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Abstract

This work explores the use of self-generated
natural language explanations as an intermedi-
ate step for code-to-code translation with lan-
guage models. Across three types of expla-
nations and 19 programming languages con-
structed from the MultiPL-E dataset (Cassano
et al., 2022), we find the explanations to be par-
ticularly effective in the zero-shot case, improv-
ing performance by 12% on average. Improve-
ments with natural language explanations are
particularly pronounced on difficult programs.
We release our dataset, code, and canonical
solutions in all 19 languages.1

1 Introduction

Program translation (i.e., translating code from one
language to another) has significant value in real-
life applications, including in legacy software mod-
ernization and enabling programmers to quickly
adapt to new languages. Within prompt-based ap-
proaches to code translation, Chen et al. (2023b)
recently found that simply prompting an LLM to
generate explanations of the source program before
generating the target program can improve perfor-
mance. However, this conclusion is drawn on a
single translation direction from C++ to Python
(Lachaux et al., 2020), and lacks evaluation on
a broader set of programming languages includ-
ing low-resource languages—a key component of
code-to-code translation tasks in a software mod-
ernization setting.

This paper systemtically evaluates this “Explain-
then-Translate” approach to code translation
through the MultiPL-E dataset (Cassano et al.,
2022). As the original dataset was constructed for
the NL-to-code setting, we repurpose this dataset
into a code-to-code, “MultiPL-C2C” dataset. We
analyze our results in 36 different translation direc-
tions over different types of explanations. We find

1https://github.com/PootieT/
explain-then-translate

that Explain-then-Translate improves zero-shot per-
formance consistently in 18 Python-to-X transla-
tion directions, but much less so in the few-shot
setting. We observe detailed explanations to be
more useful when translating into high-resource
PLs and from low-resource into other low-resource
PLs. In contrast, translating from high- to low-
resource PL’s benefits from more abstract expla-
nations. To aid future research in code-to-code
translation across diverse language, we release our
evaluation system, as well as canonical solutions in
all languages, providing a 19-way parallel program
translation evaluation set.

2 Explain-then-Translate for Code
Translation

In code translation, we are given code x in a source
language and must generate a program y in a tar-
get language that is functionally equivalent to x.
In this paper we are interested in whether a self-
generated natural language explanation z can be
used to improve this translation process.2

2.1 Prompt Variations

Fig 1 shows an example of our prompts for program
translation. In addition to the direct translation
baseline (Fig 1, left), we experiment with 3 types
of explanations (full prompts are given in Apx C):

1. exp: We ask the model to explain the source
program in a few sentences (Fig 1, right).

2. exp-lbl: We ask the model to explain the
source program line by line. This roughly
mirrors the setup in Chen et al. (2023b).

3. exp-lbl-d: We ask the model to explain the
source program line by line in additional
detail. In particular if an individual line is
complicated, we ask it to break it down, ex-

2While we focus on natural language explanations in our
main experiments, in Apx J we show results with other types
of “explanations”, such as another pivot language, pseudocode,
etc.

https://github.com/PootieT/explain-then-translate
https://github.com/PootieT/explain-then-translate


Standard Translation (baseline): direct

Please translate the following Python code
to R?

### Python version

def largest_divisor(n: int) -> int:
for i in reversed(range(n)):

if n % i == 0:
return i

### R version

largest_divisor <- function(n) {
for (i in rev(seq(n))) {

if (n %% i == 0) {
return(i)

}
}

} // Translation is incorrect!

Explain-then-Translate (ours): exp

Can you explain what this Python program
does with a couple of sentences? The goal
with the explanation, is so that a reader
can easily rewrite the program in R.
### Python version
def largest_divisor(n: int) -> int:

for i in reversed(range(n)):
if n % i == 0:

return i
### Explanation
This function takes an integer ‘n‘ and
returns the largest divisor of ‘n‘. It does
this by iterating over all integers from
‘n-1‘ down to ‘1‘ and checking if ‘n‘ is
divisible by each integer. If it is, the
function returns that integer. If no divisor
is found, the function returns ‘1‘.
### R version
largest_divisor <- function(n) {
for (i in rev(seq_len(n - 1))) {

if (n %% i == 0) {
return(i)

}
return(1)

} // Translation is correct!

Figure 1: Compared to direct code translation prompt, exp (ours) prompts models to explain the code before
translating. Blue highlights are model completions, and red highlights point out the crucial difference between
the two translations. Example prompts and explanations for exp-lbl and exp-lbl-d in Apx C, E.19

plain individual fragment of the line, and then
summarize the purpose for the entire line.
This prompting method allows us to decom-
pose compositionally difficult fragments of
the code down, re-use individual fragments of
explanation before explaining the whole line,
similar to Zhou et al. (2022).

When generating explanations, we treat the token
sequence \n# as a stopping sequence in order to
prevent models from generating target translations
(since we condition target program with translated
signatures in addition to explanations). Sometimes,
a model might generate target-language-specific
details (equivalent classes, attempted translation,
etc.). In order to control for inconsistencies caused
by the target-language-specific explanations, we
re-use the same explanations (from Python-Java)
for all Python-to-X translation experiments (Sec-
tion 3.1). Before reusing, we also remove any target
specific information with programmatic rules so it
can be reused across experiments. For complete-
ness, in Apx G.1 we show the impact of removing
target-language-specific details for the exp experi-
ments: the effects are generally insignificant, but
are more pronounced in low-resource languages.

Additional details on language-specific stop tokens
and how few-shot programs are selected are de-
scribed in Apx E and Apx F, respectively.

2.2 Dataset: MultiPL-C2C

MultiPL-E (Cassano et al., 2022) is a benchmark
that was recently introduced in an effort to evalu-
ate NL-to-code generation capabilities of language
models in 19 different programming languages.3

Cassano et al. (2022) groups these languages by
resource level:

• High-resource: JavaScript (js), Python(py),
Java*4 (jv), C++* (cpp), TypeScript* (ts)

• Medium-resource: PHP (php), Ruby (rb),
C#* (cs), Go* (go)

• Low-resource: Perl (pl), R (r), Rust* (rs),
Scala* (sc), Swift* (sw)

• Extremely-low-resource: Bash (sh), Lua
(lua), Racket (rkt), Julia* (jl), D* (d)

3Concretely, taking the original HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) datasets (where models
are prompted with problem description and are tasked to gen-
erate a Python program that solves the problem), MultiPL-E
built transpilers for the unit tests as well as code generation
prompts such that models can be evaluated from NL-to-code
in 19 different languages (Python + 18 additional languages).

4*: indicates statically typed language (vs. dynamically)



Res High Medium Low Extremely-Low

Trial js cpp jv ts php rb cs go pl r rs sc sw sh lua rkt jl d

direct(0) 85.5 76.6 76 78.9 68.4 78.3 79.2 42.4 58.3 40.4 70.6 63.7 64.4 51.3 56.2 31.3 61.6 42
exp(0) 84.8 82.1 82.9 85.1 77 78.3 83.6 45.7 68.2 46.9 74.8 74.7 70.5 55.4 60 41.3 70.5 44.4
exp-lbl(0) 84.3 80.3 82.5 84.7 77.5 80 83.8 45.6 65.3 48 76 74.5 75.1 56.8 61.5 39 69.2 44.4
exp-lbl-d(0) 83.2 79.1 84 85.2 77.6 82.7 82.7 45.8 62.9 45.5 76.2 73.8 74.8 56.4 59.5 36.1 68.9 43

direct(4) 86.6 84.3 85 86.5 79.7 82.9 85.7 52.4 69.8 56.4 76.4 76.7 72.7 74.8 67.7 43.2 65.3 45.6
exp(4) 87.3 77.8 82.1 88.4 81.7 80.4 83.3 51.4 73.2 55.6 73 73.7 67.1 73.1 67.9 44.7 69.4 45.9
exp-lbl(4) 87.6 82.4 85.3 87.1 81.5 80.1 84.7 50.8 72 56.9 74.9 73.9 70.1 71.9 68.6 45.6 72.1 46.2
exp-lbl-d(4) 87.8 83.9 86.5 88.3 82 80.7 84.3 50.6 70.9 57 76.3 75.5 70.9 72.5 69.4 45.3 71.1 45.1

exp*(4) 88.9 80.8 85 88.3 78.6 81.4 85.1 52.2 71.6 57.3 74.5 76.1 71.3 73.1 67.9 46.2 72.9 50.7
exp-lbl-d*(4) 87.9 84.6 87.8 88.5 81.5 80.6 85.3 51.6 70.1 57 78.7 77.7 71.9 72.3 69.4 46.3 71.6 44

Table 1: Translation pass@1 from Python to X. * uses heuristically selected explanations (Sec 3.4). Parenthesis in
trial indicates # of shots. Best within same-shot (no heuristics) is underscored and overall best is in bold.

To repurpose MultiPL-E into a code-to-code trans-
lation dataset, we change the task formulation by
including canonical Python programs in the prompt
and removing the NL problem descriptions. We
dub this version of the dataset as MultiPL-C2C,
and release it for future work in this area.5

2.3 Metrics

We evaluate our methods using unit test pass rate
(Chen et al. 2021; Cassano et al. 2022) as string
match-based evaluations do not capture the diverse
ways in which a program can be translated and
still be functionally equivalent to the source. We
calculate the pass rate as:

pass@k := E
Problems

[
1−

(
n−c
k

)(
n
k

) ]

where n is the total number of generations, and
c is the number of correct generations. The best
sampling temperature t (or top-p) (Holtzman et al.,
2020) is often dependent on n/k, where smaller
temperatures are best for small n/k, while larger
temperatures increase the generation diversity (bet-
ter recall) and can improve pass rate with large
n/k. We prioritize precision and calculate pass@1
with n = 20, t = 0.2, and top-p= 0.95 following
Cassano et al. (2022).

2.4 Models

We evaluated four models of varying sizes.
We main report the results from GPT-3.5
(gpt3.5-turbo-0301) in the main paper un-
less otherwise specified, and defer the results from
open source models (CodeGen2-1B, CodeGen2-
16B, and Llama2CodeInstruct-34B (Nijkamp et al.,
2023; Rozière et al., 2023)) to the appendix.

5We also considered into CodeXGLUE (Lu et al., 2021)
and TransCoder (Lachaux et al., 2020) for the unit tests eval-
uations, but initial studies suggested a significant number of
examples (more than 25%) contain mistakes in gold programs
or inadequate unit tests (see Apx A, B).

3 Experiments and Discussion

In our study we focus on two main sets of transla-
tion directions: Python-to-X, where we translate
from Python to 18 other target languages ranging
from high to extremely-low-resource (§3.1), and X-
to-X, where we target a representative set of transla-
tion directions varying source and target language
resource levels and typing characteristics (§3.2).
We analyze translation improvements across mod-
els of 4 different sizes (§3.3) and discuss improving
individual explanations through heuristics (§3.4).
Finally we show our method improves more on
difficult-to-translate examples (§3.5) and provide
ablations to understand what NL explanations im-
proves performance and whether alternative self-
generated contexts could help (§3.6).

3.1 Python-to-X Translation
In Table 1 we present results of the Python-to-X
experiments in the zero- and four-shot settings with
GPT-3.5. Results with open-source models results
show similar trends and are shown in Apx G.9.

Natural language explanations improve perfor-
mance in the zero-shot setting, and this effect
is more pronounced in low-resource languages.
Providing explanations improves relative perfor-
mance by 11.5% on average across 18 target lan-
guages. Regardless of the target language resource
level, the best explanation improves translation
with average relative improvement of 6.2% in high-
resource languages and 14.5% in extremely-low-
resource languages. There is no significant dif-
ference between improvements on translating into
statically vs. dynamically typed languages. Self-
generated explanations even slightly outperform
human-written doc-string instructions that are part
of the original HumanEval dataset (see Apx J).

High-resource target languages benefit from de-
tailed explanations while low-resource alterna-
tives benefit from abstract explanations. We



hypothesize that high-resource languages benefit
from more detailed explanations due to higher co-
occurrences of NL and PL in the pretraining cor-
pora; whereas in low-resource languages we spec-
ulate the additional detail may introduce spurious
correlations. Since we re-use explanations across
translation directions, the translation performance
difference can be attributed only to the code gener-
ation step.

Natural language explanations are less helpful
in the few-shot setting, but good few-shot ex-
amples are crucial. In the four-shot setting, the
average improvement is much less at 1.1%, al-
though some language pairs observe as much as
a 10.1% improvement. Average improvement in
high-resource languages (1.2%) is smaller than that
in extremely-low-resource languages (3.4%). The
most detailed explanations perform the best in 12
out of 18 language directions amongst explanation
types. This is likely due to the carefully curated
few-shot examples, which are semantically and
syntactically complex enough to benefit from de-
composition and explanations (see in Apx F for
more details).

Few-shot explanations result in worse perfor-
mance than zero-shot explanations. The most
abstract explanation (exp) performs the worst (best
in only 3 out of 18 directions) in the few-shot set-
ting. Since we source the few-shot explanations
from minimally modified zero-shot explanations,
including these self-generated explanations simply
restricts the model’s explanation to follow stylistic
patterns and decreases the diversity of the expla-
nations. In Apx G.2, we disentangle the effect of
target specific explanation and zero/four-shot set-
ting to provide further evidence to this point.

Improvements in the zero-shot setting correlate
with improvements in the few-shot setting. Ex-
cept for a few outliers, Fig 2 shows a good cor-
relation. This is interesting because few-shot is
manually curated and written in PL, while expla-
nation is self-generated and written in NL. In our
ablation 3.6 and Apx J we further analyze to what
extent the source of information provides the struc-
ture of the output, and whether the correctness of
the sequence actually matters.

Additional analyses. In the appendix we pro-
vide the breakdown of error types (Apx G.4, G.5),
source program lengths (Apx G.6), qualitative

Figure 2: Zero-shot exp improvements correlate with
few-shot improvements over baselines (r2 = 0.151).

analysis of explanations (Apx E.19), pass@10
(Apx G.7), correlation between NL-to-code vs.
translation results (Apx G.8). and improvements
vs. translation difficulty (Sec 3.5, Apx I).

3.2 Alternative Translation Directions
To understand whether our findings only hold for
Python (or only high-resource languages), we ex-
periment on additional translation directions from
different resource groups and typing characteristics,
and present our results in Table 2. Since source lan-
guages are different, we do not re-use explanations.
In the four-shot explanation, we use zero-shot gen-
erated explanations (3.1). In the following section,
we have High=high-resource languages and Ext-
Low=extremely-low-resource languages. Results
from open-source model results are in Apx H.

High-to-ExtLow and High-to-High follow a simi-
lar patterns as Python-to-X. In zero-shot, High-
to-High has varied performance across different ex-
planation types, whereas High-to-ExtLow benefits
mostly from simple explanations (exp). In four-
shot, there is little to no improvements in High-to-
High, but some improvements in High-to-ExtLow.

ExtLow-to-High: Models are poor at explaining
low-resource language programs. The improve-
ment in ExtLow-to-High trials is limited in both
zero- and four-shot directions. Across explanation
methods, we can see a general decrease in perfor-
mance from high-level (exp) to detailed (exp-lbl-d)
explanations. We speculate that LLMs generally
struggle to understand and explain lower-resource
PLs; more details may introduce more errors which



0 shot 4 shot

Resource Type src-tgt direct exp exp-lbl exp-lbl-d direct exp exp-lbl exp-lbl-d

High-to-High

D-D py - js 85.5 85.7 84.3 83.2 86.6 86.1 87.6 87.8
D-S js - jv 77 77.3 82.5 83.5 91.5 90 89.3 86.7
S-D cpp - py 92.3 90.2 90.5 91.3 93.9 89.9 89.4 89.2
S-S jv - cpp 77 79.8 83 79.8 82.3 81.1 78.4 78.7

High-to-ExtLow

D-D js - rkt 30.2 41.9 41.5 37.9 44.7 51.8 49.8 46.3
D-S py - d 42 42.7 44.4 43 45.6 48.5 46.2 45.1
S-D cpp - lua 69.2 71.9 72.5 75 79.2 77.2 75.1 74.9
S-S jv - jl 60.2 75.4 68.8 72.2 72.7 72.9 72.4 71

ExtLow-to-High

D-D lua - py 89.5 85.9 86.5 84 88.5 89.3 88.4 83.2
D-S rkt - jv 65.9 77.1 74.4 71.7 86.4 84.2 80.8 79.4
S-D jl - js 83.1 83.5 82 80.4 87.4 90 87.1 88.3
S-S d - cpp 88.4 81.4 80.5 85 88.4 86.3 81.7 85.5

ExtLow-to-ExtLow

D-D lua - rkt 29.6 45.2 38 37.7 49.2 49 50 48.7
D-S rkt - jl 63.3 64.3 67.7 62.1 71.7 70.4 73 70.5
S-D d - lua 68.4 69.4 66.8 69.9 71.7 70.3 72.5 73.5
S-S jl - d 41.6 43.4 43.6 41.4 43.8 44.2 43.8 39.8

Table 2: Translation pass@1 between 16 different pairs of languages. Resource indicates the language re-
source levels of the source and target. Type indicates the source and target language typing characteristics
(D/S=dynamically/statically typed). The best runs within the same-shot setting are in bold.

