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ABSTRACT

Adversarial attacks have threatened modern deep learning systems by crafting
adversarial examples with small perturbations to fool the convolutional neural
networks (CNNs). Ensemble training methods are promising to facilitate better
adversarial robustness by diversifying the vulnerabilities among the sub-models,
simultaneously maintaining comparable accuracy as standard training. Previous
practices also demonstrate that enlarging the ensemble can improve the robust-
ness. However, existing ensemble methods are with poor scalability, owing to
the rapid complexity increase when including more sub-models in the ensemble.
Moreover, it is usually infeasible to train or deploy an ensemble with substantial
sub-models, owing to the tight hardware resource budget and latency requirement.
In this work, we propose Ensemble-in-One (EIO), a simple but effective method
to enlarge the ensemble within a random gated network (RGN). EIO augments
the original model by replacing the parameterized layers with multi-path random
gated blocks (RGBs) to construct an RGN. By diversifying the vulnerability of
the numerous paths through the super-net, it provides high scalability because the
paths within an RGN exponentially increase with the network depth. Our experi-
ments demonstrate that EIO consistently outperforms previous ensemble training
methods with even less computational overhead, simultaneously achieving better
accuracy-robustness trade-offs than adversarial training.

1 INTRODUCTION

With the convolutional neural networks (CNNs) becoming ubiquitous, the security and robustness of
neural networks is attracting increasing interests. Recent studies find that CNN models are inherently
vulnerable to adversarial attacks (Goodfellow et al., 2014), which craft imperceptible perturbations
on the images, referred to as adversarial examples, to mislead the neural network models. Even
without accessing the target model, an adversary can still generate adversarial examples from other
surrogate models to attack the target model by exploiting the adversarial transferability among them.

Such vulnerability of CNN models has spurred extensive researches on improving the robustness
against adversarial attacks. One stream of approaches targets on learning robust features for an indi-
vidual model (Madry et al., 2017; Brendel et al., 2020). Informally, robust features are defined as the
features that are less sensitive to the adversarial perturbations added on the inputs. A representative
approach, referred to as adversarial training (Madry et al., 2017), on-line generates adversarial exam-
ples on which the model minimizes the training loss. As a result, adversarial training encourages the
model to learn the features that are less sensitive to the adversarial input perturbations, thereby alle-
viating the model’s vulnerability. However, such adversarial training methods often have to sacrifice
the clean accuracy for enhanced robustness (Zhang et al., 2019), since they exclude the non-robust
features and become less distinguishable for the examples with high similarity in the feature space.

Besides empowering improved robustness for an individual model, another stream of researches fo-
cuses on forming strong ensembles to improve the robustness (Yang et al., 2020; Bagnall et al., 2017;
Pang et al., 2019; Kariyappa & Qureshi, 2019). Generally speaking, an ensemble is constructed by
aggregating multiple sub-models. Intuitively, an ensemble is promising to facilitate better robust-
ness than an individual model because a successful attack needs to mislead the majority of the
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#sub-model Baseline ADP GAL DVERGE
3 0.0%/1.5% 0.0%/9.6% 39.7%/11.4% 53.2%/40.0%
5 0.0%/2.1% 0.0%/11.8% 32.4%/31.7% 57.2%/48.9%
8 0.0%/3.2% 0.0%/12.0% 22.4%/37.0% 63.6%/57.9%

Table 1: Adversarial accuracy of the ensembles trained by different methods, with 3, 5, and 8 sub-
models respectively (Yang et al., 2020). The number before and after the slash represent black-box
and white-box adversarial accuracy under perturbation strength 0.03 and 0.01 respectively.

sub-models rather than just one. While the robustness of an ensemble highly relies on the diversity
of the sub-models, recent study finds that CNN models trained independently on the same dataset are
with highly-overlapped adversarial subspaces (Tramèr et al., 2017). Therefore, many studies pro-
pose ensemble training methods to diversify the sub-models. For example, DVERGE (Yang et al.,
2020) proposes to distill non-robust features corresponding to each sub-model’s vulnerability, then
isolates the vulnerabilities of the sub-models by mutual learning such that impeding the adversarial
transferability among them.

