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ABSTRACT

We consider the problem of model multiplicity in downstream decision-making, a
setting where two predictive models of equivalent accuracy cannot agree on what
action to take for a downstream decision-making problem. Prior work attempts
to address model multiplicity by resolving prediction disagreement between mod-
els. However, we show that even when the two predictive models approximately
agree on their individual predictions almost everywhere, these models can lead the
downstream decision-maker to take actions with substantially higher losses. We
address this issue by proposing a framework that calibrates the predictive mod-
els with respect to both a finite set of downstream decision-making problems and
the individual probability prediction. Specifically, leveraging tools from multi-
calibration, we provide an algorithm that, at each time-step, first reconciles the
differences in individual probability prediction, then calibrates the updated mod-
els such that they are indistinguishable from the true probability distribution to the
decision-makers. We extend our results to the setting where one does not have
direct access to the true probability distribution and instead relies on a set of i.i.d
data to be the empirical distribution. Furthermore, we generalize our results to
the settings where one has more than two predictive models and an infinitely large
downstream action set. Finally, we provide a set of experiments to evaluate our
methods empirically. Compared to existing work, our proposed algorithm creates
a pair of predictive models with improved downstream decision-making losses
and agrees on their best-response actions almost everywhere.

1 INTRODUCTION

In many applications, individual probability prediction is central to decision-making. For example,
in the Job Training Partnership Act (JTPA) training program (Bloom et al., 1997), a decision maker
may predict whether an individual is employed before assigning them to training; or in medical trials,
a doctor may predict the probability that the patient has contracted a disease before recommending
them a treatment. Since the hospital does not know the true probability that a particular patient is
ill, they can only evaluate the individual probability predictions through its average outcome over a
sufficiently large sample set. For a predictive task, the standard convention is to choose the model
that maximizes accuracy. However, previous work has shown that it is common to have multiple
predictive models with similar accuracy but substantially different properties (Chen et al., 2018;
Rodolfa et al., 2020; D’Amour et al., 2022). This phenomenon is called predictive (or model)
multiplicity, a line of work studied by Breiman (2001); Marx et al. (2020); Black et al. (2022).

In predictive multiplicity scenarios, decision-makers may have multiple models with similar accu-
racy but conflicting predictions on individual samples. In our motivating example (Figure 1), the
hospital has access to two models f1 and f2 predicting the probability of disease which are equally
accurate on average over the entire population in terms of squared loss, but their predictions on a
subpopulation may vastly differ. This disagreement in outcome prediction may have a disparate
impact on the subpopulation if the hospital has to choose one predictor over the other to make im-
portant downstream decisions. For example, they might select a treatment based on the predicted
probability that a patient has contracted a disease. Formally, given a predictive model f and a
decision-making loss function ℓ(y, ·), the decision-maker wants to choose a best-response action,
i.e., the action a that minimizes Ey∼f [ℓ(

′, a)]. When two models f1 and f2 have nearly equivalent
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accuracy but lead to different best-response actions, the decision-maker would not be able to identify
which best-response action to take for individual patients. While predictive multiplicity offers great
flexibility for the decision-maker in the model selection process, it also places an additional bur-
den on the decision-maker to correctly navigate such freedom and justify how they use a predictive
model to make downstream decisions.

Roth et al. (2023) address model multiplicity by resolving prediction disagreements using techniques
from multi-calibration (Hebert-Johnson et al., 2018), which aligns the mean of estimated probability
with data across diverse reference groups. Specifically, Roth et al. (2023) provide a procedure
called “Reconcile” that updates the predictive models to minimize their disagreements and improve
the accuracy of each model. However, we show simple settings where the reconciled predictions
from Roth et al. (2023) can lead the downstream decision-makers to take actions with substantially
higher losses. We visually demonstrate this scenario in Figure 1. For a more detailed discussion on
the limitation of prior work, see Section 2.4 and Appendix B. This motivates the study of how to
reconcile predictive multiplicity with an explicit focus on its impact on downstream decisions.

Figure 1: An illustrative example of the drawback in a prior work’s attempt at addressing model mul-
tiplicity. Consider a stylized binary classification problem on a dataset with 8 units (patients) and
the hospital deciding between two actions (treatment vs. no treatment). Treatment is assigned if the
predicted probability is above 1/2. Left: The true probability that each patient is labeled ‘ill’. Mid-
dle: The predicted probability that each patient is ill according to f1 (white) and f2 (blue). While
these two predictors have almost the same accuracy (in squared loss), their individual probability
predictions for patients 3 and 6 vastly differ. Right: After running the Reconcile procedure of Roth
et al. (2023), the individual probability predictions agree everywhere. However, the best-response
action of unit 3 changed from correct (no treatment) to incorrect (treatment). If the hospital uses the
updated f1 to make their treatment recommendation, they would incur more loss than before had
they not updated the predictor using Reconcile. This example is formalized in Theorem 2.7.

In this work, our goal is to leverage tools from multi-calibration (Hebert-Johnson et al., 2018) to alle-
viate the model multiplicity issue in high-dimensional decision-making tasks for multiple decision-
makers with multiple decision-making loss functions. Specifically, we show how the decision-maker
can update the input predictors so they approximately agree on (1) individual predictions and (2)
best-response actions for each individual in the downstream decision-making task. Our procedure
ensures that the number of disagreements in best-response actions decreases over time, which en-
ables the decision-makers to confidently use either of the updated predictors to justify their decisions.

Overview of Paper. We study the problem of reconciling model multiplicity for multiple down-
stream decision-making tasks, where the decision-makers have multiple predictive models with
nearly equivalent squared loss but may lead to vastly different best-response actions for a signif-
icant number of individuals in the population. Our key contributions are summarized as follows.

• In Section 2, we formulate the problem of model multiplicity from the perspective of the
decision-makers. In Section 2.4, we formalize our motivating example in Figure 1 and
show that it is insufficient to only update two predictive models so that they have improved
squared loss and nearly agree on their individual predictions almost everywhere.

• In Section 3, we introduce an algorithm, ReDCal, that outputs predictive models that are (1)
calibrated to a finite set of downstream decision-making tasks and (2) approximately agree
on their predictions and best-response actions almost everywhere for each downstream task.
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• In Section 3.2, we extend our analysis to the setting where one does not have direct access
to the true distribution and instead only has a validation dataset with samples drawn i.i.d
from the underlying distribution. We show that the guarantees obtained using the empirical
distribution can be translated to the unknown underlying distribution.

• In Section 3.3, we extend our analysis to the setting where one has k > 2 predictors that
need to be reconciled. We provide an efficient ”contestation” algorithm that only requires
approximately k times more samples than the base model that reconciles 2 predictors. In
Appendix F, we further generalize our result to the setting where the action space of the
downstream decision-making tasks is infinitely large.

• Finally, in Section 4, we empirically evaluate the performance of the proposed algorithm on
real-world datasets and show our improvement over the benchmark prior work in resolving
disagreement in downstream decision-making tasks.

1.1 RELATED WORK

Model multiplicity. Within the literature on predictive multiplicity, our work builds off the line of
work focusing on predicting individual probabilities (Marx et al., 2020; D’Amour et al., 2022; Black
et al., 2022; Breiman, 2001), where solving an error minimization problem for some prediction tasks
can lead to multiple solutions with roughly similar performance in terms of accuracy. Sandroni
(2003) showed that one cannot empirically distinguish the outcomes from a predictor encoding the
true individual probabilities from one without in isolation, while Al-Najjar & Weinstein (2008);
Feinberg & Stewart (2008) provided comparative tests to differentiate between the true probability
predictor and one that is not. Particularly, Feinberg & Stewart (2008) relied on cross-calibration,
i.e., calibration conditional on the predictions of both models to empirically falsify one of them.
For downstream decision-making, Garg et al. (2019) worked on refining predictors and provided an
algorithm that produces a predictor f3 that is cross-calibrated with respect to both f1 and f2. An
alternative framework studied by Globus-Harris et al. (2022b) seeks to update models that are sub-
optimal for different subsets of the population, following the ‘bug bounties’ approach used by the
software and security communities. Towards the same goal, Roth et al. (2023) proposed an algorithm
(“Reconcile”) that aims to reconcile different predictors with equivalent errors such that the updated
predictors both have lower errors compared to the initial models and approximately agree on their
prediction on almost all units. Our work follows the reconciliation idea from Roth et al. (2023) but
focuses on not only the predictive accuracy but also the downstream decision-making. In our model,
we consider reconciling predictors for both regression and multi-class classification problems, and
their impact on the downstream decision-making tasks. In Section 2.4, we provide a numerical
example where simply reconciling the probability predictions according to Roth et al. (2023) can
lead to additional losses in downstream decision-making tasks.

Multi-calibration. Our work draws on techniques from the growing literature on multi-calibration
(Hebert-Johnson et al., 2018; Kim et al., 2019; Dwork et al., 2019; Shabat et al., 2020; Jung et al.,
2020; Dwork et al., 2021; Jung et al., 2022; Haghtalab et al., 2023; Deng et al., 2023; Noarov et al.,
2023; Globus-Harris et al., 2022a; 2023). Multi-calibration has been used as a notion of fairness as it
guarantees calibration for any identifiable group. (A more detailed discussion of calibration and fair-
ness is given in Appendix A.) Particularly, we leverage the connection between multi-calibration and
loss minimization from the omniprediction literature (Gopalan et al., 2022b;a; 2021) in our analysis.
Within the framework of multi-calibration, the work most related to ours is that of Zhao et al. (2021),
who considered decision calibration with respect to all classes of loss functions. Similar to us, Zhao
et al. (2021) takes the perspective of a decision-maker who wants to ensure the predictive models
are indistinguishable from the true probability when they are used to make downstream decisions.
However, two decision-calibrated models can still disagree on their individual predictions and best-
response actions for many units. In our motivating example, a hospital with two decision-calibrated
predictors may still aim for consistent predictions and downstream decision recommendations (i.e.
treatment or not) across the population. We formalize this example in Appendix B and provide
empirical experiments to show our improvement over their result in Section 4.

An independent and concurrent work by Globus-Harris et al. (2024) considers ensembling multiple
predictive models for high-dimensional downstream decision-making tasks. While their work also
leverages techniques from multi-calibration, their goal is to output an ensemble predictor whose
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self-estimated expected payoff is accurate and whose induced policy has a payoff at least as high
as the maximum self-assessed payoff of individual models. In contrast, our interest is in reduc-
ing the downstream decision losses by resolving the differences between equivalent predictors and
mitigating model multiplicity for decision-making.

2 PROBLEM FORMULATION

Notation. Throughout this paper, we use subscripts i to index different predictions, superscripts
t to index different time-steps, and a to index actions. For K ∈ N, we use the shorthand [K] :=
{1, 2, · · · ,K}. ∆(X ) denote the set of possible distributions over X .

We consider the prediction problem with random variables x and y, where x ∈ X represents the
features and y ∈ Y represents the labels. We focus on the regression problem in which the label
domain is real-valued and bounded: Y ⊂ [0, 1]d. Our formulation also permits the multi-class
classification problem by writing the label y’s as one-hot vectors.

We denote D ∈ ∆(X ×Y) as the true distribution over the pairs of features-label (x, y). In practice,
we will not have access to D, and instead only know a set of n data points D sampled i.i.d from D.
In such case, we consider the dataset D = {(x1, y1), · · · , (xn, yn)} to be the empirical distribution
over D, which is a discrete distribution that place uniform weight 1/n on each sample (x, y) ∈ D.

A predictor is a map f : X → [0, 1]d. Our goal is to find the Bayes optimal predictor f∗ : X →
[0, 1]d such that for all x ∈ X , f∗(x) = E(x,y)∼D[y|x] is the conditional label expectation given x.

2.1 MODEL EVALUATION

Given a predictor f ∈ [0, 1]d, we evaluate f via its squared error, i.e., its expected deviation from
the true label. We formalize this objective in the following definition.
Definition 2.1 (Brier Score). The squared error (also known as Brier score) of a predictor f evalu-
ated on distribution D is given as:

B(f,D) = E(x,y)∼D[∥f(x)− y∥22]

When we only have a dataset D = {(x1, y1), · · · , (xn, yn)}, the empirical Brier score is given as:

B(f,D) =
1

n

n∑
i=1

∥f(xi)− yi∥22

Note that we use the Brier score as our metric because it can be accurately estimated given access
to only the samples from the distribution. Moreover, among all possible predictors, the Brier score
is minimized by the Bayes optimal predictor f∗.
Lemma 2.2. Fix any distribution D and let f∗(x) = E(x,y)∼D[y|x] represent the true conditional
label encoded by D. Let f : X → [0, 1]d be any other model. Then we have B(f∗,D) ≤ B(f,D).

