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Abstract

Time series forecasting is an important task in a variety
of domains. Recently, transformers have shown promise by
effectively modeling long-range dependencies through self-
attention mechanisms. However, they inherently assume sym-
metric relationships and lack the ability to explicitly model
the directionality of information flow—a critical aspect in
time series data where causality plays a significant role. This
paper addresses this research gap by proposing a novel trans-
former architecture that integrates transfer entropy into the
attention mechanism to explicitly model directional depen-
dencies and causal relationships in time series forecasting.
Empirical validation on the M4 benchmark dataset, a compre-
hensive collection of time series data for forecasting, shows
that our model outperforms state-of-the-art transformer-based
models, achieving superior forecasting accuracy. Our method
represents a remarkable advancement in time series forecast-
ing by uniquely combining the benefits of transformers with
the ability to model causal relationships without requiring ad-
ditional causal graphs or prior knowledge about the data.

Introduction

Time series forecasting is a critical task across various do-
mains, where accurate predictions are essential for strate-
gic planning and decision-making (Box et al. 2015; Hynd-
man 2018). The advent of deep learning has led to signifi-
cant advancements in modeling time series data. Convolu-
tional Neural Network (CNN) (LeCun, Bengio, and Hin-
ton 2015), Recurrent Neural Network (RNN) (Rumelhart,
Hinton, and Williams 1986; Medsker and Jain 1999), Long
Short-term Memory (LSTM) (Hochreiter and Schmidhuber
1997), and Gated Recurrent Unit (GRU) (Chung et al. 2014)
have shown promise in capturing temporal dependencies and
nonlinear patterns in sequential data. These models, how-
ever, face challenges with long-range dependencies due to
issues like limited receptive fields in CNNs and vanishing
gradients in RNNs, which can hinder their ability to model
complex temporal dynamics (Bengio, Simard, and Frasconi
1994; Yu and Koltun 2016; Yu et al. 2019).

Transformer, first proposed by Vaswani (2017), marked
a breakthrough in sequence modeling through its innova-
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tive self-attention mechanism, which can model relation-
ships between distant elements directly, eliminating the
need for recurrent or convolutional operations. Transform-
ers have been successfully adapted for time series forecast-
ing, demonstrating superior performance due to their abil-
ity to model complex temporal patterns and handle long se-
quences efficiently (Lim et al. 2021; Zhou et al. 2021). De-
spite their success, standard transformer architectures inher-
ently assume symmetric relationships and do not explicitly
model the directionality of information flow, which is cru-
cial in time series data where past events causally influence
future outcomes (Oord 2016; Lai et al. 2018).

Existing transformer-based models for time series fore-
casting focus primarily on capturing dependencies between
time steps but overlook the causal and directional relation-
ships inherent in temporal data (Li et al. 2019; Wu et al.
2023; Zeng et al. 2023). The self-attention mechanism in
transformers assigns attention weights based on similarity
measures without considering the causal influence of past
states on current or future states. This limitation restricts the
model’s ability to fully capture underlying causal dynamics,
potentially leading to suboptimal forecasting performance,
especially in complex multivariate time series where inter-
actions between variables are directional and time-lagged.

To bridge this gap, we propose a novel transformer ar-
chitecture that integrates transfer entropy into the attention
mechanism, enabling explicit modeling of directional de-
pendencies and causal relationships in time series forecast-
ing. Transfer entropy is an information-theoretic measure
that quantifies the directed transfer of information between
stochastic processes, effectively capturing the causal influ-
ence of one variable on another over time (Schreiber 2000;
Vicente et al. 2011; Oh, Kwak, and Kim 2023). By incor-
porating a neural estimator of transfer entropy into the at-
tention logits, our model biases the attention mechanism to-
wards causally relevant time steps, effectively capturing the
directionality of information flow.

Our key contributions are as follows:

* We introduce a neural transfer entropy estimator within
the transformer framework, modifying the attention
mechanism to account for directed information flow be-
tween time steps. This integration allows the model to
capture causal influences inherently, without requiring
additional causal graphs or prior knowledge.



* We demonstrate that integrating transfer entropy into the
attention mechanism enhances the model’s capacity to
represent causal relationships and temporal dependen-
cies, leading to improved forecasting performance.

This advancement opens new avenues for incorporating
causal inference principles into deep learning models for
time series analysis. It addresses a significant gap in the liter-
ature by providing a framework that combines the strengths
of transformers with the ability to model causal relation-
ships, which is essential for understanding and predicting
complex temporal dynamics.

Related works
Conventional time series forecasting methods

Time series forecasting has traditionally relied on statistical
models such as Autoregressive Integrated Moving Average
(ARIMA) (Box et al. 2015), Exponential Smoothing Meth-
ods (Gardner Jr 1985), and Seasonal Decomposition (Cleve-
land et al. 1990). These models are well-understood and in-
terpretable but often struggle with complex patterns, non-
linear relationships, and high-dimensional data inherent in
modern time series applications (Hyndman 2018; Oh, Lim,
and Kim 2024). Their limitations become pronounced when
dealing with large-scale datasets or when capturing intricate
temporal dependencies is crucial for forecasting accuracy.