Exp Type src-tgt random len line-e line frag logprob oracle pass@1

exp py-jv 83.0 ± 1.5 84.2 84.8 84.2 81.0 85.4 93.7 85.4
exp-lbl py-jv 85.1 ± 1.0 84.4 84.4 84.4 85.1 83.8 90.3 -
exp-lbl-d py-jv 86.1 ± 1.2 86.4 85.1 85.1 88.3 87.0 92.2 87.6
exp py-rkt 41.1 ± 2.0 41.0 39.8 39.8 41.6 43.5 70.2 40.7

Table 3: Explanation selection heuristics performance. We estimate heuristics performance (pass@1, n=1) and
validate the best method by generating 20 programs and calculate pass@1 (n = 20). No heuristic is able to
outperform baseline with exp-lbl so we did not verify with pass@1.

Figure 3: Py-to-X translation (pass@1, zero-shot) im-
provements (best explanation over baseline) across mod-
els grouped by target language resource level.

may compound into the translation phase.

3.3 Comparisons Across Different LMs

Improvements are robust across models. From
Fig 3 and 9, we can see that in general, the larger
the model, the larger the absolute improvement
with self-generated explanations. In terms of im-
provement over resource levels, our method im-
proves low-resource language generations more
with larger models, while improving high-resource
languages more with smaller models. See detailed
result tables in Apx H and G.9. CodeGen2-16B is
the only model that does not improve consistently
with explanations.

Better explanations are transferable and lead
to better translations. We also experimented
with CodeGen2-1B by using GPT-3.5 generated
explanations (Fig 3) and found it to improve per-
formance further, outperforming self-generated ex-
planations in 12 out of 18 directions. Comparing
absolute improvements against CodeGen2-1B with
self-explanations, we find that GPT-3.5-generated
explanations improve more when generating higher
resource than lower resource languages, indicating
that smaller models are less sensitive to improve-
ments. More analyses are given in Apx G.9.

3.4 Explanation Selection with Heuristics

In the context of chain-of-thought prompting,
Wang et al. (2022) demonstrate the importance
of sampling diverse “reasoning” paths. It is diffi-
cult to ensemble sampled programs from language
models, but we find sampling diverse explanations,
where we first sample 20 explanations and then
sample one program each, to improve recall for
correct programs (pass@10) than sampling 20 pro-
grams from 1 explanation, or direct translation in
zero/four-shot settings. This indicates that there is
significant room for improvement if we are to be
able to select the best explanation that can gener-



ate a correct program with the highest probability
(oracle column in Table 3).

Motivated by the potential of diverse explana-
tions to improve translation results, we explore five
explanation re-ranking heuristics: 1) length of ex-
planation (in characters) excluding code; 2) lines of
source code explained (line-e); 3) number of lines
of explanations; 4) number of code fragments en-
closed in ‘‘;6 5) with logprob (Zhang et al. 2022;
Min et al. 2022a), ranking the explanations with a
weighted combination of α∗p(code|explanation)+
(1−α)∗p(explanation|code) using CodeGen2 (Ni-
jkamp et al., 2023) (more details in Apx L).7

For each explanation type, we generate 20 ex-
planations and 1 program from each explanation
(train set). We estimate each heuristics’ perfor-
mance by averaging the pass rates of its selected
(argmax) explanations for each individual problem
in the train set.8 For random baseline, we select 1
explanation for each program randomly;9 and for
oracle, we select the explanations with the highest
pass rates in the train set. For each explanation
type, we pick the heuristics with the best estimated
pass@1 (n = 1), and generate 20 programs from
these explanations for pass@1 (n = 20) score
(right most column in Table 3). We use zero-shot
explanations for exp (see Sec 3.1) and four-shot for
exp-lbl and exp-lbl-d. Our main results are shown
in Table 3, from which we observe the following.

Heuristics can improve performance, and this is
robust across different target languages. With
exp, logprob improves upon random by abso-
lute 2.54% (p = 0.055),10 and frag improves
explain-lbl-d upon random baseline by absolute
2.2% (p = 0.033) with simulation. Both improve-
ments can be reproduced with pass@1, so we in-
clude these heuristically selected explanations as
two additional rows in Table 1. With logprob se-
lected exp, we improve or match performance in
15/18 directions, with an average improvement of
1.7% (p < 0.001). With frag selected exp-lbl-
simp, we improve or match performance in 13/18
directions, averaging 0.48% (p = 0.022). See
Apx G.3 for more comparisons.

6Markdown pattern for referencing code
7We tried scoring with GPT-3.5 directly as well but found

it to not outperform the random baseline (Apx K)
8We discuss the trade-offs of alternative settings (sampling

4 explanations and 5 programs from each) in Apx M.
9Repeated 100 times to obtain mean and variance.

10The resulting p-values are from a one-tailed paired t-test.

Figure 4: We count explanation improvement cases over
direct pass@1. Results include all trials between Python-
to-X and X-to-X directions. For better contrast, all
problems with the same exp pass@1 and direct pass@1
are removed.

Some heuristics generalize across explanation
types. Only frag and logprob perform robustly.
Intuitively, frag makes sense because data contain-
ing a piece of code and an explanation is more
likely to be correct if the author refers to the code
more frequently. With logprob, since we are effec-
tively measuring the mutual information between
codes and explanations (Zhang et al., 2022).

There is still ample room for improvement. As
we can see in the difference between oracle and
pass@1, no heuristics is able to to come close to
this oracle upper bound. This gap is much larger in
high-to-low-resource translation direction (py-rkt).
Qualitatively, we could not distinguish a good ex-
planation from a bad one manually (Apx L.3 and
L.4), suggesting that the distinction between “good”
and “bad” explanations may be hidden due to stylis-
tic noise (wording, spacing, etc.), or potentially due
to chance.

3.5 Which programs benefit from
explanations?

To understand where natural language explanations
benefit most, we investigate how exp improvement
varies across problem hardness, which is approxi-
mated through direct translation pass@1. Through
Fig 4, we discovered that explanation improves dif-
ficult problems (left of x-axis), but could hurt easy
problems (right of x-axis). This potentially sug-
gests we could determine which program to explain
using a hardness threshold, and improve perfor-
mance further. We verified the validity of such ap-
proach through our oracle metric (direct pass@1),



and show the full results in Apx I. We found selec-
tive explanation to improve performance over di-
rect and exp in 35/36 directions. We leave building
such difficulty-based problem selector for future
work.

3.6 Ablation Studies
We perform additional ablation studies to under-
stand what aspects of the explanations improve
translation (§3.6.1), whether explanations are ro-
bust to variations in surface semantics/readabil-
ity of the source code (§3.7, Apx N), and if self-
generated context in PL could help few-shot exam-
ples (§3.8, Apx J). Additionally, we explore the
relationship between context length and improve-
ments in Apx G.6.

3.6.1 Explanation Ablation
We select 4 target languages of different resource
levels where explanations provide the most im-
provements (zero-shot) for Python-to-X. With each
explanation, we ablate in following ways:

swap-s: We randomly reorder sentences (exp)
or code-explanation segments (exp-lbl) to test if
explanation provides structural supervision.

obf-exp: We obfuscate source programs (see ex-
amples in Apx N), where function and variable
names are replaced systematically with templates
(FUNC_0, VAR_1, etc.). This tests whether an ex-
planation uses specific variable references (struc-
tural supervision at token level).

ret-exp, rand-exp, no-exp: We replace the ex-
planation with another program’s explanation ran-
domly (rand-exp), or through retrieval (ret-exp,
details in Apx O), or with an empty string (no-exp)
to verify if explanations need to be correct/relevant.

del-w: We randomly remove some of the words
and see if fluency (i.e. high logprob) is necessary.

del-s: We randomly remove a percentage of sen-
tences (exp) or code-explanation paragraphs (exp-
lbl) to see the dependency of the translation on the
completeness of the explanation.

Explanation needs to be coherent, relevant, and
correct. From what we can observe in Table 4,
explanations do not provide much structural guid-
ance (swap-s), and models do not overly rely on
their completeness (del-s). Models do not rely on
the surface form to redirect attention as much (obf-
exp), but they do require explanations to be fluent

jv php sw rkt

exp 6.9 8.6 6.1 10
exp-lbl 6.5 9.1 10.7 7.7
swap-s (exp) 5.1 7.9 4.5 7.6
swap-s (lbl) 5.8 9.2 9.3 3.5
obf-exp (exp) 3.8 9.3 7.9 7.3
obf-exp (lbl) 5.3 9.8 9.6 5.2
del-s-0.25 (exp) 5.3 7.7 4 5.4
del-s-0.5 (exp) 5.6 7.2 4 7.1
del-s-0.25 (lbl) 6.7 7.7 8.5 6.2
del-s-0.5 (lbl) 5.2 7.7 7 4.3
del-w-0.25 (exp) 1.8 7.7 3.4 6
del-w-0.5 (exp) 0.1 3.3 -1.1 5.8
del-w-0.25 (lbl) 4.5 6.5 5.1 3.3
del-w-0.5 (lbl) 0.8 6.5 3.2 3
rand-exp (exp) 3.8 6.1 3.1 5.1
ret-exp (exp) -0.2 5.3 1.8 -0.2
no-exp (exp) -1.5 -54.1 -10 3
rand-exp (lbl) 3.6 7.7 7.4 4
ret-exp (lbl) 0.8 5.2 5.4 -1.2
no-exp (lbl) -2.7 -48.2 -3.9 0.4

Table 4: Performance improvements over the baseline
with various explanation variations from Python-to-X
(see §3.4). lbl=exp-lbl. del-w-0.5=deleting 50% of
words at random. Best (ablated) exp in bold and best
(ablated) exp-lbl underlined.

(del-w). Lastly, when models receive completely
irrelevant explanations (rand-exp), they are able
to recover performance to some extent; but if the
explanations are convincingly misleading (ret-exp)
performance deterioates.

Models rely on semantics of explanations
less when generating lower-resource languages.
Different types of ablations affect lower-resource
languages more uniformly than higher-resource lan-
guages. Relative to exp/exp-lbl, ablations that com-
pletely alter the semantics of the explanations (del-
w) decreases improvements less in lower-resource
languages than higher counterparts, while abla-
tions that keep overall semantics of the explanation
(swap-s) decreases improvements less in higher-
resource languages.

Semantics of explanation is not the only picture.
Despite explanations having completely wrong se-
mantics (rand-exp, ret-exp), models still improve
from the added context. CoT self-generated reason-
ing has been found to follow unmentioned/hidden
biases within the context (Turpin et al., 2023). It
would be interesting to investigate further what
remaining biases (if any) contribute to the improve-
ments in program translation.

3.7 Source Program Ablation
To test whether our explanation methods work with
a different distribution of source programs, we ob-



quality jv php pl rkt

direct - 76 68.4 58.3 31.3
fixed gold 82.1 78.5 70.1 41.7
fixed unk 82.2 74.3 63.7 39.1
fixed bad 78.4 75 67.2 40.8

# problem - 158 161 161 161
retrieve gold 83.5 78.9 68.4 46.7
# problem - 158 161 161 161
retrieve unk 81.9 76.5 67.2 38.3
# problem - 138 80 132 154
retrieve bad 67.2 61.3 54.3 36.1

exp - 82.9 77 68.2 41.3

Table 5: Translation performance using different source
programs and quality of target as one-shot example.
fixed indicate fixed example for one-shot, and retrieve
uses BM25 retrieved program as one-shot example.
quality indicates the correctness of the target program
in the one-shot. unk is any program output sampled
randomly from GPT-3.5 and bad is programs sampled
from the incorrect pool. Since not every retrieved prob-
lem has incorrect (or correct) generations, we report the
# problems evaluated for each retrieval setting.

fuscate variables and funciton names source pro-
grams, removing all surface form semantic informa-
tion (Apx N). When comparing direct translation
vs. exp, in Table 18, we find explanations to be
robust regardless of surface semantics of the code.
In half the trials, relative improvements using ex-
planation are even higher for obfuscated source
code than original code. This is potentially due to
the fact that explanations become more reliant on
actual syntax of the program, rather than hallucinat-
ing on the program semantics from surface variable
names. This is promising because when using mod-
els in the real world, such as for app modernization,
there is no guarantee of having readable code.

3.8 Few-shot Ablations

Since few-shot improvements correlate with expla-
nation improvements (§3.1) we conduct ablations
to check how sensitive the models are to the correct-
ness of few-shot examples, and whether unverified
self-generated few-shots can also improve as well
as explanation does. Here, we replace our correct
few-shot examples with naturally generated pro-
grams from GPT-3.5 (high logprob, but formally
unverified (unk) or incorrect (bad)), and observe
how much self-generated few-shots improve trans-
lation and models’ sensitivity towards their correct-
ness. We experiment with a fixed one-shot example
as well as retrieval one-shot to observe the improve-
ment/sensitivity when the exemple program is sim-
ilar or different from the testing program.

When the few-shot program is similar, verifica-
tion is important. In Table 5, we observe that
when the retrieved one-shot is paired with a wrong
target program, the decrease in performance is
much more significant than in the fixed-shot set-
ting.11 In other words, curated few-shots are ro-
bust to label noise. This is consistent with the ear-
lier conclusion in Table 4 that an “almost-correct”
explanation (ret-exp) could influence generation
more than when it is obviously incorrect (rand-
exp). If verification is available, retrieve-gold
shows that a formally correct (similar) program
is more useful than a natural language explanation.
However, on average, self-generated unverified ex-
planations (exp) still outperform one-shot in all
directions (fixed-unk by 0.7-4.5%; retrieve-unk
by 0.5-2.0%), indicating that NL generations often
have higher quality than programs and can serve as
a better medium for intermediate reasoning step.

To further compare NL explanations with other
formal/non-formal reasoning steps, in Apx J, we
experiment with translating to a pivot program-
ming language before translating to the target lan-
guage (e.g. Python-Java-PHP). By controlling the
pivot language correctness, we can more closely
verify the model’s translation performance sensitiv-
ity to correctness in context. The result indicates
mistakes in intermediate PL steps corrupt transla-
tion performance more than imperfect NL expla-
nations. This indicates that using self-generated
NL as an intermediate step often helps more than
self-generated PL, and reasoning in the NL space
is advantageous for language models.

4 Related Work

Explanation in deep learning. Many works
have explored using explanations to improve lan-
guage models. Hase and Bansal (2022) investi-
gate various ways explanations can be introduced
in modeling and find it most useful for retrieving
similar data. Joshi et al. (2022) find explanation
regularization to improve OOD performance. Most
works in LLMs generate explanation using zero-
shot, few-shot, or finetuning, before generating the
target response (Ling et al., 2017; Nye et al., 2021;
Wei et al., 2022; Mukherjee et al., 2023; Hsieh
et al., 2023). A few works have also explored post-
hoc explanations (Lampinen et al., 2022; Krishna

11retrieval-bad (Table 5) should be taken lightly since the
subset of problems evaluated for bad also likely contains
harder problems.



et al., 2023). Wiegreffe et al. (2021) and Chan et al.
(2022) propose metrics to quantify rationale-label
association. We refer readers with further interest
to surveys (Miller, 2019; Hartmann and Sonntag,
2022; Zhao et al., 2023).

Language model for code. Much work has been
dedicated to applying transformer-based language
models to NL and PL generation (Brown et al.,
2020; Ahmad et al., 2021; Chen et al., 2021; Li
et al., 2022; Ouyang et al., 2022). TransCoder
leverages unsupervised pretraining and supervised
finetuning to build one of the first neural transpilers
(Lachaux et al., 2020, 2021; Roziere et al., 2021).
Later works obtain impressive zero and few-shot
learners by simply pretraining on NL and PL data
with language modeling or derivative training ob-
jective (Ahmad et al., 2021; Nijkamp et al., 2022;
Chen et al., 2021; Scao et al., 2022; Xu et al., 2022;
Nijkamp et al., 2023; Allal et al., 2023; Li et al.,
2023; Rozière et al., 2023; Athiwaratkun et al.,
2022).

Intermediate state prompting. The Explain-
then-Translate approach is an instance of chain-
of-thought prompting (Wei et al. 2022; Nye et al.
2021), where the model is prompted to generate
reasoning steps before the final answer. Follow-up
works have found it to be useful on numerous tasks
outside of niche reasoning tasks (Wang et al., 2022;
Zhou et al., 2022; Chowdhery et al., 2022; Suzgun
et al., 2022; Yao et al., 2023). In our setting, we
find most improvements to come from the zero-
shot setting (Kojima et al., 2022). Different from
previous works, our task focuses on program trans-
lation, with significant token level correspondence
between the source and target. Ghazvininejad et al.
(2023) and Lu et al. (2023) improve NL translation
by augmenting prompts with dictionary transla-
tions, but their contexts are not self-generated. It
would be interesting to explore whether other forms
of “explanations” (e.g., BNF grammars (Wang
et al., 2023a)) could further improve performance,
especially on low-resource languages which may
not have been encountered frequently during pre-
training.

Code prompting and feedback. In the code-
generation space, Zelikman et al. (2022) incor-
porate model-generated rationales given question-
answer pairs as part of fine-tuning to improve
model reasoning capabilities. Jiang et al. (2023)
use few-shot examples to teach models to create

NL steps from NL instructions before generating
the code. Zelikman et al. (2023) and decomposes
complex problems in NL and generated/verified
subproblems to achieve high performance in NL-
to-code. Chen et al. (2023a) finetune policy mod-
els to correct code given human critique. Wang
et al. (2023c) searches multiple hypothesis in NL
before generating PL targets. Our method uses self-
generated context without overly relying on feed-
back, few-shot examples, or complicated frame-
works, and is targeting code-translation specif-
ically instead of NL-to-code generation. Chen
et al. (2023b) briefly mentions in their ablation
studies that explanation improves translation in
Python→C++, but our analysis reveals a more nu-
anced settings in which explanations improve code
translation.

