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Abstract

We propose a method to improve robustness to model misspecification in Bayesian ex-
perimental design (BED). Our approach introduces a flexible auxiliary model and jointly
optimizes the expected information gain (EIG) in the original model parameters, the pre-
dictions of the auxiliary model, and a Bernoulli random variable indicating whether the
original model is correct or misspecified. We show this balances learning about the original
model, gathering data useful for general prediction, and assessing model fit. By leveraging
the domain-specific knowledge embedded in the original model, we guide the design process
while maintaining flexibility in the face of model misspecification. This is particularly im-
portant in adaptive design settings, where the original model informs early design decisions,
but the auxiliary model enables adaptation when new data reveals model inaccuracies.

1. Introduction

Adaptive experimentation is central to a range of scientific disciplines as it enables efficient
data acquisition through iterative refinement of experimental designs based on previously
gathered information (MacKay, 1992; Myung et al., 2013). Bayesian experimental design
(BED) offers a principled model-based framework for solving such adaptive design prob-
lems (Chaloner and Verdinelli, 1995; Ryan et al., 2016; Rainforth et al., 2024).

While BED is theoretically elegant, its practical effectiveness hinges on the correctness
of the assumed outcome model, p(y | θ, ξ), where y represents the experiment outcome,
θ the parameters of the model, and ξ the experiment design. In real-world scenarios,
model misspecification is almost inevitable: the true data-generating process (DGP) rarely
aligns perfectly with the assumed model. When the model is misspecified, BED can fail
catastrophically, leading to poor design choices, biased inferences, and datasets that fail
to reveal the model’s flaws. For example, assuming a linear relationship when the true
DGP is quadratic can result in designs that cluster in uninformative regions of the design
space (Figure 1). Worse still, such datasets may not even reveal evidence of the model’s
incorrectness, perpetuating flawed assumptions.

Despite its importance, the problem of model misspecification in BED remains under-
explored. Existing work tackling the issue includes Overstall and McGree (2022); Go and
Isaac (2022); Feng et al. (2015), but there remains a critical gap in methods tailored to
adaptive experimental design, where the interplay between model uncertainty and sequen-
tial decision-making is particularly challenging.

In this paper, we tackle model misspecification in BED by introducing a framework
that explicitly accounts for the possibility of misspecification. Our method is built on the
following principles:
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Figure 1: BED with a misspecified model: an illustrative example of a catastrophic
failure. The assumed model is linear: y | θ, ξ ∼ N (θ0 + θ1ξ, 0.1), whilst the true data
generating process (DGP) is quadratic: y | θ, ξ ∼ N (θ0 + θ1ξ + θ2ξ

2, 0.1). The parameters
are i.i.d. normal, θi ∼ N (0, 1) ∀ i, and the design ξ ∈ [−1, 1]. The green dashed curve shows
the true DGP, whilst the solid blue line indicates the MAP fit under the assumed linear
model based on T=10 design-outcome pairs (red crosses). Panel (a) shows the fit resulting
from the optimal design strategy for the assumed linear model: lack of design diversity leads
to a poor quality dataset and biased, inaccurate fit. Panel (b) shows the fit from a random
design strategy, which, although still inaccurate, aligns more closely with the true DGP.

(i) Early guidance from the model: The framework leverages the model to guide data
collection initially, capitalising on its structure.

(ii) Flexibility for robust data collection: Designs are encouraged to explore regions of the
design space that are informative for both parameter learning and prediction, even
under misspecification.

(iii) Model self-assessment: The method provides mechanisms to assess and adapt to po-
tential model misspecification as data accumulates.

