.419 1.425 1.464
M3 (Yearly) 2.779 ± 0.004 2.818 2.817 3.106 3.209 3.276 3.385 3.158 3.140 18.728 5.114 2.796 2.949 2.827 3.026 2.860 3.435 3.432 3.547 3.418 2.703 2.696 2.613 3.165 3.172 3.172
M4 (Quarterly) 1.220 ± 0.001 0.966 0.966 1.216 1.231 1.246 1.271 1.312 - 6.927 2.663 0.970 1.150 1.254 1.241 1.248 1.229 1.157 1.129 1.215 1.145 1.188 1.193 1.276 1.602 1.477
M4 (Yearly) 3.311 ± 0.002 2.549 2.549 3.606 3.678 3.651 3.743 3.933 - - 5.866 2.554 3.072 3.178 3.221 3.119 3.295 - - 3.374 3.013 3.374 3.124 3.730 3.974 3.974
M5 0.924 ± 0.00003 0.916 0.920 0.944 0.939 0.940 0.944 0.969 - 1.530 0.965 0.904 0.919 0.956 0.959 0.909 1.027 0.917 0.917 0.935 1.096 1.101 1.100 1.057 1.399 1.399
NN5 (Daily) 0.578 ± 0.001 0.612 0.603 0.573 0.585 0.615 0.642 0.601 0.953 1.375 0.992 0.572 0.575 0.585 0.585 0.556 0.604 0.571 0.571 0.720 1.052 1.039 1.073 1.214 1.292 1.292
NN5 (Weekly) 0.919 ± 0.003 0.865 0.865 0.940 0.938 0.944 0.947 0.963 0.968 1.349 1.141 0.933 0.877 0.920 1.034 0.896 0.966 0.919 1.014 1.268 0.974 0.978 0.984 0.995 1.063 1.063
Tourism (Monthly) 1.487 ± 0.002 1.623 1.623 1.761 1.828 1.900 1.950 1.783 2.139 4.348 3.030 1.516 1.572 1.529 1.629 1.686 1.551 1.514 1.486 1.573 1.441 1.497 1.680 1.573 1.631 3.591
Tourism (Quarterly) 1.708 ± 0.0041 1.799 1.798 1.677 1.717 1.730 1.829 1.828 1.916 5.595 3.695 1.776 1.723 1.586 1.769 1.729 1.690 1.585 1.618 1.750 1.501 1.590 1.658 1.661 1.699 3.633
Tourism (Yearly) 3.224 ± 0.006 3.496 3.496 3.755 3.900 3.901 4.048 3.862 3.309 12.093 3.755 3.565 3.138 3.702 4.130 3.047 3.406 3.448 3.564 - 3.276 3.138 3.078 4.043 3.552 3.552
Traffic 0.837 ± 0.001 0.573 0.730 0.804 0.828 0.837 0.850 0.818 0.973 1.909 0.829 0.592 0.790 0.737 0.797 0.880 0.821 0.927 0.968 0.787 - 1.685 1.794 - 1.077 2.052
Weather 0.824 ± 0.001 0.871 0.830 0.822 0.824 0.836 0.853 0.858 - 2.003 1.001 0.782 0.860 0.911 0.945 0.913 0.997 0.910 0.888 0.972 0.933 1.079 0.991 0.907 1.004 1.004

Geometric Mean (ZS) 0.777 ± 0.003 0.834 0.812 0.827 0.834 0.844 0.852 0.852 0.960 2.543 1.313 0.776 0.818 0.852 0.977 0.851 0.905 0.824 0.830 0.909 0.837 0.943 0.856 0.908 1.000 1.195

Geometric Mean (All) 0.778 ± 0.002 0.805 0.792 0.824 0.832 0.841 0.850 0.852 0.962 2.450 1.291 0.753 0.810 0.843 0.951 0.847 0.894 0.830 0.835 0.896 0.838 0.953 0.875 0.908 1.000 1.189

A.9. Selecting In-Context Examples

A practical consideration for in-context fine-tuning is the question of how to choose the (up to 50) related in-context
examples to put in the context window (at both training and inference time). While our in-context fine-tuning methodology
is compatible with any algorithm for in-context example selection, in this paper we use a very simple strategy of choosing
for each time-series forecasting target a combination of a) a few consecutive examples chosen from the immediate history of
the time-series to be forecasted, and b) many examples chosen at random (across timestamp and time-series) from the past
history of other time-series in the same dataset. We also tried a more sophisticated approach that uses dynamic time warping
(DTW) (Serra & Arcos, 2014; Salvador & Chan, 2007) to select the top 20% most “similar” time series to the time-series of
interest, and restricting the random examples from within those time-series. In Figure 10 we perform a lightweight ablation
study to understand the effects of these approaches on the performance of in-context fine-tuning on the OOD Benchmark,
and observe very minor differences in performance among the example selection approaches. Choosing 5 examples from
the immediate history, and the remaining 45 examples at random seemed to outperform the other three approaches (and is
indeed the approach we use for TimesFM-ICF in the OOD Benchmark results).