5 Conclusion
This work conducts a thorough analysis of the
performance of large language models in pro-
gram translation by using different types of self-
generated explanations as an intermediate step.
Models generate higher quality detailed explana-
tions for high-resource languages, while still gen-
erating good enough abstract explanations for low-
resource languages. With simple heuristics, we
have also demonstrated the potential to improve
explanation quality and consequently translation
quality. We identify key requirements for explana-
tion and find that on average, mistakes in NL are
less detrimental to performance, and do not require
verification to perform well compared to using PL
as self-generated contexts.

Limitations
There are several limitations to our work. First,
while we focus on the (adapted) MultiPL-E bench-
mark due to its widespread use, it is unclear
whether programs in this benchmark are repre-
sentative of programs that are targets for code-to-
code translation. Second, while we saw our con-
clusions to largely hold across GPT-3.5 and other
open-source models, it is unclear whether they will
hold for more powerful LLMs such as GPT-4. Fi-
nally, somewhat disappointingly we found natural
language explanations to be not as helpful in the
few-shot setting, and insofar as obtaining several
demonstration examples for each language pair is
quite practical, natural language explanations for
code-to-code translation may not actually be useful
for many applications of interest.
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cleaning, we find the dataset to be too easy for our
baseline model GPT-3.5 (Apx B) and seek more
challenging benchmarks (MultiPL-E).

Within Transcoder validation and test set, in the
direction of C++ to Python, and we find several
type of errors that are hindering existing evalua-
tions:

Inadequate test: exact comparison Python tests
on integers and float types are often inadequate in
establishing equality. Depending on the library and
specific function called, integers or floats can be
rounded with different precision. Because tests in
TransCoder evaluation dataset work by comparing
a gold Python program’s output with that of the gen-
erated Python program, if the generated program
does not use the exact function call, exact equality
(==) is not sufficient. Thus, we changed all cases
of such violation from checking exact equality to
approximate equality like below:
# Old way of evaluating exact equality
if f_gold(*parameters_set) == f_filled(*
parameters_set):

n_success+=1

# New way of evaluating approximate equality,
borrowed from other instances of float
comparison tests in TransCoder.
if abs(1 - (0.0000001 + abs(f_gold(*
parameters_set))) / (abs(f_filled(*
parameters_set)) + 0.0000001)) < 0.001:

n_success+=1

There are 40+ examples of such case.

Inadequate test: default large number In C++
programs, integer variables are often initialized
with INT_MAX and INT_MIN as default values
when comparing with other values in a loop. When
such values are not replaced and returned, compar-
ing the exact values of such placeholders does not
make sense, especially when there is not a single
correct way of translating it into Python. Hence, to
accommodate such programs, we check for approx-
imate equality between input-output or check that
the output of gold and generated program both re-
turn an extremely large/small placeholder number.
# Old way
if abs(1 - (0.0000001 + abs(f_gold(*
parameters_set))) / (abs(f_filled(*
parameters_set)) + 0.0000001)) < 0.001:

n_success+=1

# New way of evaluating approximate equality,
as well as including cases where outputs are
extremely large/small value placeholders.
if abs(1 - (0.0000001 + abs(f_gold(*
parameters_set))) / (abs(f_filled(*
parameters_set)) + 0.0000001)) < 0.001 or ((

f_gold(*parameters_set) > 10e7) and (f_filled
(*parameters_set) > 10e7)):

n_success+=1

There are about 12 programs for such cases.

Inadequate test: non-sensible test inputs Orig-
inal unit tests sometimes contain non-sensible test
inputs. For instance, some programs are intended
to process string representation of numbers, but
the unit test input would contain non-digit strings.
This is especially harmful for translation based
on semantics because extreme edge-cases like this
should not be used as regular tests. Therefore, we
replace these tests inputs with values from the ap-
propriate space. There are 7 instances of such pro-
grams.

Wrong source program Sometimes, C++ pro-
grams are incorrect or non-standardized (such as
returning 0/1 vs returning true/false, or miss-
ing return statements). We standardized all C++
programs. There are around 5 instances of such
program we fixed.

Wrong gold program Of all errors, this is the
most devastating type of error. Without a correct
gold program to compare output with, no matter
what the generation is there will be no chance
of success. Errors range vastly from in-correct
range value, wrong indentation, missing return
statements, to using wrong/undefined variables.
One of the most frequent errors that spans more
than 60 programs is the in-correct translation of
integer division from C++ to Python. Often it is
translated to / when it should be //. We found
100+ examples of this type of error.

We stress that we have only fixed existing is-
sues we have noticed in C++ to Python direction.
With sampled programs from Java, we have also ob-
served errors in gold programs and tests frequently.

Leakage to training data One of the other rea-
sons that we do not formally evaluate our meth-
ods on TransCoder dataset is because that the
TransCoder dataset is very likely to have been in-
cluded in GPTs’ training corpora. We are often able
to generate the entire program in test/valid split by
only providing the signature. The unique detok-
enized program pattern makes it easy for the model
to detect and regurgitate from training sequences.

B TransCoder Evaluation

We report the full evaluations on TransCoder
eval+test set with GPT-3.5 in Table 6. The model



Original Fixed

Other work
Codex 80.4 ?

self-debug 92.5 ?

Our work
direct (no-sig) 80.8 90
exp (no-sig) 69.1 77

direct (gold-sig) 81 88
exp (gold-sig) 81.7 89.9

direct (typed-sig) 80.6 90.8
exp (typed-sig) 80.2 90.6

Table 6: TransCoder evaluation with the original and
fixed dataset, C++ to Python, total of 567/566 programs).
Entries under our work are pass@1(n=1).

improves around (absolute) 10% on the fixed
dataset, indicating the lack of difficulty in the pro-
gram. Through manual inspection we find the
syntax of the programs to be rudimentary. We
conducted three type of evaluations regarding the
amount of target program signature specification
we provided:

• no-sig: we only prompt the beginning of
Python program generation with def. This
signals the beginning of python program with-
out specifying any part of the signature. This
is what we use to compare with Self-debug
(Chen et al., 2023b) baselines.

• gold-sig: we use the gold programs signature
to prompt the rest of Python generation. Some
of the programs are translated incorrectly after
being prepended with signature because a few
Python gold programs contain non-equivalent
program name and input variable name. This
is the same evaluation setting in which we
conducted other experiments in HumanEval,
and is our main source of comparison.

• typed-sig: In addition to prompting target pro-
gram with gold programs, which do not con-
tain Python type hints, we built rule-based
transpiler to translate the C++ program signa-
tures to Python with type hints, and prompt
the rest of the program.

We do not have direct measurement of the self-
debug method on the fixed dataset. We can, how-
ever, infer that self-debug method’s improvements
over baseline is from the additional access to unit

test and compiler feedback. When unit tests or gold
programs are wrong, relying on these feedback in-
formation is the only way to improve translation
performance. In another word, translation mod-
els start to deviate from a faithful translation and
"over-correct" itself to pass unit tests. Our methods,
however, assumes no such access to such feedback
signals, and slightly under-perform.

When looking at gold-sig trials, we see that by
asking model to explain the program and then trans-
late consistently improve over baseline. In no-sig
trials, we see a consistent under-performance of our
methods. Most of the errors are result of generated
program having incorrect signature (incorrect num-
ber of input variables). Often, these source C++
programs contain non-intuitive or redundant input
variables. For example, in the following exam-
ple FREQUENT_ELEMENT_ARRAY_1, the input
variable n is non-intuitive. If a program were to
find the most frequent element in a array, it should
normally process the whole input array arr.

# program generated through direct
translation
def f_gold ( arr , n ) :

Hash = dict ( )
for i in range ( n ) :

if arr [ i ] in Hash.keys ( ) :
Hash [ arr [ i ] ] += 1

else :
Hash [ arr [ i ] ] = 1

max_count = 0
res = - 1
for i in Hash :

if ( max_count < Hash [ i ] ) :
res = i
max_count = Hash [ i ]

return res

# program generated with explanation
def f_filled ( arr ) :

hash = { }
for i in arr :

if i in hash :
hash [ i ] += 1

else :
hash [ i ] = 1

max_count = 0
res = - 1
for key , value in hash.items ( ) :

if max_count < value :
res = key
max_count = value

return res

By explaining before translating, the model
aligns the generation to the explanation, which of-
ten follows the distribution of "typical programs"
in the wild.

In typed-sig, we see general improvements
over other trials. This is expected because we can



provided more accurate information regarding the
input-output types. The slight under-performance
of exp compared to direct could be due to small
experiment trial size.

C Full Prompts

C.1 Python-Java direct (four-shot)

You are a helpful and faithful compiler
that transpiles Python code to Java
code. Please translate the following
Python code to Java?

### Python version

from typing import Tuple

def even_odd_palindrome(n: int) ->
Tuple[int, int]:

def is_palindrome(n):
return str(n) == str(n)[::-1]

even_palindrome_count = 0
odd_palindrome_count = 0

for i in range(1, n+1):
if i%2 == 1 and is_palindrome(i

):
odd_palindrome_count += 1

elif i%2 == 0 and is_palindrome
(i):

even_palindrome_count += 1
return (even_palindrome_count,

odd_palindrome_count)

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static Pair<Long, Long>
evenOddPalindrome(long n) {

long evenPalindromeCount = 0;
long oddPalindromeCount = 0;

for (long i = 1; i <= n; i++) {
if (i % 2 == 1 & &
isPalindrome(i)) {

oddPalindromeCount++;
} else if (i % 2 == 0 & &
isPalindrome(i)) {

evenPalindromeCount++;
}

}
return Pair.with(
evenPalindromeCount,
oddPalindromeCount);

}

private static boolean isPalindrome
(long n) {

return Long.toString(n).equals(
new StringBuilder(Long.toString
(n)).reverse().toString());

}
}

### Python version

from typing import List

def is_sorted(lst: List[int]) -> bool:
count_digit = dict([(i, 0) for i in

lst])
for i in lst:

count_digit[i]+=1
if any(count_digit[i] > 2 for i in

lst):
return False

if all(lst[i-1] <= lst[i] for i in
range(1, len(lst))):

return True
else:

return False

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static boolean isSorted(
ArrayList<Long> lst) {

HashMap<Long, Long> count_digit
= new HashMap<Long, Long>();
for (long i : lst) {

if (count_digit.containsKey
(i)) {

count_digit.put(i,
count_digit.get(i) + 1)
;

} else {
count_digit.put(i, 1L);

}
}
for (long i : lst) {

if (count_digit.get(i) > 2)
{

return false;
}

}
for (int i = 1; i < lst.size();
i++) {

if (lst.get(i - 1) > lst.
get(i)) {

return false;
}

}
return true;

}
}

### Python version

from typing import List



def separate_paren_groups(paren_string:
str) -> List[str]:

result = []
current_string = []
current_depth = 0

for c in paren_string:
if c == ’(’:

current_depth += 1
current_string.append(c)

elif c == ’)’:
current_depth -= 1
current_string.append(c)

if current_depth == 0:
result.append(’’.join(

current_string))
current_string.clear()

return result

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static ArrayList<String>
separateParenGroups(String
paren_string) {

ArrayList<String> result = new
ArrayList<String>();
ArrayList<Character>
current_string = new ArrayList<
Character>();
int current_depth = 0;

for (int i = 0; i <
paren_string.length(); i++) {

char c = paren_string.
charAt(i);
if (c == ’(’) {

current_depth += 1;
current_string.add(c);

} else if (c == ’)’) {
current_depth -= 1;
current_string.add(c);

if (current_depth == 0)
{

StringBuilder sb =
new StringBuilder(
current_string.size
());
for (Character ch :
current_string) {

sb.append(ch);
}
result.add(sb.
toString());
current_string.
clear();

}
}

}

return result;
}

}

### Python version

from typing import List

def sort_array(array: List[int]) ->
List[int]:

return [] if len(array) == 0 else
sorted(array, reverse= (array[0]+array
[-1]) % 2 == 0)

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static ArrayList<Long>
sortArray(ArrayList<Long> array) {

if (array.size() == 0) {
return new ArrayList<Long
>();

} else {
boolean reverse = (array.
get(0) + array.get(array.
size() - 1)) % 2 == 0;
Collections.sort(array);
if (reverse) {

Collections.reverse(
array);

}
return array;

}
}

}

### Python version

<insert Python program here>

### Java version

<insert Java completion here>

C.2 Python-Java exp (four-shot)

You are an helpful AI assistant who
understands all programming languages
and can translate between them at ease.
Can you explain what this Python
program does with a couple of sentences
? The goal with the explanation, is so
that a reader can easily rewrite the
program in Java?



### Python version

from typing import Tuple

def even_odd_palindrome(n: int) ->
Tuple[int, int]:

def is_palindrome(n):
return str(n) == str(n)[::-1]

even_palindrome_count = 0
odd_palindrome_count = 0

for i in range(1, n+1):
if i%2 == 1 and is_palindrome(i

):
odd_palindrome_count += 1

elif i%2 == 0 and is_palindrome
(i):

even_palindrome_count += 1
return (even_palindrome_count,

odd_palindrome_count)

### Explanation

This function takes an integer ‘n‘ as
input and returns a tuple of two
integers. The first integer is the
number of even palindromes between 1
and ‘n‘, and the second integer is the
number of odd palindromes between 1 and
‘n‘. A palindrome is a number that
reads the same forwards and backwards.

The function first defines a helper
function ‘is_palindrome‘ that takes a
number and returns ‘True‘ if it is a
palindrome and ‘False‘ otherwise. This
is done by converting the number to a
string and checking if the string is
equal to its reverse.

The function then initializes two
counters, ‘even_palindrome_count‘ and ‘
odd_palindrome_count‘, to 0. It then
loops through all numbers between 1 and
‘n‘ (inclusive) and checks if each
number is a palindrome and even or odd.
If the number is a palindrome and odd,
it increments ‘odd_palindrome_count‘.
If the number is a palindrome and even,
it increments ‘even_palindrome_count‘.

Finally, the function returns a tuple
of the two counters.

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static Pair<Long, Long>
evenOddPalindrome(long n) {

long evenPalindromeCount = 0;

long oddPalindromeCount = 0;

for (long i = 1; i <= n; i++) {
if (i % 2 == 1 & &
isPalindrome(i)) {

oddPalindromeCount++;
} else if (i % 2 == 0 & &
isPalindrome(i)) {

evenPalindromeCount++;
}

}
return Pair.with(
evenPalindromeCount,
oddPalindromeCount);

}

private static boolean isPalindrome
(long n) {

return Long.toString(n).equals(
new StringBuilder(Long.toString
(n)).reverse().toString());

}
}

### Python version

from typing import List

def is_sorted(lst: List[int]) -> bool:
count_digit = dict([(i, 0) for i in

lst])
for i in lst:

count_digit[i]+=1
if any(count_digit[i] > 2 for i in

lst):
return False

if all(lst[i-1] <= lst[i] for i in
range(1, len(lst))):

return True
else:

return False

### Explanation

This function takes in a list of
integers and returns a boolean
indicating whether the list is sorted
in non-descending order and has no more
than two occurrences of any integer.
The function first creates a dictionary
where the keys are the integers in the
list and the values are the number of
times that integer appears in the list.
It then checks if any integer appears
more than twice in the list, and
returns False if so. Finally, it checks
if the list is sorted in non-
descending order, and returns True if
so, and False otherwise.

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;



import java.util.stream.*;
class Problem {

public static boolean isSorted(
ArrayList<Long> lst) {

HashMap<Long, Long> count_digit
= new HashMap<Long, Long>();
for (long i : lst) {

if (count_digit.containsKey
(i)) {

count_digit.put(i,
count_digit.get(i) + 1)
;

} else {
count_digit.put(i, 1L);

}
}
for (long i : lst) {

if (count_digit.get(i) > 2)
{

return false;
}

}
for (int i = 1; i < lst.size();
i++) {

if (lst.get(i - 1) > lst.
get(i)) {

return false;
}

}
return true;

}
}

### Python version

from typing import List

def separate_paren_groups(paren_string:
str) -> List[str]:

result = []
current_string = []
current_depth = 0

for c in paren_string:
if c == ’(’:

current_depth += 1
current_string.append(c)

elif c == ’)’:
current_depth -= 1
current_string.append(c)

if current_depth == 0:
result.append(’’.join(

current_string))
current_string.clear()

return result

### Explanation

This function takes a string of
parentheses and returns a list of
strings, where each string is a group
of parentheses. A group is defined as a
set of parentheses that are balanced,
meaning that each opening parenthesis
has a corresponding closing parenthesis

. The function works by iterating over
each character in the input string, and
keeping track of the current depth of
nested parentheses. When an opening
parenthesis is encountered, the depth
is incremented and the character is
added to the current string. When a
closing parenthesis is encountered, the
depth is decremented and the character
is added to the current string. If the
depth reaches 0, it means that a
complete group has been found, so the
current string is added to the result
list and cleared for the next group.
The function returns the list of groups
.

