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Abstract

GNNs rely on the exchange of messages to dis-
tribute information along the edges of the graph.
This approach makes the efficiency of architec-
tures highly dependent on the specific structure of
the input graph. Certain graph topologies lead to
inefficient information propagation, resulting in
a phenomenon known as over-squashing. While
the majority of existing methods address over-
squashing by rewiring the input graph, our novel
approach involves constructing a graph directly
from features using Delaunay Triangulation. We
posit that the topological properties of the result-
ing graph prove advantageous for mitigating over-
smoothing and over-squashing. Our extensive ex-
perimentation demonstrates that our method con-
sistently outperforms established graph rewiring
methods.

1. Introduction
The proliferation of graph-structured data has fueled the
creation of specialized machine learning algorithms finely
tuned to handle this distinctive data format. Among these,
graph neural networks (GNNs) have emerged as the stan-
dard approach for effective learning with such data. GNNs
applied to graph structures play a crucial role in address-
ing various tasks associated with graphs (Goller & Kuchler,
1996; Gori et al., 2005; Scarselli et al., 2008; Bruna et al.,
2014). These architectures find applications in diverse fields
such as chemistry, information retrieval, social network anal-
ysis, knowledge graphs (Zhou et al., 2020; Wu et al., 2020).

GNNs employ an iterative approach, updating node repre-
sentations through the local aggregation of information from
neighboring nodes, known as the message-passing paradigm
(Gilmer et al., 2017).

1LIPN, Universite Sorbonne Nord. Correspondence to: Hugo
Attali <attali@lipn.univ-paris13.fr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

However, a significant limitation arises where adjacent
nodes exhibit dissimilar labels (heterophilic case), classical
MPNNs may experience diminished performance (Zheng
et al., 2022). This limitation, rooted in one-hop message
propagation, necessitates the stacking of additional layers
to capture non-local interactions. Unfortunately, this exces-
sive message passing tends to make node features more and
more similar, leading to oversmoothing.

Another well-explored issue is the phenomenon of over-
squashing (Alon & Yahav, 2021), which occurs when an
exponentially expanding quantity of information is com-
pressed into a fixed-size vector. These phenomena can be
identified through local structural properties of the graph,
such as discrete Ricci curvature (Topping et al., 2022).

Previous studies have demonstrated a correlation between
the presence of bottlenecks in graphs and over-squashing,
causing a significant loss of information that can markedly
decrease the effectiveness of message passing (Alon & Ya-
hav, 2021) (Topping et al., 2022) .

Many existing methods mitigate over-squashing by rewiring
the input graph to minimize structural bottlenecks. To
achieve this graph rewiring, most methods rely on struc-
tural graph features, which can be either local, such as edge
curvature (Topping et al., 2022) (Nguyen et al., 2023), or
more global, such as resistance (Black et al., 2023). While
these methods yield promising results, their primary limita-
tion lies in the necessity to analyse the input graph structure
using methods that may not readily scale with the increas-
ing number of nodes. Besides, the choice of the hyperpa-
rameters often relies heavily on the characteristics of the
dataset. Additionally, the existing rewiring methods modify
the original graph, but in numerous applications such as
document classification (Yao et al., 2019; Guille & Attali,
2022), physics simulation (Sanchez-Gonzalez et al., 2020),
and entity representation for natural language processing
(Luan et al., 2019) , only the features are available, while
the graph structure is not accessible. This constraint ham-
pers the effectiveness and the applicability of all structural
rewiring methods.
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Table 1: Comparison of various reviewing methods

Models Input Graphs Type of Rewiring Complexity Hyperparameters
DIGL Required Structural Rewiring O(N) Grid-search
SDRF Required Structural Rewiring O(|E|d2max) Grid-search
FOSR Required Structural Rewiring O(N2) Grid-search
BORF Required Structural Rewiring O(|E|d3max) Grid-search
GTR Required Structural Rewiring O(|E| poly logN +N2 poly logN) Grid-search
DR (Ours) Not necessary Feature Rewiring O(N log(N)) Heuristic

Reproducibility. Our code to reproduce the experiments
of the paper is available. 1

Main Contributions In this paper, we present Delaunay
Rewiring (DR), a novel rewiring method that incorporates
node features with reasonable complexity to alleviate both
over-squashing and over-smoothing issues :

• Instead, of altering the existing graph structure, our ap-
proach involves reconstructing the graph by leveraging
features extracted through Delaunay triangulation.

