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ABSTRACT

The rapid proliferation of AI-manipulated or generated audio deepfakes poses se-
rious challenges to media integrity and election security. Current AI-driven detec-
tion solutions lack explainability and underperform in real-world settings. In this
paper, we introduce novel explainability methods for state-of-the-art transformer-
based audio deepfake detectors and open-source a novel benchmark for real-world
generalizability. By narrowing the explainability gap between transformer-based
audio deepfake detectors and traditional methods, our results not only build trust
with human experts, but also pave the way for unlocking the potential of citizen
intelligence to overcome the scalability issue in audio deepfake detection.

1 INTRODUCTION

The rapid proliferation of AI-generated audio deepfakes poses a growing threat to media integrity,
personal security, and democratic processes, with critical implications for misinformation, fraud,
and election security. Although state-of-the-art detection solutions have demonstrated promising
results on benchmark datasets, they often fall short in real-world scenarios due to poor generaliza-
tion and a lack of explainability. Current approaches, such as those used in ASVspoof and related
competitions, focus heavily on detection performance within constrained environments, but their
efficacy diminishes significantly when encountering diverse and unseen samples.

In this work, we highlight the limitations of existing deepfake detection methods and introduce an at-
tention roll-out mechanism that addresses these shortcomings by providing improved explainability
for transformer-based audio classifiers. Recent deepfake audio attacks, such as those used to dis-
credit Marti Bartes in Mexico or to influence U.S. elections by impersonating President Joe Biden,
emphasize the necessity for solutions that not only detect these manipulations but also offer trans-
parent and interpretable explanations (Goodman, 2024; Staff, 2024). These would, in turn, foster
trust with both experts and the general public.

To bridge the gap between controlled benchmark results and real-world applicability, we deliver a
novel benchmark that evaluates the generalization capabilities of deepfake audio classifiers by train-
ing on the ASVspoof 5 dataset and testing on the FakeAVCeleb dataset. This benchmark provides
a more realistic evaluation of model robustness, simulating conditions where the data distributions
of training and testing are substantially different. Additionally, we compare and contrast various
explainability methods, offering a conceptual contribution that defines key requirements for ex-
plainability in deepfake audio detection. Our findings not only reveal the strengths and weaknesses
of each approach but also lay the groundwork for future research.

Through this comprehensive evaluation, we outline several open challenges that need to be addressed
to improve generalization and explainability, thereby enhancing trust in deepfake detection systems.
By establishing these benchmarks and defining conceptual requirements, we hope to catalyze future
developments in this critical research area to effectively safeguard against the evolving threat of
audio deepfakes.

We list our novel contributions as follows:

• A conceptual explainability framework for deepfake audio detection (Section 4).
• Empirical evaluations of novel explainability methods for audio transformers (Section 5).
• A generalizability benchmark for deepfake audio classifiers (Section 6).
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2 RELATED WORK

Traditional Machine Learning Approaches The early days of deepfake audio detection were
dominated by traditional classifiers, such as support vector machines (SVM) and Gaussian mixture
models (GMM), and traditional signal processing features. These works generally use subsets of
the various hand-crafted features described above, and they generally perform well with academic
datasets, in which the distributions of features between real and deepfake audio are relatively eas-
ily separable. Observing that these models typically do not generalize well when presented with
deepfake audio from unseen distributions, Zhang et al. (2021) propose using an SVM to learn a
tight boundary around the features of real audio by only training on real audio (Zhang et al., 2021).
This method outperforms most other methods on the ASVspoof 2019 dataset, but it is unlikely to
perform as well when the true audio varies more widely (e.g., non-English speech, speakers with
accents, non-adult speakers, etc.).

Recent work also suggests that using an ensemble of gradient-boosting decision trees (GBDT) may
be more robust to unseen data as well as boast faster inference times than both SVM and GMM (Bird
& Lotfi, 2023). In a 2023 work by Bird & Lotfi (2023), the authors demonstrate the power of
the GBDT, reporting accuracies of 99.3% on the DeepVoice dataset and inference times of 0.004
seconds for 1 second of input speech (Bird & Lotfi, 2023). In their work Real-Time Detection of
AI-Generated Speech for Deepfake Voice Conversion, they also explore features importances and
the statistical characterizations of real and deepfake audio. Another recent work by Togootogtokh
& Klasen (2024) employs a GBDT for deepfake audio classification task with a custom dataset
comprised of true samples from the LJ Speech Dataset and deepfake samples generated with various
HuggingFace TTS models (Togootogtokh & Klasen, 2024).

Self-Supervised Embedding-Based Classifiers A few recent works use self-supervised embed-
ding features as the basis of their classification algorithms, most of which use Wav2Vec features (Shi
& Yamagishi, 2021). Tak et al. (2022) fine-tune a transformer model with a Wav2Vec front-end
and report the lowest equal error rates for both the ASVspoof 2021 Logical Access and Deepfake
databases. Xie et al. (2021) use Wav2Vec features as input to a Siamese neural network that they
train to distinguish whether the speech samples in a pair belong to the same category. This work
reported state-of-the-art results on the ASVspoof 2019 dataset (Chen et al., 2022). Some other re-
cent works use HuBERT features, and Wang & Yamagishi (2022) compare Wav2Vec-, XLS-R-, and
HuBERT-based features (Yi et al., 2023). Most recently, Le et al. (2024) combine AST features
with a GBDT ensemble to detect deepfake audio, which they plan to use for a continuous learning
approach.