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static ArrayList<String>
separateParenGroups(String
paren_string) {

ArrayList<String> result = new
ArrayList<String>();
ArrayList<Character>
current_string = new ArrayList<
Character>();
int current_depth = 0;

for (int i = 0; i <
paren_string.length(); i++) {

char c = paren_string.
charAt(i);
if (c == ’(’) {

current_depth += 1;
current_string.add(c);

} else if (c == ’)’) {
current_depth -= 1;
current_string.add(c);

if (current_depth == 0)
{

StringBuilder sb =
new StringBuilder(
current_string.size
());
for (Character ch :
current_string) {

sb.append(ch);
}
result.add(sb.
toString());
current_string.
clear();

}
}

}

return result;
}



}

### Python version

from typing import List

def sort_array(array: List[int]) ->
List[int]:

return [] if len(array) == 0 else
sorted(array, reverse= (array[0]+array
[-1]) % 2 == 0)

### Explanation

This function takes a list of integers
‘array‘ as input and returns a sorted
list of integers. The function first
checks if the input list is empty. If
it is, it returns an empty list.
Otherwise, it sorts the list using the
‘sorted‘ function. The ‘reverse‘
parameter is set to ‘True‘ if the sum
of the first and last elements of the
array is even (and the array will be
sorted in descending order), otherwise,
it is set to ‘False‘ (and the array
will be sorted in ascending order).

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static ArrayList<Long>
sortArray(ArrayList<Long> array) {

if (array.size() == 0) {
return new ArrayList<Long
>();

} else {
boolean reverse = (array.
get(0) + array.get(array.
size() - 1)) % 2 == 0;
Collections.sort(array);
if (reverse) {

Collections.reverse(
array);

}
return array;

}
}

}

### Python version

<insert Python program here>

### Explanation

This<insert Python program explanation
here>

### Java version

<insert Java completion here>



C.3 Python-Java exp-lbl (four-shot)

You are an helpful AI assistant who
understands all programming languages
and can translate between them at ease.
Can you explain what this Python
program does line by line? The goal
with the explanation, is so that a
reader can easily rewrite the program
in Java?

### Python version

from typing import Tuple

def even_odd_palindrome(n: int) ->
Tuple[int, int]:

def is_palindrome(n):
return str(n) == str(n)[::-1]

even_palindrome_count = 0
odd_palindrome_count = 0

for i in range(1, n+1):
if i%2 == 1 and is_palindrome(i

):
odd_palindrome_count += 1

elif i%2 == 0 and is_palindrome
(i):

even_palindrome_count += 1
return (even_palindrome_count,

odd_palindrome_count)

### Explanation

The code is an implementation of
finding the number of even and odd
palindrome numbers between 1 and ‘n‘ (
inclusive). It takes an integer ‘n‘ as
input and returns a tuple of two
integers: even and odd palindrome
number counts. A palindrome is a number
that reads the same forwards and
backwards.

def is_palindrome(n):
return str(n) == str(n)[::-1]

The function first defines a helper
function ‘is_palindrome‘ that takes a
number and returns ‘True‘ if it is a
palindrome and ‘False‘ otherwise. This
is done by converting the number to a
string and checking if the string is
equal to its reverse.

even_palindrome_count = 0
odd_palindrome_count = 0
The counter variable ‘
even_palindrome_count‘ and ‘
odd_palindrome_count‘ are used to
record the result.

for i in range(1, n+1):
The loops goes through all numbers
between 1 and ‘n‘ (inclusive)

if i%2 == 1 and is_palindrome(i):
odd_palindrome_count += 1

elif i%2 == 0 and is_palindrome(i):
even_palindrome_count += 1

Within the for-loop, the program checks
if each number is a palindrome and
even or odd. If the number is a
palindrome and odd, it increments ‘
odd_palindrome_count‘. If the number is
a palindrome and even, it increments ‘
even_palindrome_count‘.

return (even_palindrome_count,
odd_palindrome_count)
Finally, the function returns a tuple
of the two counters.

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static Pair<Long, Long>
evenOddPalindrome(long n) {

long evenPalindromeCount = 0;
long oddPalindromeCount = 0;

for (long i = 1; i <= n; i++) {
if (i % 2 == 1 & &
isPalindrome(i)) {

oddPalindromeCount++;
} else if (i % 2 == 0 & &
isPalindrome(i)) {

evenPalindromeCount++;
}

}
return Pair.with(
evenPalindromeCount,
oddPalindromeCount);

}

private static boolean isPalindrome
(long n) {

return Long.toString(n).equals(
new StringBuilder(Long.toString
(n)).reverse().toString());

}
}

### Python version

from typing import List

def is_sorted(lst: List[int]) -> bool:
count_digit = dict([(i, 0) for i in

lst])
for i in lst:

count_digit[i]+=1
if any(count_digit[i] > 2 for i in

lst):
return False

if all(lst[i-1] <= lst[i] for i in
range(1, len(lst))):

return True
else:



return False

### Explanation

The code is an implementation of
checking whether a list is sorted in
non-descending order and has no more
than two occurrences of any integer.
takes in a list of integers and returns
a boolean.

count_digit = dict([(i, 0) for i in lst
])
for i in lst:

count_digit[i]+=1
The function first creates a dictionary
where the keys are the integers in the
list and the values are the number of
times that integer appears in the list.

if any(count_digit[i] > 2 for i in lst)
:

return False
It then checks if any integer appears
more than twice in the list, and
returns False if so.

if all(lst[i-1] <= lst[i] for i in
range(1, len(lst))):

return True
else:

return False
Finally, it checks if the list is
sorted in non-descending order, and
returns True if so, and False otherwise
.

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static boolean isSorted(
ArrayList<Long> lst) {

HashMap<Long, Long> count_digit
= new HashMap<Long, Long>();
for (long i : lst) {

if (count_digit.containsKey
(i)) {

count_digit.put(i,
count_digit.get(i) + 1)
;

} else {
count_digit.put(i, 1L);

}
}
for (long i : lst) {

if (count_digit.get(i) > 2)
{

return false;
}

}

for (int i = 1; i < lst.size();
i++) {

if (lst.get(i - 1) > lst.
get(i)) {

return false;
}

}
return true;

}
}

### Python version

from typing import List

def separate_paren_groups(paren_string:
str) -> List[str]:

result = []
current_string = []
current_depth = 0

for c in paren_string:
if c == ’(’:

current_depth += 1
current_string.append(c)

elif c == ’)’:
current_depth -= 1
current_string.append(c)

if current_depth == 0:
result.append(’’.join(

current_string))
current_string.clear()

return result

### Explanation

The code is an implementation of a
function ‘separate_paren_groups‘ which
takes a string of parentheses and
returns a list of strings containing
the groups of parentheses.

result = []
current_string = []
current_depth = 0
The function initializes an empty list
‘result‘ to store the groups of
parentheses. It also initializes an
empty list ‘current_string‘ to store
the current group of parentheses being
processed. The variable ‘current_depth‘
is initialized to 0 to keep track of
the depth of the current group of
parentheses.

for c in paren_string:
The function iterates through each
character ‘c‘ in the input string ‘
paren_string‘.

if c == ’(’:
current_depth += 1
current_string.append(c)

If the character is an opening
parenthesis ‘’(’‘, the function



increments the ‘current_depth‘ variable
and appends the character to the ‘
current_string‘ list.

elif c == ’)’:
current_depth -= 1
current_string.append(c)

If the character is a closing
parenthesis ‘’)’‘, the function
decrements the ‘current_depth‘ variable
and appends the character to the ‘
current_string‘ list.

if current_depth == 0:
result.append(’’.join(

current_string))
current_string.clear()

If the ‘current_depth‘ variable reaches
0, it means that the current group of
parentheses has been fully processed,
so the function joins the ‘
current_string‘ list into a string and
appends it to the ‘result‘ list. The ‘
current_string‘ list is then cleared to
start processing the next group of
parentheses.

return result
The function returns the ‘result‘ list
containing the groups of parentheses.

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static ArrayList<String>
separateParenGroups(String
paren_string) {

ArrayList<String> result = new
ArrayList<String>();
ArrayList<Character>
current_string = new ArrayList<
Character>();
int current_depth = 0;

for (int i = 0; i <
paren_string.length(); i++) {

char c = paren_string.
charAt(i);
if (c == ’(’) {

current_depth += 1;
current_string.add(c);

} else if (c == ’)’) {
current_depth -= 1;
current_string.add(c);

if (current_depth == 0)
{

StringBuilder sb =
new StringBuilder(
current_string.size
());

for (Character ch :
current_string) {

sb.append(ch);
}
result.add(sb.
toString());
current_string.
clear();

}
}

}

return result;
}

}

### Python version

from typing import List

def sort_array(array: List[int]) ->
List[int]:

return [] if len(array) == 0 else
sorted(array, reverse= (array[0]+array
[-1]) % 2 == 0)

### Explanation

The code is an implementation of
sorting an array of integers. It takes
a list of integers ‘array‘ as input and
returns a sorted list of integers.

return [] if len(array) == 0 else
sorted(array, reverse= (array[0]+array
[-1]) % 2 == 0)
The function first checks if the input
list is empty. If it is, it returns an
empty list. Otherwise, it sorts the
list using the ‘sorted‘ function. The ‘
reverse‘ parameter is set to ‘True‘ if
the sum of the first and last elements
of the array is even (and the array
will be sorted in descending order),
otherwise, it is set to ‘False‘ (and
the array will be sorted in ascending
order).

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static ArrayList<Long>
sortArray(ArrayList<Long> array) {

if (array.size() == 0) {
return new ArrayList<Long
>();

} else {
boolean reverse = (array.
get(0) + array.get(array.
size() - 1)) % 2 == 0;
Collections.sort(array);



if (reverse) {
Collections.reverse(
array);

}
return array;

}
}

}

### Python version

<insert Python program here>

### Explanation

The code is an implementation of<insert
Python program explanation here>

### Java version

<insert Java completion here>

C.4 Python-Java exp-lbl-d (four-shot)

You are an helpful AI assistant who
understands all programming languages
and can translate between them at ease.
Can you explain what this Python
program does line by line? If a line is
too long or too complicated, simplify
it and explain what individual parts of
the line mean first before explaining
the whole line. The goal with the
explanation, is so that a reader can
easily rewrite the program in Java?

### Python version

from typing import Tuple

def even_odd_palindrome(n: int) ->
Tuple[int, int]:

def is_palindrome(n):
return str(n) == str(n)[::-1]

even_palindrome_count = 0
odd_palindrome_count = 0

for i in range(1, n+1):
if i%2 == 1 and is_palindrome(i

):
odd_palindrome_count += 1

elif i%2 == 0 and is_palindrome
(i):

even_palindrome_count += 1
return (even_palindrome_count,

odd_palindrome_count)

### Explanation

The code is an implementation of
finding the number of even and odd
palindrome numbers between 1 and ‘n‘ (
inclusive). It takes an integer ‘n‘ as
input and returns a tuple of two

integers: even and odd palindrome
number counts. A palindrome is a number
that reads the same forwards and
backwards.

def is_palindrome(n):
return str(n) == str(n)[::-1]

The function defines a helper function.
Let’s break it down step by step:
str(n)
The function first converts the input
from integers to strings, because
Python does not allow one to easily
reverse an integer by its digits.
str(n)[::-1]
It then uses string manipulation
‘[::-1]‘ to reverse the string.
return str(n) == str(n)[::-1]
It then checks if the string version of
the integer is equal to its reversed
string version, thereby determining
whether the input integer is a
palindrome or not.
Hence, the helper function‘
is_palindrome‘ takes a number and
returns ‘True‘ if it is a palindrome
and ‘False‘ otherwise.

even_palindrome_count = 0
odd_palindrome_count = 0
The counter variable ‘
even_palindrome_count‘ and ‘
odd_palindrome_count‘ are used to
record the result.

for i in range(1, n+1):
The loops goes through all numbers
between 1 and ‘n‘ (inclusive)

if i%2 == 1 and is_palindrome(i):
odd_palindrome_count += 1

elif i%2 == 0 and is_palindrome(i):
even_palindrome_count += 1

Within the for-loop, the program
defines a set of if-else statements.
Let’s break it down step by step:
i%2 == 1
This checks if the number is odd by
checking if the mod 2 of the number has
remainder of 1
is_palindrome(i)
Here the program uses previously
defined helper function to determine if
the number is a palindrome or not.
if i%2 == 1 and is_palindrome(i):

odd_palindrome_count += 1
Putting it together, both of above
components check if the number is odd
and a palindrome, and if so, increment
the counter ‘odd_palindrome_count‘. The
same logic is applied to even
palindrome numbers.
Hence, the if-else conditions checks if
each number is a palindrome and even/
odd and increment respective counters.

return (even_palindrome_count,
odd_palindrome_count)



Finally, the function returns a tuple
of the two counters. Even palindrome
count first, odd palindrome count next.

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static Pair<Long, Long>
evenOddPalindrome(long n) {

long evenPalindromeCount = 0;
long oddPalindromeCount = 0;

for (long i = 1; i <= n; i++) {
if (i % 2 == 1 & &
isPalindrome(i)) {

oddPalindromeCount++;
} else if (i % 2 == 0 & &
isPalindrome(i)) {

evenPalindromeCount++;
}

}
return Pair.with(
evenPalindromeCount,
oddPalindromeCount);

}

private static boolean isPalindrome
(long n) {

return Long.toString(n).equals(
new StringBuilder(Long.toString
(n)).reverse().toString());

}
}

### Python version

from typing import List

def is_sorted(lst: List[int]) -> bool:
count_digit = dict([(i, 0) for i in

lst])
for i in lst:

count_digit[i]+=1
if any(count_digit[i] > 2 for i in

lst):
return False

if all(lst[i-1] <= lst[i] for i in
range(1, len(lst))):

return True
else:

return False

### Explanation

The code is an implementation of
checking whether a list is sorted in
non-descending order and has no more
than two occurrences of any integer. It
takes in a list of integers and
returns a boolean.

count_digit = dict([(i, 0) for i in lst
])
for i in lst:

count_digit[i]+=1
The function first creates a dictionary
where the keys are the integers in the
list and the values are the number of
times that integer appears in the list.

if any(count_digit[i] > 2 for i in lst)
:

return False
It then checks if any integer appears
more than twice in the list, and
returns False if so.

if all(lst[i-1] <= lst[i] for i in
range(1, len(lst))):

return True
else:

return False
Let’s break it down step by step:
lst[i-1] <= lst[i]
Within the list comprehension, this
checks whether the current element at
index ‘i‘ is greater or equal to the
previous element at index ‘i-1‘.
if all(lst[i-1] <= lst[i] for i in
range(1, len(lst))):
The whole expression then checks if
every element is greater or equal to
the element before in the list. In
another word, this checks if the list
is sorted in non-descending order.

return True
else:

return False
If the list is sorted in non-descending
order the function returns True,
otherwise it returns False.
Hence, the if-else statements returns
True if the list is sorted in non-
descending order, and False otherwise.

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static boolean isSorted(
ArrayList<Long> lst) {

HashMap<Long, Long> count_digit
= new HashMap<Long, Long>();
for (long i : lst) {

if (count_digit.containsKey
(i)) {

count_digit.put(i,
count_digit.get(i) + 1)
;

} else {
count_digit.put(i, 1L);

}
}



for (long i : lst) {
if (count_digit.get(i) > 2)
{

return false;
}

}
for (int i = 1; i < lst.size();
i++) {

if (lst.get(i - 1) > lst.
get(i)) {

return false;
}

}
return true;

}
}

### Python version

from typing import List

def separate_paren_groups(paren_string:
str) -> List[str]:

result = []
current_string = []
current_depth = 0

for c in paren_string:
if c == ’(’:

current_depth += 1
current_string.append(c)

elif c == ’)’:
current_depth -= 1
current_string.append(c)

if current_depth == 0:
result.append(’’.join(

current_string))
current_string.clear()

return result

### Explanation

The code is an implementation of a
function ‘separate_paren_groups‘ which
takes a string of parentheses and
returns a list of strings containing
the groups of parentheses.

result = []
current_string = []
current_depth = 0
The function initializes an empty list
‘result‘ to store the groups of
parentheses. It also initializes an
empty list ‘current_string‘ to store
the current group of parentheses being
processed. The variable ‘current_depth‘
is initialized to 0 to keep track of
the depth of the current group of
parentheses.

for c in paren_string:
The function iterates through each
character ‘c‘ in the input string ‘
paren_string‘.

if c == ’(’:
current_depth += 1
current_string.append(c)

If the character is an opening
parenthesis ‘’(’‘, the function
increments the ‘current_depth‘ variable
and appends the character to the ‘
current_string‘ list.

elif c == ’)’:
current_depth -= 1
current_string.append(c)

If the character is a closing
parenthesis ‘’)’‘, the function
decrements the ‘current_depth‘ variable
and appends the character to the ‘
current_string‘ list.

if current_depth == 0:
result.append(’’.join(

current_string))
current_string.clear()

Let’s break it down step by step:
’’.join(current_string)
The program joins the ‘current_string‘
(which is represented as a list) into a
string
Hence, the if-statement does the
following: if the ‘current_depth‘
variable reaches 0, it means that the
current group of parentheses has been
fully processed, so the function joins
the ‘current_string‘ list into a string
and appends it to the ‘result‘ list.
The ‘current_string‘ list is then
cleared to start processing the next
group of parentheses.

return result
The function returns the ‘result‘ list
containing the groups of parentheses.