• We demonstrate that the structural properties of the
graph contribute significantly to the efficient propa-
gation of information to mitigate oversmoothing and
over-squashing.

• We carry out an extensive evaluation illustrating the
effectiveness of our method not only on heterophilic
graphs but also on homophilic ones.

2. Preliminaires
We start by introducing notations used throughout this paper.
A graph is written as a tuple G = (V, E) where V and E
denote the set of nodes and edges, respectively. We note
the numbers of nodes N = |V|, and an edge connecting
nodes i (from) and j (to) is denoted by eij ∈ E . In this
work, we focus on undirected graphs, i.e., if eij ∈ E , then
eji ∈ E . We define N ×N adjacency matrix A as Ai,j = 1
if (i, j) ∈ E and zero otherwise. In addition, we let D be
the diagonal matrix withDii = di, the degree of node i, and
denote dmax and dmin as the maximal and minimal degrees.

3. MPPNs
Graph Neural Networks operate on the Message Passing
Neural Networks (MPNNs) paradigm. This paradigm in-
volves iteratively applying AGGREGATE and UPDATE
functions to enhance node representations. The process
updates the representations by utilizing the information con-
tained in the neighbors.

1Code available from: https://github.com/
Hugo-Attali/Delaunay-Rewiring
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Where ψ is the message function , depends on hi, hj and
possibly the edge weight eji, ⊕ represents a permutation
invariant aggregation operation and ϕ the update function,
final transformation to obtain new embedding after aggre-
gating messages.

Multiple approaches exist for Message Passing Neural Net-
works (MPPNs), each employing distinct strategies:

• Fixed Graph Approach: This method utilizes a static
graph structure for message passing, exemplified by
Graph Convolutional Network (GCN) (Kipf & Welling,
2017) or Graph Isomorphism Network (Xu et al., 2018).
Here, the connections between nodes remain constant
throughout the network’s operation.

• Feature Reweighting Edges Approach : In this ap-
proach, exemplified by Graph Attention Networks
(GAT) (Veličković et al., 2018) and its variants (Brody
et al., 2021), edges are dynamically reweighted during
message passing based on the relevance of features.
This enables the network to adaptively focus on spe-
cific edges, enhancing its ability to capture intricate
relationships within the graph.

Despite their widespread use, Graph Neural Networks
(GNNs) have been shown to encounter various challenges,
particularly in heterophilic environments where neighbor-
ing nodes tend to have different labels (Zhu et al., 2020;
Platonov et al., 2023). Additionally, studies have high-
lighted the difficulty GNNs face in effectively modeling
long-range interactions (Alon & Yahav, 2021). The primary
limitation of MPPNs lies in their local operation. To ex-
change information between two nodes at distance k, at
least k layers must be stacked.

However, increasing the number of layers gives rise to
two primary flaws in MPPNs: oversmoothing and over-
squashing.
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3.1. Oversmoothing

As the number of layers increases, the message passing be-
comes excessively intensive. In such instances, with each
layer, the features of the nodes gradually become more sim-
ilar. This phenomenon results in a decline in performance,
as reported in (Oono & Suzuki, 2020) and (Cai & Wang,
2020a). A proficient strategy to mitigate oversmoothing
involves incorporating residual connections in deep net-
works. Other approaches lie in the idea of sparsifying the
graph (Cai & Wang, 2020b; Chen et al., 2020; Rong et al.,
2019). More specifically,some subgraph structures such as
large cliques may increase the effect of oversmoothing. So,
some approaches aim to specifically sparsify such structures
(Nguyen et al., 2023).

3.2. Over-squashing

Long-range tasks necessitate information propagation across
multiple layers. Node representations are aggregated with
others at each stage before being forwarded to the next node.
However, the fixed size of node feature vectors leads to
a rapid depletion of their representational capacity, espe-
cially when accommodating previously integrated informa-
tion. This results in over-squashing when an exponentially
expanding amount of information is compressed into a fixed-
size vector, as discussed by (Alon & Yahav, 2021)

In such scenarios, local information spreading alone proves
insufficient. To address this challenge, GNNs must incor-
porate additional global graph features during the repre-
sentation learning process (Gilmer et al., 2017). Another
effective strategy involves rewiring the input graph to en-
hance connectivity and to alleviate structural bottlenecks.
This adjustment allows for a more effective and balanced
information flow within the network.