Explainability for Audio The literature for audio explainability is limited (Akman & Schuller,
2024). Though general explainability methods such as LIME and SHAP can also be used for mod-
els trained on audio data, very few examples of attempts for audio explainability exist in the liter-
ature (Ribeiro et al., 2016; Lundberg & Lee, 2017). Of those exceptions, Yanchenko et al. (2021)
measure the similarity of deep features to hand-crafted features and attempt explain deep convolu-
tional features as they relate to traditional signal processing ones. Most recently, Becker et al. (2024)
introduced AudioMNIST, a novel audio dataset consisting of 30 000 audio samples of spoken digits,
and proposed using Layer-wise Relevance Propagation (LRP) to explain neural network classifica-
tions. They also investigate using a combination of visual and aural explanations, and find aural
explanations promising if well-designed.

For additional related work on in-painted deepfake audio and convolutional neural network (CNN)
based approaches to deepfake audio detection, refer to Appendix A

3 BACKGROUND

3.1 TRADITIONAL METHODS

In the previous section, we reviewed a variety of traditional methods for deepfake audio detection.
Here, we will focus on features used in traditional methods and define the gradient boosting decision
tree method introduced in the previous section.
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Signal Processing Features Traditional methods typically rely on “hand-crafted” features, which
are not learned by neural networks but calculated with standard signal processing methods.

Mel-Frequency Cepstral Coefficients (MFCCs) are a set of 10-20 features that capture the timbre
of audio samples using the perceptual Mel scale, reflecting how humans perceive pitch. Computing
MFCCs involves applying a pre-emphasis filter, dividing the signal into 20 ms frames, applying
a Hann window, and performing a Fast Fourier Transform (FFT). The resulting power spectrum
is passed through a Mel-scale filter bank, then logarithmically transformed, and a Discrete Cosine
Transform (DCT) is applied to generate MFCCs, providing a compact representation of spectral
properties. Other spectral features include spectral centroid (indicating ”brightness” by representing
the center of spectral mass), bandwidth (spread around the centroid), and roll-off (frequency below
which 85% of spectral energy is contained). These features are useful for tasks like music genre
classification and speech analysis.

Chroma features capture harmonic content by mapping the spectrum to twelve pitch classes (C, C#,
D, etc.) and are invariant to timbre changes, making them ideal for analyzing musical elements.
Zero Crossing Rate (ZCR) measures the rate of sign changes in an audio signal, aiding in pitch and
speech detection, while Root Mean Square (RMS) captures energy or loudness, offering a measure
of signal strength.

Gradient Boosting Decision Trees Gradient boosting decision trees (GBDT) combine three core
concepts in traditional machine learning: ensemble learning, boosting, and gradient descent. As
an ensemble method, GBDT combine the predictions of several weak learners–typically decision
trees–to produce a stronger overall prediction. The boosting aspect of GBDT means that the model
is constructed sequentially, such that at each iteration a new weak learner is added to correct for
the previous learners’ mistakes. Finally, the gradient aspect of GBDT reflects the optimization
technique used to find the best fit for each new weaker learner added to the ensemble.

At initialization, the GBDT is an ensemble containing a single weak learner that makes a prediction.
For binary classification, the model is initialized with a constant value F̂0(x), the log-odds of the
positive class. At each iteration, until the maximum number of weak learners permitted in the
ensemble is reached, the pseudo-residuals are calculated, which are the negative gradients of the
loss function:

rim = −

[
∂L(yi, F̂m−1(xi))

∂F̂m−1(xi)

]
= yi − p̂m−1(xi), (1)

where rim is the residual for the i-th instance at iteration m, L(yi, F̂m−1(xi)) is the loss function
to be minimized, p̂m−1(xi) is the predicted probability of the positive class for the i-th instance at
iteration m − 1, and yi is the true label. A new weak learner, hm(x), is then fitted to this residual
and its impact scaled to avoid overfitting, such that the model at iteration m is given by:

F̂m(x) = F̂m−1(x) + ν · hm(x), (2)

where ν is the learning rate. At the end of the learning process, the predicted probability of a data
sample’s membership in the positive class is given by:

p̂(x) =
1

1 + exp(−F̂m(x))
. (3)

The final classification is given by thresholding the prediction probability p.

3.2 TRANSFORMERS

Since the publication of Attention is All You Need (Vaswani et al., 2017), transformer models have
become increasingly widespread for a wide variety of tasks, though most notably text generation.
As suggested by the title of that 2017 paper, attention is the core of the transformer architecture.
Given a sequence of input embeddings E, a transformer model encodes tokens using a self-attention
mechanism, which allows the model to focus on different parts of the input sequence when encoding
a particular token (Vaswani et al., 2017). A single self-attention operation (or head) is defined by:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (4)

3
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where X is the matrix of input embeddings, Q = XWQ is called the query matrix, K = XWK

is called the key matrix, V = XWV is called the value matrix, WQ,WK ,WV are learned weight
matrices, and dk is the dimensionality of the keys (Vaswani et al., 2017). In order to facilitate
learning multiple different features, multiple self-attention heads are used. Multi-attention is then
defined by:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO, (5)
where headi = Attention(QWQi

,KWKi
, V WVi

) and WO is the output projection matrix. The
output of the multi-head attention is passed into a Feed-Forward Neural Network (FFN) defined by:

FFN(x) = ReLU(xW1 + b1)W2 + b2, (6)

where W1 and W2 are learned weight matrices, b1 and b2 are biases, and ReLU is the activation
function. Each multi-head attention or FFN sub-layer is followed by layer normalization defined by:

Layer Output = LayerNorm(x+ Sub-layer(x)). (7)

The final transformer architecture stacks multiple of these multi-head attention and FFN layers to
capture increasingly complex patterns.

Since the transformer network does not maintain input order, an additional positional embedding
token is appended to each patch to allow the model to maintain the spatial structure of the input
spectrogram (Gong et al., 2021). We also often prepend a [CLS] token to the input. After passing
through all transformer layers, the final [CLS] token aggregates information from the entire input
sequence for the final prediction.