Hence, given two predictors f1 and f2, if we can verify empirically from the observable data that
B(f1,D) ≤ B(f2,D), then we can empirically falsify that f2 encodes the true conditional label.

2.2 DOWNSTREAM DECISION-MAKING TASKS AND LOSS FUNCTIONS

Beyond our initial goal of finding a good estimate for the true conditional predictor f∗, we are also
interested in using our predictors for downstream decision-making problems. Formally, we consider
a loss minimization problem, where the decision-maker has a set of possible actions A and a loss
function ℓ : Y × A → [0, d]. Wlog, we only consider finite action set A = [A], i.e., there are A
possible actions1. In this paper, we assume that the loss function does not directly depend on the
features x and is linear in y. That is, for each action a ∈ A, there exists some ℓa ∈ [0, 1]d such that

ℓ(y, a) = ⟨y, ℓa⟩ (1)

1Our technical results can be generalized to a setting with infinitely many actions, i.e., |A| = ∞. For
details, see Appendix F.
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We write L = {ℓ : Y × A → [0, d]} to denote a finite family of loss functions. We consider the
setting with multiple different decision-makers, each using a different linear loss function in L. For
any loss function ℓ : Y ×A → R, we can rescale each coordinate of ℓa to be between [0, 1].

Given a predictor f and a loss function ℓ, the decision-maker selects an action a ∈ A that minimizes
the expected loss. We define the best-response policy taken by the decision-maker as follows.
Definition 2.3 (Best-response policy). Given a loss function ℓ, a predictor f and the action set A,
the best-response policy for ℓ is given as

πBR
ℓ (f(x)) = argmin

a∈A
⟨f(x), ℓa⟩.

2.3 CALIBRATION

In our setting, we consider the decision-maker only having access to some pre-trained predictors f
given by a third-party. For instance, a data scientist trained a pair of models on an image dataset
without exact knowledge of how the downstream decision-maker will use such predictors. We may
imagine the decision-maker as a hospital considering whether to recommend treatment to certain
patients based on the predicted probability that the patient has contracted a skin disease. Since the
hospital’s treatment-recommendation algorithm is not known to the public (and the data scientist),
we assume that the data scientists initially aim to minimize the squared error in their predictions.

Since the hospital believes that the input predictors may not perform well according to their own
loss function, they want the data scientist to convey trust through other performance guarantees of
the predictors. One such guarantee is multi-calibration with respect to a finite set of loss functions
L ∋ ℓ and a set of events E on the best-response policy, i.e., if the loss function ℓ belongs to L, the
decision-maker should be able to accurately compute the expected loss of choosing an action using
the best-response policy πBR

ℓ . Formally, we let Eℓ,a(f(x), x) denote the action selection events:
Definition 2.4 (Best-response Events). Given a predictor f , let E be the set of best-response events,
where each event Eℓ,a ∈ E for some loss function ℓ and action a ∈ A is defined as

Eℓ,a(f(x), x) = 1[x ∈ {x : πBR
ℓ (f(x)) = a}]

Given a set of events E , we can define an approximate notion of multi-calibration with respect to E .
Definition 2.5 (β-approximate decision calibration). A predictor f is β−decision calibrated with
respect to the set of best-response events E if for all Eℓ,a ∈ E , we have:∥∥E(x,y)∼D[(y − f(x)) · Eℓ,a(f(x), x)]

∥∥
2
≤ β.

This definition follows from an equivalent definition of decision calibration in Zhao et al. (2021).
The main difference is we define calibration with respect to a set of events on the best-response
actions following the formulation of multi-calibration for online learning in Noarov et al. (2023) and
a generalization of multi-calibration in Deng et al. (2023). This definition implies that if a predictor
f is β−decision calibrated with respect to the best-response events E , then the decision-maker can
accurately estimate the expected loss from using f to make decisions.
Lemma 2.6 ((Zhao et al., 2021)). For all a, a′ ∈ A, ℓ ∈ L, if f is β-decision-calibrated with respect
to the best-response events E , then the loss estimation satisfies∣∣E(x,y)∼D[ℓ(y, a

′) · Eℓ,a(f(x), x)]− Ex∼DX [⟨f(x), ℓa′⟩ · Eℓ,a(f(x), x)]
∣∣ ≤ β

√
d

2.4 LIMITATIONS OF PRIOR WORKS

In this section, we show that, for the predictive model multiplicity problem under decision-making,
improving the accuracy until the two predictors agree on their predictions almost everywhere is
not a sufficient solution to our problem. In our analysis below, we consider a stylized problem
with Y = {0, 1} and A = {0, 1}, i.e., binary class and binary action space. A predictor here is
f : X → [0, 1], and the optimal predictor is f∗(x) = Pr(x′,y′)∼D[y

′ = 1|x′ = x]. As a shorthand,
we denote f1(1) as the probability of unit 1 being labelled 1. The loss is defined as

ℓ(0, 0) = ℓ(1, 1) = 0, ℓ(1, 0) = ℓ(0, 1) = 1, (2)
That is, for any x, the best-response policy is to take action 0 if f(x) ≤ 1/2 and action 1 otherwise.
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Reconcile individual predictions. Prior work by Roth et al. (2023) considers the model multi-
plicity problem for individual probability predictions. Their proposed algorithm, Reconcile (Al-
gorithm 3), iteratively adjusts predictions for subsets where models differ significantly, aligning
predicted and true mean values. The algorithm ultimately returns a pair of predictors that has a
smaller Brier score than the input predictors and approximately agree on their predictions on almost
all units. In the following theorem, we show that the best-response policy induced by the predictors
updated by Reconcile might lead to a higher expected loss than the ones they started with.
Theorem 2.7. For any α ∈ (0, 1/3), η ∈ (0, 1), there exists a pair of predictors f1, f2 such that
after running Algorithm 3 (Reconcile), the output models fT

1 , fT
2 satisfy fT

1 (x) = fT
2 (x),∀x ∈ X ,

but there exists a loss function ℓ such that at least one of fT
1 , fT

2 induce worse losses compared to
the original models f1, f2. That is, for some i ∈ [2],

E(x,y)∼D[ℓ(y, π
BR(fT

i (x)))− ℓ(y, πBR(fi(x)))] = 1/2 > 0 (3)

Proof. Consider a setting with X = [2] and Pr[x = 1] = Pr[x = 2] = 0.5. For any 0 < α < 1/3,
let ϕ ≥ α, we consider the two predictors f1, f2 defined as follows:

f1(1) = 1/2 − ϕ/2, f1(2) = 1/2 − 3ϕ/2, f2(1) = 1/2 + ϕ/2, f2(2) = 1/2 − ϕ/2 (4)
and the true probability of each unit being labeled 1 are f∗(1) = 0 and f∗(2) = 1.

The Brier scores of f1 and f2 differ only by ϕ2, but their individual predictions differ for both
features x = 1 and x = 2. We can run Algorithm 3 and patch f1 to get the updated model fT

1 with

fT
1 (1) = 1/2 + ϕ/2 = f2(1), fT

1 (2) = 1/2 − ϕ/2 = f2(2).

Consider the loss function ℓ defined in equation 2. The change in expected loss after patching f1 is
E(x,y)∼D[ℓ(y, π

BR
ℓ (fT

1 (x)))− ℓ(y, πBR
ℓ (f1(x)))] = 1/2 > 0.

Therefore, no matter how small α and η are, the loss of predictor f1 increases by a constant amount.

Moreover, we provide a counterexample to show that it is insufficient to only ensure each individual
predictor is approximately decision-calibrated using Algorithm 1. See Appendix B for details.

3 RECONCILE FOR DECISION MAKING

Suppose we are given two predictors f1, f2 : X → [0, 1]d, where f1, f2 have nearly equivalent
accuracy in terms of Brier score differ in their induced decision-making policies, but we cannot
falsify either of the two from the data. Informally, our goal is to return a pair of models f ′

1, f
′
2

such that: (1) for both i ∈ {1, 2}, f ′
i is more accurate than fi in terms of Brier score; (2) for both

i ∈ {1, 2}, the best-response policy induced by f ′
i has no larger expected loss than that of fi; (3) f ′

1
and f ′

2 approximately agree almost everywhere, indicating limited room for additional improvement.

To this end, we are interested in the region where the two predictors disagree substantially with
respect to the downstream decision-making task. We define the disagreement region as follows:
Definition 3.1 (Disagreement Event). For f1, f2, margin α > 0, and a loss function ℓ, the disagree-
ment event is defined for a pair of best-response actions a1, a2 ∈ A where a1 ̸= a2 as

Eα
ℓ,a1,a2

(f1(x), f2(x), x) = 1
[
x ∈

{
x :πBR

ℓ (f1(x)) = a1, π
BR
ℓ (f2(x)) = a2,

⟨f1(x), ℓa2
− ℓa1

⟩ > α or ⟨f2(x), ℓa1
− ℓa2

⟩ > α
}]

,

As shorthand, we denote Eℓ,a1,a2
(x) = Eα

ℓ,a1,a2
(f1(x), f2(x), x) when the predictors f1, f2 and

the margin α are clear from context. For a finite family of loss functions L, we can always iterate
through L to identify the tuple (ℓ, a1, a2) that defines a disagreement region between f1 and f2.

We say the two models approximately agree with each other when the size of the disagreement event
is small enough, i.e., its probability mass µ(Eℓ,a1,a2

) on the underlying distribution D is small.
Definition 3.2. (Probability Mass) Under distribution D, the probability mass µ(E) of event E is

µ(E) = Pr
(x,y)∼D

[E(x) = 1].
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3.1 THE RECONCILE PROCEDURE

In this section, we propose our main algorithm ReDCal (Algorithm 2). Whenever the decision-
maker observes a large disagreement event Eℓ,a1,a2

, the best-response action and its corresponding
expected loss given by at least one of the predictors must be incorrect. For example, at time step t
and unit x, if the gap between the losses of taking a1 and a2 according to f2 is substantially different
from the loss gap observed on the data, then the decision-maker can induce that f2 must have been
wrong in its prediction for x. Then, the decision-maker would want to ’patch’ f2 in this time-step.

The calibration procedure within each time-step is divided into two stages. In the first stage, we
update model f2 to f ′

2 by minimizing the mean prediction error on the disagreement event, i.e., min-
imizing E[∥f ′

2(x)− y|Eℓ,a1,a2
(x) = 1∥]. Following the intuition from multi-calibration, this update

operation would improve the Brier score and produce a more accurate predictor. However, the up-
dated model f ′

2 is not guaranteed to induce the correct best-response action and could instead induce
some other actions that might lead to a larger expected loss. To cope with this, in the second stage,
we further update f ′

2 to a model f ′′
2 that is approximately decision-calibrated within event Eℓ,a1,a2

using Algorithm 1. Since the loss estimation given by f ′′
2 is accurate for all best-response events

within Eℓ,a1,a2 and we are taking actions to minimize estimated loss, we can now safely take the
best-response action induced by f ′′

2 . The formal description of the algorithm is given by Algorithm 2.

Algorithm 1: Decision Calibration
Input: Predictor f , loss family L, β > 0, event E

1: Let f0 = f .
2: while f t is not β-multicalibrated with respect to events Eℓ,a ∩ E for some ℓ ∈ L do
3: Let ℓt, at = argmaxℓ,a ∥E(x,y)∼D[(y − f t(x))Eℓ,a(f

t(x), x)]∥2
4: Let ϕt = E(x,y)∼D[y − f t(x)|Eℓt,at(f t(x), x) = 1]

5: Patch f t+1(x) = proj[0,1]d(f
t(x) + ϕtEℓt,at(f t(x), x))

6: t = t+ 1.
Output: f t

Algorithm 2: Reconcile Decision Calibration (ReDCal)
Input: f1, f2,L, η > 0, α > 0, β > 0

1: Let f0
1 = f1, f

0
2 = f2 and t = 0.

2: while µ(Eℓ,a1,a2
) ≥ η for some a1, a2 ∈ A and ℓ ∈ L do

3: Let ℓt, at1, a
t
2 = argmaxℓ,a,a′ µ(Eℓ,a,a′), Et = Eℓt,at

1,a
t
2
.