Recent studies emphasize the significance of local structural
properties, such as edge curvature (Topping et al., 2022;
Nguyen et al., 2023), in facilitating knowledge dissemina-
tion throughout the graph.

3.3. Homophily

The homophily of a graph plays a crucial role in determin-
ing the efficiency of architectures for node classification
tasks. Various homophily measures have been discussed in
the literature, as highlighted by (Pei et al., 2020; Zhu et al.,
2020; Lim et al., 2021), and (Platonov et al., 2022). Among
these measures, two commonly employed ones are node
homophily, as described by (Pei et al., 2020), which calcu-
lates the average proportion of neighbors sharing the same
class label for each node, and edge homophily (Zhu et al.,
2020), representing the fraction of edges connecting nodes
of the same class. For graphs exhibiting low homophily, i.e.,
where neighboring nodes tend to have different labels, it be-

comes crucial to seek information over longer distances. In
this case graph structures with bottlenecks pose the greatest
challenges to MPPNS in such scenarios.

3.4. Curvature on graphs

By representing a manifold as a graph, leveraging the cur-
vature of graph edges becomes a valuable method for cap-
turing local graph information. Positive curvature edges
establish connections between nodes belonging to the same
community, while negative curvature edges connect nodes
from different communities. More broadly, discrete graph
curvature characterizes the structural connectivity between
the neighbors of two nodes. The pioneering works of (For-
man, 2003) and (Ollivier, 2007) introduced the concept of
measuring discrete graph curvature. Numerous studies have
highlighted the efficacy of edge curvature in various graph-
related tasks. Notably, (Jost & Liu, 2014; Ni et al., 2019;
Sia et al., 2019) leverage Ollivier curvature for community
detection. Furthermore, in a different approach, (Ye et al.,
2019) proposed the Curvature Graph Neural architecture,
which calculates an attention mechanism based on Ollivier
curvature. They illustrate the advantages of such an architec-
ture, particularly in the context of node classification tasks.
Many edge curvature measurements have been studied:

Augmented Forman Curvature The curvature measure
proposed by (Samal et al., 2018) proposes to extend For-
man’s curvature taking into account the triangles in the
graph to make it more expressive. For an undirected graph
the curvature cij of an edge eij is computed as follows:

cij = 4− di − dj + 3m (2)

where m is the number of triangles that contain eij .

Balanced Forman Curvature The curvature measure pro-
posed by (Topping et al., 2022) allows to consider cycles of
size 4:

cij =
2

di
+

2

dj
− 2 + 2

m

max {di, dj}
+

m

min {di, dj}
+

(Γmax)
−1

max {di, dj}
(γi + γj)

(3)

where Γmax(i, j) is the maximal number of 4-cycles based
at eij and γi is the number of 4-cycles based at eij without
diagonals inside.

Recent research has unveiled a connection between edge
curvature and phenomena like oversmoothing and over-
squashing. These phenomena are intricately tied to the
underlying graph structure.
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Original Graph Feature Space Delauney Graph

Delaunay 
Triangulation

Figure 1: Delaunay graph construction process, in red the edges with positive curvature, in blue with negative curvature

The study conducted by (Nguyen et al., 2023) sheds light
on the origin of oversmoothing, attributing it to regions
of the graph with highly positively curved edges. On the
other hand, (Topping et al., 2022) demonstrates that strongly
negatively curved edges play a pivotal role in creating bot-
tlenecks, which in turn lead to the over-squashing phe-
nomenon.

3.5. Rewiring Methods

As the majority of GNNs are based on the message passing
paradigm, the structural properties of graphs play a crucial
role. Consequently, numerous methods have focused on
understanding how the quality of message passing is influ-
enced by the topology of the graph and how to quantify it.
To mitigate this phenomenon, modifying the input graph is
a commonly used method.

(Alon & Yahav, 2021), pioneers in addressing the issue of
GNN over-squashing, advocate modifying the last layer of
the GNN to establish connections among all nodes.

In a complementary study, (Topping et al., 2022) identifies
highly negatively curved edges as indicative of the bottle-
neck phenomenon, disrupting effective message passing.
They introduce a stochastic discrete Ricci Flow (SDRF)
rewiring approach, aimed at enhancing the balanced For-
man curvature of negatively curved edges by strategically
adding and removing edges.