There is another learned insight that the ensembles composed by more sub-models tend to capture
greater robustness improvement. Table 1 shows the robustness trend of the ensembles trained with
various ensemble training methods. Robustness improvement can be obtained by including more
sub-models within the ensemble. This drives us to further explore whether the trend will continue
when keeping enlarging the ensemble. However, existing ensemble construction methods are with
poor scalability because of the rapidly increasing overhead, especially with mutual learning which
trains the sub-models in a round-robin manner, the complexity will rise at a speed of O(n2).

We propose Ensemble-in-One, a novel approach that can improve the scalability of ensemble train-
ing and introduce randomness mechanism for enhanced generalization, simultaneously obtaining
better robustness and higher efficiency. For a dedicated CNN model, we conduct a Random Gated
Network (RGN) by substituting each parameterized layer with a Random Gated Block (RGB) on
top of the neural architecture. Through this, the network can instantiate numerous sub-models by
controlling the gates in each block. Ensemble-in-One substantially reduces the complexity when
scaling up the ensemble. In summary, the contributions of this work are listed as below:

• Ensemble-in-One is a simple but effective method that learns adversarially robust ensem-
bles within one over-parametrized random gated network. The EIO construction enables
us to employ ensemble learning techniques to learn more robust individual models with
minimal computational overheads and no extra inference overhead.

• Extensive experiments demonstrate the effectiveness of Ensemble-in-One. It outperforms
the previous ensemble training methods with even less computational overhead. Moreover,
EIO also achieves better accuracy-robustness trade-offs than adversarial training method.

2 RELATED WORK

2.1 ADVERSARIAL ATTACKS AND COUNTERMEASURES.

The inherent vulnerability of CNN models poses challenges on the security of deep learning systems.
An adversary can apply an additive perturbation on an original input to generate an adversarial
example that induces wrong prediction in CNN models (Goodfellow et al., 2014). Denoting an
input as x, the goal of adversarial attacks is to find a perturbation δ s.t. xadv = x + δ can mislead
the model, where ||δ||p satisfies the intensity constraint ||δ||p ≤ ε. To formulate that, the adversarial
attack aims at maximizing the loss L for the model with parameters θ on the input-label pair (x, y),
i.e. δ = argmaxδLθ(x + δ, y), under the constraint that the `p norm of the perturbation should not
exceed the bound ε. Usually, we use `∞ norm (Goodfellow et al., 2014; Madry et al., 2017) of the
perturbations to measure the attack’s effectiveness or model’s robustness. An attack that requires
smaller perturbation to successfully deceive the model is regarded to be stronger. Correspondingly,
a defense that enforces the attacks to enlarge perturbation intensity is regarded to be more robust.

Various adversarial attack methods have been investigated to strengthen the attack effectiveness. The
fast gradient sign method (FGSM) (Goodfellow et al., 2014) exploits the gradient descent method
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to generate adversarial examples. As an improvement, many studies further show the attack can be
strengthened through multi-step projected gradient descent (PGD) (Madry et al., 2017) generation,
random-starting strategy, and momentum mechanism (Dong et al., 2017). Then SGM (Wu et al.,
2020) further finds that adding weight to the gradients going through the skip connections can make
the attacks more effective. Other prevalent attack approaches include C&W losses (Carlini & Wag-
ner, 2017b) , M-DI2-FGSM (Xie et al., 2019), etc. These attacks provide strong and effective ways
to generate adversarial examples, rendering a huge threat to real-world deep learning systems.

To improve the robustness of CNN systems, there are also extensive countermeasures for adversarial
attacks. One active research direction targets improving the robustness of individual models. Ad-
versarial training (Madry et al., 2017) optimizes the model on the adversarial examples generated in
every step of the training stage. Therefore, the optimized model will tend to drop non-robust fea-
tures to converge better on the adversarial data. However, adversarial training encourages the model
to fit the adversarial examples, thereby reducing the generalization on the clean data and causing
significant degradation of the clean accuracy.