4: Pick

it = argmax
i∈{1,2}

∣∣E(x,y)∼D[ℓ
t(y, at1)− ℓt(y, at2)|Et(x) = 1]

− Ex∼X [ℓt(fi(x), a
t
1)− ℓt(fi(x), a

t
2)|Et(x) = 1]

∣∣.
5: Denote f t

it as f t
i . Let ϕt = E(x,y)∼D[y|Et(x) = 1]− Ex∼DX [f

t
i (x)|Et(x) = 1].

6: Patch f t(x) = proj[0,1]d(f
t
i (x) + ϕtEt(x)).

7: Let f t+1
i = Decision-Calibration(f t, L, β, Et). t = t+ 1.

Output: f t
1, f

t
2

We provide the theoretical guarantees of our proposed algorithm below. At a high level, Algorithm 2
produces a pair of models with improved accuracy and approximately agrees on the best-response
action almost everywhere. Unlike prior work in model multiplicity, our theoretical guarantees in
this section (and their extensions in later sections) do not require the input predictors f1, f2 to have
similar accuracy. Using techniques from multi-calibration, our proposed algorithms can reconcile
predictors with distinct accuracy, which could be beneficial to downstream decision-makers depend-
ing on the context. For the formal proofs of Theorem 3.3, see Appendix C.
Theorem 3.3. For any pair of models f1, f2 : X → [0, 1]d, any distribution D, family of loss
functions L on a set of action A satisfying |A| = A, any loss margin α > 0, disagreement region
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mass η > 0, and decision-calibration tolerance β > 0, Algorithm 2 updates f1 and f2 for T1 and
T2 time-steps, respectively, and outputs a pair of models (fT

1 , fT
2 ), such that:

1. Algorithm 2 terminates within T = T1 + T2 ≤ 4·d·(B(f1,D)+B(f2,D))
α2η time-steps.

2. The Brier scores of the final models are lower than that of the input models (f1, f2):

B(fT
1 ,D) ≤ B(f1,D)− T1 · α2η/(4d) and B(fT

2 ,D) ≤ B(f2,D)− T2 · α2η/(4d)

3. All the downstream decision-making losses of the final models do not increase by much
compared to that of the input models (f1, f2): for each i ∈ {1, 2} and for all ℓ ∈ L,

E(x,y)∼D[ℓ(y, π
BR
ℓ (fT

i (x))]− E(x,y)∼D[ℓ(y, π
BR
ℓ (fi(x))] ≤ Tiβ

√
dA

4. The final models approximately agree on their best-response actions almost everywhere.
That is, the disagreement region Eℓ,a1,a2

calculated using fT
1 , fT

2 has small mass. ∀ℓ ∈ L,
µ(Eℓ,a1,a2

) < η for all a1, a2 ∈ A s.t a1 ̸= a2

Remark 3.4. In the third result of Theorem 3.3, the increase in downstream decision-making loss
at each time-step only depends on the decision-calibrate tolerance β, dimension d, and number of
actions A. Since the total number of time-steps does not depend on β, we can set β = α/T

√
dA

to ensure the loss of taking the best-response action does not degrade by more than α. Moreover,
in Section 4, we empirically observe that the loss only increases minimally.

3.2 FINITE SAMPLE ANALYSIS

In Section 3.1, we have presented an algorithm, ReDCal, to reconcile two predictors with similar
Brier scores, assuming the decision-makers have direct access to the probability distribution D. In
practice, the decision-makers will only have a dataset D = {(x1, y1), · · · , (xn, yn)} containing
n i.i.d samples drawn from D. In this section, we will instead run Algorithm 2 on the empirical
distribution over D and show that its guarantees can translate to the underlying distribution D with
high probability. To prevent data leakage, we assume that the dataset D is drawn independently of
the predictors f1 and f2, i.e., the dataset contains freshly drawn data that was not used to train either
of the predictors that we want to reconcile. For the formal proofs, see Appendix D.

At a high level, since the samples in D are independently and identically distributed, we can ap-
ply Chernoff-Hoeffding inequality to show that, with high probability, the in-sample quantities are
approximately equal to out-sample quantities. We summarize the results in the theorem below.
Theorem 3.5. Fix any distribution D and dataset D containing n samples drawn i.i.d from D. For
any pair of models f1, f2 : X → [0, 1]d, family of loss functions L on a set of action A satisfying
|A| = A, loss margin α > 0, disagreement region mass η > 0, and decision-calibration tolerance
β > 0, Algorithm 2 run over the empirical distribution D updates f1 and f2 for T1 and T2 time-
steps, respectively, and outputs a pair of predictors (fT

1 , fT
2 ) such that, with probability at least

1− δ over the randomness of D ∼ Dn,

1. The total number of time-steps for Algorithm 2 and Algorithm 1 is
T = T1 + T2 ≤ 2d/min{β2, ηα2/4d}

2. For i ∈ {1, 2}, the Brier scores of the final models are lower than that of the input models:

B(fTi
i ,D) ≤ B(fi,D)− (Ti − η) ·min

{
β2, ηα2/(4d)

}
3. For i ∈ {1, 2} and for all ℓ ∈ L, the downstream decision-making losses of the final models

do not increase by much compared to that of the input models:

E(x,y)∼D[ℓ(y, π
BR
ℓ (fT

i (x))− ℓ(y, πBR
ℓ (fi(x))] ≤ 2Tiβ

√
dA

4. The final models approximately agree on their best-response actions almost everywhere.
That is, the disagreement region Eℓ,a1,a2

calculated using fT
1 , fT

2 has small mass: ∀ℓ ∈ L,
µ(Eℓ,a1,a2) ≤ 2η for all a1, a2 ∈ A s.t a1 ̸= a2

if n ≥ Ω
(
d2/(η2 min{β, ηα2/d}) ·

(
ln(dA |L|)− ln(δmin{β, ηα2})

))
.
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3.3 EXTENSION TO RECONCILING MULTIPLE PREDICTORS

In the previous sections, we addressed reconciling two predictors for downstream decision-making
tasks. When there are k > 2 predictors that need to be reconciled, a straightforward approach to
generalize our previous analysis is applying ReDCal iteratively until each pair among the k pre-
dictors “agrees” on their individual prediction and best-response action. However, since there are
O(k2) pairs of predictors and this approach requires fresh calibration data for each new reconcilia-
tion procedure, the data requirement significantly increases.

Another approach is to simply apply ReDCal (k−1) times for each new predictor. However, running
ReDCal sequentially does not minimize disagreement among all predictors. For instance, initially
reconciling f1 with f2 minimizes their disagreement, but after f1 undergoes further reconciliations
with other predictors, its updated version f t

1 may still end up disagreeing with f2 for sufficiently
many units. This disagreement indicates a falsification potential and suggests room for further im-
provements in f1.

To address these challenges, we introduce a “contestation” method. We select a base model, f ,
and focus updates on events where f disagrees with the other models, fj . Using Definition 3.1, a
disagreement event Eα

ℓ,a1,a2
(f(x), fj(x), x) in this setting is identified by a pair of actions (a1, a2),

a loss function ℓ, and a contestant predictor fj . At each iteration, we select the disagreement event
with the largest size and “patch” the model whose estimated loss on the event has a larger error. The
detailed algorithm is written in Algorithm 4 and theoretical guarantees are in Theorem E.1.

To maintain the same guarantee as in Theorem 3.5, we need roughly k times more samples for
Algorithm 4 compared to ReDCal. Since each iteration decreases the Brier score of one predictor,
the cumulative number of necessary updates across k predictors, i.e., the total number of time-steps,
is approximately multiplied by O(k). The sample complexity then scales up only linearly with k.
The detailed algorithm, formal theorem, and its proof are in Appendix E.

4 EXPERIMENTS

In this section, we complement our theoretical results with a set of experiments on real-world
datasets to show our improvement in decreasing decision-making loss compared to prior work.

4.1 IMAGENET MULTI-CLASS CLASSIFICATION

Experiment Setup. We use the ImageNet dataset (Deng et al., 2009) and two pre-trained models
provided by pyTorch (inception-v3 (Szegedy et al., 2015) and resnet50 (He et al., 2015)). Among
the 50000 validation samples, we use 40000 samples for calibration and 10000 samples for testing.

We investigate how the downstream decision loss changes with the four calibration algorithms:
Reconcile (Algorithm 3), Decision-Calibration (Algorithm 1), ReDCal (Algorithm 2), and the com-
bination of running ReDCal after Decision Calibration as post-process. We run each calibration
algorithm 500 times. For each run, we first randomly draw 100 classes from the 1000 classes
of ImageNet. Then, we randomly generate a loss function such that, for each y ∈ Y , a ∈ A,
ℓ(y, a) ∼ Normal(0, 1). For each randomly generated loss function ℓ, we compare the expected
losses derived from the best-response policies based on predictors f1 and f2 against those based on
the optimal predictor f∗. Formally, the loss gap at timestep t using predictor fi is defined as

LossGap(f t
i ) = E(x,y)∼D[ℓ(y, π

BR
ℓ (f t

i (x)))− ℓ(y, πBR
ℓ (f∗(x)))].

The hyperparameters are chosen as follows: loss margin α = 0.001, disagreement region mass
η = 0.01, decision-calibration tolerance β = 0.00001, and the number of actions K = 10.

Results. The results are shown in Figure 2. Compared to Reconcile, ReDCal converges within a
similar number of time-step and decreases the loss by a larger amount on the test dataset. Moreover,
ReDCal further decrease the loss when used as a post-process after Decision-Calibration terminates.
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Figure 2: ReDCal decreases decision loss on Imagenet. We plot the gap between the average loss
of each predictor and the optimal loss had we known the true predictor f∗ on the test set. Left
two figures: We compare the LossGap of ReDCal (orange) with Reconcile (blue). Compared to
Reconcile, our algorithm converges at a similar rate and decreases the loss by a larger amount on the
test dataset. Right two figures: We compare the LossGap of Decision-Calibration (green) to that
of Decision-Calibration with a run of ReDCal as post-process (red). Our proposed algorithm can
improve upon Decision-Calibration output predictors and further reduce the loss on the test dataset.
Results are averaged over 500 runs and the shaded region indicates ±1 standard errors.

4.2 HAM10000 MULTI-CLASS CLASSIFICATION

We use the HAM10000 dataset (Tschandl et al., 2018) on pigmented skin lesions to predict the
probability that a patient has contracted one of 7 possible skin diseases. The results are shown in
Figure 3. For a detailed description and discussion of the results of this experiment, see Appendix G.

Figure 3: ReDCal decreases decision loss on the HAM10000 dataset. The comparisons and results
are similar to that of Figure 2. Results are averaged over 10 runs and the shaded region indicates ±1
standard errors.

5 CONCLUSION

Predictive multiplicity is a phenomenon in machine learning where the decision-makers have multi-
ple predictors with nearly equivalent squared loss but vastly different individual predictions. Lever-
aging technique from the multi-calibration literature, we propose an algorithm, ReDCal, that up-
dates a pair of predictors until they approximately agree almost everywhere on (1) individual pre-
dictions, (2) best-response actions in the downstream decision-making task, and (3) following the
best-response actions incur losses that are close to the optimal loss. We further generalize this result
to the settings where one has more than two predictive models and infinitely many possible down-
stream actions. Our theoretical results help alleviate the problem of predictive multiplicity in model
selection. Finally, we provide experiments using real-world datasets to show that our proposed al-
gorithm achieves lower decision loss compared to existing work. While we do not provide examples
of domain-specific loss functions as part of our analysis and experiments, we hope that our findings
can aid future studies on the impact of model multiplicity in decision-making.
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APPENDIX

A ADDITIONAL RELATED WORK

Within the literature on multigroup fairness, Kleinberg et al. (2016) highlighted the trade-offs in
fairness by proving the incompatibility of three key fairness conditions—calibration, positive class
balance, and negative class balance—emphasizing the need for prioritization in fairness criteria.
Building on these foundational insights, Kim et al. (2019) introduced multiaccuracy. This post-
processing technique ensures consistent accuracy across subpopulations without access to group
labels, laying the baseline for future work on predictive fairness. Following such framework, Roth-
blum & Yona (2021) extended the PAC learning paradigm to multi-group scenarios. Shen et al.
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(2023) proposed a framework for fair representations across multiple fairness notions and unknown
tasks. More recently, Hu et al. (2024) explored robustness in multigroup fairness and proposed
algorithms tailored for subpopulations under data corruption. Liu & Molinari (2024) proposed a
method to estimate the fairness-accuracy frontier for testing fairness in decision-making. Another
line of work (Haghtalab et al., 2023) connects fairness and optimization with a unified game theo-
retic framework. However, our work does not focus on the fairness aspect of multicalibration but
instead borrows its techniques.

