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Abstract

Direct Preference Optimization (DPO) using an001
implicit reward model has proven to be an effec-002
tive alternative to reinforcement learning from003
human feedback (RLHF) for fine-tuning pref-004
erence aligned large language models (LLMs).005
However, the overall preference annotations of006
responses do not fully capture the fine-grained007
quality of model outputs in complex multi-step008
reasoning tasks, such as mathematical reason-009
ing. To address this limitation, we introduce010
a novel algorithm called Step-level Value Pref-011
erence Optimization (SVPO). Our approach012
employs Monte Carlo Tree Search (MCTS) to013
automatically annotate step-level preferences014
for multi-step reasoning. Furthermore, from015
the perspective of learning-to-rank, we train an016
explicit value model to replicate the behavior017
of the implicit reward model, complementing018
standard preference optimization. This value019
model enables the LLM to generate higher re-020
ward responses with minimal cost during infer-021
ence. Experimental results demonstrate that our022
method achieves state-of-the-art performance023
on both in-domain and out-of-domain mathe-024
matical reasoning benchmarks.025

1 Introduction026

Recently, large language models (LLMs) have027

demonstrated remarkable capability across a wide028

range of natural language processing (NLP)029

tasks (OpenAI, 2023; Du et al., 2022; Team et al.,030

2023; Anil et al., 2023; Bai et al., 2023; AI@Meta,031

2024). However, they continue to encounter sig-032

nificant challenges when engaging in complex and033

symbolic multi-step reasoning, particularly in math-034

ematical reasoning (Chen et al., 2022; Azerbayev035

et al., 2023; Yu et al., 2023b; Shao et al., 2024).036

Most existing studies (Wang et al., 2023; Yue037

et al., 2023; Gou et al., 2023; Lu et al., 2024; Liao038

et al., 2024) have significantly improved the math-039

ematical reasoning capabilities through fine-tuning040

Training
Paradigm

Training Data Annotation
from GPT-4

Preference
Pos. Neg.

SFT ✓ ✗ ✓ ✗

DPO ✓ ✓ ✓ Solution-level

SVPO (Ours) ✓ ✓ ✗ Step-level

Table 1: Comparison of different training paradigm.

on high-quality positive supervision data (i.e, cor- 041

rect solutions) annotated by GPT-4. In this process, 042

a large number of negative examples generated 043

by GPT-4 are wasted, and the model blindly imi- 044

tates successful cases without understanding what 045

the wrong solutions are. Therefore, preference 046

learning, such as Direct Preference Optimization 047

(DPO) (Rafailov et al., 2023), has been proposed to 048

align with human preferences and enable the model 049

to distinguish between positive and negative exam- 050

ples. However, most current efforts (Yuan et al., 051

2024; Chen et al., 2024c; Pang et al., 2024) focus 052

on solution-level preferences, relying on humans or 053

GPT-4 to generate and score complete solutions for 054

training. This approach is expensive and often pro- 055

vides only a coarse preference relationship, which 056

does not reflect the natural process by which hu- 057

mans learn to solve mathematical problems. This 058

discrepancy arises because solution-level prefer- 059

ences pursue a solution to its final answer, without 060

informing which step in the negative solution (i.e., 061

yl) led to the mistake. Unlike these approaches, 062

humans tend to identify and analyze their mistakes 063

step by step when learning to solve mathematical 064

problems, thereby preventing repeated errors. In 065

this manner, humans progressively learn to make 066

informed decisions in similar states. 067

Furthermore, while DPO reparameterizes the re- 068

ward function in reinforcement learning from hu- 069

man feedback (RLHF) (Ouyang et al., 2022) to 070

improve simplicity and training stability, it also dis- 071

cards the state-value function V (s), which is used 072

to evaluate the expected return from the current 073
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state. Recent work (Liu et al., 2023; Liao et al.,074

2024) has demonstrated the effectiveness of the075

value model in improving the reasoning capabili-076

ties of policy models, but it is limited by the need077

for additional annotated data or the complexity of078

the reinforcement learning process.079

To address the above issues, we propose Step-080

level Value Preference Optimization (SVPO), a081

novel preference learning framework that focuses082

on more fine-grained step-level preferences via083

Monte Carlo Tree Search (MCTS) to signifi-084

cantly enhance mathematical reasoning capabilities.085

Specifically, as illustrated in Figure 1, step-level086

preferences are autonomously generated through087

the MCTS framework (Silver et al., 2016, 2017).088

This approach not only avoids labor-intensive anno-089

tation but also provides detailed insights into which090

steps may lead to mistakes in yl, as indicated by091

the Q-value at each node. Compared to the forced092

knowledge infusion through GPT-4 annotated data,093

the preferences obtained through self-exploration094

are better aligned with the capabilities of the cur-095

rent LLM, highlighting the reasoning errors that096

the model is more prone to making. Furthermore,097

we integrate an explicit value model with DPO,098

where the value model is designed not only to as-099

sist the policy model (i.e., LLM) in navigating more100

effective reasoning paths but also to steer prefer-101

ence learning. In our work, the value model is102

trained based on both Q-values and step-level pref-103

erence relationships derived from MCTS, thereby104

bypassing the need for additional annotations and105

simplifying the training process.106

We conduct extensive experiments on both in-107

domain and out-of-domain mathematical reasoning108

datasets. Our SVPO significantly outperforms state-109

of-the-art methods, achieving comparable or even110

superior results to GPT-4 on 7B LLMs. The ex-111

periments demonstrate three key points: (1), the112

self-exploration process via MCTS naturally pro-113

vides step-level preference relationships and high-114

lights potential reasoning errors by Q-values; (2),115

compared to solution-level preferences, step-level116

preferences can significantly enhance the reason-117

ing capabilities of the policy model; (3), the value118

model effectively guides the policy model’s prefer-119

ence learning and reasoning.120

2 Background121

In standard RLHF framework, it first learns a re-122

ward model r(x,y) with Bradley-Terry (Bradley123

and Terry, 1952) preference optimization. 124

L(r) = −Ex,yw,yl

[
log σ

(
r(x,yw)− r(x,yl)