2.2 TEST-TIME RANDOMNESS FOR ADVERSARIAL DEFENSE

Besides the aforementioned training techniques, there exist studies that introduce test-time random-
ness to improve the robustness. Feinman et. al. (Feinman et al., 2017) utilize the uncertainty measure
in dropout networks to detect adversarial examples. Dhillon et. al. (Dhillon et al., 2018) and Xie et.
al. (Xie et al., 2017) incorporate layer-wise weighted dropout and random input transformations dur-
ing test time to improve the robustness. Test-time randomness is found to be effective in increasing
the required distortion on the model, since test-time randomness makes generating white-box ad-
versarial examples almost as difficult as generating transferable black-box ones (Carlini & Wagner,
2017a). Nevertheless, test-time randomness increases the inference cost and can be circumvented to
some extent with the expectation-over-transformation technique (Athalye et al., 2018).

2.3 ENSEMBLE TRAINING FOR ADVERSARIAL DEFENSE.

Besides improving the robustness of individual models, another recent research direction is to in-
vestigate the robustness of model ensembles in which multiple sub-models work together. The basic
idea is that multiple sub-models can provide diverse decisions. Ensemble methods can combine mul-
tiple weak models to jointly make decisions, thereby assembling as a stronger entirety. However,
it is demonstrated that independent training of multiple models tends to capture similar features,
which would not provide diversities among them (Kariyappa & Qureshi, 2019).

Therefore, several studies propose ensemble training methods to fully diversify the sub-models to
improve the ensemble robustness. For example, Pan et. al. treat the distribution of output predic-
tions as a diversity measurement and they propose an adaptive diversity promoting (ADP) regular-
izer (Pang et al., 2019) to diversify the non-max predictions of sub-models. Sanjay et. al. regard the
gradients w.r.t. the inputs as a discrimination of different models, thus they propose a gradient align-
ment loss (GAL) (Kariyappa & Qureshi, 2019) which takes the cosine similarity of the gradients
as a criterion to train the sub-models. The very recent work DVERGE (Yang et al., 2020) claims
that the similar non-robust features captured by the sub-models cause high adversarial transferability
among them. Therefore, the authors exploit non-robust feature distillation and adopt mutual learn-
ing to diversify and isolate the vulnerabilities among the sub-models, such that the within-ensemble
transferability is highly impeded. However, as mentioned before, such ensemble methods are over-
whelmed by the fast-increasing overhead when scaling up the ensemble. For example, DVERGE
takes 11 hours to train an ensemble with three sub-models while needs approximately 50 hours when
the sub-model count increases to eight. Therefore, a more efficient ensemble construction method
is highly demanded to tackle the scaling problem.

3 ENSEMBLE-IN-ONE

3.1 BASIC MOTIVATION

The conventional way to construct ensembles is to simply aggregate multiple sub-models by aver-
aging their predictions, which is inefficient and hard to scale up. An intuitive way to enhance the
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Figure 1: Normal ensemble training of multiple sub-models (Left) and the proposed ensemble-in-
one training within a random gated network (Right). By selecting the paths along augmented layers,
the ensemble-in-one network can instantiate nL sub-models, where n represents the augmentation
factor of the multi-gated block for each augmented layer and L represents the number of augmented
layers in the network.

scalability of the ensemble construction is to introduce an ensemble for each layer in the network.
As shown in Fig.1, we can augment a dynamic network by augmenting each parameterized layer
with an n-path gated block. Then by selecting the paths along the augmented layer, the dynamic
network can instantiate nL varied sub-models ideally. Taking ResNet-20 as an example, by replac-
ing each convolution layer (ignoring the skip connection branch) with a two-path gated module, the
overall path count will approach 219 = 524288. Such augmentation way provides an approximation
to training a very large ensemble of sub-models. Then through vulnerability diversification mutual
learning, each path tends to capture better robustness. Following this idea, we propose Ensemble-
in-One to further improve the robustness of both individual models and ensembles.

3.2 CONSTRUCTION OF THE RANDOM GATED NETWORK

Denote a candidate neural network as N (o1, o2, ..., om), where oi represents an operator in the
network. To transform the original network into a random gated network (RGN), we first extract the
neural architecture to obtain the connection topology and layer types. On top of that, we replace each
parameterized layer (mainly convolutional layer, optionally followed by a batch normalization layer)
with a random gated block (RGB). As shown in Fig. 2, each RGB simply repeats the original layer
by n times, and leverages binary gates with uniform probabilities to control the open or mutation
of corresponding sub-layers. These repeated sub-layers are with different weight parameters. We
denote the RGN as N (d1, d2, ..., dm), where di = (oi1, ..., oin). Let gi be the gate information in
the ith RGB, then a specific path derived from the RGN can be expressed as P = (g1 · d1, g2 ·
d2, ..., gm · dm).