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static ArrayList<String>
separateParenGroups(String
paren_string) {

ArrayList<String> result = new
ArrayList<String>();
ArrayList<Character>
current_string = new ArrayList<
Character>();
int current_depth = 0;

for (int i = 0; i <
paren_string.length(); i++) {

char c = paren_string.
charAt(i);
if (c == ’(’) {



current_depth += 1;
current_string.add(c);

} else if (c == ’)’) {
current_depth -= 1;
current_string.add(c);

if (current_depth == 0)
{

StringBuilder sb =
new StringBuilder(
current_string.size
());
for (Character ch :
current_string) {

sb.append(ch);
}
result.add(sb.
toString());
current_string.
clear();

}
}

}

return result;
}

}

### Python version

from typing import List

def sort_array(array: List[int]) ->
List[int]:

return [] if len(array) == 0 else
sorted(array, reverse= (array[0]+array
[-1]) % 2 == 0)

### Explanation

The code is an implementation of a
function that sorts an array of
integers. The function takes an array
of integers as input and returns a
sorted array of integers.

return [] if len(array) == 0 else
sorted(array, reverse= (array[0]+array
[-1]) % 2 == 0)
This return statement contains an
inline if-else statement. Let’s break
it down step by step:
[] if len(array) == 0
This inline if statement checks if the
length of the input array is zero. If
the length of the input array is zero,
the function returns an empty array. If
the length of the input array is not
zero, the function proceeds to else
statement.
sorted(array, reverse= (array[0]+array
[-1]) % 2 == 0)
This function sorts the list ‘array‘.
Let’s break it down step by step:
(array[0]+array[-1]) % 2 == 0
The reverse parameter of the sorted
function is set to True if the sum of
the first and last elements of the

input array is even. If the sum of the
first and last elements of the input
array is odd, the reverse parameter of
the sorted function is set to False.
Hence, the else statement sorts the
input array. If the sum of the first
and last elements of the input array is
even, it is sorted with reverse=True (
descending order), otherwise, it is
sorted with reverse=False (ascending
order).
Hence, the entire inline if-else
statement (and the return statement)
returns an empty array if the length of
the input array is zero. Otherwise, if
the sum of the first and last element
of the array is even, the array is
sorted with reverse parameter set to
True. If the sum of the first and last
element of the array is odd, the
reverse parameter is set to False.

### Java version

import java.util.*;
import java.lang.reflect.*;
import org.javatuples.*;
import java.security.*;
import java.math.*;
import java.io.*;
import java.util.stream.*;
class Problem {

public static ArrayList<Long>
sortArray(ArrayList<Long> array) {

if (array.size() == 0) {
return new ArrayList<Long
>();

} else {
boolean reverse = (array.
get(0) + array.get(array.
size() - 1)) % 2 == 0;
Collections.sort(array);
if (reverse) {

Collections.reverse(
array);

}
return array;

}
}

}

### Python version

<insert Python program here>

### Explanation

The code is an implementation of<insert
Python program explanation here>

### Java version

<insert Java completion here>



D Computational Resources

All completion queries are made to GPT-3.5 (gpt-
3.5-turbo-3010) between March - June 2023. We
use the Azure completion endpoint (as opposed to
the OpenAI chat completion endpoint). Compute
credits are provided by MIT-IBM Watson AI Lab.
The average query time for a single experiment (e.g.
exp, Python → Julia) takes around 10-40 minutes
with one API key (of which we only used one).
For Tables 1 and 2, the total query time is between
21 - 84 hours. The experiments for CodeGen2-1B
are conducted on BU SCC and MIT Satori clus-
ters with NVIDIA RTX V100, A100, and A6000.
Each single experiment takes 12-24 hours so the
whole compute time for Tables 1 and 2 comple-
tions is around 72-144 GPU days. Experiments for
CodeGen2-16B and Llama2CodeInstruct-34B are
done through IBM hosted model inference APIs.
Query time is about 2-3X to that of GPT-3.5. Code
execution/evaluation is done locally on the same
MacBook Pro 2015.

E Language Specific Stop Token and
Post-Processing

To stop model generations and extract the rele-
vant code needed for the problem, we use a few
language-specific tokens. In the case of OpenAI
APIs, such token size limit is 4. In order to accom-
modate multi-function and remove irrelevant gener-
ations, we modify the stop tokens from MultiPL-E
and add post processing to some languages. There
are two types of post-processing we use to truncate
completions:

truncate_after_function_ends re-
quires two function implementations from each
language translator: is_end_of_function
and is_function_signature. The function
works by greedily search the completion line-by-
line. As soon as we encounter a end of a function,
we start looking for the next non-empty line. We
remove the rest if the next non-empty line is not a
function signature. Otherwise, we keep the line
and continue. Below is the Python implementation
of truncate_after_function_ends:
def truncate_after_function_ends(completion,
translator):

lines = completion.split("\n")
in_function = True
for i, l in enumerate(lines):

if in_function:
# if encounter end of function,

start looking out for next non empty line

if translator.is_end_of_function(
l):

in_function = False
else: # if we are not in function,

check if line is signature
if len(l.strip()) != 0:

if translator.
is_function_signature(l):

in_function = True
else:

lines = lines[:i]
break

truncated_completion = "\n".join(lines)
return truncated_completion

truncate_after_additional_stops
requires one additional implementation
get_function_name and additional_stops
property. This function is used to deal with
languages that are difficult to determine the end of
functions without using lexers (hard to implement
is_end_of_function). In this case, we put
additional stop tokens that indicate for certain
that the line is not inside a function (usually \n
with every single letter in the alphabet along
with special symbols such as \n#, \n!.) We
additionally add the main completion function’s
name to make sure the completion doesn’t call the
function itself at the base level.

E.1 JavaScript
• original stops: \nfunction, /*, //,
console.log

• modified stops: \n}, /*, //,
console.log. Instead of stopping at
the beginning of the next irrelevant code
segment, we stop right before where the func-
tion ends, and add closing bracket back with
test strings. This speeds up experiments by
removing all possible additional un-expected
completions.

E.2 C++
• original stops: \n}.

• no modification.

E.3 Java
• original stops: \n }\n

• modified stops:
public static void main, ###,
\n}. Nested functions are illegal in Java. In
order to allow models to generate multiple
functions, instead of stopping at the end of



a function, we stop right before the main
function, or end of class.

E.4 TypeScript
• original stops: \nfunction, /*, //,
console.log

• modified stops: \n}, /*, //,
console.log. Same reason as JavaScript

E.5 PHP
• original stops: \nfunction, \n?>, \n//,
\n#

• modified stops: \n}, \n?>, \n//, \n#.
Same reason as JavaScript

E.6 Ruby
• original stops: \nclass, \ndef, \n#,
\n\n

• modified stops: \nclass, \ndef, \n#,
\nputs. The original stop \n\n is problem-
atic because it prematurely stops translation as
soon as the source program has an extra empty
line in the program. Additionally, \nputs to
ensure we don’t have extra generations (self-
calls) at the end.

• post-processing:
truncate_after_function_ends

E.7 C#
• original stops: \n }\n

• modified stops:
public static void Main,
static void Main, \n#, \n}. Same
reason as Java. Although nested/local
function is allowed in C#, this increases the
variety of generations which can be accepted
by unit tests.

E.8 Go
• original stops: \nfunc, struct, \n//

• modified stops: \nfunc, struct, \n// ,
\n}. Same reason as JavaScript.

E.9 Perl
• original stops: \nsub, \n#, \n\n.

• modified stops: \nsub, \n#, \n}. Same
reason as Ruby.

E.10 R
• original stops: \n#, \n‘‘‘

• modified stops: \n}. Same reason as
JavaScript.

E.11 Rust
• original stops: \n}.

• no modification.

E.12 Scala
• original stops: \n }\n.

• no modification.

E.13 Swift
• original stops: \n}.

• no modification.

E.14 Bash
• original stops: \n}

• modified stops: \n#, \nAnswer, \necho,
\n‘‘‘. Although nested functions are techni-
cally allowed, it is quite conventional to write
helper functions in a separate function. We
also use post-processing to truncate additional
unwanted generations.

• post-processing:
truncate_after_function_ends

E.15 Lua
• original stops: \nlocal, \nfunction,
\n--, \n\n

• modified stops: \n--, \n#, \nend. The
original stop \n\n is problematic because it
prematurely stops translation as soon as the
source program has an extra empty line in
the program. We add base indentation level
\nend to truncate after the function ends.

E.16 Racket
• original stops: \n(define , \n#|, \n;,
\n(

• modified stops: \n(define , \n#|, \n;,
\n(

• additional stops: \n#", \n‘‘‘, and "\n"
with all letters in alphabet.

• post-processing:
truncate_after_additional_
stops



E.17 Julia
• original stops: \nfunction, \nmacro,
\n\n,

• modified stops: \nend, \n#. Same as
JavaScript: \nend is a stricter way of stop-
ping multi-function generation since Julia al-
lows nested functions.

E.18 D
• original stops: \n\n, \nvoid, \nbool,
\nint

• modified stops: \nvoid, \nbool, \nint,
\n}. More strict stopping at the end of func-
tion, and remove problematic \n\n

E.19 Explanation Qualitative Analysis

### Python version

def find_max(words: List[str]) -> str:
return sorted(words, key = lambda x

: (-len(set(x)), x))[0]

### Explanation (exp)

This function receives a list of
strings and returns the string with the
highest number of unique characters,
and if there are ties, the string that
comes first in lexicographic order.

### Explanation (exp-lbl)

The code is an implementation of
finding the longest word in a list of
words that has the fewest unique
characters. It takes a list of strings
‘words‘ as input and returns the
longest string in the list that has the
fewest unique characters.

sorted(words, key = lambda x: (-len(set
(x)), x))[0]
The function first sorts the list of
words using the ‘sorted‘ function. The
‘key‘ parameter is set to a lambda
function that returns a tuple of two
values: the negative length of the set
of characters in the word (to sort by
fewest unique characters
first), and the word itself (to break
ties by alphabetical order).

The ‘[0]‘ at the end of the line
returns the first (i.e., longest) word
in the sorted list.

### Explanation (exp-lbl-d)

The code is an implementation of a
function that finds the word with the
maximum number of unique characters.

The function takes a list of strings as
input and returns the string with the
maximum number of unique characters.

sorted(words, key = lambda x: (-len(set
(x)), x))[0]
This statement sorts the input list ‘
words‘. Let’s break it down step by
step:
set(x)
The ‘set‘ function returns a set of
unique characters in the string ‘x‘.
len(set(x))
The ‘len‘ function returns the number
of unique characters in the string ‘x‘.
-len(set(x))
The ‘-‘ sign is used to sort the list
in descending order of the number of
unique characters.
x
The ‘x‘ parameter is used to sort the
list in ascending order of the string
itself.
Hence, the ‘key‘ parameter of the ‘
sorted‘ function is set to a lambda
function that returns a tuple of two
values: the negative length of the set
of unique characters in the string and
the string itself. The ‘sorted‘
function sorts the input list based on
this tuple. The ‘[0]‘ at the end of the
statement returns the first element of
the sorted list, which is the string
with the maximum number of unique
characters.

Above is an example explanation of a program
in Humaneval (humaneval_158_find_max).
With exp, the explanation is very high-level and
does not go into details with the Python implemen-
tation. With exp-lbl, each line of the program is
referenced along with an explanation. However,
we can see that in the second paragraph exp-lbl
explains that words sorted "by fewest unique char-
acters first" when it should be the other way. This
led to the wrong translation where the negative sign
is ignored. On the other hand, with exp-lbl-d, com-
plicated line like ones above is decomposed first,
explained separately and then combined together.
This particular explanation emphasizes the negative
sign and improves translation pass rate.

F How did we select with few-shot
programs and write explanations

To be consistent across trials, and due to the fact
that not every program has gold translations, we
use fixed few-shot in our main experiments. In this
case, the few-shot examples we pick is crucial to
the performance: they need to be representative of



the dataset characteristics and contain features that
may demonstrate the usefulness of explanations.
Once we select the few-shot programs, we simply
use the model to generate zero-shot explanations,
and modify for correctness and structural prefer-
ences (e.g. code lines followed by explanations
with exp-lbl).

Our "development" translation direction is
Python → Java. We quickly notice that GPT-3.5
is bad at translating nested functions, which
occur many times in the canonical solutions in
HumanEval. Compounded with the fact that
the original MultiPL-E stop tokens do not allow
models to generate multiple functions and that
Java does not allow nested functions, the only way
for GPT-3.5 to generate a correct translation of
these program is to use lambda expressions, which
can be extremely convoluted if the nested function
is long. Therefore, after loosening the constraint of
single function only (see Java section in Apx E),
we decide to use the first few-shot example
humaneval_107_even_odd_palindrome
as a demonstration to show the model how to
translate these type of functions (by adding private
helper function after the main function).

Second and third few-shot examples were
selected quite arbitrarily. The only criteria we
had in-mind was that these programs need to be
somewhat difficult, on the longer side length-wise,
and that the semantics of the program is not
immediately clear after looking at the function
name or first sentence explanation of the function.
Lastly, the programs also should not be close
to each other in the problem sequence (just in
case when designing the dataset, (Chen et al.,
2021) decided to stress-test different aspect
of code-generation in batches). Hence, we
picked humaneval_126_is_sorted and
humaneval_1_separate_paren_groups.

Last example is often the most influential due
to the proximity to test examples (Lu et al., 2022).
We decide on this program after careful error anal-
ysis of exp and exp-lbl. With few-shot exp-lbl,
we found the explanations to be of great qualities
already: the explanation chunks the model into
several semantically independent segments and ex-
plain each of them separately. We notice that the
quality of the explanations (through manual in-
spection) are worse when the segments are longer
or more complicated. In many cases, these coin-
cides with programs that contain one extremely

semantically complicated line. This is because the
model has to spend paragraphs explaining these
lines, and often produces confusing/wrong state-
ments. Many of the remaining 17 assertion errors
(semantic errors) in four-shot exp-lbl are due to
in-correct/insufficient explanation). Section E.19
shows an example program.

These errors, however, can be effectively miti-
gated if they were further decomposed into smaller
chunks of code statements. Due to the inherent
tree-like structure (AST) of program, asking mod-
els to decompose is another way of learning fine-
grain parsing of the code. Surprisingly, models like
GPT-3.5 is able to parsing very well. Hence, we
developed our third explanation method exp-lbl-
d: we ask the model to explain line-by-line, and
breakdown the line into smaller parts if the line is
too long or complicated. To demonstrate the use-
fulness of such method, we pick a program that
is short but contains a long and complicated line
(humaneval_88_sort_array). See E.19 for
the result of explanations generated with few-shots
across 3 explanation methods. With exp-lbl-d four-
shot, we find the explanations generated for almost
all 17 previously failing programs (in exp-lbl) to
be correct, and the remaining 12 assertion errors
are all results of wrong program generation given
correct explanations.

G Python-to-X Detailed Result
Investigation

All experiments detailed here are conducted with
GPT-3.5 unless otherwise specified.

G.1 Removing target language specific
information in zero-shot explanation

### Python version

def strlen(string: str) -> int:
return len(string)

### Explanation

This function takes a string as input
and returns the length of the string.
It does this by using the built-in ‘len
‘ function in Python. The function is
defined with the name ‘strlen‘ and
takes a single argument, which is a
string. The return type of the function
is an integer.

To rewrite this program in Java, you
would need to define a function with
the same name and argument type, and



Java Lua

exp 0.829 0.593
exp (remove) 0.829 0.592

exp-lbl 0.825 0.615
exp-lbl (remove) 0.825 0.615

exp-lbl-d 0.846 0.595
exp-lbl-d (remove) 0.84 0.595

Table 7: Comparing results for different explanation
types before and after removing target-specific informa-
tion in zero-shot setting

use the ‘length()‘ method of the
‘String‘ class to get the length of the
string. The return type would also need
to be changed to ‘int‘. Here is an
example of what the Java code might
look like:

“‘java
public static int strlen(String string)
{
return string.length();
}
“‘

Above is an example of what target specific in-
formation in generated explanations looks like.

Since different types of explanations generate
different types of kind of information, we remove
all of them in Python-to-Java direction to disen-
tangle the effects of target-specific information vs
the level of detail in the explanation. The removal
is done through a script, where we remove from
the first sentence that mentions anything about the
target language.

Here, we compare the pass@1 before and af-
ter removing such information for all explanation
types. As seen, there is only a slight decrease in the
performance. When translating into low-resource
languages, the occurrence of target-specific infor-
mation is much less frequent, leading to much less
difference between regular explanations vs. expla-
nations with target information removed.

In addition, we compare using target-
independent explanations (exp (java)) vs.
target-dependent explanations (exp (tgt-specific))
in Table 8. Target specific explanations do not
impact performance significantly in zero-shot
(p = 0.090). Target-specific explanations tend to
decrease performance in lower-resource languages.

G.2 Four-shot explanation variations
To observe the difference between the Python-
to-Java four-shot explanation, four-shot target
language-specific explanation, and re-using zero-
shot target-language specific explanation in four-
shot translation, we compare their Python-to-X
translation performance in 18 target languages (Ta-
ble 9). Just by observing best trials across lan-
guage directions in Table 9, exp (java) wins in
6/18 directions, whereas exp (tgt-specific) and exp
(zero-shot) each win 5/18 and 11/18 directions.
2-tail paired t-test indicates that both alternative tri-
als are significantly different from re-using 4 shot
examples from Java (ptgt_specific = 0.036) and
pzero−shot = 0.024)). Four-shot explanations
are worse than zero-shot generated explanation.
This is intuitive because the explanations with exp
method in the zero-shot setting are good enough.
By incorporating mostly its own explanation in a
few-shot setting, the model is not obtaining more
information, but restricting its potential to generate
diverse types of explanation.