The aforedescribed operations are universal to the transformer architecture, but methods of creating
the input sequence vary widely. The transformer architecture relies on the creation of tokens from
raw input data and the learned attention between those tokens. For natural language tasks, tokens
typically represent individual words. For image tasks, tokens are typically pixel patches. For audio
tasks, there are a variety of approaches. Here, we introduce two popular mechanisms for generating
input embeddings from audio data.

Self-Supervised Audio Features One of the most popular feature generators is Wav2Vec 2.0,
produced and published by Meta in 2019 (Schneider et al., 2019). Wav2Vec uses a 7-layer CNN
generate latent feature encodings, which are then put into a quantization module to make the final
tokens which will be fed to the transformer (Schneider et al., 2019). As speech is continuous,
Wav2Vec strives to automatically infer discrete speech units with the quantization module, such that
tokens can be formulated as they would be in natural language, representing complete but discrete
data units (Schneider et al., 2019).

In contrast, the Audio Spectrogram Transformer (AST), which was the first to move away from
traditional convolutional neural network approaches, simplifies audio token generation (Gong et al.,
2021).

Figure 1: Diagram of the audio spec-
trogram transformer architecture intro-
duced by Gong et al. (2021)

As seen in Figure 1, the AST first transforms an input
audio wave of length t seconds into a sequence of 128-
dimensional Mel features. The resultant 128 × 10t spec-
trogram is then used as input to the AST. The spectrogram
is then split into a sequence of N 16 × 16 patches, with
overlap in both time and frequency dimensions. Each
16× 16 patch is flattened into a single-dimensional patch
of size 768 with a linear layer.

Once the audio is formatted in this way, the AST feeds
the input sequence to a Vision Transformer (ViT), an im-
age transformer model trained on ImageNet (Gong et al.,
2021). This approach essentially translates the audio sig-
nal into an image and then uses a transformer pre-trained
on image data to make classifications.

Notably, both the AST and Wav2Vec models are pre-
trained only with real audio data, only by finetuning ad-
ditional layers are they suitable for classifying deepfake
audio.

4
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3.3 EXPLAINABILITY AND INTERPRETABILITY

Though explainability and interpretability are often used interchangeably, we distinguish between
them. Interpretability emphasizes transparency and clarity, focusing on making the internal mecha-
nisms of a model comprehensible, such as understanding the coefficients of a linear regression model
or the structure of a decision tree (Rudin, 2019). In contrast, explainability goes beyond understand-
ing the internal, mathematical mechanism and should provide explanations of a model’s predictions
in a human-understandable way, even if the model itself is a complex “black box” (Rudin, 2019).

Explainability oftens involves using post-hoc methods, LIME (Local Interpretable Model-agnostic
Explanations) or SHAP (SHapley Additive exPlanations), to approximate and elucidate the model’s
decisions without revealing the exact inner workings (Ribeiro et al., 2016; Lundberg & Lee, 2017).
Importantly, the interpretability of a model can contribute to its explainability, but a model’s being
interpretable does not necessarily imply that it is explainable.

Explainability for GBDT A key advantage of traditional methods is that they are interpretable.
With a gradient boosting decision trees, or any other tree-based ensemble method, feature impor-
tances can be calculated. As described in Algorithm 1, feature importances are calculated by mea-
suring the model’s change in performance after each feature is permuted (Pedregosa et al., 2011). To
stabilize results, we permute each feature multiple times and use the mean and standard deviation of
each feature’s importance.

However, the importance of a given feature may be obscured by the permutation feature importance
algorithm if multiple features are multicollinear, as is the case for the audio signal features described
in the previous section. Intuitively, permuting one feature will have little impact on the model’s
performance if the same, or very similar, information is available to the model through another
non-permuted feature. To combat this issue, we perform hierarchical clustering on the Spearman
rank-order correlations between features and keep a single feature from each cluster. This way,
when a feature is permuted, there should be no other non-permuted feature containing duplicate
information.

Explainability for Transformer Models A challenge of working with transformer methods is the
lack of interpretability. Though they boast much better performance than traditional methods, again
see Appendix D, their output is of a “black-box” nature. In order to facilitate citizen intelligence,
detection methods must deliver human interpretable explanations that are sample-specific, such that
the explanation is not invariant to the input sample; time-specific, such that the explanation includes
specific timestamps that localize the distinguishing features; and feature-specific, such that specific
aspects like unusual noise or errant formants can be identified as unnatural.

3.4 MODEL PERFORMANCE FOR DEEPFAKE AUDIO CLASSIFICATION

As mentioned in the previous section, the impressive performance of Wav2Vec-based transformers
has already been demonstrated by Tak et al. (2022). Le et al. (2024) recently presented similar
results using AST features with a GBDT. To deliver on the goal of explainable results that maintain
the performance of transformer-based methods, we validate the performance of the finetuned AST
model, the finetuned Wav2Vec model, and the traditional feature-based GBDT on the ASVspoof5
and FakeAVCeleb datasets.

These results, as shown in Appendix D, demonstrate the superior performance of the Wav2Vec and
AST models as well as report the GBDT baseline. Though the power of a finetuned Wav2Vec
transformer has already been established, the results reported in Appendix D are state-of-the-art for
the FakeAVCeleb dataset. For the sake of robustness, we also report results on the ASVspoof 5
dataset when the data has been compressed and rerecorded to measure the effect that these common
data augmentations have on model performance.

5
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4 METHODS

In this section, we introduce our proposed methods for audio explainability, with which we will
experiment in the following section. We appropriate methods for vision and natural language ex-
plainability and translate them to the audio domain.

4.1 OCCLUSION

Occlusion is a technique used for vision model explainability, particularly with deep learning models
that might otherwise be considered “black boxes”. The core idea is to iteratively occlude, or block
from view, parts of the input data, measure how the model’s prediction changes, and, ideally, identify
which parts of the input data are most important.

