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ABSTRACT

This paper introduces a novel framework for end-to-end learned video coding. Im-
age compression is generalized through conditional coding to exploit information
from reference frames, allowing to process intra and inter frames with the same
coder. The system is trained through the minimization of a rate-distortion cost,
with no pre-training or proxy loss. Its flexibility is assessed under three coding
configurations (All Intra, Low-delay P and Random Access), where it is shown to
achieve performance competitive with the state-of-the-art video codec HEVC.

1 INTRODUCTION

In the last few years, ITU/MPEG video coding standards—HEVC (Sullivan et al., 2012) and VVC
(J. Chen, 2020)—have been challenged by learning-based codecs. The learned image coding frame-
work introduced by Ballé et al. (2017; 2018) eases the design process and improves the performance
by jointly optimizing all steps (encoder, decoder, entropy coding) given a rate-distortion objective.
The best learned coding system (Cheng et al., 2020) exhibits performance on par with the image
coding configuration of VVC. In video coding, temporal redundancies are removed through motion
compensation. Motion information between frames are transmitted and used to interpolate reference
frames to obtain a temporal prediction. Then, only the residue (prediction error) is sent, reducing
the rate. Frames coded using references are called inter frames, while others are called intra frames.

Although most learning-based video coding systems follow the framework of Ballé et al., the end-to-
end character of the training is often overlooked. The coders introduced by Lu et al. (2019) or (Liu
et al., 2019) rely on a dedicated pre-training to achieve efficient motion compensation. Dedicated
training requires proxy metrics not necessary in line with the real rate-distortion objective, leading
to suboptimal systems. Due to the presence of both intra and inter frames, learned video coding
methods transmit two kinds of signal: image-domain signal for intra frames and residual-domain
for inter frames. Therefore, most works (Agustsson et al., 2020) adopt a two-coder approach, with
separate coders for intra and inter frames, resulting in heavier and less factorizable systems.

This paper addresses these shortcomings by introducing a novel framework for end-to-end learned
video coding, based on a single coder for both intra and inter frames. Pursuing the work of Ladune
et al. (2020), the coding scheme is decomposed into two sub-networks: MOFNet and CodecNet.
MOFNet conveys motion information and a coding mode, which arbitrates between transmission
with CodecNet or copy of the temporal prediction. MOFNet and CodecNet use conditional coding
to leverage information from the previously coded frames while being resilient to their absence.
This allows to process intra and inter frames with the same coder. The system is trained as a whole
with no pre-training or dedicated loss term for any of the components. It is shown that the system is
flexible enough to be competitive with HEVC under three coding configurations.

2 PROPOSED SYSTEM

Let {xi, i ∈ N} be a video sequence, each frame xi being a vector of C color channels1 of height
H and width W . Video codecs usually process Groups Of Pictures (GOP) of size N , with a regular
frame organization. Inside a GOP, all frames are inter-coded and rely on already sent frames called

1Videos are in YUV 420. For convenience, a bilinear upsampling is used to obtain YUV 444 data.
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Figure 1: Random Access configuration, GOP size is set to 4 to have concise diagrams.

references: B-frames use two references while P-frames use a single one. The first frame of the GOP
relies either on a preceding GOP or on an intra-frame (I-frame) denoted as x0. This work primarily
targets the Random Access configuration (Fig. 1), because it features I, P and B-frames. Here, we
consider the rate-distortion trade-off, weighted by λ, of a single GOP plus an initial I-frame x0:

Lλ =

N∑
t=0

D(x̂t,xt) + λR(x̂t), with D the MSE and R the rate. (1)

2.1 B-FRAME CODING

The proposed architecture processes the entire GOP (I, P and B-frames) using a unique neural-based
coder. B-frames coding is detailed here. Thanks to conditional coding, I and P-frames are processed
by simply bypassing some steps of the B-frame coding process as explained in Section 2.2.