As a simple test how our simple choice of in-context example selection could be improved, we performed a grid-search
over various splits of in-series and random in-context examples as follows: First, we constructed a validation dataset from
the training portion of a subset of the Monash datasets (specifically: weather, traffic, australian electricity, ercot, ETTm,
and ETTh). We chose these datasets because they contained many training examples long enough to construct up to 20
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Table 7. OOD Benchmark (WQL)
Category Pretrained Models (Few Shot) Pretrained Models (Zero Shot) Pretrained Models (Other) Task Specific Models Local Models

Model TimesFM-ICL TimesFM (Base) TimesFM-LH Chronos-T5 (Large) Chronos-T5 (Base) Chronos-T5 (Small) Chronos-T5 (Mini) Chronos-GPT2 LLMTime Lag-Llama TimesFM-FT PatchTST DeepAR WaveNet TFT DLinear N-HiTS N-BEATS SCUM AutoETS AutoTheta AutoARIMA Seasonal Naive Naive

Australian Electricity 0.037 0.078 0.067 0.067 0.075 0.074 0.063 0.078 0.069 0.097 0.033 0.037 0.087 0.052 0.036 0.066 0.034 0.038 0.070 0.125 0.055 0.073 0.084 0.159
CIF 2016 0.013 0.049 0.049 0.014 0.013 0.015 0.013 0.015 0.014 0.041 0.046 0.140 0.136 0.086 0.011 0.033 0.032 0.039 0.024 0.039 0.027 0.017 0.015 0.009
Car Parts 0.996 1.046 1.046 1.060 1.057 1.029 1.024 1.028 - 1.011 0.983 0.998 0.967 0.941 0.871 1.119 0.880 0.877 1.283 1.309 1.337 - 1.600 -
Covid Deaths 0.073 0.070 0.070 0.045 0.048 0.059 0.084 0.079 0.032 0.276 0.043 0.065 0.108 0.918 0.034 0.077 0.038 0.056 0.037 0.064 0.094 0.029 0.133 0.133
Dominick 0.355 0.371 0.371 0.332 0.333 0.338 0.346 0.336 - 0.443 0.327 0.345 0.364 0.327 0.320 0.435 0.313 0.312 0.439 0.483 0.485 - 0.453 0.453
ERCOT Load 0.021 0.023 0.021 0.019 0.016 0.018 0.018 0.017 0.053 0.033 0.022 0.017 0.032 0.024 0.023 0.023 0.020 0.020 0.050 0.122 0.041 0.052 0.037 0.181
ETT (15 Min.) 0.056 0.069 0.051 0.068 0.069 0.064 0.072 0.073 0.088 0.080 0.060 0.054 0.069 0.113 0.075 0.071 0.051 0.053 0.061 0.095 0.079 0.073 0.141 0.121
ETT (Hourly) 0.080 0.083 0.085 0.073 0.081 0.080 0.085 0.080 0.122 0.106 0.084 0.071 0.081 0.142 0.082 0.076 0.081 0.074 0.087 0.132 0.133 0.105 0.122 0.202
Exchange Rate 0.008 0.012 0.015 0.013 0.014 0.013 0.012 0.013 0.015 0.011 0.010 0.010 0.009 0.016 0.011 0.008 0.010 0.011 0.011 0.010 0.010 0.011 0.013 0.015
FRED-MD 0.027 0.040 0.029 0.020 0.022 0.017 0.017 0.022 0.041 0.389 0.043 0.042 0.043 0.058 0.112 0.069 0.057 0.061 0.059 0.055 0.057 0.056 0.122 0.064
Hospital 0.051 0.054 0.054 0.056 0.056 0.057 0.058 0.057 0.066 0.093 0.051 0.070 0.056 0.064 0.053 0.089 0.052 0.050 0.052 0.053 0.055 0.058 0.073 0.087
M1 (Monthly) 0.148 0.130 0.130 0.130 0.128 0.139 0.138 0.131 0.181 0.196 0.145 0.165 0.150 0.150 0.175 0.189 0.189 0.187 0.162 0.162 0.159 0.146 0.191 0.258
M1 (Quarterly) 0.087 0.113 0.113 0.107 0.105 0.103 0.103 0.116 0.115 0.141 0.093 0.078 0.089 0.094 0.122 0.079 0.111 0.085 0.083 0.083 0.082 0.091 0.150 0.130
M1 (Yearly) 0.149 0.145 0.145 0.183 0.181 0.172 0.179 0.204 0.144 0.293 0.145 0.165 0.139 0.168 0.124 0.245 0.198 0.182 0.135 0.142 0.137 0.160 0.209 0.209