2. Background

2.1. Bayesian Experimental Design

Bayesian experimental design (BED) operates under the assumption that the data-generating
process (DGP) can be described by a probabilistic model p(y, θ | ξ), where θ represents
unknown parameters of interest, and ξ denotes design choices. BED selects designs by
optimizing the Expected Information Gain (EIG):

EIGθ(ξ) = Ep(y | ξ) [H[p(θ)]−H [p(θ | ξ, y)]] , (1)

where p(y | ξ) = Ep(θ)[p(y | θ, ξ)] is the prior-predictive marginal distribution, and H[·] de-
notes Shannon entropy. In adaptive settings, this process is extended to sequentially update
the posterior distribution p(θ |ht−1), where ht−1 = {(ξi, yi)}t−1

i=1 is the data collected up to
time t− 1. At each iteration, the next design ξt is chosen to maximize the conditional EIG

EIGθ |ht−1
(ξt) = Ep(yt | ξt,ht−1) [H[p(θ |ht−1)]−H [p(θ |ht)]] . (2)

More recently, non-myopic, policy-based, methods have also been developed that instead
learn a policy network π that maps from the history to the next design decision, such that
ξt = π(ht−1) (Foster et al., 2021; Ivanova et al., 2021; Blau et al., 2022; Huan et al., 2024).
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2.2. Model Misspecification

In the standard Bayesian framework, uncertainty in the parameters θ is well-characterised,
but uncertainty regarding the model itself is typically not addressed. This becomes prob-
lematic when the assumed model fails to capture the true underlying process—a scenario
known as model misspecification. More formally, we say a model is misspecified if there
exists no parameter setting θ∗ such that the predictive distribution p(y | θ = θ∗, ξ) matches
the true data-generating distribution of y | ξ, subsequently denoted ptrue(y | ξ).

Whilst misspecification is typically inevitable (Box, 1982), Bayesian modelling can often
still produce meaningful results under misspecification. In particular, if designs are chosen
i.i.d. from some distribution p(ξ∗), Kleijn and van der Vaart (2012) showed that the posterior
will concentrate around θ̃ in the limit of large data, where

θ̃ = argmin
θ∈Θ

Ep(ξ∗)KL[ptrue(y
∗ | ξ∗) ∥ pmodel(y

∗ | θ, ξ∗)], (3)

and ptrue is the true underlying data generating process. If the model is well–specified then
θ̃ = θ∗ regardless of p(ξ∗), including when designs are chosen adaptively using BED (Panin-
ski, 2005). However, when it is misspecified, θ̃ explicitly depends on p(ξ∗) and our conclu-
sions become entwined with our design policy, whether this is adaptive or not (c.f. Figure 1).

Consequently, model misspecification can present an even deeper challenge to exper-
imental design than it does for modelling already collected data. For BED we are now
using the model not only to fit existing data, but also to guide the collection of new data
(Rainforth et al., 2024). In particular, misspecification can cause catastrophic failures where
deficiencies in the model lead to poor design decisions, which in turn means we collect data
that hides the deficiencies in the model (see Appendix A for further discussion). Figure 1
presents a clear example of this with the designs chosen by BED all at ±1. This in turn
means that we cannot actually reject the hypothesis of a linear fit from the data collected,
even though this is easily falsified in the case where data was sampled uniformly.

3. Robust Bayesian Experimental Design

BED assumes the data is generated by a parametric model with parameters θ, which from
here onwards is referred to as pmodel. Explicitly, the assumed data generating process
(DGP) is: θ ∼ pθ(·),∀t = 1, . . . , T, ξt = πt(ht−1), yt ∼ pmodel(· | θ, ξt), where each πt is some
(potentially random) policy, which we abstractly define as the mechanism for choosing
experimental designs. For example, if designs are being chosen by sequentially maximising
Equation 2, then πt(ht−1) is the maximising value.

As discussed above, the assumption the data are generated in this way can cause BED to
fail catastrophically if pmodel is misspecified. That is, if the true underlying DGP (denoted
ptrue) is ξt = πt(ht−1), yt ∼ ptrue(· | ξt), then the model is misspecified when there exists no
θ∗ such that ptrue(y | ξ) = pmodel(y | θ∗, ξ) for all y ∈ Y and ξ ∈ X .