B LIMITATION OF PRIOR WORK (CONTINUE)

We provide the Algorithm 3 from (Roth et al., 2023) and their theoretical guarantees for completion.
First, given two predictors f1 and f2, define the disagreement region as:

Uϵ(f1, f2) := {x : |f1(x)− f2(x)| > ϵ}
which can be further divided into two partitions:

U>
ϵ (f1, f2) = {x ∈ Uϵ(f1, f2) : f1(x) > f2(x)}

U<
ϵ (f1, f2) = {x ∈ Uϵ(f1, f2) : f1(x) < f2(x)}

Algorithm 3: Reconcile (Roth et al., 2023)
Input: f1, f2, η > 0, α > 0

1: Let f0
1 = f1, f

0
2 = f2.

2: while µ(Uα(f
t1
1 , f t2

2 )) ≥ η do
3: For each • ∈ {>,<} and i ∈ {1, 2}, let:

v•∗ = E[y|x ∈ U•
ϵ (f

t1
1 , f2)] v•i = E[f ti

i (x)|x ∈ U•
ϵ (f

t1
1 , f2)]

4: Let

(it, •t) = argmax
i∈{1,2},•∈{>,<}

µ(U•
ϵ (f

t1
1 , f t2

2 )) · (v•∗ − v•i )
2

breaking ties arbitrarily.
5: Let:

gt(x) =

{
1 x ∈ U•t

ϵ (f t1
1 , f t2

2 )

0 otherwise

6: Let

∆̃t = E(x,y)∼D[y|gt(x) = 1]− E(x,y)∼D[f
tit
it

(x)|gt(x) = 1]

∆t = Round(∆̃t;m)

7: Let f ti+1
i (x) = proj[0,1]d(f

ti
i (x) + ∆tgt(x)), ti = ti + 1, t = t+ 1.

Output: (f t1
1 , f t2

2 )

Theorem B.1 (Reconcile (Roth et al., 2023)). For any pair of models f1, f2 : X → [0, 1], any
distribution D, and any α, η > 0, Algorithm 3 runs for T = T1 + T2 many rounds and outputs a
pair of models (fT1

1 , fT2
2 ) such that:

1. T ≤ (B(f1,D) +B(f2,D)) · 16
ηα2

2. B(fT1
1 ,D) ≤ B(f1,D)− T1 · ηα2

16 and B(fT2
2 ,D) ≤ B(f2,D)− T2 · ηα2

16

3. µ(Uϵ(f
T1
1 , f t2

2 )) ≤ η

14
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Furthermore, we provide a counterexample that shows ensuring each individual predictor is
decision-calibrated by running Algorithm 1 is not sufficient.

Decision-Calibrated predictions. Another baseline algorithm we consider is to run Algorithm 1
separately for both f1, f2. However, in the following theorem, we show that the updated predictors
f ′
1 and f ′

2 can still disagree with each other on the best-response actions for substantially many units,
indicating room for further improvement.
Theorem B.2. For any η ∈ (0, 1/4) and β ∈ (0, 1/2), there exists a pair of predictors f1, f2 and
a loss function ℓ, such that after running Decision-Calibration (Zhao et al., 2021), the resulting
models fT

1 , fT
2 are β-decision-calibrated with respect to the loss function ℓ. There exists a set of

units x with probability mass 2η where fT
1 and fT

2 disagree on the individual best-response actions.

Proof. For any η ∈ (0, 1/4), β ∈ (0, 1/2), let X = [4], with Pr[1] = Pr[4] = 1/2 − η and Pr[x =
2] = Pr[x = 3] = η. Consider the predictors f1, f2 as follows:

f1(1) = f1(2) = f2(1) = f2(3) =
β

4
− 2ηβ + 2η, (5)

f1(3) = f1(4) = f2(2) = f2(4) = 1− β

2
, (6)

f∗(1) =
β

2
, f∗(2) = f∗(3) = f∗(4) = 1− β

2
. (7)

Notice that
β

4
− 2ηβ + 2η =

β

4
+ 2η(1− β) <

1

4
+

1

4
=

1

2
.

The best-response policy for each predictor is

πBR
ℓ (f1(1)) = πBR

ℓ (f1(2)) = 0, πBR
ℓ (f1(3)) = πBR

ℓ (f1(4)) = 1, (8)

πBR
ℓ (f2(1)) = πBR

ℓ (f2(3)) = 0, πBR
ℓ (f2(2)) = πBR

ℓ (f1(4)) = 1. (9)

For each best-response event, we have

E(x,y)∼D[f
∗(x)E1(f1(x), x)] = E(x,y)∼D[f1(x)E1(f1(x), x)],

E(x,y)∼D[f
∗(x)E2(f1(x), x)] = E(x,y)∼D[f1(x)E2(f1(x), x)],

E(x,y)∼D[f
∗(x)E1(f2(x), x)] = E(x,y)∼D[f2(x)E1(f2(x), x)],

E(x,y)∼D[f
∗(x)E2(f2(x), x)] = E(x,y)∼D[f2(x)E2(f2(x), x)].

That is, f1, f2 are already decision-calibrated, so running Decision Calibration will not further im-
prove either of the two predictors. However, based on our definition of disagreement events, we still
have

E1,2 = {2}, E2,1 = {1},
each with size

µ(E1,2) = µ(E2,1) = η.

However, we observe that f1 and f2 still disagree on the best-response action for units x = 2
and x = 3. We can further reduce the differences in best-response actions using our algorithm
Algorithm 2.

C PROOFS OF SECTION 3.1: RECONCILE FOR DECISION MAKING

First, we show that if a disagreement event has a large probability mass, then at least one of f1, f2
has a large prediction error within the region:
Lemma C.1. Fix any two predictors f1, f2 : X → [0, 1]d and α, η > 0. If µ(Eℓ,a1,a2) > η for
some a1, a2 ∈ A, then we have

∥Ex∼X
[
fi(x)− f∗(x)

∣∣Eℓ,a1,a2
(x)
]
∥ ≥ α

2
√
d

(10)

for some i ∈ {1, 2}.
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Proof. By definition of event Eℓ,a1,a2
, we have

Ex∼X [ℓ(f1(x), a2)− ℓ(f1(x), a1) + ℓ(f2(x), a1)− ℓ(f2(x), a2)]|Eℓ,a1,a2
(x)] ≥ α

Also, we have

Ex∼X [ℓ(f1(x), a2)− ℓ(f1(x), a1) + ℓ(f2(x), a1)− ℓ(f2(x), a2)]|Eℓ,a1,a2(x)]

=Ex∼X [⟨f1(x)− f2(x), ℓa2
− ℓa1

⟩|Eℓ,a1,a2
(x)]

=Ex∼X [⟨f1(x)− f∗(x), ℓa2
− ℓa1

⟩|Eℓ,a1,a2
(x)]

+ Ex∼X [⟨f∗(x)− f2(x), ℓa2
− ℓa1

⟩|Eℓ,a1,a2
(x)]

≤∥Ex∼X
[
f1(x)− f∗(x)

∣∣Eℓ,a1,a2
(x)
]
∥2
√
d+ ∥Ex∼X

[
f2(x)− f∗(x)

∣∣Eℓ,a1,a2
(x)
]
∥2
√
d

=
√
d ·
(
∥Ex∼X

[
f1(x)− f∗(x)

∣∣Eℓ,a1,a2
(x)
]
∥2 + ∥Ex∼X

[
f2(x)− f∗(x)

∣∣Eℓ,a1,a2
(x)
]
∥2
)

where the last inequality comes from Cauchy-Schwartz and that ℓ is bounded in [0, 1].

Combining the above inequalities, we have
√
d ·
(∥∥Ex∼X

[
f1(x)− f∗(x)

∣∣Eℓ,a1,a2
(x)
]∥∥

2
+
∥∥Ex∼X

[
f2(x)− f∗(x)

∣∣Eℓ,a1,a2
(x)
]∥∥

2

)
≥ α.

Therefore, for some i ∈ {1, 2}, we have∥∥Ex∼X
[
fi(x)− f∗(x)

∣∣Eℓ,a1,a2(x)
]∥∥

2
≥ α

2
√
d
.

This lemma indicates that, if we have two predictors f1, f2 that create a large disagreement event,
we can falsify at least one of the models. We now show that these events also provide a directly
actionable way to improve one of the models.

Lemma C.2. For any predictor f : X → [0, 1]d, any event E ∈ E , and distribution D. Let
ϕ = E(x,y)∼D[y − f(x)|E(x) = 1]. We patch f as

f ′(x) = proj[0,1]d(f(x) + ϕE(x)), where proj[0,1]d(y) = argmin
y′∈[0,1]d

∥y − y′∥2.

Then,
B(f,D)−B(f ′,D) ≥ ∥ϕ∥22µ(E).

Proof.

B(f,D)−B(f ′,D) =E
[
∥f(x)− y∥22 − ∥f ′(x)− y∥22

]
≥E

[
∥f(x)− y∥22 − ∥f(x) + ϕE(x)− y∥22

]
(since projection is non-expansive)

=E
[
2⟨y − f(x), ϕE(x)⟩ − ∥ϕE(x)∥22

]
≥∥ϕ∥22 · µ(E)

Therefore, whenever we have two predictors that have a large disagreement event, we can always
falsify at least one of the predictors and improve it through patching, causing the Brier score to
decrease by a large amount. Similarly, for a fixed predictor, if one of its best-response events has a
large calibration error, we can patch the predictor within the event to decrease the Brier score. As
the Brier score is bounded in [0, d], these two observations imply that the number of time-steps for
both Algorithm 2 and its subroutine Algorithm 1 are bounded.

Other than the Brier score, we also care about minimizing the loss of the downstream decision-
making task. We now show that, after a further update through the subroutine Algorithm 1, the loss
does not increase much at each time-step of Algorithm 2:
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Lemma C.3. For any predictors f1, f2, loss function ℓ ∈ L and any distribution D, at any time-step
t of Algorithm 2, the predictors satisfies

E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, πBR
ℓ (f t

i (x)))] ≤ β
√
dA,

for all i ∈ {1, 2}.

Proof. At each round, we define the set ∆t
a ⊆ Et as

∆t
a = {x ∈ Et : πBR

ℓ (f t+1
i (x)) = a}.

Then, we have

E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, πBR
ℓ (f t

i (x)))]

=
∑
a∈A

E(x,y)∼D[(ℓ(y, a)− ℓ(y, ati))∆
t
a(x)].

For each term in the summation, we can upper-bound it as

E(x,y)∼D[(ℓ(y, a)− ℓ(y, ati))∆
t
a(x)] (11)

=⟨E(x,y)∼D[y∆
t
a(x)], ℓa − ℓat

i
⟩ (Linearity of Expectation)

≤⟨Ex∼DX [f
t+1
i (x)∆t

a(x)], ℓa − ℓat
i
⟩+ β

√
d (Since f t+1

i is β-calibrated)

≤β
√
d. (Since a is the new Best-response action)

Summing these actions together, we have

E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, πBR
ℓ (f t

i (x)))] ≤ β
√
dA. (12)

Instead of setting a fixed β, we can calculate a different βt at each round, which allows a smaller
increase in loss.
Lemma C.4. At each round t, if ati is not the best action on Et in average, i.e.

δt = max
a∈A

E(x,y)∼D[(ℓ(y, a
t
i)− ℓ(y, a))Et(x)] > 0,

then we can set βt ≤ δt/
√
d, such that

E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, πBR
ℓ (f t

i (x)))] ≤ 0.

Proof. We can write the change in loss at each round as

E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, πBR
ℓ (f t

i (x)))]

=E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, ati))E
t(x)]

=E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, a′))Et(x)] + E(x,y)∼D[ℓ(y, a
′)− ℓ(y, ati))E

t(x)]

=
∑
a∈A

E(x,y)∼D[(ℓ(y, a)− ℓ(y, a′))∆t
a(x)] + E(x,y)∼D[ℓ(y, a

′)− ℓ(y, ati))E
t(x)],

for any a′ ∈ A.

We can use the same analysis as in Lemma C.3 to get∑
a∈A

E(x,y)∼D[(ℓ(y, a)− ℓ(y, a′))∆t
a(x)] ≤ βt

√
d.