)]
(1) 125

where the expectation is taken over a preference 126

dataset that includes tuples of prompts and prefer- 127

ence responses (x,yw ≻ yl). Following this, the 128

policy model π is optimized using the learned re- 129

ward model r and the proximal policy optimization 130

(PPO) algorithm (Schulman et al., 2017). Typically, 131

PPO requires maintaining 4 models in the training 132

pipeline: a reward model r, a policy model π, a 133

reference policy model π′, and a value model V , 134

making it a complex procedure. 135

Instead of learning an explicit reward model, 136

DPO only maintains 2 policy models and minimize 137

the following objective. 138

LDPO(π) = −Ex,yw,yl

[
log σ

(
β log

π(yw|x)π′(yl|x)
π′(yw|x)π(yl|x)

)]
(2) 139

where reference policy π′ is typically a supervised 140

fine-tuning (SFT) model. The implicit reward 141

model is characterized by the log-likelihood ra- 142

tio between two policy models. Although DPO 143

simplifies the training process, it discards the value 144

model, which has been proven effective in improv- 145

ing the reasoning capabilities of the policy model. 146

Additionally, the coarse preferences derived from 147

existing annotation methods also limit its perfor- 148

mance in multi-step reasoning tasks. 149

3 Method 150

In this section, we present our SVPO in detail to 151

further explore the potential of preference learn- 152

ing in multi-step reasoning tasks, particularly in 153

mathematical reasoning. 154

3.1 Step-level Preference Annotation 155

Unlike the traditional annotations that only provide 156

solution-level preferences, we employ the MCTS 157

framework to encourage LLMs to autonomously 158

explore step-level generations as well as infer step- 159

level preferences, as shown in Figure 1. In this 160

manner of self-exploration, we obtain more fine- 161

grained preferences, while the Q-values at each 162

step (tree node) indicate potential reasoning errors 163

that traditional annotations cannot achieve. 164

The policy model for running MCTS is a 165

SFT model of multi-step reasoning, denoted as 166

π(y1:T |x), where x is the prompted question and 167

yt represents the t-th step. In the parlance of rein- 168

forcement learning, the state and action are defined 169
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Figure 1: Comparison of different frameworks: SFT, DPO, and SVPO. The top panel shows the typical pipeline of
SFT and DPO, where GPT-4 does not indicate which step in yl led to the mistake. The bottom panel illustrates the
pipeline of SVPO. Step-level preferences are autonomously generated via MCTS, where Q-values (represented by
node colors) indicate potential reasoning errors.

as st = y<t and at = yt, respectively. In addi-170

tion, the state transition function is deterministic as171

st+1 = ConCat[st,at].172

Our primary objective in annotating preferences173

is to compare the quality of two potential step-level174

generations. Concretely, this can be transformed175

into comparing the Q-values of two possible ac-176

tions for the same previous state:177

Q(st,a
(1)
t ) v.s. Q(st,a

(2)
t ) (3)178

Next, we will introduce the detailed MCTS process179

to automatically derive the Q-values. Specifically,180

we will iterate through the following four opera-181

tions until convergence.182

Selection Given the current tree T , MCTS first183

needs to select a leaf node as a candidate for further184

exploration. By initializing the state s as the root,185

we use the PUCT criterion (Rosin, 2011) until a186

leaf node is encountered.187

argmax
a

Q(s,a) + cpuct

∑
j π(aj |·)
|a|

√
Nparent(a)

1 +N(st,a)
(4)188

where N(·) represents the visit count, and aj is the189

j-th token in the step.190

Expansion and Evaluation Given the state rep-191

resented by the selected leaf node, we sample multi-192

ple possible candidate actions for the next step. To193

encourage diversity, a higher temperature, typically194

ranging from 0.6 to 1, is used.195

For efficient evaluation, we reuse the expanded 196

nodes and simply apply a one-step rollout. If the 197

rollout action is not terminal, we directly set the 198

value of the current leaf node to 0. Otherwise, the 199

final answer in the terminal action is evaluated for 200

equivalence to the ground truth. If the final answer 201

is correct, the reward R will be 1; otherwise, it 202

will be -1. Therefore, the value can be written as 203

follows. 204

V (s) = Iterminal(a) ·R(s,a) (5) 205

where I(·) is the indicator function. 206

Backup For the terminal nodes reached during 207

the rollout and the current leaf node, MCTS per- 208

forms a backward update of the visit count and 209

Q-value for every (s′,a′) along the path from cur- 210

rent node to the root. 211

N(s′,a′)← N(s′,a′) + 1

Q(s′,a′)← Q(s′,a′) +
1

N(s′,a′)
(V (s)−Q(s′,a′))

(6) 212

As shown in Figure 1, we obtain a solution tree 213

T with many branches after running the above 214

MCTS process for several iterations. From this 215

tree, we can extract a partial solution and its two 216

different next steps along with their corresponding 217

Q-values. The step with the larger Q-value will be 218

annotated as the preferred example. 219
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3.2 Step-level Preference Learning220