Let xt be the current B-frame and (x̂p, x̂f ) two reference frames. Figure 2 depicts the coding process
of xt. First, (xt, x̂p, x̂f ) are fed to MOFNet which computes and conveys—at a rate Rm—two
optical flows (vp,vf ), a pixel-wise prediction weighting β and a pixel-wise coding mode selection
α. The optical flow vp (respectively vf ) represents a 2D pixel-wise motion from xt to x̂p (resp.
x̂f ). It is used to interpolate the reference through a bilinear warping w. The pixel-wise weighting
β is applied to obtain the bi-directional weighted prediction x̃t:

x̃t = β � w(x̂p;vp) + (1− β)� w(x̂f ;vf ),
{
� is a pixel-wise multiplication,
vp and vf ∈ R2×H×W , β ∈ [0, 1]

H×W (2)

The coding mode selection α ∈ [0, 1]
H×W arbitrates between transmission of xt using CodecNet

versus Skip mode, a direct copy of x̃t. CodecNet sends areas of xt selected by α, using information
from x̃t to reduce its rate Rc. The total rate required for xt is R = Rm+Rc and the decoded frame
x̂t is the sum of both contributions: x̂t = (1−α)� x̃t︸ ︷︷ ︸

Skip

+ c(α� xt,α� x̃t)︸ ︷︷ ︸
CodecNet

.

2.2 CONDITIONAL CODING

Conditional coding (Ladune et al., 2020) allows to exploit decoder-side information more efficiently
than residual coding. Its architecture is similar to an auto-encoder (Ballé et al., 2018), with one ad-
ditional shortcut transform (Fig. 2). It can be understood through the description of its 3 transforms.
Shortcut transform g′a (Decoder)—Its role is to extract information from the reference frames
available at the decoder (i.e. at no rate). The information is computed as latents y′.
Analysis transform ga (Encoder)—It estimates and conveys the information not available at the
decoder i.e. the unpredictable part. The information is computed as latents ŷ.
Synthesis transform gs (Decoder)—Latents from the analysis and shortcut transforms are concate-
nated and synthesized to obtain the desired output.

Unlike residual coding, conditional coding leverages decoder-side information in the latent domain.
As noted by Djelouah et al. (2019), this makes the system more resilient to the absence of informa-
tion at the decoder (i.e. for I-frames). Thus, MOFNet and CodecNet implement conditional coding
to be able to process I, P and B-frames as well as lowering their rate. I and P-frames are compressed
using the B-frames coding scheme, with the same parameters, and ignore the unavailable elements.
I-frame—Motion compensation is not available. As such, MOFNet is ignored, α is set to 1 and
CodecNet conveys the whole frame, with its shortcut latents y′c set to 0.
P-frame—Bi-directional motion compensation is not available. β is set to 1 to only rely on the
prediction from x̂p. MOFNet shortcut latents y′m are set to 0.
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Figure 2: Diagram of the system. A detailed version can be found in appendix D. Arithmetic coding
uses hyperpriors (Ballé et al., 2018) omitted for clarity. Attention modules are implemented as
proposed by Cheng et al. (2020) and f = 128. There are 20 millions learnable parameters {φ,θ}.

3 TRAINING

The training aims at learning to code I, P and B-frames. As such, it considers the smallest coding
configuration featuring all 3 types of frame: a GOP of size 2 plus the preceding I-frame. Each
training iteration consists in the coding of the 3 frames, followed by a single back-propagation to
minimize the rate-distortion cost of equation 1. Unlike previous works, the entire learning process
is achieved through this rate-distortion loss. No element of the system requires a pre-training or a
dedicated loss term. Moreover, coding the entire GOP in the forward pass enables the system to
model the dependencies between coded frames, leading to better coding performance.