The emergence of deep learning methods has marked a
breakthrough in time series forecasting, offering unprece-
dented ability to model complex relationships and long-
range interactions in temporal data. Recurrent neural net-
works have been widely used due to their ability to model
temporal sequences and handle vanishing gradient problems
to some extent. They have been applied successfully in vari-
ous forecasting tasks, including speech recognition and lan-
guage modeling (Graves 2013). However, such methods face
challenges with long-range dependencies and parallelization
limitations. Transformers (Vaswani 2017), initially designed
for natural language processing tasks, have gained attention
in time series forecasting due to their ability to model long-
range dependencies without relying on recurrence. The self-
attention mechanism allows transformers to weigh the rele-
vance of different time steps, capturing both short-term and
long-term patterns effectively. While several models have
advanced the field, they primarily focus on improving effi-
ciency and handling long sequences. They do not explicitly
model the directionality of information flow or causal rela-
tionships inherent in time series data.

Transfer entropy and causality in time series

Transfer entropy, introduced by Schreiber (2000), is an
information-theoretic measure that quantifies the directed
flow of information between two stochastic processes. It is
particularly useful for detecting causal relationships and di-
rectional dependencies in time series data without assuming
linearity or specific model structures. Transfer entropy has
been applied in various domains such as finance (Marschin-
ski and Kantz 2002), neuroscience (Vicente et al. 2011), cli-
mate science (Runge et al. 2012), and traffic network (Oh,
Kwak, and Kim 2023).

Integrating transfer entropy into deep learning models for
time series analysis is a relatively unexplored area. The pri-
mary challenge lies in estimating transfer entropy in a man-
ner compatible with neural network training and scalable
to large datasets. Some efforts have been made to incorpo-
rate causality and information-theoretic measures into neu-
ral networks: Nauta, Bucur, and Seifert (2019) introduced a
framework for causal discovery using recurrent neural net-
works, aiming to learn causal structures from time series
data. Tank et al. (2021) proposed a method to detect non-
linear Granger causality using neural networks, extending
traditional Granger causality concepts to capture more com-
plex relationships. However, these approaches do not inte-
grate transfer entropy directly into the model architecture,
particularly within the attention mechanism of transform-
ers. They focus on detecting causal relationships rather than
leveraging them to improve forecasting performance.

To the best of our knowledge, no prior work has directly
embedded transfer entropy estimation within the attention
mechanism of transformer models for time series forecast-
ing. This gap presents an opportunity to enhance model per-
formance by explicitly capturing directional dependencies
and causal influences.

Methodology
Transfer Entropy

Transfer entropy quantifies the amount of directed informa-
tion transfer from a source process X to a target process Y.
Formally, the transfer entropy T'x _,y is defined as:
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where y, | and xilzl denote the histories of Y and X up
to lags k and [, respectively. The numerator represents the
conditional probability of y; given its own past and the past
of X, while the denominator considers only the past of Y.
This measure captures the reduction in uncertainty of y; due

to knowledge of xgljl beyond what is explained by yﬁ)y

Neural Transfer Entropy Estimator

To estimate the transfer entropy within our model, we in-
troduce a neural network estimator 7y that approximates
the conditional probabilities required for the computation
of transfer entropy. The estimator takes as input the current

state of Y, v, the past k states of Y, y,gk), and the past [

states of X, x,gl):
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where d. = d(1 + 2w) with w = max(k,!) and d is the
dimensionality of the input features. The neural estimator
Th is defined as:

Ty(z:) = fo(ze), (3)
where fp is a feedforward neural network parameterized
by 6. The output Ty(z;) represents the estimated log-

probability log p(y; | ygk), xgl)).
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Figure 1: Overview of the proposed method. The channel-independent projection layer maps the input to a prediction horizon
after latent embedding. The causal block includes a convolution layer for feature interaction and derives the query (¢), key (k),
and value (v) vectors. Following this, the transfer entropy attention score is computed and combined with residual connections.

To compute the transfer entropy, we calculate joint term
and marginal term. First, the joint term is defined as:

Toim = To(zs) = logp(ys | v, 2"). )

We shuffle the source history mgl) to break the dependency,

creating xiﬁlfﬂed. The marginal term is then computed as:

k l
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By shuffling xgl), we approximate the marginal distribution

p(yt | yik)). Using these terms, the estimated transfer en-
tropy score at time ¢ is defined as:

TE; = 7}oint — log Eyymeq [exp(Tmarginal)} . (6)

This score quantifies the directed information transfer
from X to Y at time ¢, as estimated by the neural network.

Integration into the Attention Mechanism

To capture directional dependencies and causal relationships
in time series data, we integrate the transfer entropy estima-
tion into the transformer’s attention mechanism. This inte-
gration allows the model to adjust attention weights based
on the estimated causal influence from one time step to an-
other, enhancing its ability to model temporal causality.