Given our autonomously generated step-level pref-221

erence annotations, we propose an approach called222

step-level value preference optimization–SVPO. In223

contrast to DPO, we maintain 3 models with an224

additional value model Vϕ. Unlike in PPO, our225

value model is lightweight, achieved by adding an226

auxiliary value head directly over the policy model.227

This value head consists of a single linear layer228

with a tanh activation function, running parallel to229

the linear layer used for token prediction.230

For notation simplification, we denote the anno-231

tated step-level preference instance (st,a
w
t ≻ alt)232

as (swt+1 ≻ slt+1), where the two multi-step genera-233

tions are only different at their last steps. Accord-234

ing to our previous definition, the state st+1 also235

represents the first t steps y1:t .236

Pre-Training In DPO, the policy model is pre-237

trained with a standard SFT loss. In our approach,238

due to the weights sharing architecture between π239

and Vϕ, our pre-training adopts the multi-task loss.240

V̂ (st+1) =

{
R(st,at), at is terminal
Q(st,at), otherwise

L = LSFT + E
[
(Vϕ(st+1)− V̂ (st+1))

2
] (7)241

The mean squared error (MSE) loss is employed to242

pre-train the value head, which is also the pointwise243

approach in ranking algorithm (Liu et al., 2009).244

The label for the value prediction is either the Q-245

value of the intermediate step or the final reward.246

SVPO As indicated by DPO, the difference of im-247

plicit rewards for a pair of preference annotations248

can be re-parameterized as follows:249

∆rπ(s
w
t+1, s

l
t+1) = β log

π(swt+1)π
′(slt+1)

π′(swt+1)π(s
l
t+1)

(8)250

In our SVPO, we aim to optimize both policy and251

value models through preference learning. Accord-252

ingly, we define the explicit value difference.253

∆rϕ(s
w
t+1, s

l
t+1) = Vϕ(s

w
t+1)− Vϕ(s

l
t+1) (9)254

We then propose the following SVPO loss function,255

which includes three different objectives.256

LSVPO = − log σ(∆rπ(s
w
t+1, s

l
t+1))

+ max(0, γ −∆rϕ(s
w
t+1, s

l
t+1))

+
(
∆rπ(s

w
t+1, s

l
t+1)− sg

[
∆rϕ(s

w
t+1, s

l
t+1)

])2

(10)257

where the margin γ ≥ 0 is tunable hyper-parameter,258

and sg[·] denotes the stop gradient operator.259

The first objective essentially replicates the orig- 260

inal DPO loss LDPO in (2), applied to the automati- 261

cally annotated step-level preference data. 262

The second objective is a margin loss for value 263

preference learning, inspired by the pairwise rank- 264

ing algorithm (Liu et al., 2009). Given a non- 265

negative margin γ, minimizing this loss encourages 266

the value of the positive example to be larger than 267

that of the negative one by at least γ. The detailed 268

theoretical analysis can refer to (Chen et al., 2009). 269

The third objective is a regularization term 270

adapted MSE loss, which aims to ensure a simi- 271

lar preference scale between the implicit reward 272

model and our proposed explicit value model. In 273

this loss, we use ∆rϕ as the targeted label and de- 274

tach its gradient to prevent model degeneration. 275

Analysis of Regularization A natural question 276

regarding the regularization term is whether design- 277

ing the value output via tanh can match the reward 278

defined in the log-likelihood ratio. We can first 279

derive the possible theoretical matching range. 280

∆rϕ ∈ [−2, 2]

⇒π(yw)π′(yl)

π′(yw)π(yl)
= e∆rπ/β ∈ [e−2/β , e2/β ]

(11) 281

Therefore, the range is determined by β. 282

(1) limβ→0[e
−2/β, e2/β] = (0,+∞): when β 283

is small in DPO or PPO, it can prevent the pol- 284

icy model from deviating too far. For example of 285

the commonly used β = 0.1, the allowed match- 286

ing range becomes [e−20, e20], which is actually 287

equivalent to (0,+∞) in the context of numerical 288

precision. In other words, for smaller β, our regu- 289

larization loss can easily match the scale between 290

implicit and explicit preferences. 291

(2) limβ→∞[e−2/β, e2/β] = {1}: when β be- 292

comes large, the allowed matching range will grad- 293

ually center around 1, forcing the distance between 294

π and π′ to be closer. In other words, for larger 295

β, our regularization loss can also play the role of 296

preventing the policy model from deviating too far. 297

3.3 Step-level Inference 298

Even without the value model, one can still di- 299

rectly apply greedy decoding to the policy model. 300

However, incorporating the value model and an as- 301

sociated reranking criterion allows step-level beam 302

search (SBS) (Yu et al., 2023a; Chen et al., 2024a) 303

to effectively select the preferred solution path in 304

mathematical reasoning, all while incurring a lower 305

computational cost compared to MCTS. Since our 306
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value preference learning is optimized at the step307