M3 (Monthly) 0.089 0.089 0.089 0.096 0.097 0.100 0.099 0.106 0.108 0.155 0.089 0.113 0.099 0.100 0.096 0.121 0.097 0.101 0.094 0.093 0.095 0.102 0.149 0.158
M3 (Quarterly) 0.068 0.075 0.075 0.074 0.076 0.079 0.081 0.078 0.084 0.134 0.073 0.074 0.073 0.072 0.071 0.086 0.076 0.080 0.072 0.069 0.070 0.079 0.101 0.103
M3 (Yearly) 0.121 0.144 0.144 0.151 0.153 0.155 0.159 0.148 0.148 0.192 0.145 0.133 0.122 0.130 0.130 0.143 0.182 0.181 0.144 0.127 0.128 0.162 0.167 0.167
M4 (Quarterly) 0.077 0.062 0.062 0.082 0.083 0.084 0.086 0.087 - 0.132 0.062 0.074 0.080 0.079 0.080 0.085 0.073 0.073 0.079 0.080 0.079 0.082 0.119 0.110
M4 (Yearly) 0.116 0.091 0.091 0.134 0.137 0.136 0.140 0.148 - 0.178 0.091 0.106 0.111 0.109 0.110 0.115 - - 0.114 0.118 0.115 0.130 0.161 0.161
M5 0.559 0.558 0.557 0.587 0.586 0.590 0.595 0.598 - 0.635 0.550 0.597 0.657 0.594 0.560 0.687 0.563 0.560 0.653 0.628 0.636 0.624 1.024 1.024
NN5 (Daily) 0.152 0.158 0.155 0.156 0.161 0.169 0.173 0.162 0.242 0.261 0.152 0.149 0.155 0.154 0.145 0.159 0.149 0.147 0.293 0.264 0.294 0.312 0.425 0.425
NN5 (Weekly) 0.084 0.079 0.079 0.091 0.091 0.090 0.091 0.094 0.092 0.111 0.089 0.081 0.087 0.098 0.086 0.090 0.098 0.114 0.092 0.088 0.090 0.090 0.123 0.123
Tourism (Monthly) 0.079 0.085 0.085 0.100 0.103 0.113 0.109 0.095 0.125 0.213 0.078 0.092 0.092 0.104 0.096 0.101 0.092 0.084 0.083 0.090 0.091 0.093 0.104 0.297
Tourism (Quarterly) 0.076 0.070 0.070 0.061 0.069 0.069 0.074 0.068 0.071 0.202 0.075 0.074 0.072 0.082 0.074 0.080 0.077 0.063 0.075 0.070 0.061 0.098 0.119 0.166
Tourism (Yearly) 0.141 0.163 0.163 0.183 0.207 0.200 0.218 0.194 0.163 0.238 0.178 0.136 0.127 0.179 0.102 0.165 0.139 0.154 0.162 0.159 0.176 0.156 0.209 0.209
Traffic 0.243 0.164 0.213 0.256 0.264 0.263 0.264 0.254 0.287 0.256 0.170 0.246 0.233 0.234 0.264 0.250 0.263 0.270 - 0.557 0.905 - 0.362 0.643
Weather 0.136 0.141 0.133 0.139 0.140 0.143 0.150 0.144 - 0.164 0.127 0.143 0.147 0.152 0.151 0.174 0.143 0.144 0.174 0.214 0.217 0.185 0.217 0.217

Geometric Mean (ZS) 0.585 0.699 0.680 0.634 0.649 0.655 0.667 0.675 0.784 1.134 0.644 0.689 0.745 0.876 0.627 0.762 0.659 0.671 0.720 0.821 0.757 0.751 1.000 1.157

Geometric Mean (All) 0.596 0.673 0.662 0.645 0.660 0.666 0.679 0.686 0.806 1.095 0.626 0.683 0.733 0.842 0.637 0.757 0.670 0.681 0.729 0.836 0.794 0.762 1.000 1.153

Table 8. MASE and Timing of TimesFM-ICF and TimesFM-FT on the OOD Benchmark.

Model Total Fine-Tune Time Total Inference Time MASE

TimesFM-ICF Not needed 25 min 0.777

TimesFM-FT (FULL) 84 min 28 sec 0.789
167 min 0.794
250 min 0.779
334 min 0.776
418 min 0.776

TimesFM-FT (LP) 29 min 28 sec 0.807
57 min 0.805
85 min 0.802

113 min 0.802
141 min 0.799

in-series examples. We measured the validation MASE error of TimesFM-ICF with the number of in-series examples
varying from 0-20, and the total number of in-context examples (including randomly selected examples) varying from 1-50.
The resulting heatmap is show in Figure 11. The configuration with smallest validation MASE was 11 in-series examples
and 34 total examples. The geometric mean MASE ratio (averaged over 5 runs with different random examples selected)
was 0.780± .003 (so within a standard error of the MASE value we report in Figure 5).