The training set is made of 400 000 videos crops of size 256 × 256, with various resolutions (from
540p to 4K) and framerates (from 24 to 120 fps). The original videos are from several datasets:
KonViD-1k (Hosu et al., 2017), CLIC20 P-frame and Youtube-NT (Yang et al., 2020). The batch
size is 4 and the learning rate is set to 10−4 and decreased to 10−5 during the last epochs. Rate-
distortion curves are obtained by training systems for different λ.

4 VISUAL ILLUSTRATIONS

This section shows the different quantities at stakes when coding a B-frame xt (Fig. 3a). First,
MOFNet outputs two optical flows (vp,vf ) (Fig. 3d), the prediction weighting β (Fig. 3b) and the
coding mode selection α. The temporal prediction is then computed following equation 2. Most
of the time, β ' 0.5, mitigating the noise from both bilinear warpings. When the background is
disoccluded by a moving object (e.g. the woman), β equals 0 on one side of the object and 1 on
the other side. This allows to retrieve the background from where it is available. The competition
between Skip mode and CodecNet is weighted by α. Here, most of x̂t comes from the Skip mode2

(Fig. 3c). However, the less predictable parts, e.g. the woman, are sent by CodecNet.

To illustrate the conditional coding, vf is computed by the MOFNet synthesis transform using only
the shortcut latents y′m (Fig. 3e), the transmitted ones ŷm (Fig. 3f) or both (Fig. 3d). The shortcut
transform captures the nature of the motion in y′m, which allows to synthesize most of vf without
any transmission involved. In contrast, ŷm consists in a refinement of the flow magnitude. The rate
of ŷm is reduced by using a low spatial resolution, unlike y′m which keeps all the spatial accuracy.

5 RATE-DISTORTION RESULTS

The proposed system is assessed against x2653, an implementation of HEVC. The quality is mea-
sured with the PSNR and the BD-rate (Bjontegaard, 2001) indicates the rate difference for the same
distortion between two coders. The test sequences are from the HEVC Common Test Conditions

2Video frames are in YUV format. Thus zeroed areas appear green.
3Preset medium, the exact command line can be found in appendix A.1.
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(a) Frame to code xt (b) Prediction weighting β (c) Skip mode (1−α)�x̃t

(d) Optical flow vf (e) vf from gs(y
′
m;θm) (f) vf from gs(ŷm;θm)

Figure 3: B-frame coding from the BQMall sequence featuring moving people on a static back-
ground. This crop PSNR is 31.57 dB, MOFNet rate is 322 bits and CodecNet rate is 2 240 bits.
Second row shows vf computed by MOFNet synthesis transform from both latents cat(ŷm,y′m),
from shortcut latents y′m and from the transmitted latent ŷm.

(Bossen, 2013). The system flexibility is tested under three coding configurations: All Intra (AI)
i.e. coding only the first I-frame, Low-delay P (LDP) i.e. coding one I-frame plus 8 P-frames and
Random Access (RA) i.e. coding one I-frame plus a GOP of size 8. BD-rates of the proposed coder
against HEVC are presented in the Table 1.

Table 1: BD-rate of the proposed coder against HEVC. Negative results indicate that the proposed
coder requires less rate than HEVC for equivalent quality.

Coding configuration Class (Resolution) AverageA (1600p) B (1080p) C (480p) D (240p) E (720p)
All Intra (AI) −11.3% −9.6% −14.8% −45.6% −25.8% −21.4%
Low-delay P (LDP) −4.7% 29.1% 14.3% −9.5% 10.0% 7.8%
Random Access (RA) 5.3% 29.9% 7.0% −27.2% −18.7% −0.7%

The proposed system outperforms HEVC in AI configuration, proving that it properly handles I-
frames. It is on par with HEVC for RA coding and slightly worse than HEVC for LDP coding.
This shows that the same coder is also able to efficiently code P and B-frames, without affecting the
I-frames performance. To the best of our knowledge, this is the first system to achieve compelling
performance under different coding configurations with a single end-to-end learned coder for the
three types of frame.