For each RGB, when performing the computation, only one of the n gates is opened at a time, and
the others will be temporarily muted. Thus by, only one path of activation is active in memory during
training, which reduces the memory occupation of training an RGN to the same level of training an
individual model. Moreover, to ensure that all paths can be equally sampled and trained, each gate
in a RGB is chosen with identical probability, i.e. 1/n if each RGB consists of n sub-operators.
Therefore, the binary gate function can be expressed as:

gi =


[1, 0, ..., 0] with probability 1/n,

[0, 1, ..., 0] with probability 1/n,

...
[0, 0, ..., 1] with probability 1/n.

(1)

An RGN is analogous to the super network in parameter-sharing neural architecture search, and the
forward process of an RGN is similar to evaluating a sub-architecture (Pham et al., 2018; Cai et al.,
2018). Compared to conventional ensemble training methods, our method is easier to scale up the
ensemble. It only incurs n×memory occupation for the weight storage, while still keeping the same
memory requirement for activation as an individual model.
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Figure 2: The construction of random gated network based on random gated blocks. The forward
propagation will select one path to allow the input pass. Correspondingly, the gradients will also
propagate backward along the same path.

3.3 LEARNING ENSEMBLE IN ONE

The goal of learning ensemble-in-one is to encourage the vulnerabilities diversity of all the paths
within the RGN by mutually learning from each other. Let Pi and Pj be two different paths, where
we define two paths as different when at least one of their gates is different. To diversify the vulner-
abilities, we need first distill the non-robust features of the paths so that the optimization process can
isolate them. We adopt the same non-robust feature distillation strategy as previous work (Ilyas et al.,
2019; Yang et al., 2020). Consider two randomly-sampled independent input-label pairs (xt, yt) and
(xs, ys) from the training dataset, the distilled feature of xt corresponding to xs by the lth layer of
path Pi can be achieved by:

x′Pl
i
(xt, xs) = argminz||f lPi

(z)− f lPi
(xt)||2, s.t. ||z − xs||∞ ≤ εd. (2)

Such feature distillation aims to construct a sample x′Pl
i

by adding perturbations on xs so that the
response in lth layer of Pi of x′Pl

i
is similar as that of xt, while the two inputs xt and xs are

completely different and independent. This exposes the vulnerability of path Pi on classifying xs.
Therefore, for another different path Pj , it can learn on the distilled data to correctly classify them
to circumvent the vulnerability. The optimization objective for path Pj is to minimize:

E(xt,yt),(xs,ys),lLfPj
(x′Pl

i
(xt, xs), ys). (3)

As it is desired that each path can learn from the vulnerabilities of all the other paths, the objective
of training the ensemble-in-one RGN is to minimize:∑

∀Pj∈N

E(xt,yt),(xs,ys),l

∑
∀Pi∈N ,i6=j

LfPj
(x′Pl

i
(xt, xs), ys), (4)

where N is the set of all paths in the RGN. While it is obviously impossible to involve all the paths
in a training iteration, we randomly sample a certain number of paths by stochastically set the binary
gates according to Eq.1. We denote the number of paths sampled in each iteration as p. Then the
selected paths can temporarily combine as a subset of the RGN, referred to as S. The paths in
the set S keep changing throughout the whole training process, such that all paths will have equal
opportunities to be trained.