level and utilizes ranking loss, our approach seam-308

lessly integrates with the inference framework of309

step-level beam search.310

4 Experiments311

4.1 Experimental Setup312

We validate the applicability of our frame-313

work across various base models, including314

math domain-specific pre-trained models such315

as DeepseekMath-Base-7B (Shao et al., 2024),316

as well as general pre-trained models such as317

Llama3 (AI@Meta, 2024). In this study, we mainly318

focus on how to improve mathematical reasoning319

skills through step-level preference learning. There-320

fore, we obtain the corresponding multi-step SFT321

models using 27k MARIO seed data (Liao et al.,322

2024) in XML format, as detailed in Appendix A.5.323

Step-level Preference Annotation via MCTS324

Given a multi-step SFT model for mathemat-325

ical reasoning, we only extract the 15k ques-326

tions from the GSM8K (Cobbe et al., 2021) and327

MATH (Hendrycks et al., 2021) datasets. Follow-328

ing the methodology described in Section 3.1, we329

employ the MCTS framework to automatically gen-330

erate both multi-step solutions and step-level pref-331

erences. This process requires no supervision from332

either humans or GPT-4. Particularly, for each333

question, we continue constructing trees until we334

obtain four complete and correct multi-step solu-335

tions or until the number of trees reaches 10. We336

then extract step-level preferences from the trees in337

a top-down manner, maintaining an approximate ra-338

tio of 1:4 between positive and negative examples.339

Consequently, we acquire a total of 56k complete340

positive instances yw. Additional details are pro-341

vided in Appendix A.2.342

Test sets The in-domain test sets from GSM8K343

and MATH share the same distribution as our344

training data. Meanwhile, we evaluate our345

final checkpoint on the out-of-domain (OOD)346

datasets GaoKao2023 (Liao et al., 2024) and OCW-347

Courses (Lewkowycz et al., 2022). These OOD348

test sets are even more challenging than the MATH349

dataset but inherently require multi-step reasoning.350

Baselines For commercial and popular open-351

source models, we compared our approach with352

OpenAI’s ChatGPT and GPT-4 (OpenAI, 2023),353

Llama2 (Touvron et al., 2023), and Llemma (Azer-354

bayev et al., 2023) using the Chain of Thought355

(CoT) (Wei et al., 2022) and Program-Aided Lan- 356

guage (PAL) (Gao et al., 2023). Additionally, 357

we benchmarked our method against recent high- 358

performing fine-tuned mathematical LLMs, in- 359

cluding MAmmoTH (Yue et al., 2023), Math- 360

Coder (Wang et al., 2023), ToRA (Gou et al., 2023), 361

MARIO (Zhang et al., 2024), MathGenie (Lu et al., 362

2024), DeepSeekMath-Instruct (Shao et al., 2024), 363

and AlphaMath (Chen et al., 2024a). Similar to 364

our approach, these models leverage a Python code 365

interpreter for numerical calculations. Further im- 366

plementation details are provided in Appendix A. 367

4.2 Main Results 368

For a fair comparison, in Table 2, we report the 369

in-domain and out-of-domain results of our SVPO 370

based on DeepSeekMath-Base-7B, which is con- 371

sistent with the state-of-the-art methods, such as 372

DeepSeekMath-Instruct (Shao et al., 2024) and Al- 373

phaMath (Chen et al., 2024a). 374

Greedy Decoding Without the assistance of a 375

value model, we first evaluate the policy model us- 376

ing greedy decoding, which is comparable to most 377

related works. The main conclusion is that for more 378

difficult problems requiring more reasoning steps, 379

our approach shows greater advantages. As the dif- 380

ficulty increases for GSM8K, MATH, GaoKao2023 381

(GK2023), and OCWCourses (OCW), our ap- 382

proach achieves improvements of -2.0% / +2.1% / 383

+3.2% / +16.2% over the previous state-of-the-art, 384

DeepSeekMath-Instruct. 385

We slightly lag behind in GSM8K, which could 386

be attributed to two possible reasons. First, 387

GSM8K usually requires single step solution and 388

less logical reasoning. Second, the diversity of our 389

training dataset is limited. While DeepSeekMath 390

utilized 776k high-quality supervised data, we only 391

autonomously generated 56k complete positive ex- 392

amples based on 15k questions. 393

SBS With the value model optimized by step- 394

level value preference learning, we can utilize the 395

computationally efficient step-level beam search 396

(SBS) to investigate the role of the value model 397

in facilitating mathematical reasoning. Compared 398

to greedy decoding, the value model significantly 399

assists the policy model in navigating more effec- 400

tive reasoning paths, rather than solely relying on 401

prior probabilities. Compared with AlphaMath, our 402

SVPO achieves an average improvement of 5.3% 403

/ 3.7% on B1 = 1 / B1 = 3, respectively, which 404

demonstrates the effectiveness of our approach. We 405
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Model Size Tool Zero
Shot

In-Domain OOD
GSM8k MATH GK2023 OCW

Proprietary Models

GPT-4 - ✗ ✗ 92.0 42.5 - -
GPT-4 (PAL) - ✓ ✗ 94.2 69.7 43.6 30.1
ChatGPT - ✗ ✗ 80.8 35.5 - -
ChatGPT (PAL) - ✓ ✗ 78.6 38.7 - -

Open-Source Models

Llama-2 7B ✗ ✗ 13.3 4.1 - 3.7
CodeLlama 7B ✗ ✗ 10.5 4.5 - 4.7
CodeLlama(PAL) 7B ✓ ✗ 27.1 17.2 - -
Llemma 7B ✗ ✗ 36.4 18.0 - 7.7
Llemma (PAL) 7B ✓ ✗ 40.1 21.5 - -
DeepSeekMath-Base(PAL) 7B ✓ ✗ 66.9 31.4 - -

Tuning Models

MAmmoTH-Coder 34B ✓ ✓ 72.7 43.6 25.2 14.0
MathCoder 34B ✓ ✓ 81.7 46.1 - -
ToRA-Code 34B ✓ ✓ 80.7 50.8 31.7 5.5
MARIO 34B ✓ ✓ 78.2 53.5 42.6 30.2
MathGenie 34B ✓ ✓ 84.1 55.1 - -