(Karhadkar et al., 2023) presents the FOSR algorithm, which
systematically adds edges at each step to maximize the
spectral gap. To mitigate the computational cost associated
with calculating the spectral gap for every edge addition,
FOSR employs a first-order spectral gap approximation
grounded in matrix perturbation theory.

Examining the connection between positive edge curvature
and oversmoothing, (Nguyen et al., 2023) underscore the
need for rewiring methods. Their proposed approach in-
volves removing overly positively curved edges to reduce
oversmoothing while simultaneously eliminating exces-
sively negatively curved edges to alleviate over-squashing.

In a distinct study, (Black et al., 2023) explores the link
between Resistance and over-squashing. They demonstrate
that Resistance considers a more global aspect of the graph
structure compared to curvature. Their findings highlight
that edges with high Effective Resistance contribute to over-
squashing. To address this, they propose a rewiring method
that strategically adds edges to the graph to minimize total
resistance.

Without explicitly attenuating against over-squashing
(Klicpera et al., 2019) aims to enhance connectivity be-
tween nodes with short diffusion by adding edges based on
the PageRank algorithm.

4. Delaunay rewiring
While the majority of the rewiring methods modify the orig-
inal graph structure, we propose a complete rebuild of the
graph, based only on the features of the nodes, ignoring the
edges of the original graph. We choose to introduce the new
edges of the rewired graph by applying a Delaunay trian-
gulation on the node features, as shown in Figure 1. This
kind of triangulation ensures some positive and desirable
structural properties: through the analysis of the curvature
of the new graph, we demonstrate that this rewiring exhibits
good topological properties and effectively mitigates the
phenomena of over-squashing and bottleneck.

4.1. Delaunay Triangulation

Definition 1 A Delaunay triangulation, denoted as
DT (P ), for a set P of points in the d-dimensional Eu-
clidean space, is a triangulation where no point in P resides
within the circum-hypersphere of any d-simplex in DT (P ).

In two dimensions, Delaunay triangulations maximize the
angles of triangles formed by a set of points, striving to
create triangles that are as close as possible to being equi-
lateral. Simultaneously, it ensures that the circumscribed
circle of each triangle contains no other points from the set.
In this context, the proximity of two points enhances the
probability of them being included in the same triangle.
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Type Dataset # Nodes # C # O-Edges # O-Homo # D-Edges # D-homo # Homo gain

Heterophilic

Squirrel 5021 5 217073 0.22 31170 0.59 168%
Chameleon 2277 5 36101 0.25 13630 0.69 176%
Texas 181 5 309 0.06 1072 0.63 950%
Wisconsin 251 5 499 0.06 1470 0.55 817%
Cornell 181 5 295 0.11 1064 0.67 509%
Roman-empire 22662 18 32927 0.06 135922 0.58 1060%
Actor 7600 5 33544 0.24 45520 0.40 33%

Homophilic
Citeseer 3 312 6 4 715 0.71 19923 0.78 10%
Cora 2 708 7 5 429 0.83 16214 0.88 6%
Pubmed 19 717 3 44348 0.77 118192 0.86 9%

Table 2: Comparison of the statistics of the original dataset (O) and the graph obtained after Delaunay triangulation (D)

To alleviate the problem of over-squashing, we want to
reduce the number of negatively curved edges. According
to many definitions of curvature, the number of triangles
incident on edges plays a role in increasing edge curvature.
Applying a triangulation allows to maximize the value of m
in equations 2 and 3 while ensuring a maximum clique size
of 3.

We perform the triangulation on the set of nodes, whose
position in a d-dimensional space is represented by their
d features. However, as d depending on the problem can
vary significantly, and considering that for large d there are
known problems with distance estimation (Aggarwal et al.,
2001; Liberti, 2020), we opt to reduce the dimensions to 2
applying UMAP (McInnes et al., 2018). UMAP effectively
retains the spatial relationships among features and the over-
all data topology. A discussion about triangulation in higher
dimensions is available in Appendix A.

Initially, we triangulated the graphs considering the orig-
inal features. However, these starting features often lack
expressiveness or suffer from poor quality, as it can be ob-
served from the results of the experiments conducted on
heterophilic datasets using this strategy in Table 3.