3.1. Modelling the misspecification

Our method addresses this issue by explicitly modelling the mechanism of misspecification.
We represent model misspecification as a mixture between the original parametric distribu-
tion (pmodel) and an auxiliary distribution, paux. Specifically, pmodel is treated as “correct”
with probability 1− ϵ and as misspecified with probability ϵ.
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The auxiliary model paux is chosen to capture plausible forms of model misspecification,
and thus should be more flexible than pmodel. Critically though, we generally do not want to
just replace pmodel with paux, because using an overly flexible model in BED undermines our
ability to utilise our prior information to make targeted design decisions which we believe
will yield particularly informative data. Particularly at early experiment iterations, we thus
still wish to utilize pmodel to efficiently investigate our initial beliefs and quickly contract
our model’s posterior. But we also want to make sure that as more data is acquired we
can unearth deficiencies in pmodel and, in turn, avoid the pathologies that can occur when
performing BED with misspecified models.

Let ψ denote the (potentially infinite-dimensional) parameters of paux, with prior dis-
tribution pψ(·). Our method now posits using the following extended model

θ ∼ pθ(·), ψ ∼ pψ(·), Z ∼ Bernoulli(1− ϵ),

∀t = 1, . . . , T ξt = πt(ht−1) yt ∼

{
pmodel(· | θ, ξt) if Z = 1

paux(· |ψ, ξt) if Z = 0 .

(4)

Note that this formulation assumes that with probability 1− ϵ, all the data is distributed
as pmodel, and with probability ϵ, all the data is distributed as paux.

This extended DGP defines a new model, pext(y |Φ, ξ), with parameters Φ := {θ, ψ, Z}.
Experimental designs can then be chosen by maximising the EIG under the extended model.
By using an auxiliary model that is more flexible than the original model, this extension
serves to regularise the EIG. For example, we demonstrate later that using a Gaussian
process auxiliary model results in a regularisation that penalises experimental designs that
are too similar to previous designs and rewards greater exploration of the design space,
mitigating the adverse effects of misspecification.

However, targeting information in Φ directly could be problematic, especially if the
extended model is non-parametric, as the potential information gain in ψ can dominate
that in θ or Z. Moreover, we do not really directly care about information gain in ψ
itself, we simply want to collect data that ensures that the auxiliary model makes effective
predictions. In other words, we want to ensure robustness by making sure that an effective
predictive model can be trained from the gathered data.

To account for this, we leverage ideas about the so called expected predictive information
gain introduced by Bickford Smith et al. (2023). Namely, we introduce some test–time
“input distribution” p(ξ∗) that represents downstream distribution we want to ensure we can
make predictions for. We then target the expected information gain in Ω := {θ, (ξ∗, y∗), Z}
where y∗ is the predicted outcome associated with using the design ξ∗. Here there is no
marginal information to be learned about the distribution of ξ∗, but what we are trying to
learn about (alongside θ and Z) is how to predict y∗|ξ∗ across a distribution of possible ξ∗.
If we are able to learn this effectively, it indicates that we have gathered data that allows
us to predict outcomes with respect to other possible design setups that one could have
used, not just the precise designs that were chosen. In turn, this provides robustness to the
overall process, by reducing sensitivity to the precise design decisions that were made.

We refer to EIGΩ as the robust EIG. The following decomposition now shows how we
can target the robust EIG, and provides insights into how it behaves. A proof for the result
is given in Appendix D.
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Theorem 1 (EIG decomposition) The expected information gain in Ω, conditional on
history ht−1 = {(yi, ξi)}t−1

i=1, is given by

EIGΩ(ξt |ht−1) =P(Z = 1 |ht−1) EIG
model(ξt |ht−1)

+ P(Z = 0 |ht−1) EPIG
aux(ξt |ht−1) + EIGZ(ξt |ht−1),

(5)

where EIGmodel(ξt |ht−1) :=Ep(θ |ht−1)pmodel(yt | θ,ξt)

[
log

pmodel(yt | θ, ξt)
pmodel(yt |ht−1, ξt)

]
, (6)

EPIGaux(ξt |ht−1) :=Ep(ξ∗)paux(yt,y∗ |ht−1,ξt,ξ∗)

[
log

paux(y
∗ |ht−1, ξt, yt, ξ

∗)

paux(y∗ |ht−1, ξ∗)