The training process of the RGN is summarized by the pseudo-code in Algorithm 1. Before starting
vulnerability diversification training, we pre-train the RGN based on standard training settings to
help the RGN obtain basic capabilities. The process is simple, where a random path will be sampled
in each iteration and trained on clean data. Then for each batched data, the process of vulnerability
diversification contains three basic steps. First, randomly sample p paths to be involved in the
iteration. Note that the sampled paths should be varied, i.e. if the distilling layer is set to l, for
any Pi, Pj in S, there must be at least one different gate among the top l gates, i.e. ∃k ∈ [1, l],
s.t. Pi[k] 6= Pj [k]. Second, distilling the vulnerable features of the sampled paths according to
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Algorithm 1 Training process for learning Ensemble-in-One
Require: Path samples per ietration p
Require: Random Gated NetworkN with L parameterized layers
Require: Pre-training epoch Ew, training epoch E, and data batch Bd

Require: Optimization loss L, learning rate lr
Ensure: Trained Ensemble-in-One model
1: # pre-training ofN
2: for e = 1, 2, ..., Ew do
3: for b = 1, 2, ..., Bd do
4: Random Sample Path Pi fromN
5: Train Pi in batched data
6: end for
7: end for
8: # learning vulnerability diversity forN
9: for e = 1, 2, ..., E) do

10: for b = 1, 2, ..., Bd) do
11: Random sample l ∈ [1, L]
12: # randomly sample p paths
13: S=[P1, P2, ..., Pp], s.t. ∀i, j,∃k ∈ [1, l], s.t. Pi[k] 6= Pj [k]
14: Get data (Xt, Yt), (Xs, Ys)←D
15: # Get distilled data
16: for i = 1, 2, ..., p do
17: X ′

i = x′
Pl

i
(Xt, Xs)

18: end for
19: ∇N ← 0
20: for i = 1, 2, ..., p do
21: ∇Pi = ∇(

∑
j 6=i LfPi

(fPi(X
′
j), Ys))

22: ∇N = ∇N +∇Pi

23: end for
24: N = N − lr ∗ ∇N
25: end for
26: end for

Eq. 2. The distillation process is the same as proposed in DVERGE, by applying a PGD scheme
for approximating the optimal perturbations. Third, mutually train each path with the distilled data
from the other paths in a round-robin manner. Because the paths unavoidably share a proportion of
weights owing to the weight sharing mechanism in super-net, the gradients of the weights will not
be updated until all sampled paths are included.

3.4 MODEL DERIVATION AND DEPLOYMENT

Once the training of RGN is finished, we can then derive and deploy the model in two ways. One
way is to deploy the entire RGN, then in inference stage, the gates throughout the network will be
randomly selected to process an input. The advantage is that the computation is randomized, which
may beneficial for improving the robustness under white-box attacks, because the transferability
among different paths was impeded during diversity training. However, the disadvantage is that the
accuracy is unstable owing to the dynamic choice of inference path, where the fluctuation reaches
1-2 percentage.

Another way is to derive individual models from the RGN. By sampling a random path and elim-
inating the other redundant modules, an individual model can be rolled out. We can also sample
multiple paths and derive multiple models to combine as an ensemble. Deploying models in this
way ensures the stability of the prediction as the randomness is eliminated. In addition, the derived
models can be slightly finetuned with small learning rate for a few epochs to compensate for the
under-convergence, as the training process of RGN cannot fully train all paths as the probability
of each specific path being sampled is relatively low. In our implementation, we exploit the latter
method to derive an individual model for deployment.
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Figure 3: Investigation on the hyper-parameters involved in the Ensemble-in-One construction and
training. All these experiments are implemented on ResNet-20 over CIFAR-10 dataset. Left: The
black-box adversarial accuracy under different sample count p per iteration; Middle: The black-box
adversarial accuracy under different distillation perturbation εd; and Right: the adversarial accuracy
under different augmentation factor n.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT SETTINGS

Benchmark. The experiments are constructed on the ResNet-20 (He et al., 2016) and VGG-16
networks with the CIFAR dataset (Krizhevsky et al., 2009). Specifically, we construct the ResNet-
20 and VGG-16 based RGNs by substituting each convolution layer to a n-path RGB (in default
n = 2). Overall, there are 19 RGBs (containing 19 convolution layers in the straight-through branch)
for ResNet-20 and 14 RGBs for VGG-16 (containing the 14 convolution layers). To evaluate the
effectiveness of our method, we compare Ensemble-in-One with multiple counterparts, including the
Baseline which trains the models in a standard way and three previous ensemble training methods:
ADP (Pang et al., 2019), GAL (Kariyappa & Qureshi, 2019), and DVERGE (Yang et al., 2020).
Meanwhile, we also add the adversarial training (AdvT) method into the comparison.