Consider some input X = [x1, x2, . . . , xn], where X represents the original input and each xi

represents a subsection (perhaps a pixel, patch, or token) in X , and some model f . First, we generate
a baseline prediction ŷ = f(X), which will serve as the point of comparison. Then, we iteratively
mask each xi from the input, such that:

X
(i)
occluded = X⊙Mi, (8)

where Mi is a mask that occludes the i-th subregion of the input and ⊙ represents element-wise
multiplication. After this operation, the occluded region will be replaced with some specified value
(e.g., 0, 1, or a mean of the feature across all samples). For each occluded input, the model makes a
new prediction given by:

ŷ(i) = f(X
(i)
occluded). (9)

The intuition is that if a change in the model’s prediction is observed when a region is occluded, that
region is likely important. After occluding different regions and observing changes in the model’s
behavior, the results can be visualized in a heatmap. This method has been used for understanding
importance in vision data, but we introduce it here for audio data. We treat the Mel-spectrogram
representation of each audio sample as an image and occlude sections of the spectrogram to deter-
mine which parts of each audio sample are most important for the transformer’s classification. This
method delivers on all three aspects of sufficient explainability defined in 3.3.

4.2 ATTENTION VISUALIZATION

We also appropriate an explainability method introduced for use with natural language. As previ-
ously discussed, transformer models rely on a self-attention mechanism to understand the relation-
ships between different parts of the input sequence. The attention mechanism assigns a weight to
each token, which reflects the importance of each token in relation to every other token.

Recall that attention is defined by:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (10)

where X is the matrix of input embeddings, Q = XWQ is called the query matrix, K = XWK

is called the key matrix, V = XWV is called the value matrix, WQ,WK ,WV are learned weight
matrices, and dk is the dimensionality of the keys (Vaswani et al., 2017). After applying a softmax
on the unnormalized attention weights, we are left with a normalized dk × dk matrix of weights that
can be visualized as a heatmap. In such a visualization, the x− axis represents position in the input
sequence (or token ID), the y − axis represents the tokens for which attention is computed, and the
color intensity at some (i, j) represents the attention weight for token i on token j, where greater
attention is read to reflect higher importance.

A limitation of attention visualization is that it is done per layer per head, which can make it dif-
ficult to observe the overall model’s attention. To combat this, Abnar & Zuidema (2020) proposed
“attention rollout” to trace the distribution of attention across multiple or all of the model’s layers.
This method gives us a more complete view the model’s distribution of attention.

Consider an L-layer transformer with attention matrices Wl for l ∈ {1, 2, . . . , L}, where each Wl

represents the attention between different tokens at that layer. We compute a cumulative attention

6
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Figure 2: GBDT feature importances as measured by mean accuracy decrease with standard devia-
tions for 6.0-second classifier.

matrix by multiplying the attention matrices across the layers, such that:

W rollout = W (1)W (2) . . .W (L). (11)

Once we have computed the cumulative attention matrix W rollout, it can be visualized similarly to
the single attention weights. We also extract the attention weights specific to the [CLS] token to
understand what parts of the input sequence were most relevant for the final classification. Attention
visualization and roll-out were introduced for use with natural language tokens. In this paper, we
adapt this method for use with audio tokens.

5 EXPERIMENTS

We experiment with three models: an ensemble of gradient boosting decision trees (GBDT), an AST-
based transformer, and a Wav2Vec-based transformer. An extended discussion of the ASVspoof 5
and FakeAVCeleb datasets can be found in Appendix B, while a report of hyperparameters for each
of our three models can be found in Appendix C.

5.1 EXPLAINABILITY FOR GBDT

A well-noted advantage of ensembles of decision trees, as the GBDT is, is the ability to calculate
feature importances. In their recent deepfake audio classification with GBDT work, Bird et al.
report feature importances and draw meaning from them Bird & Lotfi (2023). Here, we mimic their
approach to explain the behavior of the GBDT and to isolate some aspect of the audio sample as a
signature of its deepfake classification.

We compare the GBDT feature importances, calculated with the permutation importance algorithm,
for the models trained with 1.0, 3.0, and 6.0-second audio samples (Pedregosa et al., 2011). The
results for 6.0-second classifier are shown in Figure 2, while supplementary results for the 1.0- and
3.0-second classifiers can be found in subsection E.1. As seen in Figure 2, the second MFCC, fourth
MFCC, and RMS features are the most influential in the GBDT’s decision-making. Recall that the
RMS feature is most closely associated with the loudness of an audio sample. We find the high
importance of the RMS troubling as our intuition suggests that loudness should not inherently be a
characteristic of deepfake audio.

We retrain the GBDT with only the three most important features, the second MFCC feature, the
fourth MFCC feature, and the RMS, and evaluate the model’s performance when given only these
three features. We observe some performance degradation; when asked to classify 6.0-second audio
samples, the model is only able to achieve 70.0% precision, recall, and accuracy (compared to 89.0%
precision, recall, and accuracy when trained with all features).

As the vast majority of features are estimated to have a less than 2% impact on overall accuracy,
we also calculate feature correlations. As shown in Figure 3, many of the features are correlated.

7
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(a) Feature Correlation (b) Feature Clusters

Figure 3: GBDT feature correlations and clusters for 6.0-second classifier. In these figures, sc refers
to the spectral centroid, sb refers to the spectral bandwidth, cr refers to the ZCR, mfcci refers to
the i-th MFCC feature, and chromai refers to the i-th chroma feature.

We perform a hierarchical clustering of the features using Ward’s linkage, and observe that there are
only a few clusters of features. Perhaps interestingly, there is no clustering of the features in which
our three most important features, MFCC2, MFCC4, and RMS, are all in different clusters.