]
, (7)

EIGZ(ξt |ht−1) := I(yt;Z |ht, ξt). (8)

Theorem 1 shows that the robust EIG adapts to the data as it is collected: if the data
supports the original model being well specified (i.e. if P(Z = 1 |ht−1) is close to 1), then
it targets EIGmodel – the original reward function. On the other hand, if the data gives
evidence of misspecification (i.e. if P(Z = 0 |ht−1) is close to 1), then it abandons gaining
information in θ and instead targets EPIGaux. It also rewards gaining information in Z, i.e.
designs that help determine whether Z = 1 (that the original model pmodel is well specified)
or Z = 0 (that the original model pmodel is misspecified). Further discussion of the approach
is given in Appendix A, additional theoretical arguments are provided in Appendix C.

4. Experiments

We now test the efficacy of our approach using the Michaelis-Menten kinetics model from
the field of chemical kinetics. It has been studied in the context of BED in e.g. Overstall
and McGree (2022) and Dette and Biedermann (2003). In a chemical experiment, it models
the reaction velocity y in terms of substrate concentration ξ ∈ [0, 400] and parameters of
interest θ = (Vmax, V0.5). The model posits the mean response η(θ, ξ) := Vmaxξ/ (ξ + V0.5)
and assumes Gaussian noise y | θ, ξ ∼ N

(
η(θ, ξ), 52

)
. The prior distribution is taken to be

Vmax, V0.5
i.i.d.∼ Uniform(20, 200).

While the above model is what we will use as pmodel, we also need a distinct true data-
generating process to test against. For this, we use a generalisation of the Michaelis-Menten
model inspired by the Hill equation (Cornish-Bowden, 2012); it is as above, but with mean
response ηs(θ, ξ) := Vmaxξ

s/ (ξs + V s
0.5) . By choosing different values of s, we can then

control the degree of misspecification in our model. Our method further requires choosing
an auxiliary model; for this we choose f ∼ GP(µ, k), y | f, ξ ∼ N

(
f(ξ), 52

)
, where the mean

function µ and kernel function k are given in Appendix E.
To test our method, we compare two data-gathering regimes: (i) a baseline consisting

of sequentially maximising the conditional EIG in the model parameters, θ, (Equation 2),
and (ii) our method, consisting of sequentially maximising the robust EIG, EIGΩ.

We first demonstrate that our method can detect model misspecification, and having
done so, selects designs that help prediction throughout the design space. In Figure 2 we
show the designs that are chosen in a case where the model is correctly specified, s = 1, and
a case where it is misspecified, s = 2. We see that our method is able to produce sensible
designs in both cases, with the different components from the decomposition in Theorem 1
being differently weighted as the experiments progress.
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(a) (b) (c) (d)

Figure 2: (a) A single rollout of 20 designs chosen sequentially using our method. Observe
there are two primary design clusters near ξ = 0.1 and ξ = 1.0. (b) For t = 1, . . . , 20, the
blue line shows the information gain in θ, the orange line shows the predictive information
gain in the auxiliary model, and the green line shows the posterior quantity P(Z = 1 |ht).
(The dashed green line at 1 is for reference.) (c) The same as (a) but the underlying DGP
has s = 2. Observe the clusters no longer appear. (d) As per (b) with s = 2. Observe that
at the 10th design, P(Z = 1 |ht) falls dramatically, and continues towards 0 – the model
misspecification has been detected, and the design-choosing behaviour changes with it.

(a) (b)

Figure 3: (a) The underlying DGP has s=1 (i.e. well-specified). The blue points show the
IG when designs are chosen to maximise the conditional EIG, averaged over 100 runs (error
bars represent 1 s.e.). The red points show the same for designs from the robust EIG. As
expected, in this well-specified context our method incurs a small penalty for protecting
against misspecification and performs marginally worse. (b) The underlying DGP has
s = 1.25 (i.e. the model is misspecified). The blue points show the mean ED over 100 runs
for designs chosen according to the baseline method, with error bars showing 1 s.e. The red
points shows the same for our method. Our method produces designs resulting in a lower
ED.