GCN (O) GCN (DG)
Cham. 65.35±0.54 27.82 ±0.48
Squir. 51.30±0.38 22.73 ±0.29
Actor 30.02 ±0.22 30.73 ±0.26
Texas 56.19 ±1.61 70.68 ±1.60
Wisc. 55.12±1.51 70.98 ±1.50
Corn. 44.78 ±1.45 67.22 ±1.48

R-emp. 51.66 ±0.17 61.99 ±0.14

Table 3: Experimental results (accuracy) on heterophilic
datasets. O denotes GCN on the original input graph and

DG denotes the GCN on the Delaunay Graph. Best score in
bold.

The observed results exhibit a notable irregularity, primarily
stemming from the inherent dependence of graph quality

on the initial features (Platonov et al., 2023) used for tri-
angulation. To improve the expressiveness of the obtained
graph, we can perform the triangulation on the node embed-
dings obtained using a GNN. This led us to another strategy,
illustrated in Figure 2, in which the original features are
passed to a first GNN (in our case, a Graph Convolutional
Network following the model proposed by (Kipf & Welling,
2017)) to obtain the embeddings that are used to build the
Delaunay graph (after UMAP dimensionality reduction).
Subsequently, we carry out the prediction task by taking
into account the Delaunay triangulation graph structure and
the original features (H0) for the nodes.

GNN

Original Graph Vertex
Features: H0

H1

Dimension 
Reduction 

Delauney Graph

Prediction

H1’

GNN

Figure 2: Illustration of the rewiring method using the
features obtained by a GNN.

4.2. Delaunay Graph properties

Thanks to the generation of a novel graph via the Delaunay
triangulation, we optimize the number of triangles in the
graphs which strategically prevents bottlenecks and exces-
sive compression. Additionally, we can emphasize that the
largest cliques within the newly formed graph are limited to
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Figure 3: Comparison of edge curvature in the graph. The x- axis denotes Ollivier curvature. The captions display the
curvature deciles, including the first D1 and the remaining nine D9, for both the original and Delaunay graphs.

a maximum size of 3. This constraint allows to steer clear
of oversmoothing (Nguyen et al., 2023), contributing to a
better dissemination of information. By operating directly
on the individual features of the nodes rather than the graph
structure itself, we provide a way to create graphs for non-
graph data structures. This flexibility allows us to apply our
methodology to various domains and other non-graph-based
scenarios.

Statistics on Delaunay Graphs Table 2 shows the statis-
tics of the original graphs and the Delaunay graphs. The
number of edges of the Delaunay graphs is about 6 times
lower than the number of edges in the original graph (3
times if the graph is directed). This strategy makes it pos-
sible to drastically sparsify graphs, in particular those that
have a high average degree. High-degree nodes are particu-
larly prone to over-squashing. In addition, this strategy also
avoids working with nodes with too low a degree, which also
encourages excessive over-squashing. Indeed, a low edge-to-
node ratio is characteristic of a large-diameter graph (Deac
et al., 2022), making it more difficult to exchange informa-
tion over long distances. The graph’s sparsification not only
enhances its overall efficiency but also yields notable com-
putational performance benefits. This is particularly evident
for the benchmarks where the average degree significantly
exceeds 6, as reported in studies such as (Rozemberczki
et al., 2021) and (Platonov et al., 2023). More discussion
about the comparaison of original graph and Delaunay graph
is provided in Appendix B.

We also present in Table 2 the edge homophily measure on
the graph (Zhu et al., 2020) obtained after triangulation and
the gain compared with the original graph. While on the
homophilic graphs the gain is rather low, the homophily
value is much higher for the graphs obtained after Delaunay
triangulation of the heterophilic graphs (i.e. from 67% to
1067%).

Curvature edges on Delaunay Graphs Figure 3 illus-
trates the distribution of edge count based on edge curvature
in the graph. We use Olliver’s curvature (Ollivier, 2007),
as it is bounded and more easily interpretable. Since the
structure of the Delaunay graph exhibits minimal variation
across different datasets, the curvature of its edges remains
consistently similar in the obtained graphs. It is noteworthy
that our graph, constructed after triangulation, removes natu-
rally highly negatively curved edges, which are responsible
for bottlenecks (Topping et al., 2022). Additionally, the new
graph obtained after triangulation does not possess strongly
positively curved edges, mitigating the phenomenon of over-
smoothing (Nguyen et al., 2023). These local properties
help alleviate the two main shortcomings of MPPNS archi-
tecture.