We select the most important feature from each cluster and retrain the GBDT. Retrained with RMS,
MFCC 20, and MFCC 4, the GBDT achieves precision of 64.3%, recall of 64.0%, and accuracy
of 63.8%. As performance was better when using the three most important features, compared to
using important features with more spread, it does seem that the second MFCC feature is actually
critical to the model’s decision-making. Though it is not feasible to attribute a single frequency to
a single MFCC, as an MFCC is a compact representation of a spectral shape across the Mel-scale
filterbank, the second MFCC captures low-frequency details, such as overall spectral slope and
formant information. Each formant corresponds to a resonance in the vocal tract, and it is intuitive
that deepfake audio would have anomalous resonance. While this explanation points to a potential
source of inherent distinction between real and deepfake audio, it only provides an explanation as
to what the model is attentive to in general rather than sample-level specificity. While the GBDT is
interpretable, we find that it is not sufficiently explainable to be useful to a non-technical audience.

5.2 EXPLAINABILITY FOR AUDIO TRANSFORMERS

Occlusion As the AST model converts the raw audio signals into a spectrogram input, it is well-
suited to visualization. We perform occlusion with box size (200, 50) and stride size (100, 25).
Importance is measured by the magnitude of change in the predicted probability of the sample being
in the positive class when a section is occluded.

As shown in Figure 4, the importance is greatest for the padded regions–regions that theoretically
contain no predictive information. The audio samples shown in Figure 4 are of length 6.0-seconds,
but we observe this phenomenon when calculating importance by occlusion for all sample lengths.
For each sample length, the most important regions (as measured by the occlusion method) are
always placed at the beginning of the padded region. This result is obviously unhelpful in explaining
the model’s decision-making, but it is suggestive of a phenomenon posited by Wu et al. (2021),
in which transformer models store global information at locations in the feature space which are
consistent, such that the weight information there is always propagated (Wu et al., 2021).

Attention Visualization Another approach to explaining transformer models is visualizing the
distribution of the attention weights over the input data. For each layer, as described in Section 3,
there is an attention matrix that represents the amount of attention between each pair of tokens. This
method has been employed for image and text data, but not, as of yet, to audio data (Dosovitskiy
et al., 2021).

We visualize the each layer’s attention matrix for the same bonafide and spoofed samples shown in
Figure 4. The resultant visualizations can be found in subsection E.2. Similar to results recorded
on Vision Tranformer (ViT) by Dosovitskiy et al. (2021), we observe that the attention at early
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(a) Bonafide AST Features (b) Bonafide Occlusion Importance

(c) Spoof AST Features (d) Spoof Occlusion Importance

Figure 4: Importance measured by occlusion for 6.0-second audio samples.

layers is quite local with a relatively small receptive field while the attention at later layers is widely
distributed (Dosovitskiy et al., 2021).

To better understand the distribution of attention across the entire model, we compute the atten-
tion roll-out, which allows us to observe the overall attention flow on each of the input tokens by
recursively multiplying the weight matrices of all the layers (Abnar & Zuidema, 2020).

(a) Bonafide Normalized Token Attention (b) Spoof Normalized Token Attention

Figure 5: Distribution of attention for 6.0-second audio samples.

By normalizing the attention for the [CLS] classification token, we are able to visualize which
input tokens are most important for the model’s overall classification, as seen in Figure 5. As each
Wav2Vec token represents about 20 milliseconds of audio signal, we can pinpoint specific frames
that were instrumental in the classification and inspect them more closely. Figure 5 allows us to
identify very short audio frames that are most influential in the model’s prediction, and we observe
that influential tokens typically appear in groups.

6 GENERALIZABILITY BENCHMARK

Finally, we introduce a novel benchmark to evaluate the generalization capabilities of deepfake
audio classifiers to unseen data, which is critical for deploying reliable deepfake detection systems.

9
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This benchmark measures the robustness and transferability of models across different datasets with
varying characteristics, simulating real-world scenarios where deepfake classifiers may encounter
out-of-domain samples.

We train each of our models with the ASVspoof 5 dataset and evaluate each model’s ability to
classify samples from the FakeAVCeleb dataset. As a reminder, the evaluation performance of each
model on ASVspoof 5 and FakeAVCeleb independently can be found in Appendix D. We compare
performance between our baseline classifier, the GBDT, and the two transformer methods. We use
3 000 evaluation samples from FakeAVCeleb, balancing the classes to an equal number of both
bonafide and spoof audio samples.

Table 1: Performance comparison of ASVspoof-trained models on FakeAVCeleb data.

Model Class Precision Recall F1

GBDT bonafide 0.50 0.58 0.54
spoof 0.51 0.51 0.51

AST bonafide 0.85 0.84 0.85
spoof 0.85 0.86 0.85

Wav2Vec bonafide 0.73 0.98 0.84
spoof 0.97 0.63 0.77

When using the GBDT classifier trained on 6.0-second samples of the original ASVspoof dataset, we
observe that an overall accuracy of 51%, which indicates that the GBDT does essentially no better
than random guessing between the two classes. Table 1 reports the precision, recall, and F1 scores
for both bonafide and spoof audio for all three models. The transformer methods perform much
better: the AST and Wav2Vec models achieve an overall accuracy of 85% and 81%, respectively,
on the FakeAVCeleb evaluation data. Wav2Vec is by far the most popular feature encoder in the
literature, likely due to its generally superior performance, but here the AST-based transformer offers
much better balanced performance on the out-of-distribution data.