We then compare our method to standard BED, showing that it produces data from
which we can better capture the true underlying data distribution. Specifically, we com-
pare the two approaches in terms of their achieved information gain and the expected KL
divergence (ED) from the true data distribution to that of our model

ED(ht) = Ep(x∗) [KL[ptrue(y
∗ |x∗) ∥ pmodel(y

∗ |x∗, ht)]] . (9)

As we see in Figure 3, using the robust EIG leads to less information gain in the true
model when things are well-specified, but we get a better ED from the true data-generating
distribution when misspecified, thereby providing the desired improvement in robustness.
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Appendix A. Discussion

The effectiveness of BED relies critically on the assumed probabilistic model p(y | θ, ξ) ac-
curately representing the true data-generating process (DGP). Some particularly notable
risks for BED in this setting include:

1. Ineffective Designs: Optimizing EIG under a misspecified model may cause BED to
select designs that explore irrelevant regions of the design space or fail to capture
critical aspects of the true DGP.

2. Unrepresentive Data: If misspecification causes BED to fail to properly explore the
design space or overemphasize certain regions, as in the case in Figure 1, it may lead
to highly unrepresentative data being gathered.

3. Reinforced Errors: In adaptive settings, model misspecification can lead to a feedback
loop, where designs systematically reinforce incorrect assumptions, leaving practition-
ers unaware of the model’s deficiencies. In particular, we can collect data which is
informative if the model is correct, but from which it is difficult to perform effective
model checking.

Model misspecification is an unavoidable reality in practice, as the true data-generating
process is rarely fully captured by the models we employ. For example, we may require
our model to make simplifying assumptions for computational feasibility, interpretability,
difficulty in encapsulating our true beliefs, or simply to try and ensure it has sufficient pre-
dictive power. For example, in clinical trials we often care primarily about simple statistics
about drug efficacy, even though we do not think the true underlying mechanism is itself
so simple.

These considerations give rise to a critical question in BED: What is the role of a model
when it is likely to be misspecified? Specifically, when collecting data using a BED ap-
proach, why not instead employ a more flexible model—one with high, or even infinite,
dimensionality—so that the model can better accommodate the data and minimize mis-
specification?

Our findings, as illustrated in section 4, reveal that adopting highly flexible models,
such as those incorporating Gaussian process priors (i.e., models with infinite-dimensional
parameters), tends to produce designs that uniformly fill the design space. While this
approach avoids severe misspecification, it leads to designs that are generic rather than
tailored to the specific experiment. Consequently, experimental designs may focus on regions
of the design space that are known, a priori, to be uninformative.

Conversely, parametric models, even when misspecified, provide meaningful guidance
early in the adaptive BED process. These models are capable of generating experimental
designs that yield informative data about the unknown parameters at the outset. However,
as demonstrated in Figure 1, this approach can overly constrain the design space, limiting
exploration and potentially missing critical regions of interest.

Given the inevitability of model misspecification, we aim to strike a balance between
these two extremes. Specifically, we seek a design mechanism that satisfies the following
criteria: (i) In the early stages of the adaptive BED process, it prioritizes experimental
designs that are highly informative about the parameters of interest. (ii) Over the medium
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term, it promotes systematic exploration of the design space to mitigate the risks of local
overfitting and gather data that can be used not only for model fitting, but for model
checking as well. (iii) In the long run, the mechanism adapts to the quality of the model:
if the model fits well, it reverts to the classic adaptive BED approach, operating under the
assumption of no model misspecification; if the model fits poorly, it defaults to producing
uniform designs.