Resistance on Delaunay Graphs As highlighted by
(Black et al., 2023), resistance serves as an effective metric
for quantifying over-squashing in a somewhat broader man-
ner than curvature. Table 4 displays the average resistance
between each pair of nodes across small datasets such as
Cornell, Wisconsin, and Texas. These datasets exhibit a sub-
stantial reduction in resistance, indicating a corresponding
decrease in bottlenecks and therefore a better diffusion of
information in the Delaunay graphs.

Original graph Delaunay graph
Wisconsin. 1.50 0.73

Texas. 1.76 0.70
Cornell 1.82 0.72

Table 4: Average resistance between each pair of nodes
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Base (GCN) DIGL FA SRDF FOSR BORF GTR DR
Cham. 65.35±0.54 54.82 ±0.48 26.34 ±0.61 63.08 ±0.37 67.98 ±0.40 65.35 ±0.51 68.03 ±0.61 74.28 ±0.48
Squir. 51.30±0.38 40.53 ±0.29 22.88 ±0.42 49.11±0.28 52.63 ±0.30 ≥ 24h 53.32 ±0.44 65.25 ±0.26
Actor 30.02±0.22 26.75 ±0.23 26.03±0.30 31.85 ±0.22 29.26±0.23 31.36 ±0.27 31.08 ±0.28 41.36 ±0.20
Texas 56.19 ±1.61 45.95 ±1.58 55.93 ±1.76 59.79 ±1.71 61.35 ±1.25 56.30±1.61 57.18 ±1.64 70.46 ±1.61
Wisc. 55.12±1.51 46.90 ±1.28 46.77±1.48 58.49 ±1.23 55.60 ±1.25 55.37 ±1.47 57.22 ±1.50 70.98±1.50
Corn. 44.78 ±1.45 44.46 ±1.37 45.33±1.55 47.73 ±1.51 45.11 ±1.47 46.81 ±1.56 47.57 ±1.52 67.22 ±1.48

R-emp. 51.66 ±0.17 53.93 ±0.14 OOM 52.53 ±0.13 52.38 ±0.21 58.58 ±0.14 53.31 ±0.23 61.99 ±0.14
Cora 87.73 ±0.25 88.31 ±0.29 29.86 ±0.28 87.73 ±0.31 87.94 ±0.26 87.72±0.27 87.86 ±0.28 91.39 ±0.24

Citeseer 76.01 ±0.25 76.22 ±0.34 22.31 ±0.34 76.43 ±0.32 76.34 ±0.27 76.49 ±0.28 76.12 ±0.28 81.14 ±0.34
Pubmed 88.20 ±0.10 88.51 ±0.10 OOM 88.16 ±0.11 88.42 ±0.10 88.34 ±0.10 88.44 ±0.10 88.69 ±0.10

Table 5: Experimental results (accuracy) on heterophilic and homophilic datasets with GCN as backbone. Best score in
bold and second-best score underlined.

Base (GAT) DIGL FA SRDF FOSR BORF GTR DR
Cham. 65.07 ±0.41 56.34 ±0.43 27.11 ±0.56 63.15±0.44 66.61 ±0.45 66.92 ±0.51 65.97 ±0.54 72.04 ±0.37

Squi. 50.87 ±0.56 41.65 ±0.68 21.49 ±0.71 50.36± 0.38 52.02 ±0.43 ≥ 24h 52.72 ±0.48 61.47 ±0.29
Actor 29.92 ±0.23 31.22 ±0.47 28.20 ±0.51 31.47 ±0.25 29.73 ±0.24 29.64 ± 0.33 30.13 ±0.31 40.25 ±0.23
Texas 56.84 ±1.61 46.49 ±1.63 56.17 ±1.71 57.45 ±1.62 61.85 ±1.41 56.68 ± 1.49 57.88 ±1.65 74.30 ±1.38
Wisc. 53.58 ±1.39 46.29 ±1.47 46.95 ±1.52 56.80 ±1.29 54.06±1.27 55.39 ± 1.23 56.53±1.64 74.33 ±1.24