For the second term, we would want the loss to be as small as possible, so we can choose a′ =
argmin

a∈A
E(x,y)∼D[ℓ(y, a) · Et(x)] and let

δt = −E(x,y)∼D[(ℓ(y, a
′)− ℓ(y, ati))E

t(x)], (13)
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then δt is maximized and δt ≥ 0 by definition.

The total change in loss in this round can be written as

E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, πBR
ℓ (f t

i (x)))] ≤ βt
√
d− δt.

If δt > 0, we can set βt ≤ δt/
√
d to ensure the loss does not increase at this round.

C.1 PROOF OF THEOREM 3.3

Proof. By Lemma C.1 and C.2, for any i ∈ {1, 2}, at time-step t, we have the inequality

B(f t
i ,D)−B(f t+1

i ,D) ≥ α2η

4d
.

Taking the sum over all time-steps, we have for any i ∈ {1, 2},

B(fi,D)−B(fT
i ,D) ≥ Ti ·

α2η

4d
.

Since the Brier score is always non-negative, we have

Ti ≤
4d ·B(fi,D)

α2η
.

Second, using Lemma C.3 and summing over all time-steps, we have

E(x,y)∼D[ℓ(y, π
BR
ℓ (fT

i (x))]− E(x,y)∼D[ℓ(y, π
BR
ℓ (fi(x))] (14)

=

T∑
t=1

I[it = i]E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, πBR
ℓ (f t

i (x)))] (15)

≤Ti · β
√
dA. (16)

Finally, the halting condition implies that µ(Eℓ,a1,a2) < η for all a1, a2 ∈ A.

D PROOFS OF SECTION 3.2: FINITE SAMPLE ANALYSIS

First, to make our argument that in-sample quantities translate to out-sample quantities, it is useful
for the patching operations to use values that are rounded to a finite grid, rather than the precise
value from the arbitrary sample. We define the finite grid as follows:

Definition D.1. For any integer m > 0, let 1/m denote the m+ 1 grid points,[
1

m

]
=

{
0,

1

m
,
2

m
, . . . ,

m− 1

m
, 1

}
.

For any value v ∈ [0, 1]d, let Round(v;m) = argminv′∈[1/m]d ∥v − v′∥2 denote the closest grid
point to v in [1/m]d.

At each time-step in Algorithm 1 and Algorithm 2, denote ϕ̃t = Round(ϕ;m), and we patch the
predictors using ϕ̃t instead of ϕt, i.e., we update f t to f t+1 as

f t+1(x) = proj[0,1]d(f
t(x) + ϕ̃tEt(f t(x), x)).

With this new patching operation, we can perform a similar analysis in Section 3.1 to show that
the Brier score decreases at each iteration, and therefore the algorithm terminates within a finite
number of time-steps. We denote the maximum number of time-steps, counting both Algorithm 1
and Algorithm 2, as Tmax.
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Then, we can count the total number of possible predictors outputted by Algorithm 2 by observing
that, for a fixed pair of input predictors, each pair of output predictors can be encoded as a sequence
of tuple, {(it, Et,∆t)}t∈[T ]. Here, index it ∈ {1, 2}, event Et ∈ {Eℓ,a1,a2

: ℓ ∈ L, a1, a2 ∈
A}∪ {Eℓ,a ∩Eℓ′,a1,a2

: ℓ, ℓ′ ∈ L, a1, a2, a ∈ A}, and ∆t ∈ [1/m]d are all chosen from a finite set,
and the length of the sequence, T , is also bounded. Specifically, for a fixed input f1, f2, we denote
S to be the set of all possible predictors outputted by Algorithm 2. Then, its size satisfies

|S| ≤ (4|L|2A3(m+ 1)d)Tmax+1

We show that the number of predictors outputted by Algorithm 2 is bounded:
Lemma D.2. Fix any pair of predictors f1, f2 : X → [0, 1]d and any η, α, β > 0. Then the total
number of possible predictors outputted by Algorithm 2 is at most |S| such that, for any distribution
D on which Algorithm 2 is run, the output predictors (f t

1, f
t
2) ∈ S.

Proof. First, notice that a sequence of quantities {(it, Et,∆t)}t∈[T ] defines the pair of predictors
outputted by Algorithm 2.

Let S denote the pairs of functions induced by all such trajectories defined above. Here, it ∈
{1, 2}, Et ∈ {Eℓ,a1,a2

: ℓ ∈ L, a1, a2 ∈ A} ∪ {Eℓ,a ∩ Eℓ′,a1,a2
: ℓ, ℓ′ ∈ L, a1, a2, a ∈ A}, and

∆t ∈ [1/m]d. Therefore, there are

|S| ≤
T∑

t=1

(
2(|L|A2 + |L|2A3)(m+ 1)d

)t ≤ (4|L|2A3(m+ 1)d)Tmax+1

output predictors.

D.1 FINITE GRID

With this new patching operation, we can show that the Brier score decreases on the empirical
distribution D, corresponding to Lemma C.2:
Lemma D.3. Fix any event E. Let ϕ = E(x,y)∼D[y − f(x)|E(x) = 1]. For any predictor f , we
patch f as f ′(x) = proj∆(f(x) + ϕ̃E(x)). Then,

B(f,D)−B(f ′, D) ≥ ∥ϕ∥22µ(E)− d

4m2

Proof. Let f̃ ′(x) = f(x) + ϕE(x). Then, we have

B(f,D)−B(f ′, D) =B(f,D)−B(f̃ ′, D) +B(f̃ ′, D)−B(f ′, D)

≥∥ϕ∥22µ(E) + E[∥f(x) + ϕE(x)− y∥22 −
∥∥∥f(x) + ϕ̃E(x)− y

∥∥∥2
2
]

(Lemma C.2)

=∥ϕ∥22µ(E)− E
[∥∥∥ϕ̃− ϕ

∥∥∥2
2

]
µ(E)

By definition ϕ̃, we know that each index of |ϕ̃− ϕ| is in [0, 1
2m ]. Therefore, we have

B(f,D)−B(f ′, D) ≥∥ϕ∥22 · µ(E)− d

4m2
.

Since the Brier score is within the range [0, d], and it decreases at each iteration, we can show that,
if we set m large enough, Algorithm 2 terminates within a finite number of iterations:

Lemma D.4. For any predictor f1, f2. Let m ≥
⌈√

d
2min{β2,ηα2/4d}

⌉
. The Brier score at each

iteration of Algorithm 1 and Algorithm 2 satisfies

B(f t, D)−B(f t+1, D) >
min{β2, ηα2/(4d)}

2
.
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Counting both Algorithm 2 and its subroutine Algorithm 1, the total number of iterations T satisfies

T ≤ 2d

min{β2, ηα2/4d}
.

Proof. By Algorithm 1, we have by definition of β-decision calibration that

µ(Et ∩ Eℓ,a) ·
∥∥E(x,y)∼D[(y − f(x)|Et(x) · Eℓ,a(x) = 1]

∥∥2
2

(17)

≥µ(Et ∩ Eℓ,a)
2 ·
∥∥E(x,y)∼D[(y − f(x)|Et(x) · Eℓ,a(x) = 1]

∥∥2
2

(18)

=
∥∥E(x,y)∼D[(y − f(x) · Et(x) · Eℓ,a(x)]

∥∥2
2
> β2. (19)

In Algorithm 2, we have by Lemma C.1 that

µ(Et)
∥∥E(x,y)∼D[(y − f(x)|Et(x) = 1]

∥∥2
2
>

ηα2

4d
. (20)

Therefore, for any ϕ and event E that we patch in Algorithm 1 or Algorithm 2, they satisfy

∥ϕ∥22 · µ(E) > min{β2,
ηα2

4d
}.

Letting m ≥
⌈√

d
2min{β2,ηα2/4d}

⌉
, we can ensure

B(f t, D)−B(f t+1, D) ≥∥ϕ∥22 · µ(E)

2
>

min{β2, ηα2/(4d)}
2

.

Since the Brier score is in the range [0, d], we can bound the total number of iterations of both
Algorithm 1 and Algorithm 2 as

T ≤ 2d

min{β2, ηα2/4d}
.

D.2 PROOF OF THEOREM 3.5

First, we show that, for a fixed predictor f and event Eℓ,a, the in-sample prediction error is approx-
imately accurate. The deviation bound of the Brier score and calibration error can then be directly
implied.
Lemma D.5. Fix any f , Eℓ,a, with probability at least 1− δ′, we have∥∥∥∥∥ED[(y − f(x))Eℓ,a(f(x), x)]−

1

n

n∑
i=1

[(yi − f(xi))Eℓ,a(f(xi), xi)]

∥∥∥∥∥
2

≤
√

d ln(2d/δ′)

2n
.

Proof. Fix an index j ∈ [d], we know E(x,y)∼D[(y − f(x))j · Eℓ,a(f(x), x)] ∈ [0, 1] and

ED

[
1

n

n∑
i=1

[(yi − f(xi))j · Eℓ,a(f(xi), xi)]

]
= E(x,y)∼D[(y − f(x))j · Eℓ,a(f(x), x)].

Since (xi, yi) is drawn i.i.d. from D, we can use Hoeffding’s inequality to get, with probability δ′/d,∣∣∣∣∣E(x,y)∼D[(y − f(x))j · Eℓ,a(f(x), x)]−
1

n

n∑
i=1

[(yi − f(xi))j · Eℓ,a(f(xi), xi)]

∣∣∣∣∣ ≤
√

ln(2d/δ′)

2n

Using union bound, we have that with probability 1− δ′, the above inequality holds for all j ∈ [d].
Then, we have∥∥∥∥∥E(x,y)∼D[(y − f(x)) · Eℓ,a(f(x), x)]−

1

n

n∑
i=1

[(yi − f(xi)) · Eℓ,a(f(xi), xi)]

∥∥∥∥∥
2

≤

√√√√∑
j∈d

(√
ln(2d/δ′)

2n

)2

=

√
d ln(2d/δ′)

2n
.
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The deviation bound of the Brier score and calibration error can be directly implied by Lemma D.5.
We summarize them in the lemmas below:

Lemma D.6. For a fixed f , with probability at least 1− δ′, |B(f,D)−B(f,D)| ≤
√

d ln(2d/δ′)
2n .

Proof. Using triangle inequality, we have

|B(f,D)−B(f,D)| =

∣∣∣∣∣∥∥E(x,y)∼D[y − f(x)]
∥∥
2
−

∥∥∥∥∥ 1n
n∑

i=1

[yi − f(xi)]

∥∥∥∥∥
2

∣∣∣∣∣
≤

∥∥∥∥∥E(x,y)∼D[y − f(x)]− 1

n

n∑
i=1

[yi − f(xi)]

∥∥∥∥∥
2

≤
√

d ln(2d/δ′)

2n
.

Lemma D.7. For a fixed f , any loss function ℓ ∈ L and E = {Eℓ,a∩Eℓ′,a1,a2
: ℓ, ℓ′ ∈ L, a, a1, a2 ∈

A}, with probability 1− δ′, we have∥∥∥∥∥ED[(y − f(x))E(x)]− 1

n

n∑
i=1

[(yi − f(xi))E(x)]

∥∥∥∥∥
2

≤
√

3d ln(2dA |L| /δ′)
2n

for all E ∈ E .

Proof. The claim follows by using a union bound over the events in Et, using Lemma D.5, and that
|Et| = A3 |L|2.

For a fixed pair of predictors, we can also show that the empirical size of the disagreement events
Eℓ,a1,a2

is approximately correct with high probability:
Lemma D.8. Fix any pair of predictors (f1, f2) ∈ S, with probability at least 1 − δ′ over D, we
have ∣∣∣∣∣µ(Eℓ,a1,a2

)− 1

n

n∑
i=1

I[Eℓ,a1,a2(xi) = 1]

∣∣∣∣∣ ≤
√

2 ln(2A |L| /δ′)
2n

.

for all a1, a2 ∈ A with a1 ̸= a2 and for all ℓ ∈ L.

Proof. We know I[Eℓ,a1,a2
(xi) = 1] ∈ [0, 1] and

ED

[
1

n

n∑
i=1

I[Eℓ,a1,a2
(xi)

]
= µ(Eℓ,a1,a2

).

Since (xi, yi) is drawn i.i.d. from D, we can use Hoeffding’s inequality to get, with probability
1− δ′/(A2|L|), ∣∣∣∣∣µ(Eℓ,a1,a2

)− 1

n

n∑
i=1

I[Eℓ,a1,a2
(xi)]

∣∣∣∣∣ ≤
√

2 ln(2A |L| /δ′)
2n

.