Training Details. The trained ensemble models of Baseline, ADP, GAL, and DVERGE are referred
to the implementation which is publicly released in (Yang et al., 2020) 1. We train the Ensemble-in-
One networks for 200 epochs using SGD with momentum 0.9 and weight decay 0.0001. The initial
learning rate is 0.1, and decayed by 10x at the 100-th and the 150-th epochs respectively. When
deriving the individual models, we fine-tune the derived models for 0-20 epochs using SGD with
learning rate 0.001, momentum 0.9 and weight decay 0.0001. Note that the fine-tuning process is
optional and can adjust the epochs for a dedicated model. In default, for an RGN training, we sample
3 paths to construct temporary sub-ensemble per iteration. The augmentation factor n for each RGB
is set to 2, and the PGD-based perturbation strength εd for feature distillation is set to 0.07 with 10
iterative steps and each step size of εd/10.

Attack Models. We categorize the adversarial attacks as black-box transfer attacks and white-box
attacks. The white-box attack assumes the adversary has full knowledge of the model parameters
and architectures, and the black-box attack assumes the adversary cannot access the target model
and can only generate adversarial examples from surrogate models to launch the attacks. For fair
comparison, we adopt exactly the same attack methodologies and the same surrogate models as
DVERGE to evaluate the robustness. The detailed adversarial settings can be found in Appendix
A.1. We believe the attacks are powerful and can identify the robustness of the various models.

4.2 ROBUSTNESS EVALUATION

Hyper-parameter Exploration. Recall that three important hyper-parameters are involved in the
training procedure. One is the count of sampled paths p to participate in each training iteration,
one is the strength of feature distillation perturbation εd as illustrated in Eq.2, and the other is the
augmentation factor n for constructing the RGN, i.e. how many times will an operator be repeated

1https://github.com/zjysteven/DVERGE
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Figure 4: Contrasting the robustness of Ensemble-in-One with previous ensemble training meth-
ods. Left: adversarial accuracy under black-box transfer attack; and right: adversarial accuracy
under white-box attack. The number after the slash stands for the number of sub-models within
the ensemble. The evaluations include ResNet-20 and VGG-16 over the CIFAR-10 dataset. The
distillation perturbation strength of VGG-16-based EIO is set as εd = 0.03.

to build a RGB. We make experiments to investigate the impact of these hyper-parameters on the
clean accuracy and the adversarial robustness.

Fig.3 (Left) shows the curves of black-box adversarial accuracy under different sampled path count p
per training iteration. As is observed, when the sampled paths increase, the robustness of the derived
individual model also improves. The underlying reason is that more samples of paths participating
in each iteration allows more paths to be mutually trained, thereby each path is expected to learn
from more diverse vulnerabilities. However, the clean accuracy drops with the increasing of path
sample count, because a single operator has to adapt to diverse paths simultaneously. Moreover, the
training time will also increase as the training complexity satisfies O(p2).
Fig.3 (Middle) shows the curves of black-box adversarial accuracy under different feature distilla-
tion εd. We find similar conclusions as presented in DVERGE. A larger εd can push the distilled
data x′Pl

i
(xt, xs) share more similar internal representation as xt. While the objective is to reduce

the loss of Pj on classifying x′Pl
i
, the larger loss will boost the effectiveness of learning the vulnera-

bility, thereby achieving better robustness. However, we also find the clean accuracy drops with the
increase of εd. And there exists a switching point where it will stop obtaining robustness improve-
ment from continually increasing εd. The experimental results suggest εd = 0.07 to achieve higher
robustness and clean accuracy simultaneously.

Fig.3 (Right) shows the comparison of adversarial accuracy when applying different augmentation
factor n for constructing the RGN. Observe that increasing the factor n brings no benefit on either
the clean accuracy or adversarial accuracy. It stands to reason that augmenting 2× operators for
each RGB has already provided sufficient candidate paths. Moreover, increasing the n leads to
more severe under-convergence of training because each path has a decreased probability of being
sampled. Therefore, we suggest the augmentation factor as n=2 for each convolution layer.