6 CONCLUSION

This paper proposes a new framework for end-to-end video coding. It is based on MOFNet and
CodecNet, which use conditional coding to leverage the information present at the decoder. Thanks
to conditional coding, all types of frame (I, P & B) are processed using the same coder with the
same parameters, offering a great flexibility in the coding configuration. The entire training process
is performed through the minimization of a unique rate-distortion cost. Its flexibility is illustrated
under three coding configurations: All Intra, Low-delay P and Random Access, where the system
achieves performance competitive with HEVC.
The main focus of this work is not in the internal design of the networks architecture (MOFNet
and CodecNet). Future work will investigate more advanced architectures, from the optical flow
estimation or the learned image coding literature, which should bring performance gains.
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A SUPPLEMENTARY RATE-DISTORTION RESULTS

A.1 SEQUENCE-BY-SEQUENCE BD-RATES

Table 2 details the sequence-by-sequence BD-rates that gives the averaged results presented in Table
1. HEVC compression is achieved using ffmpeg with the following command:

ffmpeg -video size WxH -i in.yuv -c:v libx265 -pix fmt yuv420p
-x265-params "keyint=9:min-keyint=9" -crf QP -preset medium -tune psnr
out.mp4

The BD-rate is computed using four quality factors QP= {27, 32, 37, 42}. The Low-delay P config-
uration is obtained by changing the tune option to zerolatency. WxH denotes the video width
and height.

Table 2: BD-rate of the proposed coder against HEVC. Negative results indicate that the proposed
coder requires less rate than HEVC for equivalent quality.

Class Sequence name Coding configuration
(Resolution) All Intra (AI) Low-delay P (LDP) Random Access (RA)

A (1600p)

Traffic −13.1% 12.8% 9.2%
PeopleOnStreet −18.6% −20.4% −11.4%
Nebuta −2.6% −18.7% 16.8%
SteamLocomotive −10.8% 7.7% 6.7%

Average −11.3% −4.7% 5.3%

B (1080p)

Kimono −28.7% −1.8% 18.5%
ParkScene −17.0% 3.4% 4.5%
Cactus −4.5% 6.3% 12.7%
BQTerrace −6.4% 86.9% 30.6%
BasketballDrive −4.0% 50.6% 83.0%

Average −9.6% 29.1% 29.9%

C (480p)

RaceHorses −22.7% −12.0% 16.8%
BQMall −15.7% 20.3% −2.6%
PartyScene −4.8% 38.6% 20.0%
BasketballDrill −25.6% 10.4% 6.1%

Average −14.8% 14.3% 7.0%

D (240p)

RaceHorses −50.1% −26.0% −12.1%
BQSquare −25.2% 29.8% −22.4%
BlowingBubbles −49.4% −22.3% −33.4%
BasketballPass −57.5% −19.5% −41.1%

Average −45.6% −9.5% −27.2%

E (720p)

FourPeople −25.5% 3.8% −20.3%
Johnny −25.2% 15.8% −18.5%
KristenAndSara −26.6% 10.5% −17.3%

Average −25.8% 10.0% −18.7%
All classes average −21.4% 7.8% −0.7%
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A.2 SUPPLEMENTARY ANCHORS

Previous work (Lu et al., 2019; Djelouah et al., 2019) uses AVC as an anchor. Table 3 displays the
BD-rate of the proposed system against x264 through the following command:

ffmpeg -video size WxH -i in.yuv -c:v libx264 -pix fmt yuv420p -g 9 -crf
QP -preset medium -tune psnr out.mp4

The proposed system consistently outperforms AVC in all classes under the three coding configura-
tions.

Table 3: BD-rate of the proposed coder against AVC. Negative results indicate that the proposed
coder requires less rate than AVC for equivalent quality.