Appendix B. Gaussian Process Auxiliary Model

For the case where observations y are in R it is illustrative to consider a Gaussian process
auxiliary model, where paux(y |ψ, ξ) and p(ψ) are such that

ψ ∼ GP(µ, k), (10)

y |ψ, ξ ∼ N(ψ(ξ), σ2), (11)

for some mean function µ and kernel function k. Denote ξt := (ξi)
t
i=1, and for x ∈ Rn,

x′ ∈ Rm, let k(x,x′) ∈ Rn × Rm have k(x,x′)ij = k(xi,x
′
j). Further, let the vari-

ance of y∗ |ht−1, ξt, yt, ξ
∗ be denoted σ2ξt−1

(ξt, ξ
∗) (= k(ξ∗, ξ∗) + σ2 − k(ξ∗, ξt)(k(ξt, ξt) +

σ2It)
−1k(ξt, ξ

∗)). In this case, maximising EPIGaux(ξt |ht−1) is equivalent to minimising

Ep(ξ∗)
[
log σ2ξt−1

(ξt, ξ
∗)
]

(12)

over ξt ∈ X . Therefore the optimal design seeks to minimise the posterior variance of
y∗ |ht−1, ξt, yt, ξ

∗ over ξ∗ ∈ X , weighted by p(ξ∗). It is intuitive that this is often achieved
by ξt that is far away from the previous designs. Such space-filling behaviour is desired
when there is potential model misspecification (Huan et al., 2024).

Acknowledging this, we introduce a flexible auxiliary model paux(y |ψ, ξ), where ψ is
a (potentially infinite-dimensional) parameter with a prior distribution p(ψ), designed to
capture plausible misspecification in the original model pmodel, but perhaps with no natural
interpretation.

Appendix C. Expected Divergence

A natural goal is to collect data (ξ, y) such that

KL[ptrue(y
∗ | ξ∗) ∥ paux(y∗ | ξ, y, ξ∗)] (13)

is small over ξ∗ ∈ X (i.e. the posterior predictive distribution is “close” to the truth). Let
p(ξ∗) be a distribution over X that weights the importance of areas of the design space:
p(ξ∗) is large for ξ∗ where it is more important for paux to fit well to the truth. Taking
expectation over p(ξ∗) and ptrue(y | ξ) leads to the utility function

U(ξ) :=− Ep(ξ∗)ptrue(y | ξ) [KL[ptrue(y
∗ | ξ∗) ∥ paux(y∗ | ξ, y, ξ∗)]] (14)

=Ep(ξ∗)ptrue(y,y∗ | ξ,ξ∗)
[
log

paux(y
∗ | ξ, y, ξ∗)

paux(y∗ | ξ∗)

]
+ const. (15)

10



Robust BED

This cannot be estimated because it involves an expectation over the unknown ptrue. How-
ever, paux is defined such that ptrue(y | ξ) ≈ paux(y | ξ, ψ) for some ψ. Therefore, we can
accurate approximate ptrue by paux for some unknown ψ. Plugging in this approximation
and dropping the constant in Equation 15, thus yields the approximation

Uψ(ξ) := Ep(ξ∗)paux(y,y∗ | ξ,ξ∗,ψ)

[
log

paux(y
∗ | ξ, y, ξ∗)

paux(y∗ | ξ∗)

]
(16)

which should accurately approximate U(ξ) for some currently unknown choice of ψ. While
the ψ for which paux best approximates ptrue is unknown, p(ψ) describes our current beliefs
for which ψ will be best (replacing this with p(ψ|ht) as data is observed). Taking an
expectation over p(ψ) thus gives

Ep(ψ)[Uψ(ξ)] = Ep(ξ∗)paux(y,y∗ | ξ,ξ∗)
[
log

paux(y
∗ | ξ, y, ξ∗)

paux(y∗ | ξ∗)

]
(17)

=: EPIGaux(ξ) , (18)

the expected predictive information gain (EPIG), recently introduced by Bickford Smith
et al. (2023). Thus we can interpret EPIG as a Bayes estimator for our true utility function
based on the auxiliary model.

Although this reward function has merit itself, it has no link to the original model; using
this loss function would be rejecting pmodel in choosing designs. However, in the case where
pmodel can closely represent the truth, it is still reasonable to target EIG in the parameters
θ of pmodel:

EIGmodel(ξ) = Ep(θ)pmodel(y | ξ,θ)

[
log

pmodel(y | ξ, θ)
pmodel(y | ξ)

]
. (19)

In particular, in the adaptive experimental design setting, if there was strong evidence for
pmodel after collecting data ht = {(ξi, yi)}ti=1 then it would be reasonable to target EIGmodel,
but if there was strong evidence against pmodel, it would be reasonable to target EPIGaux

instead. This reasoning suggests using a weighted sum of these two reward functions. The
desire to also gather data that allows effective model checking to be performed, then provides
high level motivation for the final EIGZ(ξ) term that appears in our objective.