Using union bound over all pairs of a1, a2 ∈ A and ℓ ∈ L, we know the above inequality holds for
all a1, a2 and ℓ ∈ L with probability at least 1− δ′.

We summarize the above results in the theorem below. Theorem 3.5 follows by solving for n in the
2-4th guarantees below.
Theorem D.9. Fix any distribution D and dataset D ∼ D containing n samples drawn i.i.d from
D. For any pair of predictors f1, f2 : X → [0, 1]d, loss margin α > 0, disagreement region mass
η > 0, and decision-calibration tolerance β > 0, Algorithm 2 run over the empirical distribution D
updates predictors f1 and f2 for T1 and T2 time-steps, respectively, and outputs a pair of predictors
(fT

1 , fT
2 ) such that, with probability at least 1− δ over the randomness of D ∼ Dn,
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1. The total number of time-steps for Algorithm 2 and Algorithm 1 is

T = T1 + T2 ≤ 2d

min{β2, ηα2/4d}

2. For i ∈ {1, 2}, the Brier scores of the final models are lower than that of the input models:

B(fTi
i ,D) ≤ B(fi,D)− Ti ·min

{
β2, ηα2/(4d)

}
+
√

(d ln(6d|S|/δ)/(2n)

3. For i ∈ {1, 2}, the downstream decision-making losses of the final models do not increase
by much compared to that of the input models:

E(x,y)∼D[ℓ(y, π
BR(fT

i (x))− ℓ(y, πBR(fi(x))] ≤
(
β +

√
(3d ln(6dA|S| |L| /δ)/(2n)

)√
dATi

4. The final models approximately agree on their best-response actions almost everywhere.
That is, the disagreement region Ea1,a2

calculated using fT
1 , fT

2 has small mass.

µ(Eℓ,a1,a2
) ≤ η +

√
(2 ln(6A|S| |L| /δ)/(2n) for all a1, a2 ∈ A s.t a1 ̸= a2

Here, S is the set of all possible predictors outputted by Algorithm 2 satisfying

ln(|S|) ≤
(

2d

min{β2, ηα2/4d}
+ 1

)
ln

4|L|2A3

(⌈√
d

2min{β2, ηα2/4d}

⌉
+ 1

)d


Proof. The upper bound on T holds true with probability 1. For the remaining three guarantees, we
show that each of them holds with probability at least 1− δ/3 over the randomness of D.

Brier Score. First, by Lemma D.6 and using union bound over all possible output predictors
(f1, f2) ∈ S, we have with probability at least 1− δ/3 that

|B(fi,D)−B(fi, D)| ≤
√

d ln(6d|S|/δ)
2n

.

By Lemma D.4, and summing over all iterations, we have

B(fTi
i , D) ≤ B(fi, D)− Ti ·min

{
β2

2
,
ηα2

8d
.

}
Therefore,

B(fTi
i ,D) ≤B(fTi

i , D) +

√
d ln(6d|S|/δ)

2n

≤B(fi,D)− Ti ·min

{
β2

2
,
ηα2

8d

}
+

√
d ln(6d|S|/δ)

2n

for i ∈ {1, 2}.

Expected Loss. Using union bound over all predictors in S, by Lemma D.7, we have, with proba-
bility at least 1− δ/3,∥∥∥∥∥ED[(y − f(x))Eℓ,a(f(x), x)]−

1

n

n∑
i=1

[(yi − f(xi))Eℓ,a(f(xi), xi)]

∥∥∥∥∥
2

≤
√

3d ln(6dA|S| |L| /δ)
2n

for all predictors f , action a ∈ A and loss ℓ ∈ L. Using similar method as in Lemma 2.6, we define
the set ∆t

a ⊆ Et as

∆t
a = {x ∈ Et : πBR

ℓ (f t+1
i (x)) = a}.

22



Published as a conference paper at ICLR 2025

Then, we have

E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, πBR
ℓ (f t

i (x)))]

=
∑
a∈A

E(x,y)∼D[(ℓ(y, a)− ℓ(y, ati))∆
t
a(x)].

For each term in the summation,

E(x,y)∼D[(ℓ(y, a)− ℓ(y, ati))∆
t
a(x)] (21)

=⟨E(x,y)∼D[y∆
t
a(x)], ℓa − ℓat

i
⟩ (Linearity of Expectation)

≤⟨Ex∼DX [f
t+1
i (x)∆t

a(x)], ℓa − ℓat
i
⟩+

(
β +

√
3d ln(6dA|S| |L| /δ)

2n

)
√
d

(Lemma D.7 and β-calibrated)

≤

(
β +

√
3d ln(6dA|S| |L| /δ)

2n

)
√
d. (Since a is the new Best-response action)

Summing these actions together, we have

E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, πBR
ℓ (f t

i (x)))] ≤ β
√
dA+

√
3 ln(6dA|S| |L| /δ)

2n
dA. (22)

Summing over all iterations, we conclude that, with probability at least 1− δ/3,

E(x,y)∼D[ℓ(y, π
BR(fTi

i (x)))− ℓ(y, πBR(fi(x)))] ≤ Ti(β
√
dA+

√
3 ln(6dA|S| |L| /δ)

2n
dA)

for all i ∈ {1, 2}.

Disagreement Event. By Lemma D.8, with probability at least 1−δ/(3|S|), we have, for all ℓ ∈ L,
a1, a2 ∈ A with a1 ̸= a2 and all (f1, f2) ∈ S,∣∣∣∣∣µ(Eℓ,a1,a2

(f1(x), f2(x), x)−
1

n

n∑
i=1

I[Eℓ,a1,a2
(f1(xi), f2(xi), xi))]

∣∣∣∣∣ ≤
√

2 ln(6A|S| |L| /δ)
2n

.

From the while loop condition in Algorithm 2, we know that

1

n

n∑
i=1

I[Eℓ,a1,a2
(fT1

1 (xi), f
T2
2 (xi), xi)] ≤ η

Then, using union bound over all (f1, f2) ∈ S and ℓ ∈ L, with probability at least 1− δ/3, we have
the guarantee

µ(Eℓ,a1,a2
(fT1

1 (x), fT2
2 (x), x)) ≤ 1

n

n∑
i=1

I[Eℓ,a1,a2
(fT1

1 (xi), f
T2
2 (xi), xi)] +

√
2 ln(6A|S| |L| /δ)

2n

(23)

≤η +

√
2 ln(6A|S| |L| /δ)

2n
(24)

for all a1, a2 ∈ A, a1 ̸= a2 and ℓ ∈ L.

Finally, using results from Lemma D.2, value of Tmax, and m =
⌈√

d
2min{β2,ηα2/4d}

⌉
, we conclude

by showing

ln(|S|) ≤ ln
(
(4|L|2A3(m+ 1)d)Tmax+1

)
=(Tmax + 1) ln(4|L|2A3(m+ 1)d)

=

(
2d

min{β2, ηα2/4d}
+ 1

)
ln

4|L|2A3

(⌈√
d

2min{β2, ηα2/4d}

⌉
+ 1

)d

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E PROOFS OF SECTION 3.3: EXTENSION TO MULTIPLE PREDICTORS

Here, we present the algorithm we described in Section 3.3. As a shorthand, we write
Eα

ℓ,a1,a2
(f(x), fj(x), x) as Eℓ,a1,a2,j .

Algorithm 4: Reconcile Decision Calibration for Multiple Predictors (ReDCal-Multi)
Input: f1, f2, . . . , fk,L, η > 0, α > 0, β > 0

1: Let f0
i = fi for all i ∈ [k]\{1}, and t = 0. We use f1 as the base predictor.

2: while µ(Eℓ,a1,a2,j) ≥ η for some a1, a2 ∈ A, ℓ ∈ L, and j ∈ [k]\{1} do
3: Let ℓt, at1, a

t
2, j

t = argmaxℓ,a,a′ µ(Eℓ,a,a′), Et = Eℓt,at
1,a

t
2,j

t .
4: Pick

it = argmax
i∈{1,jt}

∣∣E(x,y)∼D[ℓ
t(y, at1)− ℓt(y, at2)|Et(x) = 1]

− Ex∼X [ℓt(fi(x), a
t
1)− ℓt(fi(x), a

t
2)|Et(x) = 1]

∣∣.
5: Denote f t

it as f t
i . Let ϕt = E(x,y)∼D[y|Et(x) = 1]− Ex∼DX [f

t
i (x)|Et(x) = 1].

6: Patch f t(x) = proj[0,1]d(f
t
i (x) + ϕtEt(x)).

7: Let f t+1
i = Decision-Calibration(f t, L, β, Et). t = t+ 1.

Output: f t
1, . . . , f

t
k

With Algorithm 4, we can obtain the following guarantee.
Theorem E.1. Fix any distribution D and dataset D ∼ D containing n samples drawn i.i.d from
D. For any k predictors f1, f2, . . . , fk : X → [0, 1]d, family of loss functions L, loss margin
α > 0, disagreement region mass η > 0, and decision-calibration tolerance β > 0, Algorithm 4
run over the empirical distribution D updates each fi for Ti time-steps, and outputs k predictors
(fT

1 , . . . , fT
k ) such that, with probability at least 1− δ over the randomness of D ∼ Dn,

1. The total number of time-steps for Algorithm 4 and Algorithm 1 is

T =
∑
i∈[k]

Ti ≤
2dk

min{β2, ηα2/4d}

2. For i ∈ [k], the Brier scores of the final models are lower than that of the input models:

B(fTi
i ,D) ≤ B(fi,D)− (Ti − η) ·min

{
β2, ηα2/(4d)

}
3. For i ∈ [k] and for all ℓ ∈ L, the downstream decision-making losses of the final models

do not increase by much compared to that of the input models:

E(x,y)∼D[ℓ(y, π
BR
ℓ (fT

i (x))− ℓ(y, πBR
ℓ (fi(x))] ≤ 2TiβA

√
d

4. The final models approximately agree on their best-response actions almost everywhere.
That is, the disagreement region Eℓ,a1,a2,j calculated using fT

1 , fT
j has small mass: For

all j ∈ [k], ℓ ∈ L, and a1, a2 ∈ A s.t. a1 ̸= a2,

µ(Eℓ,a1,a2,j) ≤ 2η

if n ≥ Ω
(
d2k/(η2 min{β, ηα2/d}) · (ln(dkA |L|)− ln(δmin{β, ηα/d}))

)
.

Proof. The proof follows the same idea and structure as the proof of theorem 3.5.

Number of Iterations. By lemma D.3, at each iteration of Algorithm 4 and Algorithm 1, the Brier
score of some predictor j ∈ [k] satisfies

B(f t
j , D)−B(f t+1

j , D) >
min{β2, ηα2/(4d)}

2
.
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Since the Brier score is non-negative and we have k predictors in total, we have that, after T =∑k
i=1 Ti iterations,∑

j∈[k]

B(fj , D) ≥
∑
j∈[k]

(B(fj , D)−B(fT
j , D)) > T · min{β2, ηα2/(4d)}

2
.

Since Brier score is in the range [0, d], we can solve for T in the inequality and have the upper bound
on the number of iterations

Tmax ≤ 2dk

min{β2, ηα2/(4d)}
.

Brier Score. We first count the number of possible predictors outputted by Algorithm 4. At
each iteration in Algorithm 4 or its subroutine Algorithm 1, we patch on a predictor f t

i for some
it ∈ [k], on the event E ∈ {Eℓ,a1,a2,j : ℓ ∈ L, a1, a2 ∈ A, j ∈ [k]} ∪ {Eℓ,a1,a2,j ∩ Eℓ′,a : ℓ, ℓ′ ∈
L, a1, a2, a ∈ A, j ∈ [k]}, with the value ∆t ∈ [1/m]d. Therefore, at each iteration, the number of
different patching operations satisfies

(|L|A2k + |L|2A3k)(m+ 1)d ≤ 2|L|2A3k(m+ 1)d.

For fixed k predictors, the output predictors are defined by the sequence of patches. The total number
of different sets of output predictors are

|S| ≤
T∑

i=1

(2|L|2A3k(m+ 1)d)t ≤ (2|L|2A3k(m+ 1)d)Tmax+1.

Using lemma D.6 and using union bound over all possible output predictors, we have with probabil-
ity at least 1− δ/3 that

|B(fi, D)−B(fi,D)| ≤
√

d ln(6dk|S|/δ)
2n

.