Class Sequence name Coding configuration
(Resolution) All Intra (AI) Low-delay P (LDP) Random Access (RA)

A (1600p)

Traffic −29.8% −13.5% −16.6%
PeopleOnStreet −34.4% −32.6% −22.4%
Nebuta −25.3% −53.2% −17.3%
SteamLocomotive −27.4% −12.5% −16.4%

Average −29.2% −27.9% −18.1%

B (1080p)

Kimono −40.8% −31.3% −21.0%
ParkScene −26.3% −10.2% −15.9%
Cactus −22.3% −15.0% −13.5%
BQTerrace −16.7% 32.2% −4.8%
BasketballDrive −18.7% −0.8% 13.2%

Average −25.0% −5.0% −8.4%

C (480p)

RaceHorses −22.4% −13.2% 9.5%
BQMall −11.2% 8.2% −7.0%
PartyScene 3.2% 28.7% 14.3%
BasketballDrill −28.9% −19.1% −21.7%

Average −14.8% 1.1% −1.2%

D (240p)

RaceHorses −32.9% −18.2% −5.6%
BQSquare −2.2% 42.1% −8.8%
BlowingBubbles −26.9% −6.1% −21.5%
BasketballPass −32.3% −8.3% −29.1%

Average −23.6% 2.4% −15.8%

E (720p)

FourPeople −28.5% −14.7% −31.5%
Johnny −27.5% −7.5% −32.8%
KristenAndSara −29.5% −15.5% −32.5%

Average −28.5% −12.5% −32.2%
All classes average −24.2% −8.4% −15.1%
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B SYSTEM BEHAVIOR ON THE FourPeople SEQUENCE

Additional illustrations of the system behavior are given here for the FourPeople sequence, extracted
from the HEVC Common Test Conditions. This sequence shows four people slightly moving in front
of a still background. The first frame is coded as an I-frame and the next 8 frames are compressed
using a (random access) GOP of size 8.

B.1 RATE-DISTORTION CURVES

Rate-distortion results of the proposed coder against HEVC and AVC are presented in Figure 4. On
this sequence, the system significantly outperforms HEVC across the entire rate range.
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Rate-distortion curves on FourPeople — BD-rate is -20.3% w.r.t. HEVC
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Figure 4: Rate-distortion curve of the proposed system against AVC and HEVC for the FourPeople
sequence. The circled points are used to generate the visual examples.
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B.2 RATE DISTRIBUTION INSIDE A GOP

The Figure 5 exhibits the distribution of the rate and of the PSNR across the frames of a GOP.
The PSNR is stable for all the coded frames, ensuring temporal consistency. As their distortion is
roughly the same, their rate is function of their predictability. Indeed, the less predictable is a frame,
the more information are transmitted. As a result, frames B4 or P8 require more bits to be sent than
other inter-frames because their references are temporally further, making them less predictable.
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(a) Rate per frame in a GOP.
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(b) PSNR per frame in a GOP.

Figure 5: Distribution of the rate and the PSNR across all frames of a GOP. Avg denotes the mean
value computed on I-frame and the GOP of size 8.

B.3 DETAILED B-FRAME CODING

This section displays the quantities involved when coding a B-frame xt (Fig. 6a). The two optical
flows vp, vf (Fig. 6c and 6d) and the pixel-wise bi-directional weighting β (Fig. 6f) are used to
compute the temporal prediction x̃t as specified in equation 2. Because both flows represent the
motion from xt to a reference, they are activated at the same spatial locations but with different
directions, resulting in different visualization colors. Some areas (e.g. the left man’s hand)
exhibits a motion which is not well captured by the system, causing checkerboard artifacts in the
visualization. Disocclusions occurring due to moving objects are handled using β = 0 on one
side of the objects and β = 1 on the other side. This behavior can be seen around the left man’s arm.