To incorporate transfer entropy into the attention mecha-
nism, we adjust the attention logits as follows:

-
q; k;
Aij = \/aj

where o = % is a scaling factor for consistent calculation,
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and TE;; is the transfer entropy score between positions i
and j with causal mask. The transfer entropy score TE;; is
computed using a neural transfer entropy estimator, which
takes as input the query, key, and value vectors at positions ¢
and j. Then, the input to the estimator is constructed as:
k) _(l

2;; = [ai, k", v{V). ®)
The neural network estimates the transfer entropy by mod-
(k) O]

eling the conditional dependency of q; on kj and v, . For

lagged information, we applied zero padding for k; and v;
with k and [ steps, respectively. To enforce temporal causal-
ity and prevent the model from attending to future positions,
we apply a causal mask to the attention logits. The causal
mask ensures that TE;; = —oo for all j > 4, effectively set-
ting the attention weights to zero for future positions. The
attention weights are then computed using the softmax func-
tion. Finally, the output of the attention mechanism at posi-
tion ¢ is calculated as:
T
0, = Z softmax(A;;)v;. 9)
Jj=1
By integrating the transfer entropy scores into the atten-
tion mechanism and applying causal masking, our model
effectively captures the causal relationships and directional
dependencies in time series data. This enhances the model’s
ability to focus on relevant past information when making
predictions, leading to improved forecasting performance.
Please refer the Appendix for more detailed explanation for
implementation of transfer entropy attention.

Model Components

Our model consists of several key components designed
to capture temporal dependencies, feature interactions, and
causal relationships, as represented in Figure 1.

Channel-independence projection. Motivated from Nie
et al. (2022), we apply channel-independence projection to
stabilize training. Linear mappings are applied with hidden

stateh € R*T (o h € R¥*Tow where Tiom = T + Tored-

Convolution layer for feature interaction. To capture lo-
cal temporal dependencies and feature interactions, we in-
corporate temporal convolutional layer, similar to Lea et al.
(2017) and Franceschi, Dieuleveut, and Jaggi (2019).

Transfer entropy attention. The proposed model archi-
tecture integrates the neural transfer entropy estimator into
the attention mechanism. k = [ = 1 are used for TE.

Experiment

Makridakis, Spiliotis, and Assimakopoulos (2018) intro-
duced the M4 benchmark, a collection of 100,000 time series



Table 1: Performance comparison of transformer-based time series forecasting methods.
(* denotes —former; ‘Stationary’ denotes Non-stationary Transformer.)

Frequency Metric LogTrans* Re* In* Pyra* Auto* Stationary FED* ETS* PatchTST Proposed
SMAPE 17.107 16.169 14.727 15.530 13.974 13.717 13.728 18.009 13.477 13.400
Yearly MASE 4177 3.800 3.418 3711 3.134 3.078 3.048 4.487 3.019 3.024
OWA 1.049 0.973 0.881 0.942 0.822 0.807 0.803 1.115 0.792 0.790
SMAPE 13.207 13.313 11.360 15.449 11.338 10.958 10.792 13.376 10.380 10.125
Quarterly MASE 1.827 1.775 1.401 2.350 1.365 1.325 1.283 1.906 1.233 1.185
OWA 1.266 1.252 1.027 1.558 1.012 0.981 0.958 1.302 0.921 0.892
SMAPE 16.149 20.128 14.062 17.642 13.958 13917 14.260 14.588 12.959 12.577
Monthly MASE 1.660 2.614 1.141 1.913 1.103 1.097 1.102 1.368 0.970 0.917
OWA 1.340 1.927 1.024 1.511 1.002 0.998 1.012 1.149 0.905 0.867
SMAPE 23.236 32.491 24.460 24.786 5.485 6.302 4.954 7.267 4.952 4.6717
Others MASE 16.288 33.355 20.960 18.581 3.865 4.064 3.264 5.240 3.347 3.183
OWA 5.013 8.679 5.879 5.538 1.187 1.304 1.036 1.591 1.049 0.994
Weighted SMAPE 16.018 18.200 14.086 16.987 12.909 12.780 12.840 14.718 12.059 11.783

eighte:
A :‘a . MASE 3.010 4.223 2.718 3.265 1.771 1.756 1.701 2.408 1.623 1.579
verag OWA 1.378 1.775 1.230 1.480 0.939 0.930 0.918 1.172 0.869 0.847
Table 2: Performance comparison of non-transformer-based time series forecasting methods.

Frequency Metric LSTM TCN N-BEATS LSSL LightTS DLinear N-HiTS TimesNet GPT4TS Proposed
SMAPE 176.040 14.920 13.487 61.675 14.247 16.965 13.422 15.378 15.110 13.400
Yearly MASE 31.033 3.364 3.036 19.953 3.109 4.283 3.056 3.554 3.565 3.024
OWA 9.290 0.880 0.795 4.397 0.827 1.058 0.795 0.918 0911 0.790
SMAPE 172.808 11.122 10.564 65.999 11.364 12.145 10.185 10.465 10.597 10.125
Quarterly MASE 19.753 1.360 1.252 17.662 1.328 1.520 1.180 1.227 1.253 1.185
OWA 15.049 1.001 0.936 9.436 1.000 1.106 0.893 0.923 0.938 0.892
SMAPE 143.237 15.626 13.089 64.664 14.014 13.514 13.059 13.513 13.258 12.577
Monthly MASE 16.551 1.274 0.996 16.245 1.053 1.037 1.013 1.039 1.003 0.917
OWA 12.747 1.141 0.922 9.879 0.981 0.956 0.929 0.957 0.931 0.867
SMAPE 186.282 7.186 6.599 121.844 15.880 6.709 4711 6.913 6.124 4.6717
Others MASE 119.294 4.677 4.430 91.650 11.434 4.953 3.054 4.507 4.116 3.183
OWA 38411 1.494 1.393 27.273 3.474 1.487 0.977 1.438 1.259 0.994
Weighted SMAPE 160.031 13.961 12.250 67.156 13.525 13.639 12.035 12.880 12.690 11.783

eighte:

A e%‘a . MASE 25.788 1.945 1.698 21.208 2.111 2.095 1.625 1.836 1.808 1.579
verag OWA 12.642 1.023 0.896 8.021 1.051 1.051 0.869 0.955 0.940 0.847

spanning business, financial, and economic domains. The
benchmark features six distinct collections of data sampled
at different frequencies, from hourly observations to yearly
records. Detailed specifications of the dataset and bench-
mark methods are provided in the Appendix.

Table 1 and 2 present performance comparisons between
our approach and benchmark methods. We report the mean
performance across three runs and incorporate benchmark
results as reported in Wu et al. (2023) and Zhou et al. (2023)
for fair comparison. Our proposed method achieves supe-
rior accuracy across multiple frequency ranges in the M4
forecasting benchmark, demonstrating the advantages of in-
corporating causal metrics into the transformer architecture.
We provide comprehensive ablation studies and sensitivity
analyses in the Appendix to further validate our approach.

Figure 2 illustrates the attention patterns in time series
forecasting using monthly frequency data. The standard at-

(a) Standard attention (b) Attention map (c) Proposed transfer
using TE entropy attention

Figure 2: Example of attention map with proposed transfer
entropy attention using ‘Monthly’ frequency data

tention map shown in (a) displays the conventional symmet-
ric self-attention pattern. In contrast, our proposed attention
mechanism, shown in (c), incorporating with TE in (b), re-



sulting in an asymmetric attention pattern that leverages both
positional relationships and information-theoretic causal de-
pendencies. This approach enhances the model’s ability to
capture temporal dynamics, particularly near the prediction
horizon, providing a more theoretically grounded approach
to temporal dependency modeling.

Conclusion

We presented a transformer architecture that integrates
transfer entropy into the attention mechanism, addressing
the limitation of traditional transformers in capturing direc-
tional dependencies. Theoretical propositions and empirical
results support the effectiveness of our approach. Our model
achieves improved forecasting accuracy on the M4 dataset,
highlighting its potential for time series forecasting tasks.

Acknowledgments

This research was supported by Basic Science Research
Program through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Education (RS-2024-
00407852), and Korea Health Technology R&D Project
through the Korea Health Industry Development Institute
(KHIDI), funded by the Ministry of Health and Welfare, Re-
public of Korea (HI19C1095).

References

Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning long-term
dependencies with gradient descent is difficult. /EEE transactions
on neural networks, 5(2): 157-166.

Box, G. E.; Jenkins, G. M.; Reinsel, G. C.; and Ljung, G. M. 2015.
Time series analysis: forecasting and control. John Wiley & Sons.
Challu, C.; Olivares, K. G.; Oreshkin, B. N.; Ramirez, F. G.;
Canseco, M. M.; and Dubrawski, A. 2023. Nhits: Neural hierar-
chical interpolation for time series forecasting. In Proceedings of
the AAAI conference on artificial intelligence, volume 37, 6989—
6997.

Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Empirical
evaluation of gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Cleveland, R. B.; Cleveland, W. S.; McRae, J. E.; Terpenning, I.;
etal. 1990. STL: A seasonal-trend decomposition. J. off: Stat, 6(1):
3-73.

Franceschi, J.-Y.; Dieuleveut, A.; and Jaggi, M. 2019. Unsuper-
vised scalable representation learning for multivariate time series.
Advances in neural information processing systems, 32.

Gardner Jr, E. S. 1985. Exponential smoothing: The state of the
art. Journal of forecasting, 4(1): 1-28.

Graves, A. 2013. Generating sequences with recurrent neural net-
works. arXiv preprint arXiv:1308.0850.

Gu, A.; Goel, K.; and Ré, C. 2021. Efficiently modeling
long sequences with structured state spaces. arXiv preprint
arXiv:2111.00396.

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term mem-
ory. Neural computation, 9(8): 1735-1780.

Hyndman, R. 2018. Forecasting: principles and practice. OTexts.

Kitaev, N.; Kaiser, L.; and Levskaya, A. 2020. Reformer: The effi-
cient transformer. arXiv preprint arXiv:2001.04451.

Lai, G.; Chang, W.-C.; Yang, Y.; and Liu, H. 2018. Modeling long-
and short-term temporal patterns with deep neural networks. In The
41st international ACM SIGIR conference on research & develop-
ment in information retrieval, 95-104.

Lea, C.; Flynn, M. D.; Vidal, R.; Reiter, A.; and Hager, G. D. 2017.
Temporal convolutional networks for action segmentation and de-
tection. In proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 156—165.

LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning. nature,
521(7553): 436-444.

Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.-X.; and
Yan, X. 2019. Enhancing the locality and breaking the memory
bottleneck of transformer on time series forecasting. Advances in
neural information processing systems, 32.

Lim, B.; Arik, S. O.; Loeff, N.; and Pfister, T. 2021. Temporal fu-
sion transformers for interpretable multi-horizon time series fore-
casting. International Journal of Forecasting, 37(4): 1748-1764.

Liu, S.; Yu, H.; Liao, C.; Li, J.; Lin, W.; Liu, A. X.; and Dustdar,
S. 2022a. Pyraformer: Low-Complexity Pyramidal Attention for
Long-Range Time Series Modeling and Forecasting. In Interna-
tional Conference on Learning Representations.

Liu, Y.; Wu, H.; Wang, J.; and Long, M. 2022b. Non-stationary
transformers: Exploring the stationarity in time series forecasting.
Advances in Neural Information Processing Systems, 35: 9881—
9893.

Makridakis, S.; Spiliotis, E.; and Assimakopoulos, V. 2018. The
M4 Competition: Results, findings, conclusion and way forward.
International Journal of forecasting, 34(4): 802-808.

Marschinski, R.; and Kantz, H. 2002. Analysing the informa-
tion flow between financial time series: An improved estimator
for transfer entropy. The European Physical Journal B-Condensed
Matter and Complex Systems, 30: 275-281.

Medsker, L.; and Jain, L. C. 1999. Recurrent neural networks:
design and applications. CRC press.

Nauta, M.; Bucur, D.; and Seifert, C. 2019. Causal discovery with
attention-based convolutional neural networks. Machine Learning
and Knowledge Extraction, 1(1): 19.

Nie, Y.; Nguyen, N. H.; Sinthong, P.; and Kalagnanam, J. 2022. A
time series is worth 64 words: Long-term forecasting with trans-
formers. arXiv preprint arXiv:2211.14730.

Oh, Y.; Kwak, J.; and Kim, S. 2023. Time delay estimation of
traffic congestion propagation due to accidents based on statistical
causality. Electronic Research Archive, 31(2): 691-707.

Oh, Y.; Lim, D.; and Kim, S. 2024. Stable Neural Stochastic Dif-
ferential Equations in Analyzing Irregular Time Series Data. arXiv
preprint arXiv:2402.14989.

Oord, A. v. d. 2016. WaveNet: A Generative Model for Raw Audio.
arXiv preprint arXiv:1609.03499.

Oreshkin, B. N.; Carpov, D.; Chapados, N.; and Bengio, Y. 2019.
N-BEATS: Neural basis expansion analysis for interpretable time
series forecasting. arXiv preprint arXiv:1905.10437.

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986. Learn-
ing representations by back-propagating errors. nature, 323(6088):
533-536.

Runge, J.; Heitzig, J.; Petoukhov, V.; and Kurths, J. 2012. Escap-
ing the curse of dimensionality in estimating multivariate transfer
entropy. Physical review letters, 108(25): 258701.

Schreiber, T. 2000. Measuring information transfer. Physical re-
view letters, 85(2): 461.



Tank, A.; Covert, I.; Foti, N.; Shojaie, A.; and Fox, E. B. 2021.
Neural granger causality. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(8): 4267-4279.

Vaswani, A. 2017. Attention is all you need. Advances in Neural
Information Processing Systems.

Vicente, R.; Wibral, M.; Lindner, M.; and Pipa, G. 2011. Trans-
fer entropy—a model-free measure of effective connectivity for the
neurosciences. Journal of computational neuroscience, 30(1): 45—
67.

Woo, G.; Liu, C.; Sahoo, D.; Kumar, A.; and Hoi, S. 2022. Ets-
former: Exponential smoothing transformers for time-series fore-
casting. arXiv preprint arXiv:2202.01381.

Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; and Long, M. 2023.
TimesNet: Temporal 2D-Variation Modeling for General Time Se-
ries Analysis. In International Conference on Learning Represen-
tations.

Wu, H.; Xu, J.; Wang, J.; and Long, M. 2021. Autoformer: De-
composition transformers with auto-correlation for long-term se-
ries forecasting. Advances in neural information processing sys-
tems, 34: 22419-22430.

Yu, F.; and Koltun, V. 2016. Multi-Scale Context Aggregation by
Dilated Convolutions. In ICLR.

Yu, Y.; Si, X.; Hu, C.; and Zhang, J. 2019. A review of recurrent
neural networks: LSTM cells and network architectures. Neural
computation, 31(7): 1235-1270.

Zeng, A.; Chen, M.; Zhang, L.; and Xu, Q. 2023. Are transformers
effective for time series forecasting? In Proceedings of the AAAI
conference on artificial intelligence, volume 37, 11121-11128.
Zhang, T.; Zhang, Y.; Cao, W.; Bian, J.; Yi, X.; Zheng, S.; and
Li, J. 2022. Less is more: Fast multivariate time series forecast-
ing with light sampling-oriented mlp structures. arXiv preprint
arXiv:2207.01186.

Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; and
Zhang, W. 2021. Informer: Beyond efficient transformer for long
sequence time-series forecasting. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 35, 11106-11115.

Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; and Jin, R. 2022.
Fedformer: Frequency enhanced decomposed transformer for long-

term series forecasting. In International conference on machine
learning, 27268-27286. PMLR.

Zhou, T.; Niu, P.; Sun, L.; Jin, R.; et al. 2023. One fits all: Power
general time series analysis by pretrained Im. Advances in neural
information processing systems, 36: 43322-43355.



Implementation of transfer entropy attention
Standard attention mechanism
In the standard self-attention mechanism (Vaswani 2017),
the attention logits are computed as:
A UK
i — )
Vd
where q; € R? is the query vector at position i, k; € R?
is the key vector at position j, and d is the dimensionality

of the key and query vectors. The attention weights are then
obtained using the softmax function:

exp(A,»j)
> et ©XP(Aim)

where T is the sequence length. The output of the attention
mechanism at position ¢ is computed as a weighted sum of
the value vectors v;:

(10)

Wij =

) (11)

T
O; = Zwijvja (12)

j=1

where v; € R is the value vector at position j, and d,, is
the dimensionality of the value vectors.

Neural transfer entropy estimator

To estimate the transfer entropy from a source process X to
a target process Y, we employ a neural network estimator
Ty. The estimator takes as input the current state y; of Y,

(k)

the past k states y;"’ = [Yt—k,.-.,¥y:—1] of Y, and the past

[ states a:,gl) = [x¢—q,...,2¢—1] of X. The input vector is
constructed as:

2= [y oy) € R%, (13)
where d, = dy, + k-dy, + [ - d,, with d, and d, being
the dimensionalities of Y and X, respectively. The neural
estimator computes:

To(z¢) = fo(ze), (14)

where fy is a feedforward neural network parameterized
by 6, outputting a scalar value representing logp(y; |

yt(k),xgl)). To compute the transfer entropy, we calculate
two terms:
Joint term:

Thneis = To (fai K, vi")) (15)

where q;, k;, and v; correspond to y;, y](-k), and x;l), re-
spectively. We applied zero padding for the lagged %; and
v; with k and [ steps, respectively.

Marginal term: We create a shuffled version of the
source history x(.l), denoted as xgllﬁ]fﬂed, to break the depen-
dency between ¥ and X. The marginal term is then com-

puted as:

Tmarginal,ij = T9 ([Qia k;k)a ngghufﬂed]) . (16)

Transfer entropy score: The transfer entropy score be-
tween positions ¢ and j is estimated as:

TEij - T}oint,ij - log Ex(l) [GXP (Tmarginal,ij)] . (17)

shuffled

This score quantifies the information gained about y; from

knowing xg-l), beyond what is provided by yj(-k).

Adjusted attention mechanism with transfer
entropy score with causal masking

To preserve temporal causality and prevent the model from
accessing future information, we apply a causal mask to the
attention logits and transfer entropy scores. The causal mask
is defined as:

i<
Maskij = {O’ 1 j _ 2.7 (18)

—o0, ifj >
Applying the mask to the adjusted attention logits, we have:
ﬁij = TEZ‘]‘ + Maskij. (19)

This ensures that each position ¢ can only attend to its current
and previous positions j < 4, enforcing the unidirectional
flow of information from past to present.

We integrate the transfer entropy scores into the attention
mechanism by adjusting the attention logits:

T
q; k; ™

Aij = \/gj + - TEij7 (20)

where o = %1 is a scaling factor ensuring consistency with

the scaled dot-product attention. The inclusion of TE,; bi-
ases the attention mechanism towards positions with higher
estimated causal influence from X to Y. After adjusting the
attention logits, we compute the attention weights using the
softmax function:

exp (Az j )

WU Zm exp(Alm) ’
where the summation in the denominator is over all posi-
tions m that the model attends to. Finally, the output of the
attention mechanism at position ¢ is calculated as:

T
Oi = ZWijvj, (22)
J
where the sum is over positions j up to and including ¢, and
v; are the value vectors corresponding to the keys.

By integrating the transfer entropy estimator into the at-
tention mechanism, our model effectively captures causal re-
lationships in time series data. The adjusted attention logits
incorporate both the similarity between the query and key
vectors and the estimated causal influence from the transfer
entropy scores. The application of causal masking maintains
temporal causality, allowing the model to focus on relevant
past information when making predictions.
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Experimental details
Dataset
The M4 competition dataset (Makridakis, Spiliotis, and As-
simakopoulos 2018) is a comprehensive benchmark for time
series forecasting, consisting of 100,000 univariate time se-
ries from various domains. The dataset comprises different
sampling frequencies as shown Table 3.