While we leave to future work a more detailed investigation of how best to chose relevant examples to add to the context, the
results in this paper show that even simple approaches like random selection and selecting examples from the immediate
history are sufficient to obtain accuracy gains with in-context fine-tuning.
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Figure 9. Validation errors during training time suggest that (1) NoPE works better than APE, and (2) NoPE performs on par with other
positional encodings that generalize length.

Figure 10. Scaled MASE (GM) for various in-context example selection strategies for the OOD benchmark: 1) 50 random examples, 2) 45
Random examples and 5 examples from the immediate past history 3) 45 examples chosen at random from similar time-series (according
to DTW distance) and 5 examples from the immediate past history 4) 40 Random examples and 10 examples from the immediate past
history. The error bars are one standard deviation of the evaluations averaged over 10 random seeds.
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Table 9. MAE of TimesFM-ICF against other supervised and zero-shot methods on ETT Rolling Window
Few-shot Zero-shot Task-specific

TimesFM-ICF Moirai-MV (Large) TimesFM (Base) Moirai (Small) Moirai (Base) Moirai (Large) TimesFM-FT iTransformer TimesNet PatchTST Crossformer DLinear SCINet FEDformer
Dataset Horizon

ETTh1

96 0.374 0.403 0.386 0.402 0.402 0.398 0.376 0.405 0.402 0.419 0.448 0.400 0.599 0.419
192 0.400 0.432 0.409 0.419 0.429 0.434 0.401 0.436 0.429 0.445 0.474 0.432 0.631 0.448
336 0.414 0.452 0.424 0.429 0.450 0.474 0.416 0.458 0.469 0.466 0.546 0.459 0.659 0.465
720 0.430 0.701 0.448 0.444 0.473 0.568 0.436 0.491 0.500 0.488 0.621 0.516 0.699 0.507

avg 0.405 0.497 0.417 0.424 0.438 0.469 0.407 0.447 0.450 0.454 0.522 0.452 0.647 0.460

ETTh2

96 0.327 0.341 0.337 0.334 0.327 0.325 0.325 0.349 0.374 0.348 0.584 0.387 0.621 0.397
192 0.371 0.389 0.384 0.373 0.374 0.367 0.372 0.400 0.414 0.400 0.656 0.476 0.689 0.439
336 0.393 0.417 0.417 0.393 0.401 0.393 0.403 0.432 0.541 0.433 0.731 0.541 0.744 0.487
720 0.422 0.507 0.446 0.416 0.426 0.421 0.424 0.445 0.657 0.446 0.763 0.657 0.838 0.474

avg 0.378 0.414 0.396 0.379 0.382 0.377 0.381 0.407 0.497 0.407 0.683 0.515 0.723 0.449

ETTm1

96 0.331 0.536 0.342 0.383 0.360 0.363 0.327 0.368 0.375 0.367 0.426 0.372 0.438 0.419
192 0.364 0.588 0.376 0.402 0.379 0.380 0.358 0.391 0.387 0.385 0.451 0.389 0.450 0.441
336 0.387 0.625 0.402 0.416 0.394 0.395 0.381 0.420 0.411 0.410 0.515 0.413 0.485 0.459
720 0.430 0.688 0.444 0.437 0.419 0.417 0.419 0.459 0.450 0.439 0.589 0.453 0.550 0.490

avg 0.378 0.609 0.391 0.410 0.388 0.389 0.371 0.410 0.406 0.400 0.495 0.407 0.481 0.452

ETTm2

96 0.239 0.355 0.260 0.282 0.269 0.260 0.242 0.264 0.267 0.259 0.366 0.292 0.377 0.287
192 0.283 0.418 0.306 0.318 0.303 0.300 0.284 0.309 0.309 0.302 0.492 0.362 0.445 0.328
336 0.322 0.462 0.345 0.355 0.333 0.334 0.321 0.348 0.351 0.343 0.542 0.427 0.591 0.366
720 0.385 0.499 0.404 0.410 0.377 0.386 0.379 0.407 0.403 0.400 1.042 0.522 0.735 0.415

avg 0.307 0.434 0.329 0.341 0.321 0.320 0.306 0.332 0.332 0.326 0.610 0.401 0.537 0.349

Figure 11. Heatmap of in-context example configurations. The configuration with smallest validation loss has 11 in-series examples and
22 randomly-selected examples.
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