Summing over all iterations, we have

B(fTi
i ,D) ≤ B(fTi

i ,D)− Ti ·min

{
β2

2
,
ηα2

8d

}
+

√
d ln(6dk|S|/δ)

2n
.

Expected Loss. Using lemma D.6 and a union bound over the events in E = {Eℓ,a1,a2,j ∩ Eℓ′,a :
ℓ, ℓ′ ∈ L, a1, a2, a ∈ A, j ∈ [k]}, we have with probability 1− δ/3 that

∥ED[(y − f(x)]E(x)− 1

n

n∑
i=1

[(yi − f(xi))E(x)]∥ ≤
√

3d ln(6dkA|L||S|/δ)
2n

for all predictors f , action a ∈ A, loss ℓ ∈ L. The rest of the steps are the same as in the proof of
theorem 3.5. We have, at iteration t,

E(x,y)∼D[ℓ(y, π
BR
ℓ (f t+1

i (x)))− ℓ(y, πBR
ℓ (f t

i (x)))] ≤ β
√
dA+

√
3 ln(6dkA|L||S|/δ)

2n
dA.

The result follows by summing over all iterations.

Disagreement event is small. The stopping condition at line 2 of algorithm 4 implies that the final
output models satisfies

µ(Eℓ,a1,a2,j) =
1

n

n∑
i=1

Eα
ℓ,a1,a2,j(f

T
1 (xi), f

T
j (xi), xi) ≤ η

for all a1, a2 ∈ A, ℓ ∈ L, and j ∈ [k]\{1}. That is, the disagreement region between our base model
fT
1 and any of the other k − 1 models is small. Using Hoeffding’s inequality and union bound, we

have that, for any predictors (f1, . . . , fk) ∈ S, with probability 1− δ/3 over D,∣∣∣∣∣µ(Eℓ,a1,a2,j −
1

n

n∑
i=1

Eℓ,a1,a2,j(xi)

∣∣∣∣∣ ≤
√

ln(6kA|S||L|/δ)
n

for all a1, a2 ∈ A with a1 ̸= a2, all ℓ ∈ L, and predictor j ∈ [k]. Combining this with the bound on
1
n

∑n
i=1 Eℓ,a1,a2,j(xi) given by the stopping condition, we can obtain the fourth guarantee.
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Note that, with the fourth condition in Theorem E.1, we can also obtain that the size of the disagree-
ment event between other predictors, fi, fj with i, j ̸= 1 satisfies

µ(E2α
a1,a2,ℓ(fi(x), fj(x), x)) ≤ 2ηA.

For each x ∈ E2α
a1,a2,ℓ

(fi(x), fj(x), x)), it must be either x ∈ Eα
a1,a,ℓ

(f(x), fi(x), x) or x ∈
Eα

a1,a,ℓ
(f(x), fj(x), x) for some a ∈ A. Therefore,

µ(E2α
a1,a2,ℓ(fi(x), fj(x), x))

≤
∑

a∈A\{a1,a2}

(
µ(Eα

a1,a2,ℓ(f(x), fi(x), x)) + µ(Eα
a1,a2,ℓ(f(x), fj(x), x))

)
≤

∑
a∈A\{a1,a2}

2η ≤ 2Aη.

F EXTENSION TO INFINITELY LARGE ACTION SET

We extend our results to a setting where the action space A of the downstream decision-making tasks
is infinitely large. Now that we cannot enumerate all actions in the action space, the disagreement
event in this setting can not specify the best-response action. For a loss ℓ ∈ L, one approach is to
define the event as

Eα
ℓ (f1(x), f2(x), x) = I

[
⟨f1(x), ℓπBR(f2(x)) − ℓπBR(f1(x))⟩ > α, or

⟨f2(x), ℓπBR(f1(x)) − ℓπBR(f2(x))⟩ > α
]
.

We now want to “patch” a predictor on the disagreement event, such that the predictor’s Brier score
decreases by a large amount after patching. However, using this definition of disagreement event,
we cannot guarantee that at least one of f1 and f2 has a large prediction error. For example, consider
y1 = y2 = [1/2, 1/2], predictors f1(x1) = f2(x2) = [1, 0], f1(x2) = f2(x1) = [0, 1], and the loss
ℓa ∈ {[x, 1 − x] : x ∈ [0, 1]}. According to f1, the loss vector of the best-response action of x1

is ℓa1 = [0, 1], and that of x2 is ℓa2 = [1, 0]. According to f2, the loss vector of the best-response
action of x1 and x2 is ℓa2

and ℓa1
, respectively. Clearly, data x1 and x2 are both in the disagreement

event Eα
ℓ for any α < 1, but the mean estimation error of f1 and f2 on the disagreement event

{x1, x2} are both 0, since 1/2([0, 1] + [1, 0]) = [1/2, 1/2].

A solution to this problem is to further separate the Eα
ℓ into 2d sub-events that focus on the dis-

agreement per-label. The union of these 2d sub-events is equivalent to Eα
ℓ , as shown in Lemma F.3.

Formally, we have the following definition.
Definition F.1 (Per-label Disagreement Event). For each a loss ℓ ∈ L, index i ∈ [d], we define

Eα
ℓ,i,>(f1(x), f2(x), x) = I

[
f1(x)i − f2(x)i > α/d, Eα

ℓ (f1(x), f2(x), x) = 1
]
.

Eα
ℓ,i,<(f1(x), f2(x), x) = I

[
f1(x)i − f2(x)i < −α/d, Eα

ℓ (f1(x), f2(x), x) = 1
]
.

To ensure the predictor’s expected loss is accurate, we define a per-label best-response event using
a discretized approach, approximating each index of the loss vector ℓa with a finite grid [1/T ]
(Definition D.1). Then, if a predictor is approximately accurate with respect to each per-label best-
response event, then its estimated loss for the best-response actions are approximately accurate.
Definition F.2 (Per-label Best-Response Event). Given a predictor f , a loss ℓ, and a level τ ∈ [1/T ],
for each index i ∈ [d], we define the best-response event as

Ei,τ (f(x), x) = I{x : τ − 1/T < ℓπBR(f(x)),i ≤ τ}.
where ℓπBR(f(x)),i denote the i-th index of ℓπBR(f(x)).

With the disagreement and best-response events now clearly defined, we can adapt our existing
algorithm (Algorithm 2) to this new context: at each iteration, we find the largest per-label disagree-
ment events and patch on the predictor with the larger estimation error; then, in a subroutine similar
to Algorithm 1, we iteratively calibrate the predictor we just patched on, using the per-label best-
response events. This algorithm can maintain similar guarantees as Theorem 3.5, with a data size
Ω̃
(
d2/(η2βmin{β2, ηα2/d3})

)
. The formal algorithm is written in Algorithm 6.
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Given our approximation of each action feature ℓa using a finite grid [1/T ], it may seem intuitive to
approximate the entire infinite action set as [1/T ]d and simply run Algorithm 2. However, such an
approach yields an action set whose size grows exponentially with d, which in turn would require
a data sample size that also grows exponentially to achieve guarantees comparable to those in The-
orem 3.5. In contrast, our algorithm 6 operates with a polynomial data requirement relative to d,
making it more feasible for practical application.

Algorithm 5: Decision Calibration for Infinite Action Set
Input: Predictor f , loss family L, β > 0, event E

1: Let f0 = f .
2: while f t is not index-wise β-multicalibrated with respect to events Eℓ,i,τ ∩ E for some ℓ ∈ L,

i ∈ [d], and τ ∈ [1/T ] do
3: Let ℓt, it, τ t = argmaxℓ,i,τ ∥E(x,y)∼D[(y − f t(x))Eℓ,i,τ (f

t(x), x)]∥2
4: Let ϕt = E(x,y)∼D[y − f t(x)|Eℓt,it,τt(f t(x), x) = 1]

5: Patch f t+1(x) = proj[0,1]d(f
t(x) + ϕtEℓt,it,τt(f t(x), x))

6: t = t+ 1.
Output: f t

Algorithm 6: Reconcile Decision Calibration for Infinite Action Set (ReDCal-Inf)
Input: f1, f2,L, η > 0, α > 0, β > 0

1: Let f0
1 = f1, f

0
2 = f2 and t = 0.

2: while µ(Eℓ) ≥ η for some ℓ ∈ L do
3: Let ℓt, jt, ·t = argmaxℓ,j,· µ(Eℓ,j,·), Et = Eℓt,jt,·t .
4: Pick

it = argmax
i∈{1,2}

∣∣E(x,y)∼D[ℓ
t(y, πBR(f t

1(x)))− ℓt(y, πBR(f t
2(x)))|Et(x) = 1]

− Ex∼X [ℓt(fi(x), π
BR(f t

1(x)))− ℓt(fi(x), π
BR(f t

2(x)))|Et(x) = 1]
∣∣.

5: Denote f t
it as f t

i . Let ϕt = E(x,y)∼D[y|Et(x) = 1]− Ex∼DX [f
t
i (x)|Et(x) = 1].

6: Patch f t(x) = proj[0,1]d(f
t
i (x) + ϕtEt(x)).

7: Let f t+1
i = Decision-Calibration-Inf(f t, L, β, Et). t = t+ 1.

Output: f t
1, f

t
2

We now present the formal proofs related to Algorithm 6.
Lemma F.3. For any loss ℓ ∈ L, we have

Eα
ℓ =

⋃
i∈[d],·∈{>,<}

Eα
ℓ,i,·.

Proof. By definition, we may get ⋃
i∈[d],·∈{>,<}

Eα
ℓ,i,· ⊆ Eα

ℓ .

For the other direction, assume for the sake of contradiction that there is an element x ∈ Eα
ℓ such

that x /∈ Eα
ℓ,i,· for all i ∈ [d] and · ∈ {>,<}. Then, this means

|f1(x)i − f2(x)i| < α/d

for all i ∈ [d]. We can then get the inequality

⟨f1(x)− f2(x), ℓπBR(f2(x)) − ℓπBR(f1(x))⟩ =
∑
i∈[d]

(f1(x)i − f2(x)i) · (ℓπBR(f2(x)) − ℓπBR(f1(x)))

≤
∑
i∈[d]

|f1(x)i − f2(x)i| ·
∣∣ℓπBR(f2(x)) − ℓπBR(f1(x))

∣∣
<d · α/d = α.
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On the other hand, by definition of event Eα
ℓ , we have for all x ∈ Eα

ℓ ,

⟨f1(x)− f2(x), ℓπBR(f2(x)) − ℓπBR(f1(x))⟩ > α,

which leads to a contradiction.

The following lemma shows that, if f is β-index-wise decision-calibrated, then the loss estimation
is approximately accurate.

Lemma F.4. If the predictor f is β-index-wise decision-calibrated, i.e. for all ℓ ∈ L, i ∈ [d],
τ ∈ [1/T ],

E(x,y)∈D[∥y − f(x)∥2 · Eℓ,i,τ (f(x), x)] ≤ β,

then, the loss estimation given by f is approximately accurate for all ℓ ∈ L:

E(x,y)∈D[⟨y, ℓπBR(f(x))⟩ − E(x,y)∈D[⟨f(x), ℓπBR(f(x))⟩] ≤ dT β + d/T .

Letting T ≥ 1/
√
β, we get

E(x,y)∈D[⟨y, ℓπBR(f(x))⟩ − E(x,y)∈D[⟨f(x), ℓπBR(f(x))⟩] ≤ 2d
√
β.

Proof. We can rewrite the expected loss as

E(x,y)∼D[⟨y, ℓπBR(f(x))⟩] =
∑
i∈[d]

E(x,y)∼D[yi · ℓπBR(f(x)),i]

(here ℓπBR(f(x)),i represents the i-th index of ℓπBR(f(x)))

=
∑
i∈[d]

∑
τ∈[1/T ]

E(x,y)∼D[yi · ℓπBR(f(x)),i · Eℓ,i,τ (f(x), x)]

≤
∑
i∈[d]

∑
τ∈[1/T ]

τ · E(x,y)∼D[yi · Eℓ,i,τ (f(x), x)].

Similarly, we can rewrite the estimated loss as

E(x,y)∼D[⟨f(x), ℓπBR(f(x))⟩] >
∑
i∈[d]

∑
τ∈[1/T ]

(τ − 1/T ) · E(x,y)∼D[f(x)i · Eℓ,i,τ (f(x), x)].