Table 3: Data statistics

Dataset Dimension  Series Length Dataset Size Domain
Yearly 1 6 (23000, 23000)  Demographic
Quarterly 1 8 (24000, 24000) Finance
Monthly 1 18 (48000, 48000) Industry
Weakly 1 13 (359, 359) Macro
Daily 1 14 (42217, 4227) Micro
Hourly 1 48 (414, 414) Other

Evaluation metrics

For evaluation of forecasting on the M4 benchmark, we
adopt the Symmetric Mean Absolute Percentage Error
(SMAPE), Mean Absolute Scaled Error (MASE), and Over-
all Weighted Average (OWA), following the evaluation pro-
tocol used in N-BEATS (Oreshkin et al. 2019). Note that
OWA is a specific metric used in the M4 competition. The
calculations for these metrics are as follows:

H ~
200 Y,-Y
SMAPE = —— %}~ M
H = Yol + Y4
H ~
1 Y,-Y
MASE = =% — [¥n = Y :
h=1 H—s Ej:s+1 |Yj - Yj—s|
owa — L [ SMAPE MASE 7
2 SMAPENa’fveZ MASENa’IveZ

where s is the seasonal periodicity of the time series data,

H denotes the forecasting horizon, and Y}, and Y;L are the
actual and predicted values at time step h, respectively.

Experimental setup

We implemented our model using the Time Series Li-
brary! (Wu et al. 2023). The proposed model architecture
comprises two causal blocks, each with 32-dimensional em-
beddings. Both the convolutional layers and attention mech-
anism operate with a hidden dimension of 32. The neural
transfer entropy estimator was implemented as a feedfor-
ward network using ReLU activation. For optimization, we
used a learning rate of 0.001 and a batch size of 32. We
applied dimension-wise normalization and denormalization
for each batch during training.

Benchmark methods

In this study, we used two groups of benchmark meth-
ods: Transformer-based methods. (LogTransformer (Li
et al. 2019), Reformer (Kitaev, Kaiser, and Levskaya
2020), Informer (Zhou et al. 2021), Pyraformer (Liu et al.
2022a), Autoformer (Wu et al. 2021), Non-stationary
Transformer (Liu et al. 2022b), FEDformer (Zhou
et al. 2022), ETSformer (Woo et al. 2022), and
PatchTST (Nie et al. 2022).) Non-transformer-based
methods (LSTM (Hochreiter and Schmidhuber 1997),
TCN (Franceschi, Dieuleveut, and Jaggi 2019), N-
BEATS (Oreshkin et al. 2019), LSSL (Gu, Goel, and Ré

"https://github.com/thuml/Time- Series-Library

2021), LightTS (Zhang et al. 2022), DLinear (Zeng et al.
2023), N-HiTS (Challu et al. 2023), TimesNet (Wu et al.
2023), and GPT4TS (Zhou et al. 2023).)

Ablation study

We systematically modify or remove components to assess
their contributions to the overall forecasting performance.
The key components under investigation are the channel-
independence projection, the temporal-convolution layer for
feature interaction, and the transfer entropy attention mech-
anism. In the case of removing channel-independence pro-
jection, we used multi-dimensional linear layer instead.

Table 4: Effect of different configurations on model
performance using transfer entropy attention

Channel-independence o o X X

Temporal-convolution o X o X

SMAPE 13.400 13.458 13.448 13.512 13.710

Yearly MASE 3.024 3.059 3.042 3.063 3.087
OWA 0.790 0.797 0.794 0.799 0.808

SMAPE 10.125 10.082 10.177 10.179 10.487

Quarterly MASE 1.185 1.175 1.193 1.190 1.230
OWA 0.892 0.886 0.897 0.896 0.925

SMAPE 12.577 12.729 12.659  12.654 13.217

Monthly MASE 0.917 0.933 0.932 0.931 0.990
OWA 0.867 0.880 0.877 0.876 0.923

SMAPE 4.677 4.726 4.790 4.880 5.291

Others MASE 3.183 3.162 3.224 3.271 3.585
OWA 0.994 0.996 1.012 1.029 1.122
. SMAPE 11.783 11.862 11.851 11.868 12.279
Weighted
MASE 1.579 1.592 1.595 1.600 1.660
Average
OWA 0.847 0.854 0.854 0.856 0.886

Table 5: Effect of different configurations on model
performance using standard attention

Channel-independence o o X X
Temporal-convolution o X (0] X
SMAPE 13.504  13.759 13.487 13.716 13.710
Yearly MASE 3.082 3.123 3.050 3.141 3.087
OWA 0.801 0.814 0.796 0.815 0.808

SMAPE 10.089 10.100 10.120  10.106 10.487

Quarterly MASE 1.180 1.179 1.187 1.185 1.230
OWA 0.889 0.888 0.892 0.891 0.925
SMAPE 12.673 12.706 12.618 12.803 13.217
Monthly MASE 0.928 0.928 0.928 0.945 0.990
OWA 0.875 0.877 0.873 0.888 0.923
SMAPE 4.626 4.639 4.876 5.315 5.291
Others MASE 3.150 3.160 3.332 3.456 3.585
OWA 0.983 0.986 1.038 1.104 1.122
. SMAPE 11.841 11.919 11.831 11.992 12.279
Weighted
MASE 1.595 1.605 1.598 1.634 1.660
Average
OWA 0.853 0.859 0.854 0.869 0.886
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Figure 3: Comparison of predicted values using ‘Monthly’ frequency
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Figure 4: Comparison of predicted values using ‘Hourly’ frequency

Tables 4 presents the quantitative results of the ab-
lation study on benchmark datasets. Removing channel-
independence projection results in a noticeable decrease in
performance, demonstrating its role in stabilizing training
and enhancing feature representation. Also, temporal con-
volution shows its capability of capturing local temporal
dependencies and feature interactions. Removing both the
channel-independence projection and convolution layer fur-
ther degrades performance, suggesting that these compo-
nents complement each other in the model.