MOFNet also computes and transmits the coding mode selection α (Fig. 6e). Areas in blue (α = 0)
rely on Skip mode to be reconstructed (Fig. 6h) while areas in red (α = 1) are transmitted with
CodecNet (Fig. 6g). Most of the decoded frame (Fig. 6b) comes from Skip mode whereas areas
transmitted with CodecNet are only those not well predicted enough e.g. the left man’s hand. Skip
mode relevance is illustrated through the spatial distribution of CodecNet rate (Fig. 6i). Thanks
to Skip mode, only few areas of the frame use CodecNet, resulting in few areas for which bits are
spent. Lastly, the spatial distribution of MOFNet rate (Fig. 6j) shows that all of the coding scheme
side-information (α,β,vp,vf ) are transmitted for a low rate.
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(a) Frame to code xt (b) Compressed frame x̂t, PSNR is 37.31 dB

(c) Optical flow vp (d) Optical flow vf

(e) Coding mode α. Red: CodecNet, blue: Skip (f) Bi-directional weighting β. Red = 1, blue = 0

(g) CodecNet part c(α� xt,α� x̃t) (h) Skip part (1−α)� x̃t

(i) Distribution of CodecNet rate Rc = 4 332 bits (j) Distribution of MOFNet rate Rm = 922 bits

Figure 6: Detailed visualizations for B-frame coding.
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B.4 CONDITIONAL CODING

Conditional coding relevance is illustrated for CodecNet by synthesizing its output from the shortcut
latents only 7b, the sent latents only 7c or both latents 7a. Similarly to MOFNet, most of CodecNet
output is retrieved from the shortcut latents and few information are transmitted, resulting in signif-
icant rate savings. The shortcut latents are computed from the temporal prediction x̃t. Therefore, a
poor prediction results in shortcut latents lacking some information, requiring CodecNet to convey
something in these areas. Here they correspond to the quickly moving objects such as the people’s
hands, whose prediction results from badly estimated flows (Fig. 6c, 6d). This example shows that
even with an inaccurate x̃t, CodecNet exploits all information from x̃t and only transmits correction
terms to obtain a proper reconstruction.

(a) CodecNet output from both latents: gs(cat(ŷc,y
′
c);θc)

(b) CodecNet output from shortcut latents only: gs(y′
c;θc)

(c) CodecNet output from transmitted latents only: gs(ŷc;θc)

Figure 7: Illustration of the conditional coding behavior for CodecNet.
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B.5 VISUAL COMPARISON

The Figure 8 offers a visual comparison of a B-frame, compressed by HEVC 4 and by the proposed
system. For a lower rate, the system achieves a higher PSNR than HEVC. The zoom on the man’s
hand shows that moving areas are well handled by the system. The high frequencies in the back-
ground (the text) are properly recovered. The system obtains a smoother reconstruction with fewer
coding artifacts than HEVC, i.e. without blocking or rigging effects.

(a) Original frame

(b) HEVC: PSNR of the GOP is 36.94 dB and the GOP rate is 1.27 Mbit/s.

(c) Proposed system: PSNR of the GOP is 37.29 dB and the GOP rate is 1.21 Mbit/s.

Figure 8: Visual comparison of a B-frame compression.

4QP = 35
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C SYSTEM BEHAVIOR ON THE BQMall SEQUENCE

The behavior of the proposed system is detailed on the BQMall sequence, extracted from the HEVC
Common Test Conditions. This sequence features people walking in front of a static background.
In this example, the first frame is coded as an I-frame and the next 8 frames are compressed using a
(random access) GOP of size 8. This appendix provides additional illustrations to the ones already
shown in section 4.