Llama-2 SFT 7B ✗ ✓ 41.3 7.2 - -
Llama-2 RFT 7B ✗ ✓ 51.2 - - -
MAmmoTH-Coder 7B ✓ ✓ 59.4 33.4 15.3 11.0
MathCoder 7B ✓ ✓ 67.8 30.7 - -
ToRA 7B ✓ ✓ 68.8 40.1 19.5 2.6
ToRA-Code 7B ✓ ✓ 72.6 44.6 23.9 4.8
MARIO 7B ✓ ✓ 74.5 48.3 34.5 21.7
MathGenie 7B ✓ ✓ 76.0 48.3 - -
DeepSeekMath-Instruct 7B ✓ ✓ 83.7 57.4 43.9 18.0
AlphaMath 7B ✓ ✓ 73.5 53.6 40.5 26.1

+ SBS (B1 = 1) ✓ ✓ 81.1 62.8 46.2 30.5
+ SBS (B1 = 3) ✓ ✓ 84.1 66.3 51.4 33.1

SVPO (Ours) 7B ✓ ✓ 81.7 59.5 47.1 34.2
+ SBS (B1 = 1) ✓ ✓ 85.9 64.4 54.6 36.8
+ SBS (B1 = 3) ✓ ✓ 86.5 67.2 55.3 40.8

Table 2: Main results. The best results for greedy decoding and step-level beam search (SBS) are highlighted in
bold and blue box , respectively. By default, we set the beam size B2 = 5 in SBS.

will further analyze the value model in subsequent406

ablation studies. It is worth noting that with the407

help of the value model, our SVPO on 7B LLMs408

achieves comparable or even better results than409

GPT-4 in the challenging datasets.410

4.3 Analysis 1: Policy Model411

In this section, we will investigate the impact of412

step-level preferences on the policy model and ex-413

plore the performance of different base models in414

our SVPO framework.415

Ablation Study of Training Paradigm As 416

shown in Table 3, we compare the performance 417

of the policy model under different preference opti- 418

mization. Our principal findings are as follows: (1) 419

Compared to SFT, which blindly imitates positive 420

examples yw, preference learning encourages the 421

policy model to distinguish between yw and yl, 422

thereby enhancing its reasoning capability. How- 423

ever, solution-level DPO is limited by its coarse 424

preference relationships, which do not indicate 425

which specific step in the negative solutions yl 426
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Training
Paradigm

In-Domain OOD
GSM8k MATH GK2023 OCW

SFT 77.7 56.9 43.1 27.5
DPO† 78.9 57.1 45.4 28.3

SVPO (Ours) 81.7 59.5 47.1 34.2
- w/o regularization 80.2 58.3 46.2 32.1

Table 3: Ablation study of training paradigm on policy
model. †Solution-level DPO.

Model In-Domain OOD
GSM8K MATH GK2023 OCW

Llama3-8B + SFT 75.9 46.5 33.2 10.3
Llama3-8B-Instruct 79.6 30.0 - -
Llama3-70B-Instruct 93.0 50.4 - -

Llama3-8B + SVPO 81.3 48.8 35.6 11.1
+ SBS (B1 = 1) 84.3 54.2 40.0 13.3
+ SBS (B1 = 3) 85.5 56.3 43.7 16.6

Table 4: Performance comparison of Llama3 series.

led to the mistakes. (2) Compared to solution-level427

DPO, our proposed step-level preferences can sig-428

nificantly enhance the reasoning performance of429

the policy model on both in-domain and out-of-430

domain datasets. This can be attributed to the more431

granular information of reasoning steps reflected432

by Q-value in the Monte Carlo tree. (3) The value433

model can further guide the optimization of the434

policy model, as evidenced by the performance435

decreases when the regularization term is removed.436

Discussion of Different Base Models We fur-437

ther investigate the performance of the general pre-438

trained model, Llama3 (AI@Meta, 2024), within439

our framework. As shown in Table 4, we have440

the following main findings: (1) Compared to441

DeepSeekMath-Base-7B in Table 2, the overall442

performance of the general pre-trained model443

Llama3 is relatively insufficient. This is because444

DeepSeekMath-Base is pre-trained on a substan-445

tial math-related corpus and is believed to process446

more necessary mathematical knowledge, resulting447

in higher quality preference data. (2) Our SVPO448

outperforms the instruction-tuned Llama3 and ap-449

proached the performance of the 70B model. Fur-450

thermore, compared to the SFT model, we achieved451

significant improvements, demonstrating the effec-452

tiveness and applicability of our approach.453

4.4 Analysis 2: Value Model454

In this section, we further investigate the impact of455

value loss (mainly including the MSE loss in Eq. (7)456

Method SBS In-Domain OOD
GSM8K MATH GK2023 OCW

SVPO (Ours)
B1 = 1 85.9 64.4 54.6 36.8
B1 = 3 86.5 67.2 55.3 40.8

w/o Margin loss
B1 = 1 85.4 62.5 49.6 34.9
B1 = 3 85.2 63.7 52.2 37.5

w/o MSE loss
B1 = 1 83.8 60.5 52.2 30.8
B1 = 3 82.1 56.7 45.7 28.6

Table 5: Ablation study of value model.