G.3 heuristically selected explanations
For more fair comparisons, we include here the
heuristically selected explanations with respective
baselines. Since exp selection was done over
zero-shot explanations, we compare exp (logprob)
against exp (zero-shot). There is still a mean im-
provement of 0.73% with standard deviation of
1.8%.

G.4 Error types breakdown in Python-to-X
For each program, in addition to determine unit
tests pass rate, we also use string matching on stderr
and stdout to categorize the error type. In order to
generalize across different languages, we group the
errors into the following 6 types:

• Type Error includes all errors related to in-
teractions between variables with the wrong
types. For example, in Python, floats cannot
be used to index list, and a string cannot be
used to multiply with another string.

• Undeclared Error includes all errors calling
methods or variables that do not exists. It
ranges from undeclared variable, to unable
to find equivalent built-in function such as
string.swapcase() in Python

• Assertion Error catches all cases where the
function output does not match the expected



High Medium Low Extremely-Low

trial js cpp jv ts php rb cs go pl r rs sc sw sh lua rkt jl d

exp (java) 84.8 82.1 82.9 85.1 77.0 78.3 83.6 45.7 68.2 46.9 74.8 74.7 70.5 55.4 60.0 41.3 70.5 44.4
exp (tgt-specific) 85.7 80.7 82.9 83.7 76.4 78.4 85.2 45.0 66.9 47.5 75.0 74.6 70.3 53.2 59.3 39.5 71.2 42.7

Table 8: Comparing zero-shot target-independent explanation vs target-specific explanations across 18 languages.
2-tail paired t test p = 0.090

High Medium Low Extremely-Low

trial js cpp jv ts php rb cs go pl r rs sc sw sh lua rkt jl d

exp (java) 87.3 77.8 82.1 88.4 76.4 80.4 83.3 51.4 73.2 55.6 73.0 73.7 67.1 73.1 67.9 44.7 69.4 45.9
exp (tgt-specific) 85.1 79.0 82.1 87.4 78.2 80.4 82.9 52.7 73.1 59.1 76.4 75.7 68.7 72.9 68.6 45.2 69.2 48.7
exp (zero-shot) 86.1 80.5 81.6 85.7 78.4 80.4 83.7 52.7 73.1 57.5 76.8 75.8 70.0 73.8 68.8 47.0 68.3 48.5

Table 9: Comparing different four-shot translation with different explanations: Python-Java explanation, target-
specific 4 explanation and target-specific 0 shot explanation across 18 languages. 2-tail paired t-test between first
and second row is p = 0.036 and between first and third row is p = 0.024

output. This indicates that the program runs,
but is not functionally the same as the source.

• Runtime Error generally includes all errors
that do not occur for every unit tests. For
instance, index out of bound error may only
occur with input of long lists.

• Other Syntax Errors includes all other type
of errors not captured by a specific groups
from above.

• Unhelpful includes cases where the generated
program contain exclusively comments like
TODO, Your Code Here.

For better generalization, we also combine as-
sertion error and unhelpful into semantic error
and Type, Undeclared and other syntax errors
into syntactic error. Here are some of our main
conclusions:

Less syntax error across the board in zero-shot
In general we see a decrease of syntactic error
across all target language resource level (Fig 5).
Specifically, there is a significant decrease in un-
helpful generations in trials with explanations.
This is similar to effects of having few shot ex-
amples Min et al. (2022b), except in this case we
do not actually provide the actual format of target
translation. Other than reducing unhelpful gener-
ations, self-generated explanations also decrease
undeclared and type error (more so in higher
resource directions). This is intuitive because as
model reasons through program explanations, it
may generated sequences that specify variable type
or specific methods used within source program,
which in term provides more information for the

translation step to generate appropriate method to
call. Surprisingly, there is no sign of decrease in se-
mantic error. This is likely due to the fact that by
resolving syntactic errors, those programs switched
to having semantic errors. In Fig 6 we look-into
this phenomenon specifically.

No significant difference in four-shot Errors
seem to be distributed very similarly across all
trials. There are two exceptions. First, in high-
resource target languages, other syntax errors
seem to drop significantly in exp-lbl-d than the
other explanations, which both contain more error
than direct baseline. In extremely low-resource
target language, there also seem to be a somewhat
significant drop in other syntax errors.

G.5 Error conversion between direct
translation and with explanations

To observe the program status with and without
using explanations, we track each problem’s status
in direct and explanation trials. In Fig 6, we plot
direct status on the x-axis and corresponding status
with explanation on the y-axis. Here are some key
take-aways:

More detailed explanations decrease semantic
error rate In the top two rows of Fig 6, we can
observe the differences between three explanation
methods. In zero-shot setting (row 1), we can see
that exp-lbl converts more semantic errors in di-
rect to pass, and slightly more syntactic errors to
semantic error, which are both indication of im-
provements. In four-shot setting (row 2), with more
detailed explanations, we see consistent decrease
in pass→semantic error (explanation misleading
translation), semantic error->pass but an increase



High Medium Low Extremely-Low

Trial js cpp jv ts php rb cs go pl r rs sc sw sh lua rkt jl d
exp (zero-shot) 86.1 80.5 81.6 85.7 78.4 80.4 83.7 52.7 73.1 57.5 76.8 75.8 70.0 73.8 68.8 47.0 68.3 48.5

exp* 88.9 80.8 85 88.3 78.6 81.4 85.1 52.2 71.6 57.3 74.5 76.1 71.3 73.1 67.9 46.2 72.9 50.7
exp-lbl 87.6 82.4 85.3 87.1 81.5 80.1 84.7 50.8 72 56.9 74.9 73.9 70.1 71.9 68.6 45.6 72.1 46.2

exp-lbl-d 87.8 83.9 86.5 88.3 82 80.7 84.3 50.6 70.9 57 76.3 75.5 70.9 72.5 69.4 45.3 71.1 45.1
exp-lbl-d* 87.9 84.6 87.8 88.5 81.5 80.6 85.3 51.6 70.1 57 78.7 77.7 71.9 72.3 69.4 46.3 71.6 44

Table 10: Four-shot translation with explanations vs. respective heuristically selected explanations. exp* represent
heuristically selected exp using logprob. exp-lbl-d* represent heuristically selected exp-lbl-d using frag

Figure 5: Python-to-X translation Error@1 rate (of different types) across different target language resources. The
top plot displays semantic vs. syntactic error while the bottom displays detailed error types. We use string simple
string matching to determine error type and use the same formal as Pass@1 to calculate Error@1



Figure 6: Python-to-X translation status conversion between baseline and explanation. X-axis indicate baseline
status and y-axis indicate translation status with explanations. In the top figure, results are aggregated across target
languages. In the bottom figure, results are aggregated across exp, exp-lbl, and exp-lbl-d



of pass→syntactic error. These all indicate that
a more detailed explanation indeed decreases the
amount of semantic errors

Higher target language resource, proportion-
ally more improvement with explanation, less
misleads In the bottom two rows of Fig 6, we can
see the effectiveness of explanation across target
languages of different resource level. In zero-shot
(row 3), we see a majority of the improved cases
(not pass->pass) come from improving syntactic
error. However, if we count the improvements of
syntactic error->semantic error, the effect be-
comes similar. Proportionally, high-resource bene-
fits the most in improving syntactic errors. In lower
resources, there’s proportionally more chance of
explanation misleading the translation (pass->no
pass. In four-shot (row 4), the effect of explanation
is much smaller (pass->no pass or no pass->pass)

G.6 Translation pass rate with different
program lengths

Typically, generating longer programs is harder.
We look into the success rate of each our trials with
respect to the source program length to observe if
there are any patterns. We find that explanation
affects translation across length uniformly, with
better performance in high-resource long pro-
grams. In the top left box plot of Fig 7, we can
see a more significant improvement for longest set
of programs with explanation. This effect damp-
ens slightly as we translate to lower-resource lan-
guages.

G.7 Python-to-X translation Pass@10 (n=20)
In the main result table 1, we presented Pass@1
results with GPT-3.5. For convenience and cost,
we also report @10 results from the same trial
(Table 11), but note that for more accurate and
optimal estimation @10 should be estimated with
n = 200 and t = 0.8 (Cassano et al., 2022).

Less relative improvements than pass@1 Over-
all, from Table 11, we can see less improvements
in pass@10. This is reasonable because ultimately
adding explanation restricts the generation space
and lowers the diversity of the output generations.
Still, we see consistent improvements with expla-
nations.

Zero-shot exp provide best coverage In the top
4 rows of Table 11, we can see exp outperforms
the rest in the most directions (9/19). This is proba-
bly because there are countless ways of explaining

a program in free-form natural language, and ab-
stract explanation provide the least constraints on
generating a diverse set of programs (better recall)

Four-shot better/detailed explanation leads bet-
ter coverage In the bottom 4 row of Table 11, we
can see that either direct translation, exp-lbl-d, or
heuristically selected explanation wins. Indicating
that with a good quality explanation, we can still
obtain improvements in few-shot setting.

G.8 Python-to-X translation performance vs.
NL-to-Code performance

To investigate whether NL-to-code performance
correlates to python-to-X translation performance,
we compare our zero-shot results with Cassano et al.
(2022) with code-davinci-002. In Fig 8, we
can see a strong correlation between the two. On
top of direct translation, explanations (best explana-
tion for each target language) improve translations
(absolute difference) uniformly across source lan-
guages, and a higher relative improvements in lan-
guages which are hard for NL-to-code task (lower-
resource languages)

G.9 Python-to-X for Opensource models

H X-to-X Opensource Model Results

All experiments detailed here are conducted with
GPT-3.5 unless otherwise specified.

There are still improvements with self-generated
explanations across most directions In weaker
opensource models CodeGen2-1B improves
more consistently (than 16B) using self-generated
explanations (baseline is the worst in all X-to-X
directions, and in 17/18 Python-to-X directions), as
much as 300%+ improvement (12, Lua→Python,
Python→JavaScript). In Python→Ruby, model
with explanations obtains a pass rate of 5.9, while
baseline does not generate any single correct trans-
lation (pass rate of 0). CodeGen2-16B shows
weaker results, with baseline outperforming in
10/18 directions in Table 1 and 2. Perhaps it has
a weaker alignment between natural language and
programming language, resulting in worse expla-
nations generated for each problem. The major-
ity of errors from translation with explanation are
syntactic. For Llama2CodeInstruct-34B, there are
consistent absolute improvements of 5%-10% and
maximum relative improvements of up to 40%
(Java → C++ in table 2).



Figure 7: Python-to-X translation pass@1 rate across programs binned in quartiles. On x-axis, 25=shortest,
100=longest programs

Res High Medium Low Extremely-Low

Trial js cpp jv ts php rb cs go pl r rs sc sw sh lua rkt jl d

direct(0) 90.3 83.5 83.1 84.4 75.8 83.7 85.4 50.6 67.2 51.9 82.2 75.3 75.2 70.3 66.8 45.3 69.6 49.1
exp(0) 89.1 87.3 88.6 88.7 80 81.8 87.5 52.5 74.4 57.4 81.3 80.8 78.3 71.9 70.2 58.3 75.8 51.5

exp-lbl(0) 88.6 87.8 87.8 88.3 79.4 83.8 87.4 50.6 73.4 59.2 83.4 80.6 80.6 72.6 71.6 52.2 75.3 51.7
exp-lbl-d(0) 87.7 83.7 87.9 88.3 78.7 85.4 85.9 49.1 71.4 55.8 82.7 78.9 81.7 67.9 68 49.3 73.8 50.4

direct (4) 92 88.4 88.6 90.9 84 86 88.1 56.9 78.9 65.1 84.7 81.2 79.6 83.8 73.7 59.7 71.5 52.5
exp (4) 90.3 81.2 86.4 88.9 78.7 85.1 85.4 56.5 79.8 61.1 82.4 80.5 78.4 82.3 75.1 57.6 74.5 52.9

exp-lbl (4) 89 85.3 88.1 90.6 84.6 85.7 86 57 79.9 64.6 81.7 79.9 77.9 82.9 73.5 61.4 77.9 55
exp-lbl-d (4) 89.7 88.1 89.6 92.2 85.2 86.3 87 55.7 80.3 64 83.9 82.1 79.9 84 74 61.6 77 51.7

exp (4)* 89.8 84.8 87.5 90.1 83.2 86.6 88.1 55.8 77.4 64.8 81.4 82.6 80.1 81 73.8 62.5 77.1 54.9
exp-lbl-d (4)* 89.8 87.6 90.9 92.1 84.5 84.9 88 56.1 79.9 63.4 84.5 82.3 78.4 84.1 75.3 64.2 77.3 50.7

Table 11: Translation pass@10 from Python to X. * indicate heuristically selected explanations (Section 3.4).
Parenthesis in trial indicates # of shots. Res=target language resource level. Best within same shot setting (no
heuristics) is underscored and overall best is in bold

Res High Medium Low Extremely-Low

Trial js cpp jv ts php rb cs go pl r rs sc sw sh lua rkt jl d

CodeGen2-1B

direct 4.6 9.4 5.3 7 13.4 0 6.4 3.5 3.6 0.6 4.7 2.6 3.5 5.7 2.7 0 2.4 6.2
exp 15.4 11.7 7.8 13.5 14.2 5.9 8.3 8.3 3.9 0.6 8.9 5.8 6.9 4.8 4.9 0 2.9 7.9

exp-lbl 13.9 10.7 6.4 9.6 14.7 4.9 7.5 7.3 3.9 0.9 8.5 4 7.2 4.6 4.1 0.1 3.3 7.3
exp-lbl-d 12.7 11.7 7.6 10.5 14.5 3.8 8 7.5 4.5 0.4 7.9 4.7 7.4 4.6 5.2 0 3 5.9

CodeGen2-1B with explanations from ChatGPT

exp 19.3 15.5 6.1 10.8 16.5 3.9 11.2 9.8 4.2 0.4 10.3 7 10.4 5.2 4.8 0.1 3.7 7.2
exp-lbl 17.2 14 6.1 11.7 16.1 4.8 11.6 10.7 3.6 0.6 9.5 6.5 9.8 5.6 4.9 0.1 4.5 8.5

exp-lbl-d 18.2 14.8 0.4 13.2 16.5 4.9 12 12.1 3.7 0.6 9.6 7.2 9.3 7.9 4.8 0.3 3.7 7.8

CodeGen2-16B

direct 48.4 41.2 47.7 44.8 38.4 8.6 46 32.5 18.4 10.8 29.6 29.6 20.5 12.6 20.2 1.1 22 11.7
exp 45.1 38.2 40.4 43.7 37.5 2.8 41.8 30.5 20.1 13.3 32.7 29.1 23.8 10.5 23.4 1.6 23.8 14.4

exp-lbl 45.1 39.7 46.7 43 41 11 45.3 29.3 19.2 12.6 32.9 31.6 25.4 12.8 22.8 1.3 24.9 15.8
exp-lbl-d 43.2 38.4 50 39.9 37.6 13 47.1 30.1 21 11.7 32.6 30.6 27.3 11.7 24.3 1.3 24.8 15

Llama2CodeInstruct-34B

direct 64 55.7 61 55.9 52.1 55.5 67.7 34.4 37.7 23.2 42.2 45.6 30.8 29.5 28.6 23.7 47.5 26.5
exp 69.9 58 59.1 67.7 58.5 67.5 63.6 33.2 47.1 26.3 45.8 48.9 34.8 29.3 33.4 28 59.4 24.8

exp-lbl 69.3 56 62.7 64.7 56.5 67.7 64.6 31.6 45 25.4 47 42.9 34.1 30.5 31.3 25.1 58.9 25.4
exp-lbl-d 69.4 57.1 63.3 64.2 59.1 69.3 64.8 30.4 44.7 26.8 42.6 46.1 34.3 28.2 33.3 23.7 55.1 28.2

Table 12: Translation pass@1 from Python to X (0-shots) with open source models. Best within same the same
model is in bold. Between CodeGen2-1B and CodeGen2-1B with explanation from ChatGPT, best amongst
using same model’s explanation is underlined.