The estimation error is

E(x,y)∈D[⟨y, ℓπBR(f(x))⟩ − E(x,y)∈D[⟨f(x), ℓπBR(f(x))⟩]

=
∑
i∈[d]

∑
τ∈[1/T ]

τ · E(x,y)∼D[yi · Eℓ,i,τ (f(x), x)]

−
∑
i∈[d]

∑
τ∈[1/T ]

(τ − 1/T ) · E(x,y)∼D[f(x)i · Eℓ,i,τ (f(x), x)]

=
∑
i∈[d]

∑
τ∈[1/T ]

τ · E(x,y)∼D[(yi − f(x)i) · Eℓ,i,τ (f(x), x)]

+
∑
i∈[d]

∑
τ∈[1/T ]

1/T · E(x,y)∼D[f(x)i · Eℓ,i,τ (f(x), x)].

Since f is β-index-wise decision-calibrated, we have

E(x,y)∈D[|yi − f(x)i| · Eℓ,i,τ (f(x), x)] ≤ β.

Therefore,

E(x,y)∈D[⟨y, ℓπBR(f(x))⟩ − E(x,y)∈D[⟨f(x), ℓπBR(f(x))⟩] ≤ dT β + d/T

We are now ready to give the formal guarantees of Algorithm 6.

28



Published as a conference paper at ICLR 2025

Theorem F.5. Fix any distribution D and dataset D ∼ D containing n samples drawn i.i.d from
D. For any pair of predictors f1, f2 : X → [0, 1]d, family of loss functions L, loss margin α > 0,
disagreement region mass η > 0, and decision-calibration tolerance β > 0, Algorithm 6 run over
the empirical distribution D updates f1 and f2 for T1 and T2 time-steps, respectively, and outputs
a pair of predictors (fT

1 , fT
2 ) such that, with probability at least 1 − δ over the randomness of

D ∼ Dn,

1. The total number of time-steps for Algorithm 6 and Algorithm 5 is

T = T1 + T2 ≤ 2d

min{β2, ηα2/2d3}

2. For i ∈ {1, 2}, the Brier scores of the final models are lower than that of the input models:

B(fTi
i ,D) ≤ B(fi,D)− (Ti − η) ·min

{
β2, ηα2/(2d3)

}
3. For i ∈ {1, 2} and for all ℓ ∈ L, the downstream decision-making losses of the final models

do not increase by much compared to that of the input models:

E(x,y)∼D[ℓ(y, π
BR
ℓ (fT

i (x))− ℓ(y, πBR
ℓ (fi(x))] ≤ 2Ti

√
βd

4. The final models approximately agree on their best-response actions almost everywhere.
That is, the disagreement region Eα

ℓ calculated using fT
1 , fT

2 has small mass: ∀ℓ ∈ L,

µ(Eα
ℓ ) ≤ 2η

if n ≥ Ω
(
d2/(η2βmin{β2, ηα2/d3}) ·

(
ln(dT |L|)− ln(δmin{β2, ηα2/d3})

))
.

Proof. Number of time-steps. By Lemma C.2, at each iteration t in Algorithm 6 of its sub-
routine Algorithm 1, the Brier score of f t decreases by min{β2, ηα2/2d3}/2, when m ≥
⌈
√
d/2min{β2, ηα2/2d3}⌉. Since Brier score is bounded in [0, d], the total number of time-steps

satisfies
Tmax = T1 + T2 ≤ 4d

min{β2, ηα2/2d2}
.

Number of Output Predictors. We count the number of pairs of output predictors. The patching
event at each iteration is in the set {Eℓ,i,· : ℓ ∈ L, i ∈ [d], · ∈ {<,>}} ∪ {Eℓ,i,· ∩ Eℓ′,i′,τ : ℓ, ℓ′ ∈
L, i, i′ ∈ [d], τ ∈ T , · ∈ {<,>}}. The total number of event is at most 2|L|d + 2|L|2d2|T |. Since
each pair of output predictors is defined by the sequence of patchings and ∆t ∈ [1/m]d, we have
the total number of possible output predictors is

|S| ≤ ((4d2|L|2|T |)(m+ 1)d)Tmax+1.

Therefore,

ln(|S|) ≤ Ω

(
d2

min{β2, ηα2/2d2}
ln(d|L|T /min{β2, ηα2/2d2})

)
.

Brier Score. The result directly follows using the same argument as in Theorem 3.5. We can obtain

B(fTi
i ,D) ≤ B(fi,D)− Ti ·min

{
β2, ηα2/(2d3)

}
+
√

(d ln(6d|S|/δ)/(2n).

Loss Estimation. Using Lemma D.5 and a union bound over {Eℓ,i,· ∩ Eℓ′,i′,τ : ℓ, ℓ′ ∈ L, i, i′ ∈
[d], τ ∈ [1/T ], · ∈ {<,>}} and |S|, we have with probability at least 1− δ/3,∥∥∥∥∥ED[(y − f(x))Eℓ,a(f(x), x)]−

1

n

n∑
i=1

[(yi − f(xi))Eℓ,a(f(xi), xi)]

∥∥∥∥∥
2

≤
√

3d ln(6dT |S| |L| /δ)
2n

.

Using Lemma F.4 and summing over all time-steps, we can obtain the result following the same
steps as the proof in Theorem 3.5:

E(x,y)∼D[ℓ(y, π
BR(fT

i (x))− ℓ(y, πBR(fi(x))] ≤
(√

βd+
√
(3d ln(6dT |S| |L| /δ)/(2n)

)
Ti
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Disagreement Event. Using union bound over the disagreement events {Eℓ : ℓ ∈ L, } and the set
of possible output predictors, we have, for all ℓ ∈ L, and (f1, f2) ∈ S,∣∣∣∣∣µ(Eℓ,a1,a2

(f1(x), f2(x), x)−
1

n

n∑
i=1

I[Eℓ,a1,a2
(f1(xi), f2(xi), xi))]

∣∣∣∣∣ ≤
√

ln(6|S| |L| /δ)
2n

.

From the while loop condition in Algorithm 6, we know 1
n

∑n
i=1 I[Eℓ(f

T1
1 (xi), f

T2
2 (xi), xi)] ≤ η.

Therefore,
µ(Eℓ) ≤ η +

√
(ln(6|S| |L| /δ)/(2n) for all ℓ ∈ L

The theorem follows from solving n in the conditions 2 through 4.

G ADDITIONAL EXPERIMENT DETAIL

Our ImagineNet experiments are run on a Macbook Pro with 32GB of RAM. The experiment on
the ImageNet dataset uses pre-trained models provided by pyTorch, which do not require additional
training. The experiment on the HAM10000 dataset includes neural network models trained using
pyTorch on NVIDIA GA100 GPU (80 GB of RAM) with 2 compute workers loading the data. The
total time to train the two neural network models with approximately 88% Top-1 accuracy takes less
than 5 minutes.

G.1 ADDITIONAL EXPERIMENT ON IMAGENET DATASET

Brier score. In Figure 4, we compare the Brier score of ReDCal (Algorithm 2) with the two
baseline algorithms on both the calibration and the test datasets. Compared to Reconcile, our algo-
rithm decreases the Brier score by a smaller amount on the test dataset. The combined algorithm
of Decision-Calibration with ReDCal as post-process achieves the most substantial decrease in the
Brier score.

Figure 4: ReDCal decreases Brier score on Imagenet. Compared to Reconcile, our algorithm de-
creases the Brier score by a smaller amount on the test dataset. Decision-Calibration with ReDCal
as post-process achieves the most substantial decrease in the Brier score.

Decision loss on calibration dataset. In Figure 5, we compare the decision gap of our proposed
algorithm with the two baseline algorithms on the training dataset.

Decision loss comparison for high-dimensional classification problem. In Figure 6, we com-
pare the decision loss gap of our proposed algorithm with the two baseline algorithms on the testing
dataset, using d = 10, 100, and 1000 classes. We plot the average loss gap of the two predictors. The
hyperparameters are: disagreement margin α = 0.1/d, decision-calibration tolerance β = 0.001/d,
disagreement region mass η = 0.01, number of actions K = 10.

G.2 HAM1000 CLASSIFICATION

Experiment Setup. We use the HAM10000 dataset (Tschandl et al., 2018) (licensed CC BY-
NC 4.0) on pigmented skin lesions to predict the probability that a patient has contracted one of
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Figure 5: ReDCal decreases decision loss on Imagenet. We plot the gap between the average loss of
each predictor and the optimal loss had we known the true predictor f∗ on the calibration set. Left
two figures: We compare the LossGap of ReDCal (orange) with Reconcile (blue). Compared to
Reconcile, our algorithm converges at a similar rate and decreases the loss by a larger amount on the
test dataset. Right two figures: We compare the LossGap of Decision-Calibration (green) to that
of Decision-Calibration with a run of ReDCal as post-process (red). Our proposed algorithm can
improve upon Decision-Calibration output predictors and further reduce the loss on the test dataset.
Results are averaged over 500 runs and the shaded region indicates ±1 standard errors.

Figure 6: ReDCal decreases decision loss on Imagenet. The takeaway results are similar to Figure 2.
As the number of classes in the multi-class classification problem grows from 10 to 1000, ReDCal
still outperforms Reconcile in decreasing decision loss on the test dataset. When we have 1000
classes, ReDCal converges slower than Reconcile. Furthermore, ReDCal can further decrease the
decision loss when it is used as a post-process after Decision Calibration terminates.

7 possible skin diseases: ’akiec’, ’bcc’, ’bkl’, ’df’, ’nv’, ’vasc’, and ’mel’. We split the dataset
into train/validation/test sets, with 20% of the data are used for validation and 20% are used for
testing. We use the train set to train two neural networks using pyTorch with resnet50 (He et al.,
2015) and densenet121 (Huang et al., 2018) architectures and learn two models with around 88%
top-1 accuracy. From each model, we output the individual probability prediction for each of the 7
possible labels. We use the validation set to calibrate the predictors using our proposed algorithm
and the two baseline algorithms, and the test set to measure the final performance.

We run each calibration algorithm 10 times. At each run, we draw a fresh loss function created based
on the loss function motivated by medical domain knowledge in Zhao et al. (2021) and additional
random noise drawn from Normal(0, 1). There are two possible actions for the decision-maker:
treatment (a = [1, 0]) or no treatment (a = [0, 1]). Given a loss function ℓ and a predictor f , the
decision-maker will choose an action that minimizes their loss.

For each calibration algorithm, we calculate (1) the Brier score of the updated predictors and (2)
the differences between the optimal loss had we known y and the actual loss from taking the best-
response actions induced by each predictor.

The hyperparameters for Algorithm 2 are chosen as follows: loss margin α = 0.1, target disagree-
ment region mass η = 0.01, and decision-calibration tolerance β = 0.000001.

Results. The takeaway results are similar to those of the ImageNet experiment.
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Brier score. In Figure 7, we compare the Brier score of ReDCal (Algorithm 2) with the two base-
line algorithms on both the calibration and the test datasets. Compared to Reconcile, our proposed
algorithm decreases the Brier score by a smaller amount.

Decision loss. In Figure 8, we compare the decision loss gap of our proposed algorithm with the
two baseline calibration algorithms. Compared to Reconcile, our algorithm decreases the decision
loss by a larger amount on the test dataset. Furthermore, while Decision-Calibration already de-
creases the decision loss, our algorithm can further improve upon their result when it is used as a
post-process after Decision-Calibration terminates.

Figure 7: Brier score of the updated predictors using Algorithm 2 (orange) and two benchmark
algorithms: Algorithm 3 (dashed-blue) and Algorithm 1 (dashed-green). Our algorithm reduces the
Brier score by a smaller amount compared to Algorithm 2. Results are averaged over 10 runs and
the shaded region indicates ±1 standard error.

(a) ReDCal decreases the decision loss on the validation partition of HAM10000 dataset.

(b) ReDCal decreases the decision loss on the test partition of HAM10000 dataset.

Figure 8: In Figure 8a and Figure 8b, we plot the gap between optimal loss had we know the true
label y and the loss from taking best-response actions induced by the calibrated predictors on the
validation set and test set, respectively. In the left two figures, we compare Algorithm 1 (orange) with
Algorithm 3 (blue). While the average loss of predictors updated using Algorithm 3 may increase
on the test set, our algorithm quickly converges and produces predictors with lower decison-making
loss. In the right two figures, we compare Algorithm 1 (green) to Algorithm 1 with an additional
run of Algorithm 2 (red) as post-process. We observe that running our algorithm as post-process can
still further decrease the loss compared to just running Algorithm 1 on its own. Results are averaged
over 10 runs and the shaded region indicates ±1 standard errors.
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