Comparison with Ensemble Methods. Fig.4 shows the overall adversarial accuracy of the mod-
els trained by different methods with a wide range of attack perturbation strength. ResNet-20 and
VGG-16 are selected as the basic network to construct the ensembles and the EIO super-networks.
The results show that through our Ensemble-in-One method, an individual model derived from the
RGN can significantly outperform the heavy ensembles trained by previous ensemble training meth-

8



Under review as a conference paper at ICLR 2022

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Perturbation Strength

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

AdvT, =0.031
AdvT, =0.020
AdvT, =0.010
AdvT, =0.005
EIO, ft-epoch=5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Perturbation Strength

0

20

40

60

80

100
AdvT, =0.031
AdvT, =0.020
AdvT, =0.010
AdvT, =0.005
EIO, ft-epoch=5

Black-box Attack White-box Attack

Figure 5: Contrasting the robustness of Ensemble-in-One and AdvT with different adversarial per-
turbation settings. The experiments are implemented on ResNet-20 over CIFAR-10. The “ft-epoch”
means the fine-tuning epoch of the derived model. When aligning the clean accuracy, EIO achieves
better robustness than AdvT.

ods with higher adversarial accuracy under both black-box and white-box attacks, simultaneously
achieving comparable clean accuracy. More experiments and analysis can refer to the Appendix A.2,
A.3, and A.4. These results demonstrate that we successfully train an ensemble within one RGN
network and improves the robustness of an individual model to outperform the ensembles such that
the deployment overhead can be substantially reduced.

Comparison with Adversarial Training. AdvT has been demonstrated as a promising approach
on enhancing the robustness. Prior work attributes the enhancement to the exclusion of non-robust
features during AdvT. However, these non-robust features might be useful to the classification ac-
curacy, resulting in trade-offs between the clean accuracy and the robustness. One can adjust the
perturbation strength in the AdvT to acquire different combinations of clean accuracy and adver-
sarial robustness, as shown in Fig.5. It can be figured out that EIO significantly outperforms AdvT
when aligning their clean accuracy (AdvT w/ ε = 0.005), which suggests that EIO learns more
useful, robust features while excluding more useless, non-robust features than AdvT.

5 DISCUSSION & FUTURE WORK

There are also several points that are worthy further exploration while we leave to future work.
First, current implementation of augmenting the RGN is simple, by repeating the convolution layers
for multiple times. Nevertheless, as observed in Fig.3 (Right), enlarging the augmentation factor
brings no benefit on improving the robustness. Hence, there might be better ways of constructing
RGNs that can compose stronger randomized network, e.g. subtracting some of the unnecessary
RGBs or augmenting by diverse operators instead of simply repeating. Second, although black-
box attacks are more prevalent in real world, defending against white-box attacks is still in demand
because recent research warns the high risks of exposing the private models to the adversary (Hua
et al., 2018; Hu et al., 2020). Randomized multi-path network can provide promising solutions to
alleviating the white-box threats. If the adversarial transferability among the different paths can
be impeded, the adversarial example generated from one path will be ineffective for another path.
Hence, it will make the white-box attacks as difficult as black-box transfer attacks. We believe it is
a valuable direction to explore defensive method based on randomized multi-path network.

6 CONCLUSIONS

In this work, we propose Ensemble-in-One, a novel approach that constructs random gated network
(RGN) and learns adversarially robust ensembles within the network. The method is inherently
scalable, which can ideally instantiate numerous sub-models by sampling different paths within
the RGN. By diversifying the vulnerabilities of different paths, the Ensemble-in-One method can
efficiently obtain models with higher robustness, simultaneously reducing the overhead of model
training and deployment. The individual model derived from the RGN shows much better robustness
than previous ensemble training methods and achieves better trade-offs than adversarial training.
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Figure 6: Contrasting the robustness of Ensemble-in-One with other methods on CIFAR-100 dataset.
Because ensemble training brings significant clean accuracy enhancement on CIFAR-100 dataset
(e.g. individual baseline 67.2% v.s. 3-sub-model ensemble baseline: 72.6%), we randomly sample
an individual model from the ensemble for fair comparison. The number after the first slash repre-
sents the number of sub-models contained in the ensemble, and the number after the second slash
represents that an individual model is sampled from each ensemble for evaluation. The ADP method
is excluded because its training on CIFAR-100 fails to converge in our reproduction.