CodeGen2-1B CodeGen2-16B Llama2CodeInstruct-34B

Resource Type src-tgt direct exp exp-lbl exp-lbl-d direct exp exp-lbl exp-lbl-d direct exp exp-lbl exp-lbl-d

High-to-High

D-D py - js 4.6 14.9 13.9 13.1 48.4 45.1 45.1 43.1 64 69.9 69.3 69.4
D-S js - jv 7.8 11.2 9.6 10.1 47.3 44.3 42 40 67.1 69.1 70.4 66
S-D cpp - py 8.3 13.9 13.5 12.5 38 57.2 55.1 84.4 86.1 84.4 85.4
S-S jv - cpp 14.2 15.6 14.8 15.9 52.7 49.2 47.7 46.9 43.3 60 60.3 59.2

High-to-ExtLow

D-D js - rkt 0 0 0 0 2 2.1 2 1.7 21.3 26.6 23.7 19
D-S py - d 6.2 7.9 7.3 5.9 11.7 14.4 15.8 15 26.5 24.8 25.4 28.2
S-D cpp - lua 8.9 11.8 10 9.8 33.6 35.2 33.2 33.5 34.8 43 38.9 36.7
S-S jv - jl 3.2 4.9 3.9 4.4 26.4 27.9 25.8 25.9 51.5 62.2 59 58.1

ExtLow-to-High

D-D lua - py 1.9 6 5.9 5.6 37.6 45.6 47.8 46.7 55.1 70.9 59.9 61.5
D-S rkt - jv 7.9 7.6 8.1 7.9 28.4 27.8 24.7 24.8 61.2 59.4 58.2 57.3
S-D jl - js 3.7 6.9 3.9 5.1 40.1 39.7 40 42.9 55.1 67.7 66.9 68.8
S-S d - cpp 11.7 12.7 12.6 14.1 53.1 47.6 47.1 50.4 55 65.3 59.8 62

ExtLow-to-ExtLow

D-D lua - rkt 0 0 0 0 0.8 0.9 1 0.9 18.7 23.5 19.4 18
D-S rkt - jl 2 2.1 1.5 0.8 13.1 14.6 14.6 14.4 52.4 58.3 50.2 47.8
S-D d - lua 7.7 8.2 6.3 7.2 29.3 28.1 28.8 28.9 27.6 35.3 31.1 32
S-S jl - d 0 0.007 0 0 10.1 7.8 5.4 5.3 24.9 26.5 28.2 28.3

Table 13: 0-Shot translation pass@1 between 16 different pairs of languages for open source models. Resource
indicates the language resource levels of the source and target. Type indicates the source and target language typing
characteristics (D/S=dynamically/statically typed). The best runs within the same model are in bold.

Figure 8: NL-to-code generation vs. Python-to-X trans-
lation performance (zero-shot)

Better explanation leads to better translation
even in smaller model cases. We compare
CodeGen2-1B performance given self-generated
explanation vs. GPT-3.5 generated explanation and
see that the better explanation outperforms self-
generated explanation in 12/18 Python-to-X direc-
tions, with a maximum improvement of 400%+ in
Python→ JavaScript.

In smaller/weaker models, detailed explanations
(exp-lbl or exp-lbl-d) do not improve as much
as exp does Often this is due to lower quality
explanations generated when the model is asked
to do something it is not capable of. The line-by-
line explanations often lead to repetitive content
when source programs contain several repetitive
lines (library import in C++ → Python direction,
with CodeGen2-1B)

Explanation’s effectiveness at improving down-
stream translation is transferable between mod-
els Explanations that lead to higher pass rates in
GPT-3.5 also tend to lead to higher success rates in
CodeGen2-1b. If we compare Table12 exp, exp-lbl,
exp-lbl-d trials with CodeGen2-1b with GPT-3.5
against the same three rows in Table 1, we see the
best explanation type in each translation direction
(e.g. Python →TypeScript) are typically the same
between two models. This is an indication of the
“robustness” of the explanations.

I Explanation Improvement correlation
with problem difficulty

To understand whether self-generated explanation
improve more difficult problems (or vice versa), we



Figure 9: X-to-X translation with GPT-3.5 (pass@1,
zero-shot) improvements (best explanation over base-
line) across models grouped by source-target resource
level

plot per-problem direct pass@1 and whether exp
improves over direct (Fig 4). direct pass@1 rate
serves as a good approximation of how difficult
the problem is given the model. In main text we
discuss that the exp improves difficult problems
more often than easy problems. For easy problems
(the right-most column), explanations can often
decrease performance. Perhaps this is a result of
redundant or inconsistent information leading to
confusion. This indicates that a potential way to
improve performance further is to automatically
pick the difficult problems to explain.

To show that such strategy works, we assume ac-
cess to oracle metric (direct pass@1) and leverage
our cached generations from direct and exp trans-
lations. For each problem, if the direct pass@1
rate is smaller than threshold (i.e. difficult prob-
lem), we use explanation, otherwise we use direct
translation. We repeat this for all 36 translation
directions in Python-to-X and X-to-X and present
full results in Table 14. Immediately we can see
that 1) low-resource languages typically require
more explanations. 2) select almost always out-
perform direct and exp (only lost in 1 case with
D→C++). In best case scenario (Racket → Julia),
we see as much as 9.6% relative improvement over
exp with select, while explaining less than half of
the problems.

This is however still impractical for inference
during test time. Having to approximate hardness
through direct translation requires more computa-
tion than generating a single explanation. Ideally,
one could build classifiers or use heuristics to se-
lect programs to translate. We leave this for future
directions.

J Alternative latent language guidance

In addition to asking the model to generate expla-
nations, we experimented with various forms of
latent languages (in the order of more structurally
formal to more free-form natural language). We
report here their pass@1 (n=1) for Python-Java

• Pivot language: Instead of generating target
program language directly, we also asked the
program to translate to a pivot language and
then translate to the target language. For ini-
tial experiment, we take the first generation
from direct translation to the pivot language
as intermediate step regardless of their accu-
racy. pass@1C++ = 0.732, pass@1Bash =
0.81, pass@1R = 0.703. More experiments
in the next section.

• Pseudocode: An intermediate form of pro-
gram sketch described with a mix of mathe-
matical operations and natural language. To
ensure the format of the pseudocode, we
prompt with \\ begin{algorithm} and use
\\ end{algorithm} as stop token. pass@1 =
0.861

• CoT: In Chain-of-thought (CoT) prompting,
we break down the the input program space
and translate each sub-components before
combining all results together as a whole. In
the decomposition phase, we try decomposing
through model’s perception of "steps" within
algorithm, as well as programmatically ex-
tracting function calls within source programs
that are often hard to translate (especially in
low resource languages) pass@1 = 0.734

• Steps: ordered list of natural language steps
describing major steps of the program follow-
ing work by Jiang et al. (2023). pass@1 =
0.824

• Summary: free-form natural language sen-
tences summary of what the program does.
pass@1 = 0.854

• Gold summary: We use the original hu-
man written docstring instructions (from Hu-
manEval) as gold summaries for the program
and ask the model to translate given the pro-
gram and summary. pass@1 = 0.813



direction # exp total direct exp select δ

d-lua 48 116 68.4 69.4 75 5.6
py-d 100 156 42 44.4 45.4 1
py-sh 115 158 47.9 55.4 55.8 0.4

cpp-py 19 149 92.3 90.2 93.6 1.3
lua-py 22 144 89.5 85.9 89.9 0.4
py-rb 47 161 78.3 78.3 81.7 3.4

py-scala 77 160 63.7 74.7 75.8 1.1
py-swift 69 161 64.4 70.5 71.4 0.9

py-ts 47 159 78.9 85.1 85.9 0.8
py-cpp 49 161 76.6 82.1 83.1 1

java-cpp 43 155 77 79.8 80.9 1.1
py-jl 71 159 61.6 70.5 71.2 0.7

sh-java 39 138 71.7 73.9 76.8 2.9
jl-d 90 137 41.6 43.4 43.7 0.3

rkt-java 58 136 65.9 77.1 82.6 5.5
js-rkt 117 154 30.2 41.9 44.3 2.4
rkt-jl 67 137 63.3 64.3 70.5 6.2

java-jl 72 154 60.2 75.4 76.1 0.7
py-go 96 154 42.4 45.7 47.5 1.8

py-java 50 158 76 82.9 84.2 1.3
py-r 113 161 40.4 46.9 48.6 1.7
py-pl 83 161 58.3 68.2 71.2 3
py-rkt 131 161 31.3 41.3 41.9 0.6
js-java 43 152 77 77.3 81.3 4

jl-js 29 138 83.1 83.5 85.8 2.3
py-php 59 161 68.4 77 77.8 0.8
py-lua 86 161 56.2 60 61.1 1.1
py-rs 58 156 70.6 74 74.8 0.8
d-cpp 21 116 88.4 81.4 87.8 -0.6

cpp-lua 58 149 69.2 71.9 74 2.1
py-cs 45 158 79.2 83.6 85.1 1.5

lua-rkt 121 145 29.6 45.2 46.4 1.2
py-js 36 161 85.5 84.8 86.1 0.6

Table 14: Pass@1 for direct, exp, and select trails, where select picks only hard problems with direct pass@1 less
than 0.9 to explain. # exp records the number of problems explained. δ is calculated as select − max(direct, exp)



J.1 model’s dependency on pivot program
accuracy

Within pivot program experiments (Python-C++-
Java, Python-Bash-Java, Python-R-Java), we fur-
ther analyzed the Java accuracy by measuring the
subset accuracy: we split the set of source prob-
lems into those with a correct pivot translation, vs
those with an incorrect pivot translation. Here is
the result:

As seen in Table 15, there is no clear differences
between the subset in which the pivot language
passes or fails:

• For C++ and R, regardless of the pivot ac-
curacy, Java translation accuracy drops with
pivot.

• For Bash, regardless of the pivot accuracy,
Java translation accuracy improves with
pivot.

Although the improvement given pivot language
seem monotonic on an aggregated level, this is
not to say that pivot language has no effects on
translation accuracy because the programs that are
correctly translated in pivot language likely has
some characteristic that can confound the transla-
tion accuracy.

To further investigate whether we can change in-
dividual behavior in an individual problem setting,
we pick either only correct or incorrect programs
sampled from ChatGPT and observe translation per-
formance (Table 16). If we do not have such a cor-
rect/incorrect pivot program we discard that prob-
lem. Since there could be bias in the dataset where
for a specific language, harder problems might have
more likelihood of having incorrect problems than
correct problems, we experiment with various high-
/low resource combinations of target language and
pivot, to be able to make conclusions overcoming
such bias.

Formal language as intermediate step can
achieve equivalent or better results than natural
language. In Table 16, comparing exp (bottom
row) against Correct Pass@1, we can see that
sometimes using formal language as intermediate
step can indeed reach or surpass using explanation
as intermediate steps. Using higher-resource pivot
language than the target language always seem to
help more than using lower-resource language, ex-
cept for rkt-java, which could just be evaluated on

an easier subset. This is intuitive because higher re-
source language generations in general are of better
quality, and if the benefit of obtaining more infor-
mation and generation length out-weights the noise,
this is a valid way of boosting performance. Nat-
ural language can be thought of an extreme case
of this with highest level of resource, with high
probability of quality self-generated context.

Formal intermediate steps are highly unpre-
dictable. By glancing at the difference between
Correct Pass@1 and Incorrect Pass@1, we can
see incorrect pivot programs lead to drastically
worse performance. If we observe the breakdown
of the errors, we see a lot of Incorrect Unhelp-
ful@1, indicating that the pivot programs them-
selves are unhelpful. Even if we assume mod-
els do not generate any unhelpful generations and
combine Incorrect Unhelpful@1 with Incorrect
Pass@1, we still see a significant gap between in-
correct and correct pivot programs. Specifically,
Incorrect Semantic Error@1 tends to be much
higher than Correct Semantic Error@1. In ab-
lation studies Table 4 we learned that when the
wrong intermediate step is highly related to the
source program in semantics, it decreases the trans-
lation performance more. In this experiment, since
the semantics of source program and pivot program
is almost identical, the mistakes in pivot program
can have deleterious effects on translation.

Natural language mistakes are taken less seri-
ously To compare the effect of having mistakes in
natural language vs pivot programs, we included In-
correct retrieved exp Pass@1 from Table 4. Since
swapping an explanation with a closely related that
of a similar problem guarantees the explanation
to be wrong, we can compare this with Incorrect
Pass@1. We found that on average, mistakes in nat-
ural language explanations do not decrease trans-
lation performance as much as programming lan-
guage mistakes do.

K GPT-3.5 score heuristics

In addition to two heuristics mentioned in Sec 3.4,
we also try prompting GPT-3.5 to select the best
explanation. We follow works in automatic genera-
tion evaluation with LLMs (Kocmi and Federmann,
2023; Wang et al., 2023b; Chen et al., 2023c; Fu
et al., 2023; Wang et al., 2023b) and experiment
with multiple-choice, direct assessment (generating
a score between 0 and 100), and summarizing from



pivot java pass overall pass pass(direct|T) pass(exp|T) pass(direct|F) pass(direct|F)

C++
74

76 86 81 42 31
Bash 81 82 89 70 74

R 70 85 77 71 68

Table 15: Translation using formal language as pivot intermediate "explanation". Results are obtained with
pass@1(n=1). direct indicate translation accuracy with direct translation (no explanation), and exp means explain
then translate. T indicate the pivot program is correct, and similarly for F. Hence, pass(direct|T) means the pass
rate for direct translation within the subset of programs that the pivot program is correct.

pivot ablation (0 shot, n=20) php-java rkt-java java-php rkt-php java-rkt php-rkt

# correct problems 154 136 155 138 155 147

Correct Pass@1 80.3 84.3 79.7 69.6 40.8 37.9
Correct Semantic Error@1 7.2 8.1 12.6 15.6 21.3 22.5
Correct Syntax Error@1 12.5 7.6 7.7 14.8 37.8 39.6

Correct Unhelpful@1 0 0 0 0 0 0

# incorrect problems 154 149 140 152 140 157

Incorrect Pass@1 35 75.8 43 63.9 23.7 8.3
Incorrect Semantic Error@1 12.1 13.7 38.3 24.4 29.2 12.3
Incorrect Syntax Error@1 11.2 10.5 6.5 11.8 36.3 17.4

Incorrect Unhelpful@1 41.7 0 12.1 0 10.7 62

direct Pass@1 76 68.4 31.3
exp Pass@1 82.9 77 41.3

Incorrect retrieved exp Pass@1 75.8 73.7 31.1

Table 16: We use correct/ incorrect pivot program translation to observe the sensitivity models have in formal
intermediate reasoning steps. All entries indicate 0-shot Pass@1(n=20). The column label indicate translation
direction, pivot language, and the available problems generated. For example, rkt-java refers to translating Python
to Java, with Racket as pivot language. Semantic Error is equivalent to assertion error, Unhelpful generations
include incomplete code with comments like "// TODO", "// Write your code here". All other errors
are grouped under Syntax Errors



multiple explanations. None of these methods out-
performed random selection, so we do not include
this method in Table 3. GPT-3.5-scores (direct as-
sessment) of the explanations almost always fall
between 90-100.

L Coder-reviewer details

Coder-Reviwer is a re-ranking method introduced
by (Zhang et al., 2022) to re-rank code generations
without verifying through symbolic tools (i.e. com-
pilers) in NL-code tasks. The method found that
averaging the logprob score from "coder" (which
estimates a length-normalized p(code|NL)) and
"reviewer" (which estimates a length-normalized
p(NL|code)) can be used as a good metric to re-
rank code generations. Formally the score is de-
fined as:

α
logp(x|y)

|x|
+ (1− α)

logp(y|x)
|y|

(1)

where x represents the natural language descrip-
tion of the code, y represents generated code, and
α is the hyperparameter that weighs the importance
between the two terms.

In our problem, we have the inverse task of try-
ing to find the best explanation x given y. Since
the score is symmetric, we use the same formula
during re-ranking.

To calculate the logprobs, we used CodeGen2-
12B(Nijkamp et al., 2023). We use prompt in L.1
and L.2. To obtain the best performance in esti-
mated pass rate (Table 3), we try 0,1, or 2-shots
(if GPU memory allows), and vary α between 0-1
with 0.1 interval (except for Python-Racket exp,
which we tried 0.02 between 0.8-1.0 in addition to
the rest). In Figure 10 we plot the best performing
setting for each experiment trials across α.

In section L.3 and section L.4, we show an ex-
ample of correct and incorrect selection of expla-
nations by coder-reviewer (To provide an idea of
what explanations look like, we include only 5 out
of 20 total explanations).

L.1 Coder prompt

Can you write a Python program given
this explanation?

### Explanation

This function takes in a list of
integers and returns a boolean

Figure 10: Coder-Reviewer best few-shot setting vary-
ing α hyper-parameter. Black dotted lines are average
baseline performance where explanations are selected
randomly.

indicating whether the list is sorted
in non-descending order and has no more
than two occurrences of any integer.
The function first creates a dictionary
where the keys are the integers in the
list and the values are the number of
times that integer appears in the list.
It then checks if any integer appears
more than twice in the list, and
returns False if so. Finally, it checks
if the list is sorted in non-
descending order, and returns True if
so, and False otherwise.

### Python version

from typing import List

def is_sorted(lst: List[int]) -> bool:
count_digit = dict([(i, 0) for i in

lst])
for i in lst:

count_digit[i]+=1
if any(count_digit[i] > 2 for i in

lst):
return False

if all(lst[i-1] <= lst[i] for i in
range(1, len(lst))):

return True
else:

return False

### Explanation

This function takes a list of integers
‘array‘ as input and returns a sorted
list of integers. The function first
checks if the input list is empty. If
it is, it returns an empty list.



Otherwise, it sorts the list using the
‘sorted‘ function. The ‘reverse‘
parameter is set to ‘True‘ if the sum
of the first and last elements of the
array is even (and the array will be
sorted in descending order), otherwise,
it is set to ‘False‘ (and the array
will be sorted in ascending order).

### Python version

from typing import List

def sort_array(array: List[int]) ->
List[int]:

return [] if len(array) == 0 else
sorted(array, reverse= (array[0]+array
[-1]) % 2 == 0)

### Explanation

<insert explanation here>

### Python version

<insert Python program here, calculate
normalized log p on this sequence>

L.2 Reviewer prompt

Can you explain what this Python
program does in a couple of sentences?