7 DISCUSSION AND CONCLUSION

In this paper, we address the critical issue of audio deepfake detection by introducing a novel bench-
mark that evaluates the generalization capabilities of state-of-the-art transformer-based models. Our
experiments, conducted using the ASVspoof 5 and FakeAVCeleb datasets, demonstrate that cur-
rent detection solutions often struggle with generalizability and lack sufficient explainability, espe-
cially in real-world scenarios. By incorporating explainability methods such as attention roll-out
and occlusion, we highlight the strengths and limitations of these approaches, providing a clearer
understanding of model decisions.

The attention roll-out mechanism, in particular, shows promise in visualizing transformer-based
models’ attention across multiple layers, enabling a more transparent analysis of how decisions
are made. Our results indicate that while transformer models like Wav2Vec and AST outperform
traditional models on unseen data, there remains a significant gap in their ability to provide human-
understandable explanations. This finding underscores the need for more research in this area, espe-
cially to improve interpretability for non-technical users and domain experts.

Looking ahead, future work should focus on refining explainability methods for transformer-based
models and developing new benchmarks that further challenge the robustness and interpretability of
deepfake detectors. Additionally, understanding and mitigating the effect of data augmentations such
as compression and re-recording will be essential for creating more resilient models. A limitation of
this study is the reliance on only two datasets, which may not capture the full range of manipulations
seen in real-world deepfake audio. Further limitations are addressed in Appendix F. Moreover, the
proposed explainability methods are still in their infancy and may not yet offer insights that are as
intuitive to non-technical users. By addressing these challenges, we can move closer to building
reliable, trustworthy audio deepfake detection systems that are ready for real-world deployment.
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A RELATED WORK (CONTINUED)

A.1 CNN-BASED CLASSIFIERS

The most popular architecture for deepfake audio detection is by far the convolutional neural net-
work (CNN) based classifier Dixit et al. (2023); Wu et al. (2020); Lavrentyeva et al. (2019); Zeinali
et al. (2019); Dinkel et al. (2017). CNN classifiers have been historically favored for their ability
to combine spatial and temporal information through convolution. The most successful of these is
called Light Convolutional Neural Network (LCNN) and was proposed by Wu et al. in 2020 Wu et al.
(2020). LCNN consists of convolutional and max-pooling layers with Max-Feature-Max (MFM)
activation. Wu et al. choose the MFM activation function instead of the arguably standard ReLU
function because they observe that the MFM learns more compact features than the sparse high-
dimensional ones learned with ReLU Wu et al. (2020). This distinction is what makes their CNN
“light”. The LCNN has been incredibly successful in recent ASVspoof and ADD competitions;
it was the best system at ASVspoof 2017 and continued to be the best system in one of the sub-
tasks of ASVspoof 2019. Another successful CNN architecture, proposed by Dinkel et al., uses
raw waveforms as input to a convolutional long short-term neural network. Their model combines
time-convolving layers with frequency-convolving layers to “reduce time and spectral variations”
with long-term temporal memory layers to capture longer-term temporal relationships Dixit et al.
(2023); Dinkel et al. (2017). A variety of other CNN architectures have been proposed, but all of
them generalize poorly to unseen attacks Dixit et al. (2023).

A.2 DEEPFAKE AUDIO IN-PAINTING

Another relevant research area is that of deepfake audio in-painting detection. In-painting refers
to the practice of mixing real and fake audio such that only small portions of an audio sample
are actually manipulated. Detecting deepfake audio in-painting requires not only identifying that a
sample contains some corrupted audio but also identifying the timestamps at which the corruption
begins and ends. Xie et al. (2024) propose a framework called EAT, which incorporates a ResNet,
a two-layer transformer encoder, a single-layer bidirectional Long Short-Term Memory network
(LSTM), and a final classification layer.

The EAT framework achieves an F1 score of 98% when classifying segments at 20 millisecond
resolution Xie et al. (2024). However, Xie et al. only evaluate their method on a custom dataset,
do not attempt to evaluate their architecture’s performance on any of the standard deepfake audio
benchmarks, and focus primarily on deepfake environmental sounds and background audio Xie
et al. (2024). A slightly older but broader work, from 2022, that investigates in-painted deepfake
audio is that of Cai et al. (2022) in Waveform Boundary Detection for Partially Spoofed Audio.
Cai et al. (2022) use a combination of Wav2Vec and MFCC features as their input to a series of
single-dimensional CNNs, a transformer encoder, a bidirectional long short-term memory network
(BiLSTM), and a final linear layer for classification (Cai et al., 2022). With their method, they
achieve the best performance in the locating manipulated clips task of the ADD 2022 challenge.

B DATA SOURCES

We employ a variety of publicly available datasets to conduct our experiments. We also craft custom
variations in order to better mimic real-world use cases and challenges.

The majority of our experiments are conducted with the ASVspoof 5 dataset. The ASVspoof5
dataset is a state-of-the-art dataset containing eighteen different varieties of deepfake audio as well as
true speech samples (Wang et al., 2024). Each sample is labelled with a classification as “bonafide”
or “spoof”. If the sample is spoofed, the attack method that was used to generate the sample is spec-
ified. The dataset, which was released in June 2024, contains 182 357 train samples and 142 134 test
samples. Each deepfake (or spoofed) audio sample is generated with a novel VC or TTS method,
which were trained on two English-language datasets. The final deepfake samples are made using
the English-subset of the Multilingual LibriSpeech (MLS) dataset (Wang et al., 2024). The 18 dif-
ferent attack types included in this dataset make it the most attack diverse of the datasets we consider
in this study. We take this dataset to represent the state-of-the-art in deepfake audio generation and,
in subsequent sections, refer to it simply as the ASVspoof dataset.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The audio samples provided by ASVspoof are clean. The ASVspoof bonafide samples were created
in recording studios with high quality microphones; The ASVspoof fake samples were generated
with TTS algorithms that add no additional noise. When deepfake audio is circulated over the social
media, it undergoes compression–often multiple times. In order to identify fake audio downstream,
our models must be robust to this kind of distribution modification. Additionally, bad actors will try
to obscure as much as possible that an audio sample has been faked. A common approach to obscure
fake audio is to play to audio aloud in a room and re-record the audio before disseminating it. We
create two additional datasets from the ASVspoof dataset for an additional challenge.