C.1 RATE-DISTORTION CURVES

The Figure 9 presents the rate-distortion results of the proposed coder against HEVC and AVC.
For this sequence the system outperforms HEVC at low rate. However, the system quality starts
saturating at high rate resulting in worse performance than HEVC. We note that the quality saturation
issue seems to be inherent to the auto-encoder architecture as noted by Helminger et al. (2020).
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Figure 9: Rate-distortion curve of the proposed system against AVC and HEVC for the BQMall
sequence. The circled points are used to generate the visual examples.
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C.2 RATE DISTRIBUTION INSIDE A GOP

The Figure 10 presents the distribution of the rate and of the PSNR across the frames of a GOP. Sim-
ilarly to the FourPeople sequence, the PSNR remains consistent for all the coded frames. Because
this sequence is less static than FourPeople, the inter-frame rates are higher.
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(a) Rate per frame in a GOP.
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Figure 10: Distribution of the rate and the PSNR across all frames of a GOP. Avg denotes the mean
value computed on the I-frame and the GOP of size 8.
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C.3 VISUAL COMPARISON

The Figure 11 offers a visual comparison of a B-frame, compressed by HEVC5 and by the proposed
system. At a similar rate, HEVC achieves a better PSNR than the proposed coder and seems to retain
more high frequency contents. However, it comes as the cost of significant blocking artifacts and
pronounced ringing effects. Due to its convolutional nature, the proposed system offers a smoother
output, with fewer compression artifacts.

(a) Original frame

(b) HEVC: The PSNR of the GOP is 33.37 dB and the GOP rate is 1.42 Mbit/s.

(c) Proposed system: The PSNR of the GOP is 32.41 dB and the GOP rate is 1.37 Mbit/s.

Figure 11: Visual comparison of a B-frame compression.

5QP = 34
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D DESCRIPTION OF THE NETWORK ARCHITECTURE

The architecture of MOFNet and CodecNet, presented in Figure 2, are described in this appendix.

D.1 BASIC BUILDING BLOCKS

The system uses attention module to increase the capacity of its different transforms. The attention
modules are implemented as proposed by Cheng et al. (2020) and are described in Figure 12.
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(a) Residual block
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on
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Attention with features

(b) Attention module

Figure 12: Architecture of an attention module. Conv. f × k× k denotes a convolutional layer with
f output features and a k × k kernel.

D.2 HYPERPRIOR AND ENTROPY CODING

The transmitted latents of MOFNet and CodecNet are conveyed using entropy coding, which re-
quires an estimate of the latents probability density function (PDF). Each element ŷi of the latents is
described by a Laplace PDF, whose parameters µi, σi are conditioned on a hyperprior ẑ (Ballé et al.,
2018). The hyperprior is computed and transmitted from an auxiliary auto-encoder, described in
Figure 13a. The hyperprior transmission uses entropy coding and a Laplace PDF, whose parameters
are estimated with an auto-regressive model (see Fig. 13b) as proposed by Minnen et al. (2018).
Two hyperprior networks are implemented, one for MOFNet and one for CodecNet.
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Figure 13: Architecture of the hyperprior network. ŷ corresponds to MOFNet (sent) latents ŷm or
to CodecNet (sent) latents ŷc. Conv. f × k× k ↑ / ↓ 2 denotes a convolutional layer with f output
features, a k × k kernel and a up/down sampling by a factor 2. MConv is a masked convolution.
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D.3 MOFNET ARCHITECTURE

The detailed architecture of the three main transforms of MOFNet (analysis, shortcut and synthesis)
is depicted in Figure 14.
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Figure 14: MOFNet transforms architecture. Conv. f ×k×k ↑ / ↓ 2 denotes a convolutional layer
with f output features, a k × k kernel and a up/down sampling by a factor 2. Attention f is
an attention module with f features, cat represents the concatenation along the features dimension
and clamp(0, 1) is a hard clipping between 0 and 1. f is set to 128.
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D.4 CODECNET ARCHITECTURE

The detailed architecture of the three main transforms of CodecNet (analysis, shortcut and synthesis)
is depicted in Figure 15.
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Figure 15: CodecNet transforms architecture. Conv. f × k × k ↑ / ↓ 2 denotes a convolutional
layer with f output features, a k×k kernel and a up/down sampling by a factor 2. Attention f is
an attention module with f features, cat represents the concatenation along the features dimension.
GDN is the General Divisive Normalization introduced by (Ballé et al., 2017). f is set to 128.
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