and Margin loss in Eq. (10) on performance and 457

evaluate the accuracy of identifying preferences. 458

Ablation Study of Value Loss As shown in Ta- 459

ble 5, we compare the performance of step-level 460

beam search in different setups for value loss. Our 461

principal findings are as follows: (1) When mar- 462

gin loss is omitted, which describes the local re- 463

lationships in preference data, the performance 464

will decrease. As explained in the method, this 465

can be attributed to the ability of margin loss to 466

further distinguish the value of candidate actions. 467

(2) MSE loss is crucial for the value model, as it 468

provides global information for each node in the 469

Monte Carlo tree. Relying solely on preference 470

relationships by margin loss may cause the value 471

model to lose the ability to screen cousin nodes 472

(i.e., candidate actions at the same level but with 473

different previous states). This explains why the 474

performance of B1 = 3 is significantly lower than 475

that of B1 = 1 when MSE loss is omitted. In 476

summary, MSE loss and margin loss provide com- 477

plementary information, and their combined effect 478

leads to a better value model. 479

Win Rate of Preference We conduct a further in- 480

vestigation into the accuracy of the policy and value 481

model by Eq. (8) and (9) in assessing preference 482

relationships. We randomly select 200 questions 483

from the test sets of GSM8K and MATH respec- 484

tively, and utilize MCTS to build preferences as 485

the test set in the win rate. As shown in Figure 2, 486

Policy SVPO
w/o Margin

SVPO
w/o MSE

SVPO
(Ours)

90

95

100

A
cc

ur
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(a) Training Set
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SVPO
w/o MSE

SVPO
(Ours)
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(b) Test set

Figure 2: Win Rate of Preference.

7



we have the following main findings: (1) The pref-487

erence relationships in training sets can be easily488

mastered, as evidenced in Figure 2a, where the489

accuracy of both “Policy” and “SVPO w/o MSE”490

significantly surpasses that of others. However,491

the poor performance of “Policy” on the test set492

indicates that the implicit reward model (i.e., pol-493

icy model) is highly susceptible to overfitting. (2)494

Compared to the implicit reward model, our pro-495

posed explicit value model is relatively stable even496

if it only learns preference relationships by margin497

loss. This further demonstrates the effectiveness of498

our value model.499

4.5 Sensitivity of β and γ500

GSM8K MATH GK2023 OCW
20

40
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80

A
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(b) Margin γ

Figure 3: Hyperparameter sensitivity analysis.

β in Eq. (8) controls the implicit reward model,501

while the margin γ in Eq. (10) controls the explicit502

value model. Thus, we investigate the impact of503

the two key hyper-parameters.504

Beta β Following DPO (Rafailov et al., 2023),505

we investigate the impact of different β on the pol-506

icy model, as shown in Figure 3a. We observe507

that the optimization of the policy model remains508

relatively stable across different β. This can be509

attributed to the regularization term, as analyzed in510

Section 3.2. The explicit value model can prevent511

the policy model π from deviating too far from the512

reference policy model π′ through the regulariza-513

tion term, thereby improving the stability.514

Margin γ As shown in Figure 3b, we evaluate515

the results of SBS in MATH with varying γ be-516

tween [0, 1]. We observe that an excessively large517

γ will cause the value model to degenerate. This518

can be attributed to the fact that a large margin γ519

compresses the predicted values towards either -1520

or 1, making it difficult for the value model to cor-521

rectly differentiate between candidate actions at the522

same level in SBS. Moreover, setting γ to 0 also523

leads to a performance degradation, indicating that524

it is not the optimal target margin. Although with525

γ = 0 the value model still maintains the value526

preference learning, an appropriate gamma is con- 527

ducive to increase the confidence in scoring and 528

enhances the model’s generalization. 529

5 Related Work 530

Mathematical Reasoning Recent work (Gou 531

et al., 2023; Liao et al., 2024; Lu et al., 2024; Shao 532

et al., 2024) has achieved remarkable progress in 533

mathematical reasoning. However, most efforts fo- 534

cus solely on supervised fine-tuning, which makes 535

LLMs blindly imitate positive solutions without 536

understanding what the wrong solutions are. 537

Preference Learning Recently, preference learn- 538

ing (Rafailov et al., 2023; Ethayarajh et al., 2024; 539

Chen et al., 2024b) has attracted significant at- 540

tention due to its ability to align with human 541

preferences and distinguish between positive and 542

negative examples. However, due to focusing 543

solely on coarse solution-level preferences, most 544

existing work is limited in performance on multi- 545

step reasoning tasks, particularly in mathemati- 546

cal reasoning. Compared to previous work, our 547

SVPO autonomously annotates step-level prefer- 548

ences through MCTS, and reflects potential rea- 549

soning errors through the Q-values at each step, 550

thereby significantly improving the performance of 551

preference learning on multi-step reasoning tasks. 552

Value Model The value model is derived from 553

the state-value function in reinforcement learning 554

(RL), which is used to evaluate the expected return 555

of the current state. Recent work (Liu et al., 2023) 556

has found that the value model can effectively en- 557

hance the reasoning capability of the policy model 558

but limited by the complex training process of RL. 559

In our study, we propose step-level value prefer- 560

ence optimization, which achieves higher quality 561

value models in a simpler training process. 562

6 Conclusion 563

In this study, we introduce Step-level Value Pref- 564

erence Optimization (SVPO) by extending Direct 565

Preference Optimization (DPO) through the inte- 566

gration of a lightweight step-level value model. 567

The training framework of SVPO is much more 568

computationally efficient compared to Proximal 569

Policy Optimization (PPO). Extensive experimen- 570

tal results demonstrate that for tasks involving 571

multi-step mathematical reasoning, our approach 572

significantly enhances performance, particularly 573

with the support of the proposed value model. 574
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Limitations575