Compressed ASVspoof To tackle the issue of compression, we write all of the audio samples in
the ASVspoof dataset to the lossy MP3 format (from the lossless FLAC format) with a bitrate of
128k. This shrinks each file, on average, to 33.7% of its original size.

Rerecorded ASVspoof To tackle the issue of re-recording, we re-recorded audio samples in the
ASVspoof dataset by playing them aloud on a 2021 MacBook Pro in a large, closed stone-walled
room while simultaneously recording.

We also refer to FakeAVCeleb as a well-known benchmark in deepfake audio detection. The
FakeAVCeleb dataset is a standard in the deepfake audio detection repertoire, but it is now slightly
out-of-date, as it was released in 2021 (Khalid et al., 2021). It contains both deepfake audio and
video, but we use only the audio component in this study. The audio subset of the FakeAVCeleb
dataset contains 9 712 real audio samples and 10 843 deepfake audio samples. The language of each
audio sample is English, but FakeAVCeleb includes balanced classes of male and female speakers
as well as speakers who self-identify as African, East Asian, South Asian, Caucasian (American),
and Caucasian (European) (Khalid et al., 2021). This makes FakeAVCeleb the most linguistically
diverse of the datasets considered in this study.

C HYPERPARAMETERS

Both AST and Wav2Vec transformer models use their own specialized encodings. Otherwise, they
are finetuned very similarly. Table 3 reports the hyperparameters used when finetuning the Wav2Vec
and AST models, as well as the experiments performed with each model and dataset combination.

C.1 GBDT

Given its recent popularity for deepfake audio classification tasks Bird & Lotfi (2023); Togootogtokh
& Klasen (2024), we use the gradient boosting classifier as the baseline in this study. The features
for these tests are the hand-crafted, signal processing features described in Section 3. We use a total
of 37 features, which include 20 MFCC features, 12 chroma features, spectral bandwidth, spectral
roll-off, spectral centroid, ZCR, and RMS. The features for each audio sample are calculated by
averaging each feature’s values across all frames. For example, the final ZCR is calculated by
averaging the ZCR for each frame across the length of the entire audio sample.

To evaluate best possible performance with the GBDT, we do a hyperparameter search across
maximum tree depths and maximum number of estimators. We consider maximum tree depth in
{3, 8, 10, 15, 25} and number of estimators in {10, 100, 200, 400, 600}. We do our hyperparameter
search with the ASVspoof dataset. We conduct tests with 10 000 total data samples, 33% of which
are held out as a test set. As GBDTs are highly sensitive to unbalanced data classes, we balance
classes before conducting experiments with the GBDT.

As shown in Table 2, the classification accuracy is highest with shorter decision trees and more
estimators when trained with 3-second audio samples. The performance stabilizes with 400 or more
estimators, so we take 400 estimators and maximum depth of 8 as our optimal hyperparameter
setting. We find that this configuration also offers best performance for other audio sample lengths.
We observe that performance improves with the number of estimators, but we also see diminishing
returns after 400 estimators. We conclude that 400 estimators and a maximum tree depth of 8 are
the optimal hyperparameters for this training scenario.

We compute feature importances with the following algorithm (Pedregosa et al., 2011):
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Table 2: Accuracy of gradient boosting classifier for various maximum tree depths and number of
estimators.

Number of Estimators
10 100 200 400 600 1000

M
ax

D
ep

th 3 0.748 0.822 0.838 0.850 0.856 0.859
8 0.792 0.840 0.854 0.860 0.859 0.862
10 0.787 0.836 0.845 0.848 0.848 0.848
15 0.745 0.791 0.814 0.814 0.814 0.814
25 0.725 0.732 0.736 0.736 0.736 0.736

Algorithm 1 Permutation Importance Algorithm

Input: fitted model m, dataset D, metric a, repeats R
s← a(m,D)
for each feature j in D do

for repeat in 1 . . . R do
Randomly shuffle column j in D to create corrupted D̂r,j

sr,j ← a(m, D̂r,j)
end for
ij = s− 1

R

∑R
r=1 sr,j

end for

C.2 TRANSFORMERS

Both AST and Wav2Vec transformer models use their own specialized encodings. Otherwise, they
are finetuned very similarly. Table 3 reports the hyperparameters used when finetuning the Wav2Vec
and AST models, as well as the experiments performed with each model and dataset combination.

D MODEL PERFORMANCE ON ASVSPOOF 5 AND FAKEAVCELEB

We evaluate the performance of the gradient boosting classifier on compressed audio samples with
the optimal hyperparameters of 400 estimators and maximum tree depth of 8. Figure 6 shows that
performance is significantly worsened by both compression and rerecording. The difference in
performance is particularly stark on short audio samples, where the gradient boosting classifier
excels with the original, unmodified ASVspoof data.

Here, we demonstrate the superiority of the transformer-based methods we consider on the
FakeAVCeleb dataset.

Table 3: Hyperparameters used in the finetuning of Wav2Vec and AST transformers.

Hyperparameter Value
Batch Size 32
Learning Rate 3× 10−5

Training Steps 40
Train-Test Split 0.33
Weight Decay 0.0
Warm Up Ratio 0.1
Optimizer AdamW Loshchilov & Hutter (2019)
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Figure 6: Accuracy over various audio lengths for the original, compressed, and rerecorded audio
data for booster graphs with 10 000 datapoints, max depth of 8, and 400 estimators.