In Table 5, replacing the transfer entropy attention with
standard attention reduces the model’s effectiveness. The
proposed transfer entropy attention consistently outperforms
the standard attention, confirming its advantage in model-

ing causal relationships. The full model significantly out-
performs the baseline linear layer model, emphasizing the
collective contributions of the proposed components.

Qualitative Analysis Figures 3 and 4 illustrate the
forecasting results under different ablation settings,
using monthly frequency and hourly frequency, respec-
tively. The following configurations are considered:
(a) Proposed method with all components: The full model
incorporating channel-independence projection, tem-
poral convolution layer, and transfer entropy attention;
(b) Without channel-independence projection: The model
without the channel-independence projection mod-
ule; (c) Without temporal-convolution layer: The model




without the convolution layer for feature interaction.
(d) Without both modules: The model without both the
channel-independence projection and temporal-convolution
layer; (e) Standard attention: The model using standard
attention instead; (f) Linear layer only: The baseline model
using only a linear layer.

The proposed method with all components closely fol-
lows the ground truth, capturing both trends and fluctuations
effectively. In contrast, different ablation settings from (b) to
(f) show the degraded performance in forecasting.

Sensitivity analysis

In the proposed transfer entropy attention, the lag parame-
ters k and [ play a crucial role in capturing temporal depen-
dencies by determining the number of past time steps con-
sidered for the target and source variables, respectively. By
default, we set k = [ = 1, implying that the model looks one
step back in time for both variables when estimating trans-
fer entropy. To understand the impact of these parameters
on forecasting performance, we conduct a sensitivity analy-
sis by varying k = [ from 1 to 5.

Table 6: Sensitivity analysis of time lag (k, [)

Lag (k = 1) 1 2 3 4 5

SMAPE 13400  13.403 13.491 13.641 13.529
Yearly MASE 3.024 3.026 3.045 3.103 3.061
OWA 0.790 0.791 0.796 0.808 0.799

SMAPE 10.125 10.201 10.127 10.132 10.093
Quarterly MASE 1.185 1.197 1.182 1.180 1.175
OWA 0.892 0.899 0.891 0.890 0.887

SMAPE 12577 12.653 12.604  12.546  12.657
Monthly MASE 0.917 0.923 0.920 0.916 0.928
OWA 0.867 0.872 0.870 0.866 0.875

SMAPE 4.677 4.719 4.676 4.626 4.617
Others MASE 3.183 3.154 3.180 3.140 3.137
OWA 0.994 0.994 0.993 0.982 0.980

SMAPE  11.783 11.840  11.817 11.822 11.840
MASE 1.579 1.584 1.585 1.594 1.588
OWA 0.847 0.851 0.850 0.853 0.852

Weighted
Average

Table 6 presents the model’s performance with varying
lag parameters. From our sensitivity analysis of the lag pa-
rameters k and [, we observe that the model’s performance
remains robust across different lag values in general. Specif-
ically, for datasets with longer sampling frequencies—such
as yearly, quarterly, or monthly data—the effect of varying
the lag parameters is negligible. This indicates that consid-
ering additional past time steps beyond the immediate previ-
ous state does not significantly enhance forecasting accuracy
in these cases. However, for datasets with shorter sampling
frequencies, like weekly, daily, or hourly data, adjusting the
lag parameters leads to noticeable improvements in perfor-
mance. The enhancement in these higher-frequency datasets
can be attributed to their longer sequence lengths, which
allow the model to benefit from incorporating information
from multiple past time steps. BThus, while the model is

generally robust to changes in lag parameters, carefully se-
lecting k£ and ! becomes more impactful for datasets with
higher temporal resolutions.
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Figure 5: Attention map with proposed transfer entropy
attention (k = [ = 1) using ‘Monthly’ frequency data
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Figure 6: Attention map with proposed transfer entropy
attention (k = [ = 1) using ‘Hourly’ frequency data
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Figure 7: Attention map with proposed transfer entropy
attention (kK = [ = 5) using ‘Hourly’ frequency data

Figure 5 shows the attention mechanisms for monthly data
with & = [ = 1, where the standard attention exhibits
symmetric patterns while the TE score map reveals clear
directional dependencies. The dashed lines indicate predic-
tion horizons, and the proposed method consistently demon-
strates how transfer entropy guides the attention mechanism
to focus on informationally relevant temporal relationships.

For hourly data in Figure 6, similar patterns emerge with
k =1 = 1, though the attention maps show finer granularity
due to the higher sampling frequency. When increasing the
lag parameters to £ = [ = 5 for hourly data in Figure 7, the
attention patterns become more smooth, capturing longer-
range dependencies while preserving the essential asymmet-
ric structure of transfer entropy.