First, we consider our work, SVPO, as a trade-off576

approach between DPO and PPO, offering a rela-577

tively lower computational cost. Beyond being an578

Empirical Method in Natural Language Process-579

ing (EMNLP), the theoretical foundation of margin580

loss in the area of learning-to-rank has been exten-581

sively discussed in (Chen et al., 2009), and we also582

theoretically analyze how the regularization loss in583

LSVPO impacts the preference learning of the policy584

model. Nevertheless, in the future work, we need585

to establish a more solid theoretical foundation to586

connect the implicit reward model and the explicit587

value model.588

Secondly, although our method has achieved ex-589

cellent performance in multi-step reasoning, par-590

ticularly in mathematical reasoning, there is still591

an issue that deserves further exploration in fu-592

ture work: whether our SVPO can enhance math-593

ematical reasoning capabilities in the context of594

multimodal data. This may include mathematical595

reasoning from multiple combinations of modal-596

ities, such as language, images, tables, or audio,597

which is an increasingly prevalent and demanding598

type of reasoning in real-world scenarios. In future599

work, we plan to extend our SVPO to accommodate600

multimodal scenarios.601

Additionally, although in this study we integrate602

the step-level value preference optimization into603

DPO as an example, our approach is broadly appli-604

cable to various types of preference learning algo-605

rithms (Ethayarajh et al., 2024; Chen et al., 2024b;606

Hong et al., 2024). In future work, we will ex-607

plore incorporating our SVPO into these preference608

learning algorithms.609

Ethics Statement610

This work primarily focuses on mathematical rea-611

soning tasks, and our contributions are entirely612

methodological. Therefore, this work does not have613

direct negative social impacts. For the experiments,614

we have open-sourced the code and utilized openly615

available datasets commonly used in previous re-616

search, without any sensitive information to our617

knowledge. The authors of this work adhere to the618

ACL ethical guidelines, and the application of this619

work does not present any apparent issues that may620

lead to ethical risks.621
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A Implementation Details844

A.1 Detailed Setup845

For step-level preference annotation via MCTS,846

we set cpuct to 1.25, set the temperature within the847

range of 0.6 to 1, limit the maximum tree depth848

to 8, set each node to expand 5 child nodes, and849

simulate at most 60 times. For each question in850

training set, we construct at most 10 trees. Fol-851

lowing Chen et al. (2024a), we define two types of852

steps in MCTS, C-step and A-step. The C-step is853

responsible for code execution and consists of text854

analysis, code snippets, and execution results. The855

A-step is responsible for summarizing the answers,856

comprising text analysis and the final answer. We857

organize these two steps in the following XML858

format:859

C-step

<step>
<p>
{textual analysis}
</p>
<code>
{code snippets}
</code>
<p>
{code output}
</p>
</step>

860

A-step

<step>
<p>
{textual analysis}
</p>
<p>
Final Answer: {predicted answer}
</p>
</step>

861

For Pre-training via SFT, we convert the pre-862

trained model into a corresponding multi-step SFT863

model through the pre-training loss in Eq. (7). We864

set the learning rate to 2e-5, the batch size to 512,865

fix the MSE weight to 0.01, and train for 10 epochs.866

We employ the AdamW optimizer (Loshchilov and867

Hutter, 2019) and a cosine learning rate scheduler,868

setting the warm-up rate to 0.03.869

For SVPO, we set β to 0.1, γ to 0.5, learning870

rate to 5e-6, batch size to 512, and train for 1 epoch.871

Since preference learning may easily degenerate872

model, it is common practice to incorporate SFT873

loss in RLHF or DPO training (Ouyang et al., 2022;874

Pang et al., 2024) to mitigate this issue. Thus, we875

Dataset OOD? # Training # Test

GSM8K In-Domain 7473 1319
MATH In-Domain 7500 5000
GaoKao2023 OOD - 385
OCWCourses OOD - 272

Table 6: Datasets Statistics

also use the pre-training loss including standard 876

SFT loss and MSE value loss in preference opti- 877

mization stage. Specifically, we fixed the weights 878

for the margin loss and MSE loss at 0.25, the 879

weight for the regularization term at 0.001, and the 880

weight for the SFT loss at 5. In addition, we also 881

employ the AdamW optimizer (Loshchilov and 882

Hutter, 2019) and the cosine learning rate sched- 883

uler with a warmup rate of 0.03. 884

A.2 Datasets Details 885

Mathematical Reasoning Benchmarks Table 6 886

provides a detailed overview of the mathemati- 887

cal reasoning benchmarks. The training and test 888

sets are divided in accordance with previous stud- 889

ies (Cobbe et al., 2021; Hendrycks et al., 2021). 890

GSM8K (Cobbe et al., 2021) is a dataset fo- 891

cused on multi-step mathematical reasoning, fea- 892

turing high-quality, diverse grade school math 893

word problems crafted by human authors. The 894

MATH dataset (Hendrycks et al., 2021) con- 895

tains complex competitive mathematics problems. 896

GaoKao2023 (Liao et al., 2024) includes math 897

problems from the 2023 Chinese National Col- 898

lege Entrance Examination, the 2023 American 899

Mathematics Competitions, and the 2023 Ameri- 900

can College Testing. OCWCourses (Lewkowycz 901

et al., 2022) is a compilation of 272 STEM prob- 902

lems targeted at the undergraduate level, most of 903

which require multi-step reasoning. 904

Preference Test set in the Win Rate In Sec- 905

tion 4.4, we evaluate the accuracy of the policy 906

model and the value model in assessing preferences. 907

These models can accurately assess the preferences 908

on the training set, as shown in Figure 2a. To ac- 909

curately evaluate the generalization of the value 910

model, we randomly sample 200 questions from 911

the test sets of GSM8K and MATH respectively, 912

and constructed total 10633 preference pairs using 913

MCTS. 914
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Step-level Preference Pairs Construction in915