Table 4: Accuracy and ROC AUC comparison of models on FakeAVCeleb.

Model Accuracy ROC AUC
EfficientNet-B0 (Tan & Le, 2019) 0.500 -
MesoInception-4(Afchar et al., 2018) 0.540 -
VGG16 (Simonyan & Zisserman, 2014) 0.671 -
Xception (Rossler et al., 2019) 0.7631 0.853
AD DFD - 0.881
LipForensics (Haliassos et al., 2020) - 0.911
FTCN (Qian et al., 2021) - 0.931
AVAD (Gu et al., 2023) - 0.945
RealForensics (Zhao et al., 2022) - 0.971
FACTOR (Dzanic et al., 2023) - 0.974

AST (ours) 0.979 0.985
Wav2Vec (ours) 0.991 0.990

D.1 DATA AUGMENTATION

Though the ASVspoof 5 dataset includes compressed and rerecorded audio samples, they are not
marked or isolated within the dataset. To evaluate the impact on performance that these augmen-
tations have, we create three distinct datasets: one with the original ASVspoof 5 data, one with all
data compressed, and one with all data rerecorded. We evaluate the effect that these augmentations
have on model performance.

1Unimodal (audio-only) result.
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Table 5: Comparing the precision, accuracy, recall, and F1 of the models GBDT, AST, and Wav2Vec
for 6.0-second samples of original, compressed, and rerecorded ASVspoof data.

augmentation model precision accuracy recall F1

original
GBDT 0.903 0.896 0.891 0.894

AST 0.981 0.992 0.987 0.984
Wav2Vec 0.993 0.998 1.000 0.997

compressed
GBDT 0.853 0.841 0.837 0.841

AST 0.994 0.994 0.982 0.988
Wav2Vec 0.995 0.998 1.000 0.997

rerecorded
GBDT 0.589 0.589 0.589 0.589

AST 0.968 0.991 0.994 0.981
Wav2Vec 0.998 0.995 0.996 0.997
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E EXPLAINABILITY

E.1 GBDT FEATURE IMPORTANCES

(a) 1.0 second

(b) 3.0 seconds

(c) 6.0 seconds

Figure 7: GBDT feature importances as measured by mean accuracy decrease with standard devia-
tions for the 1.0, 3.0, and 6.0-second classifiers.
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(a) Feature Correlation (1.0 second) (b) Feature Clusters (1.0 second)

(c) Feature Correlation (3.0 seconds) (d) Feature Clusters (3.0 seconds)

(e) Feature Correlation (6.0 seconds) (f) Feature Clusters (6.0 seconds)

Figure 8: GBDT feature correlations and clusters for the 1.0, 3.0, and 6.0-second classifiers. In
these figures, sc refers to the spectral centroid, sb refers to the spectral bandwidth, cr refers to the
ZCR, mfcci refers to the i-th MFCC feature, and chromai refers to the i-th chroma feature.
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E.2 LAYER-WISE ATTENTION

Figure 9: Normalized attention visualized for a bonafide 6.0-second sample where axes represent
input token ID.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 10: Normalized attention visualized for a spoof 6.0-second sample where axes represent
input token ID.
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E.3 ATTACK CLASSIFICATION

Another potentially useful piece of information is what attack likely generated a given deepfake
audio segment. Though this type of “explainability” does not give insight into a model’s decision-
making, it may provide a clue to the origin of a deepfake audio sample–something likely very impor-
tant to a journalist or member of law enforcement. We therefore evaluate the abilities of the GBDT
and transformer methods to identity which attack, if any, was used to generate an audio sample.
Using 6.0-second audio samples, the GBDT achieved an overall accuracy of 51.9% with average
precision of 53.0% and average recall of 52.1% over all 18 classes, with relatively stable perfor-
mance across the attack types. The Wav2Vec model achieved overall evaluation accuracy of 91.8%
with average precision of 91.7% and average recall of 91.8% across the 18 classes. The AST model
performed similarly, achieving overall evaluation accuracy of 91.1%, average precision of 91.1%,
as well as average recall of 91.1%. Though the models are quite successful at this task, previous
exposure to deepfake audio generated with each attack is essential. It is not clear how well a model
could detect an out-of-distribution sample.

F LIMITATIONS

While this study introduces a novel benchmark for evaluating the generalization capabilities of state-
of-the-art transformer-based models, there are several limitations that need to be addressed to ad-
vance the field of audio deepfake detection. First, the reliance on only two datasets, ASVspoof 5 and
FakeAVCeleb, limits the scope of our evaluation. These datasets, while diverse, may not encompass
the full range of manipulations, recording conditions, and spoofing techniques found in real-world
scenarios. This constraint may lead to an overestimation of model robustness and underrepresen-
tation of other spoofing methods. Expanding the benchmark to include more diverse datasets with
a wider variety of deepfake techniques would provide a more comprehensive evaluation of model
performance and generalization.

Second, the explainability methods employed, such as attention roll-out and occlusion, are still
limited in their ability to provide intuitive and human-understandable explanations, particularly for
non-technical audiences. While these methods help visualize and highlight the regions of the in-
put that influence the model’s decisions, they do not yet offer a complete picture of why a model
might fail on specific instances or how it generalizes across domains. Moreover, the explainability
results may be sensitive to changes in model architecture and hyperparameters, which could lead to
inconsistencies in interpretation.

Lastly, while we explore the generalization capabilities of the proposed models using cross-dataset
evaluation, the impact of various environmental factors such as background noise, speaker variabil-
ity, and language differences were not explicitly analyzed. This could affect the real-world applica-
bility of the models, especially in diverse and dynamic environments. Further research should focus
on robustness testing under varying conditions and on creating synthetic data to simulate potential
challenges encountered during real-world deployment.
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