A APPENDIX

In this appendix, we provide some additional results to further discuss the advantages and disadvan-
tages of our Ensemble-in-One method and other previous methods.

A.1 ADVERSARIAL SETTINGS

We adopt strong attack methodologies and settings for evaluating the robustness of CNN models.
For black-box transfer attacks, the involved attack methods include: (1) PGD with momentum and
with three random starts (Madry et al., 2017); (2) M-DI2-FGSM (Xie et al., 2019); and (3) SGM
(Wu et al., 2020). The attacks are with different perturbation strength and the iterative steps are
set to 100 with the step size of ε/5. Besides the cross-entropy loss, we also apply the C&W loss
to incorporate with the attacks. Therefore, there will be 3 (surrogate models) × 5 (attack methods,
PGD with three random starts, M-DI2-FGSM, and SGM)× 2 (losses) = 30 adversarial versions. For
white-box attacks, we apply 50-step PGD with the step size of ε/5 with five random starts. Both
the black-box and white-box adversarial accuracy is reported in an all-or-nothing fashion: a sample
is judged to be correctly classified only if its 30 (for black-box attack) or 5 (for white-box attack)
adversarial versions are all corrected classified by the model. In default, we randomly sample 1000
instances from the test dataset for evaluation.

A.2 CIFAR-100 EVALUATION

We further evaluate the methods on CIFAR-100 dataset which utilizes the ResNet-20 as a basic
network. We apply the default hyper-parameter configurations for training the EIO network. The
black-box setting utilizes 10 adversarial versions (2 surrogate models × 5 random starts applied
in PGD) for transfer attacking the target model, and the white-box attack keeps the same setting
as described before. As shown in Fig.6, EIO still significantly outperforms the other ensemble
training methods whether under black-box or white-box attack scenarios. AdvT shows much better
robustness while sacrificing significant clean accuracy. Overall, the results again suggest that EIO is
a more effective approach for improving the adversarial robustness.

A.3 TRAINING CURVE AND COST OF ENSEMBLE-IN-ONE

We investigate the training convergence of EIO. The training curves of baseline and EIO training
are shown in Fig.7 (Left). Two training stages are involved in EIO training. One is the diversity
training of the RGN, and the other is the fine-tuning of the extracted single path. EIO slightly
deteriorates the convergence effectiveness than baseline training, while still obtaining competitive
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Figure 7: The training curves and time cost of Ensemble-in-One. The experiments are made on
ResNet-20-based EIO training, with default hyper-parameters. Left: The clean validation accuracy
throughout the training process. The fine-tuning epoch is extended to 40 epoch. As is observed, 20
epochs are adequate to help the derived model to fully converge. Right: The training time cost of
Baseline, AdvT, DVERGE, and EIO, which are evaluated on an NVIDIA GeForce RTX 2080 Ti.
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Figure 8: Investigation on the stability of derived models from the RGN. The experiments are made
on CIFAR-10 dataset based on ResNet-20 and VGG-16 respectively. Black-box adversarial accuracy
is evaluated.

clean accuracy after a slight fine-tuning. We also summarize the training time cost of different
methods in Fig.7 (Right). Because we use a PGD-based data distillation for training and sample 3
paths per training iteration, the training time cost of an EIO network is approximately 2.5× than
AdvT. While the training time is substantially reduced compared to the DVERGE when scaling
up the ensemble. As for the GPU memory and FLOPS cost, training EIO is closely equivalent to
training one individual model because by controlling the gating, only one sub-model is involved at
each training step. As is desired, our approach significantly reducing the training cost (both time and
hardware cost), simultaneously obtaining better robustness than conventional ensemble training.

A.4 MODEL DERIVATION STABILITY

In the deployment phase, an individual model (or several models) will be derived from the random
gated network (RGN) and fine-tuned for a few epochs. Because the model is derived by randomly
sampling a path in the RGN, it is important to ensure the stability of derived models. Hence, we
randomly derive eight sub-models from a same RGN and test their performance and robustness. As
can be observed from Fig.8, the sampled eight sub-models demonstrate almost the same robustness
with very slight fluctuations on the adversarial accuracy against the black-box transfer attacks. Thus,
the results can be seen as an evidence that the derivation is a stable process and the randomness
would not bring high variance on the derived models.
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