### Python version

from typing import List

def is_sorted(lst: List[int]) -> bool:
count_digit = dict([(i, 0) for i in

lst])
for i in lst:

count_digit[i]+=1
if any(count_digit[i] > 2 for i in

lst):
return False

if all(lst[i-1] <= lst[i] for i in
range(1, len(lst))):

return True
else:

return False

### Explanation

This function takes in a list of
integers and returns a boolean
indicating whether the list is sorted
in non-descending order and has no more
than two occurrences of any integer.
The function first creates a dictionary
where the keys are the integers in the
list and the values are the number of
times that integer appears in the list.
It then checks if any integer appears
more than twice in the list, and
returns False if so. Finally, it checks

if the list is sorted in non-
descending order, and returns True if
so, and False otherwise.

### Python version

from typing import List

def sort_array(array: List[int]) ->
List[int]:

return [] if len(array) == 0 else
sorted(array, reverse= (array[0]+array
[-1]) % 2 == 0)

### Explanation

This function takes a list of integers
‘array‘ as input and returns a sorted
list of integers. The function first
checks if the input list is empty. If
it is, it returns an empty list.
Otherwise, it sorts the list using the
‘sorted‘ function. The ‘reverse‘
parameter is set to ‘True‘ if the sum
of the first and last elements of the
array is even (and the array will be
sorted in descending order), otherwise,
it is set to ‘False‘ (and the array
will be sorted in ascending order).

### Python version

<insert Python program here>

### Explanation

<insert explanation here, calculate
normalized log p on this sequence>

L.3 Coder-Reviewer correct explanation
selection

You are an helpful AI assistant who
understands all programming languages
and can translate between them at ease.
Can you explain what this Python
program does with a couple of sentences
? The goal with the explanation, is so
that a reader can easily rewrite the
program in Java.

### Python version

from typing import List

def match_parens(lst: List[str]) -> str
:

def check(s):
val = 0
for i in s:

if i == ’(’:
val = val + 1

else:
val = val - 1

if val < 0:



return False
return True if val == 0 else

False

S1 = lst[0] + lst[1]
S2 = lst[1] + lst[0]
return ’Yes’ if check(S1) or check(

S2) else ’No’

### Explanation 1 (pass 0/1

This Python program checks if it is
possible to create a valid string of
parentheses by concatenating two
strings of parentheses. The function ‘
match_parens‘ takes a list of two
strings of parentheses as input and
returns ’Yes’ if it is possible to
create a valid string of parentheses by
concatenating the two strings, and ’No
’ otherwise.

The function ‘check‘ checks if a given
string of parentheses is valid. It does
this by iterating over the string and
keeping a count of the number of
opening and closing parentheses. If the
count of closing parentheses ever
exceeds the count of opening
parentheses, the string is invalid. If
the count of opening and closing
parentheses is equal at the end of the
iteration, the string is valid.

The function ‘match_parens‘
concatenates the two input strings in
two different orders and checks if
either of the resulting strings is
valid using the ‘check‘ function. If
one of the resulting strings is valid,
the function returns ’Yes’, otherwise
it returns ’No’.

### Explanation 2 (pass 0/1)

This program checks if it is possible
to form a string of balanced
parentheses by concatenating two
strings from a given list of strings.
It does this by checking if the sum of
the number of opening parentheses is
equal to the sum of the number of
closing parentheses. If the sum of the
opening parentheses is greater than the
sum of the closing parentheses, then
it is not possible to form a string of
balanced parentheses. The program
returns ’Yes’ if it is possible to form
a string of balanced parentheses and ’
No’ otherwise.

### Explanation 3 (pass 0/1)

This program checks if two strings
concatenated together form a valid
string of balanced parentheses. It does
this by iterating through each
character of the concatenated string

and keeping track of the number of open
and closed parentheses. If the number
of closed parentheses ever exceeds the
number of open parentheses, the string
is invalid. If the number of open and
closed parentheses is equal at the end
of the string, the string is valid. The
function returns ’Yes’ if either the
original concatenated string or the
reversed concatenated string are valid,
and ’No’ otherwise.

### Explanation 4 (pass 1/1,
Coder-reviewer selected, actual pass
20/20)

This Python program takes a list of
two strings as input, and checks if the
two strings can be concatenated in any
order to form a string with balanced
parentheses. If the parentheses are
balanced, the function returns ’Yes’,
otherwise it returns ’No’.

The function ‘check‘ takes a string as
input and checks if the parentheses in
the string are balanced. It does this
by iterating through the string and
keeping track of the number of open and
closed parentheses encountered so far.
If the number of closed parentheses
encountered is greater than the number
of open parentheses encountered, the
function returns False. If the number
of open and closed parentheses is equal
at the end of the string, the function
returns True, otherwise it returns
False.

The function then concatenates the two
input strings in both possible orders
and checks if either of the resulting
strings have balanced parentheses. If
at least one of the strings has
balanced parentheses, the function
returns ’Yes’, otherwise it returns ’No
’.

To rewrite this program in Java, you
would need to replace the ‘List‘ type
with an array of strings, and use a for
loop to iterate through the characters
in the input strings. You would also
need to use the ‘StringBuilder‘ class
to concatenate the strings. Here is an
example Java implementation:

‘‘‘java
public static String matchParens(String
[] lst) {

StringBuilder s1 = new
StringBuilder(lst[0]).append(lst[1]);

StringBuilder s2 = new
StringBuilder(lst[1]).append(lst[0]);

if (check(s1.toString()) || check(
s2.toString())) {

return "Yes";
} else {



return "No";
}

}

public static boolean check(String s) {
int val = 0;
for (int i = 0; i < s.length(); i

++) {
if (s.charAt(i) == ’(’) {

val++;
} else {

val--;
}
if (val < 0) {

return false;
}

}
return val == 0;

}
‘‘‘<|im_end|>

### Explanation 5 (pass 1/1)

This program checks if it is possible
to create a valid string of parentheses
by concatenating two strings from a
list of strings. The function ‘
match_parens‘ takes a list of strings
as input and returns ’Yes’ if it is
possible to create a valid string of
parentheses by concatenating two
strings from the list, and ’No’
otherwise. The function ‘check‘ checks
if a string of parentheses is valid by
counting the number of opening and
closing parentheses. If the number of
closing parentheses is greater than the
number of opening parentheses at any
point, the string is invalid. If the
number of opening and closing
parentheses is equal at the end of the
string, the string is valid. The
function ‘match_parens‘ concatenates
the first two strings in the list in
two different orders and checks if
either of the resulting strings is
valid. If either string is valid, the
function returns ’Yes’, otherwise it
returns ’No’.

L.4 Coder-Reviewer incorrect explanation
selection

You are an helpful AI assistant who
understands all programming languages
and can translate between them at ease.
Can you explain what this Python
program does with a couple of sentences
? The goal with the explanation, is so
that a reader can easily rewrite the
program in Java.

### Python version

from typing import List

def words_string(s: str) -> List[str]:
if not s:

return []

s_list = []

for letter in s:
if letter == ’,’:

s_list.append(’ ’)
else:

s_list.append(letter)

s_list = "".join(s_list)
return s_list.split()

### Explanation 1 (pass 1/1)

This program takes a string as input
and returns a list of words. The input
string is first converted into a list
of characters. If a comma is
encountered in the string, it is
replaced with a space. The list of
characters is then joined back into a
string and split into a list of words
using the default whitespace separator.
If the input string is empty, an empty
list is returned.

### Explanation 2 (pass 1/1)

This program takes a string as input,
and returns a list of words. It does
this by first checking if the string is
empty, and if it is, it returns an
empty list. If the string is not empty,
it creates an empty list called ‘
s_list‘, and then iterates over each
letter in the input string. If the
letter is a comma, it appends a space
to ‘s_list‘, otherwise it appends the
letter itself. After iterating over all
the letters in the input string, it
joins all the elements in ‘s_list‘ into
a single string, and then splits that
string into a list of words using the
default whitespace separator.

### Explanation 3 (pass 0/1,
Coder-reviewer selected, actual pass
0/20)

This Python program takes a string as
input and returns a list of words in
the string. The function ‘words_string‘
first checks if the input string is
empty, and if it is, returns an empty
list. If the input string is not empty,
the function creates an empty list ‘
s_list‘, and iterates over each
character in the input string. If the
character is a comma, the function
appends a space to ‘s_list‘, otherwise
it appends the character. The function
then joins ‘s_list‘ into a single
string, and splits the string into a
list of words using the ‘split()‘
method.



### Explanation 4 (pass 0/1)

This program takes in a string as
input and returns a list of words. The
input string is first split into a list
of characters. If a character is a
comma, it is replaced with a space. The
list of characters is then joined back
into a string and split into a list of
words. If the input string is empty,
an empty list is returned.

### Explanation 5 (pass 0/1)

This function takes a string as input
and returns a list of words. It does
this by first converting all commas in
the string to spaces, and then
splitting the string into a list of
words. If the input string is empty, it
returns an empty list.

M Alternative explanation-selection
setting

In Sec 3.4, we sample 20 explanations for each
problem and generate 1 program from each expla-
nation. By sampling more than 1 programs for
each explanation, one could obtain variances of
the performance estimates (by simulating pass sta-
tus of each program according to the pass rates
of the selected explanations in the train set), but
we find sampling one program to be good enough
at estimating final performance. Plus, given the
same budget, it is also much better to sample 20 X
1 (Table 3) than 4 X 5 to maximize explanations
diversity, and have the potential of sampling the
best explanation. Table 17 shows the result for 4 X
5 experiments.

Comparing results in Table 17 to the main results
in Table 3, we see much less improvements using
heuristics. It is likely that 4 is not a large enough
sample size to obtain the the correct explanation
for some problems, resulting in low coverage and
small improvements from heuristics.

N Program obfuscation

### Original Python version

def make_palindrome(string: str) -> str
:

if not string:
return ’’

beginning_of_suffix = 0

while string[beginning_of_suffix:]
!= string[beginning_of_suffix:][::-1]:

beginning_of_suffix += 1

return string + string[:
beginning_of_suffix][::-1]

### Original Explanation

This function takes a string as input
and returns a palindrome by appending
the reverse of the string’s suffix to
the string. The suffix is the smallest
substring that needs to be appended to
the string to make it a palindrome. If
the input string is empty, the function
returns an empty string.

### Obfuscated Python version

def FUNC_0(VAR_0: str) -> str:
if (not VAR_0):

return ’’
VAR_1 = 0
while (VAR_0[VAR_1:] != VAR_0[VAR_1

:][::(- 1)]):
VAR_1 += 1

return (VAR_0 + VAR_0[:VAR_1][::(-
1)])

### Obfuscated Explanation

This function takes a string as input
and returns a string. If the input
string is empty, it returns an empty
string. Otherwise, it finds the longest
suffix of the input string that is
also a prefix of the reverse of the
input string. It then returns the input
string concatenated with the reverse
of the remaining part of the input
string.

Above is an example of the program
(humaneval_10_make_palindrome)
before and after obfuscation using tools from
(Lachaux et al., 2020). After obfuscation, function
and variable names are all replaced with respective
surface forms, as the functionality of the program
remains unchanged. As the example indicates,
explanation quality does not really decrease. In
fact, explanations often become more detailed just
because there is not a generic way of describing
some operation/term like "palindrome".

To qualitatively examine explanations’ effect
on translating semantically confusing programs,
we translated obfuscated Python programs using
direct, exp, and exp-lbl (Table 18). Similar to
Python-to-X experiment, we generate explanations
with Python-Java, remove Java specific explana-
tions, and re-use explanations across the rest of the



Exp Type src-tgt random len line-e line frag oracle
exp py-jv 82.1 ± 1.4 81.0 ± 1.1 81.1 ± 0.9 81.0 ± 1.0 79.4 ± 1.1 89.9

exp-lbl py-jv 85.7 ± 1.0 86.5 ± 0.9 86.3 ± 0.8 86.2 ± 0.8 85.2 ± 1.0 90.9
exp-lbl-d py-jv 85.9 ± 1.1 86.4 ± 0.6 85.7 ± 0.7 85.9 ± 0.6 85.8 ± 0.7 90.3

Table 17: Explanation selection heuristics performance. We estimate heuristics performance (pass@1, n=1).

jv php sw rkt jv*

direct 76.0 68.4 64.4 31.3 76.0
exp 82.9 77 70.5 41.3 82.9

exp-lbl 82.5 77.5 75.1 39 82.5
max(∆)% 9.1 13.3 16.6 31.9 9.1

obf direct 72.6 60.3 50.9 27.8 72.6
obf exp 78.8 72.7 72.2 34.6 79.6

obf exp-lbl 79.9 73.2 72.7 35.9 79.4
max(∆)% 10.1 21.4 42.8 29.1 9.6

Table 18: Translation performance after obfuscating
source Python programs. Each entry measures pass@1
(n=20). max(∆)% measures maximum improvement
explanations can bring on top of direct translation. jv*
column lists explanation performance before removing
Java specific information.

directions. We find that explanation is robust re-
gardless of surface semantics / readability of source
code. In direct, we see consistent drops in perfor-
mance across all translation directions. However,
explanations still provide consistent improvements
across all four languages. The relative improve-
ments from explanation is even larger in 2 out
of 4 directions for obfuscated programs vs. non-
obfuscated programs.

O Program Retrieval

### Query Python code

def correct_bracketing(brackets: str)
-> bool:

depth = 0
for b in brackets:

if b == ""("":
depth += 1

else:
depth -= 1

if depth < 0:
return False

return depth == 0

### Retrieved Python code]

def correct_bracketing(brackets: str)
-> bool:

depth = 0
for b in brackets:

if b == ""<"":
depth += 1

else:
depth -= 1

if depth < 0:
return False

return depth == 0

### Query Python code]

def fib(n: int) -> int:
if n == 0:

return 0
if n == 1:

return 1
return fib(n - 1) + fib(n - 2)

### Retrieved Python code]

def fibfib(n: int) -> int:
if n == 0:

return 0
if n == 1:

return 0
if n == 2:

return 1
return fibfib(n - 1) + fibfib(n -

2) + fibfib(n - 3)

Above are examples of retrieved Python pro-
grams given query programs. For retrieval, we
tokenize the python program the same way as
TransCoder using ‘tokenize‘ library 12. We then use
BM25Okapi algorithm in rank_bm25 library to
retrieve for the most similar program within the
HumanEval Dataset. Although one can improve re-
trieval similarity by using more sophisticated meth-
ods (dense embeddings such as UniXCoder or syn-
tax aware similarity metrics such as CodeBLEU),
we find BM25 to be cheap and effective at retriev-
ing similar programs for our ablation studies.

P Intermediate step lengths

In Table 19, we report the length of the intermedi-
ate steps (explanation, pivot programs) and their
respective ratio to the source program length. One
could argue, that the increased length in interme-
diate step could lead to more computation in at-
tention, decoding, which leads to improvement in
downstream translation. Here, we note several ob-
servations and leave a detailed investigation as a
direction for future work.

12https://docs.python.org/3/library/tokenize.html



exp exp/src ratio

Python-to-X exp 96 ± 70 1.55 ± 1.04
Python-to-X exp (tgt-specific) 101 ± 69 1.70 ± 1.09
Python-to-X exp (four-shot) 122 ± 43 2.06 ± 0.90

Python-to-X exp (four-shot, tgt-specific) 102 ± 46 1.71 ± 0.79
Python-to-X exp (four-shot, coder-reviewer) 228 ± 153 4.09 ± 3.84

Python-to-X exp-lbl 305 ± 126 5.02 ± 2.02
Python-to-X exp-lbl (four-shot) 195 ± 80 3.08 ± 0.91

Python-to-X exp-lbl-d 316 ± 121 5.26 ± 2.27
Python-to-X exp-lbl-d (four-shot) 275 ± 118 4.45 ± 1.68

Python-to-X exp-lbl-d (four-shot, frag) 305 ± 123 5.16 ± 1.96

Pivot (java) 124 ± 52 2.01 ± 0.75
Pivot (php) 94 ± 52 1.31 ± 0.23
Pivot (rkt) 80 ± 51 1.13 ± 0.32

Table 19: Intermediate step (explanations, pivot program) length and their ratio to source Python program

More detailed explanation is longer However,
as we have noted in Table 1, more detailed ex-
planations do not always lead to more improve-
ments. In high-low-resource directions, more
generic (shorter) explanations often works better.
This is one of the examples where length does not
correlate well with performance.

Target-specific information improves perfor-
mance In zero-shot or four-shot settings (Ta-
ble G.1, G.2), we see slight improvement with tar-
get specific explanations. However, length-wise,
we do not see a pattern between target-specific ex-
planation vs. target-independent explanation in 0
and four-shot setting.

Heuristically selected explanations are longer
Compare Python-to-X exp (four-shot, coder-
reviewer) vs. Python-to-X exp (four-shot)
and Python-to-X exp-lbl-d (four-shot, frag) vs.
Python-to-X exp-lbl-d (four-shot), we can see
both heuristically selected explanations are longer
than their random baselines. However, as seen in
Table 3, len heuristics do not do nearly as well as
winning heuristics. This indicates that length is
important, but is not all the signal in determining
the success in translation.

Formal intermediate steps can be more efficient
In Table 16, we see a similar scale improvements
from using correct pivot programs as intermediate
steps. We conclude from the table that using higher
resource language as pivot works better, and in this
case we do see higher-resource language tend to be
longer than lower-resource languages. It would be

interesting to understand how does the verbosity
of a language correlate to their usefulness as an
intermediate reasoning step.