Appendix D. Proof of Theorem 1

For simplicity of notation, we will consider a static design setting where ξt = ξ and ht−1 = ∅.
The results then trivially extend to the sequential case by conditioning all distributions on
a non-empty ht−1.

The robust EIG, EIGΩ, is equivalent to the mutual information between y and Ω =
{θ, (ξ∗, y∗), Z}, I(y; Ω). The joint distribution over (y,Ω) for a given ξ is

p(y,Ω) = p(ξ∗)p(θ)p(Z)p(y, y∗|ξ, ξ∗, θ, Z) (20)

where

p(y, y∗|ξ, ξ∗, θ, Z = 0) = paux(y, y
∗|ξ, ξ∗), (21)

p(y, y∗|ξ, ξ∗, θ, Z = 1) = pmodel(y, y
∗|ξ, ξ∗, θ). (22)
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Now using standard results for mutual information we have

I(y; {θ, (ξ∗, y∗), Z}) = I(y;Z) + Ep(Z) [I(y; θ|Z)] + Ep(θ,Z) [I(y; (ξ∗, y∗)|θ, Z)] . (23)

Now I(y; θ|Z = 0) = 0, as the observations tell us nothing about our model parameters
when we reject the model. Similarly, I(y; (ξ∗, y∗)|θ, Z = 1) = 0, as Z = 1 indicates rejection
of the auxiliary model, while (ξ∗, y∗) provides no new information about y under the original
model if we already know θ.1 Thus expanding the expectations we have

I(y;{θ, (ξ∗, y∗), Z})
= I(y;Z) + p(Z = 1)I(y; θ|Z = 1) + p(Z = 0)Ep(θ|Z=0) [I(y; (ξ

∗, y∗)|θ, Z = 0)] , (24)

= I(y;Z) + p(Z = 1)I(y; θ|Z = 1) + p(Z = 0)I(y; (ξ∗, y∗)|Z = 0), (25)

= EIGZ(ξ) + P(Z = 1)EIGmodel(ξ) + P(Z = 0)EPIGaux(ξ). (26)

as required.

Appendix E. Experimental Details

It is natural to choose the mean kernel functions for our problem such that they resemble
the mean and covariance of the function η(θ, ·) over p(θ). We have

Ep(θ) [η(θ, ξ)] =
11

18
ξ log

200 + ξ

20 + ξ
(27)

and

Ep(θ)
[
η(θ, ξ)η(θ, ξ′)

]
=

{
14800ξ2

(20+ξ)(200+ξ) if ξ = ξ′

740
9

ξξ′

ξ′−ξ log
(200+ξ)(20+ξ′)
(200+ξ′)(20+ξ) otherwise

(28)

allowing to compute the mean and covariance of η(θ, ·) analytically. For our GP we thus
use

µ(ξ) = Ep(θ) [η(θ, ξ)] (29)

k(ξ, ξ′) = Covp(θ)(η(θ, ξ), η(θ, ξ
′)) +KM5/2(ξ, ξ

′) (30)

whereKM5/2 is the Matern 5/2 kernel with length scale 80 and vertical scale 5. The resulting
GP has the same mean as η but a covariance function with increased flexibility due to the
Matern 5/2 kernel.

Appendix F. Full Set of Experimental Results Plots

1. Note here that our setup has assumed a model where the outcomes are conditionally independent given
θ, which can be violated in some cases (e.g. if the model has nuisance parameters alongside θ). However,
even when this is not the case, the result still holds as long as we interpret y∗ as the prediction made by
the auxiliary model instead of the extended model.
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Figure 4: Full set of results plots from Figure 2.
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Figure 5: Full set of results plots from Figure 3.
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