Monte Carlo tree After step-level preferences916

annotation via MCTS, we need to filter the prefer-917

ence pairs from the Monte Carlo tree for training.918

Given step-level beam search, we need to consider919

the preference relationships among sibling nodes920

(at the same layer with same previous state), cousin921

nodes (at the same layer but with different previ-922

ous states), and non-same-level terminal nodes (at923

different layer with terminal nodes).924

Algorithm 1 outlines the process of our step-925

level preference pairs construction. First, we label926

each node along the path based on the correctness927

of the terminal node (Lines 2-4). Then, we iter-928

atively construct step-level preference pairs in a929

top-down manner (Lines 5-23). In this process,930

we can specify the quantities of the three different931

types of preference relationships. In this study, we932

set the number of sibling nodes to 2, the number of933

cousin nodes and non-same-level terminal nodes to934

1, respectively. This maintains an approximate ratio935

of 1:4 between positive and negative examples.936

A.3 Policy-value model Details937

... </step>

...

...

Linear Layer ( )

tanh softmax

Linear Layer ( )

LLM ( )

Figure 4: An overview of our policy-value model. d
represents the dimension of the hidden state in LLM,
and v represents the size of the vocabulary.

As shown in Figure 4, the value model Vϕ and938

the LLM policy model πθ are the same model but939

with different final layers. This design implies that940

these two models, πθ and Vϕ, share the majority941

of their parameters. In practical implementation of942

the value loss, the value is only predicted on the943

last token of current reasoning step, representing944

the step-level preference.945

A.4 Experiment Environments946

All experiments were conducted on Ubuntu 22.04947

equipped with 8 * NVIDIA A100 GPUs. Our code948

mainly depends on Python 3.11 and PyTorch 2.2.1.949

We use our customized Llama Factory (Zheng 950

et al., 2024) as the training framework and our 951

customized vLLM (Kwon et al., 2023) as the in- 952

ference framework1. We trained all models with 953

DeepSpeed ZeRO Stage2 (Rajbhandari et al., 2021) 954

and Flash-Attention 2 (Dao, 2023). The pre-trained 955

LLMs are sourced from HuggingFace2. 956

A.5 Prompt Example of our XML format 957

To train the SFT model in executing mathemati- 958

cal reasoning, we utilize an XML format along- 959

side zero-shot learning. This approach is adopted 960

because the math-related pre-training corpora are 961

predominantly harvested from the Internet, where 962

HTML tags serve to distinguish various types of 963

content, including text, equations, and code snip- 964

pets. In this work, each solution consists of both 965

text analysis and code snippet, as shown in Fig- 966

ure 5. 967

1We will release our customized framework in the supple-
mentary material.

2https://huggingface.co
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Algorithm 1 Step-level Preference Pairs Construction

Require: Monte Carlo trees T , prompted question x.
Ensure: Step-level Preference Pairs P .

1: P = [ ] ▷ Initialization
2: for terminal node n in T do
3: if n has correct final answer then
4: Backpropagation labels each node as correct along the path from root to n
5: n← root node in T
6: while n is non-terminal node do ▷ In a top-down manner
7: nw ← argmaxchild∈n.children{Q(child)|child is correct node.} ▷ Ensure yw is a correct solu-

tion
8: yw ← partial solution from root to nw in T
9: ns ← randomly select a non-correct node in n.children ▷ Pairs in sibling nodes

10: if ns ̸= ∅ then
11: yl ← partial solution from root to ns in T
12: Add (x,yw,yl) to P
13: nc ← randomly select a non-correct node at the same level of nw ▷ Pairs in cousin nodes
14: if nc ̸= ∅ then
15: yl ← partial solution from root to nc in T
16: Add (x,yw,yl) to P
17: nt ← randomly select a non-correct terminal node at the different level of nw ▷ Pairs in non-

same-level terminal nodes
18: if nt ̸= ∅ then
19: yl ← partial solution of nt in T
20: Add (x,yw,yl) to P
21: if ns = nc = nt = ∅ then
22: (Optional) Find yl in another tree T ′. ▷ If no negative example found in all trees, all possible

generated solutions are correct. No preference learning needed for this question.
23: n← nw ▷ Go to next layer
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An example of our SFT XML format:

<question>Haley grows at the rate of 3 inches every year. If she is currently 20 inches tall,
what will be her height after 10 years?</question>
<step>
<p>
To calculate Haley's height after 10 years, I need to add 10 times the growth rate of 3 inches to
her current height.
</p>
<code>
```python
current_height = 20
growth_rate = 3
years = 10
future_height = current_height + (growth_rate * years)
print(future_height)
```
</code>
<output>
50
</output>
</step>
<step>
<p>
I have calculated Haley's height after 10 years. Haley will be 50 inches tall
after 10 years.
</p>
<p>
Final Answer: $50$
</p>
</step>

Figure 5: An example of our SFT XML format. The text in black is prompt, and the text in red is model generation.

15


	Introduction
	Background
	Method
	Step-level Preference Annotation
	Step-level Preference Learning
	Step-level Inference

	Experiments
	Experimental Setup
	Main Results
	Analysis 1: Policy Model
	Analysis 2: Value Model
	Sensitivity of  and 

	Related Work
	Conclusion
	Implementation Details
	Detailed Setup
	Datasets Details
	Policy-value model Details
	Experiment Environments
	Prompt Example of our XML format