Cornell 46.05 ±1.49 44.05 ±1.44 44.60 ±1.74 48.03 ±1.66 48.30±1.61 48.57 ± 1.56 48.70 ±1.63 68.03 ±1.62
R-Emp. 49.23 ±0.33 53.89 ±0.16 OOM 50.75 ±0.17 49.54 ±0.31 51.03 ± 0.26 50.60 ±0.24 61.80 ±0.16

Cora 87.65 ±0.24 88.31 ±0.29 30.44 ±0.26 88.11 ±0.28 88.13 ±0.27 87.72±0.27 87.94±0.23 91.37 ±0.23
Citeseer 76.20 ±0.27 76.22 ±0.34 23.11 ±0.32 76.26 ±0.31 75.94±0.32 76.44 ±0.44 76.35 ±0.28 81.61 ±0.25
Pubmed 87.39 ±0.11 87.96 ±0.10 OOM 87.44 ±0.12 87.56 ±0.11 87.61 ±0.12 87.31 ±0.12 89.14 ±0.09

Table 6: Experimental results (accuracy) on heterophilic and homophilic datasets with GAT as backbone. Best score in
bold and second-best score underlined.

4.3. Complexity and hyperparameters

The complexity of our rewiring method is O(N log(N)),
rendering it more efficient than the majority of structural
rewiring methods, particularly advantageous for handling
large datasets (Dwivedi et al., 2022). In contrast to numer-
ous approaches relying on grid search for rewiring adjust-
ments (such as determining the number of edges added or
removed), which often renders results sensitive to the intri-
cacies of grid search, our method stands out. Notably, our
rewiring method is free from hyperparameters, relying exclu-
sively on the node features, ensuring heightened robustness
and easier to use compared to alternative techniques.

Running Time We simulate data in two dimensions and
analyze the time needed to construct the graph resulting
from triangulation. Table 7 shows the efficient use of De-
launey triangulation in scenarios with a large number of
observations.

Number of data Time (in sec)
100 000. ≤ 1

1 000 000 15
5 000 000 200

Table 7: Time for triangulation on simulated data

5. Experiments
5.1. Datasets

We conducted experiments on ten different datasets for
the node classification task, comprising seven heterophilic
datasets (Tang et al., 2009; Rozemberczki et al., 2021;
Platonov et al., 2023) and three homophilic datasets
(Sen et al., 2008). The dataset statistics are presented in
Table 2.

5.2. Baseline

We conducted a comparative analysis of our method against
six other techniques based on rewiring strategies. The meth-
ods include FA (Alon & Yahav, 2021), DIGL (Klicpera et al.,
2019)2, SDRF,(Topping et al., 2022)3, FOSR (Karhadkar
et al., 2023)4,BORF 5(Nguyen et al., 2023) and GTR6(Black
et al., 2023).

Hyperparameters We performed hyperparameter fine-
tuning for various rewiring methods. For DIGL, we refined
the top k values from the set {8, 16, 32, 64, 128} and person-
alized PageRank parameters from the set {0.05, 0.1, 0.15}.
Concerning SDRF, we followed the hyperparameters out-

2https://github.com/gasteigerjo/gdc
3https://github.com/jctops/understanding-over-

squashing/tree/main
4https://github.com/kedar2/FoSR/tree/main
5https://github.com/hieubkvn123/revisiting-gnn-curvature
6https://github.com/blackmit/gtr rewiring
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lined in the original publications and fine-tuned the number
of iterations. For FOSR, we fine-tuned the number of iter-
ations. In the case of BORF, we fine-tuned the top values
from the sets of the number of batches n {1, 2, 3}, the num-
ber of edges added per batch h {10, 20, 30, 40}, and the
number of edges removed per batch k {10, 20, 30, 40}. For
GTR, our tuning involved the top values for the number of
edges added, selecting from {8, 16, 32, 64, 96}.

Delaunay Rewiring configuration In the case of the Ro-
man Empire, Cornell, Texas, and Wisconsin datasets, we
employ triangulation on the original features. Meanwhile,
for the remaining datasets, we adopt the configuration out-
lined in the following Figure 2. Results on both strategies
are available Table 18.

5.3. Setup

For our experiments, we employ the same framework as
outlined in (Pei et al., 2020) to assess the robustness of
each method. We hypothesize that refining certain hyper-
parameters can lead to improved results. Hence, we set the
number of layers to 2, dropout to 0.5, learning rate to 0.005,
patience to 100 epochs, and weight decay to 5E−6 (Texas,
Wisconsin and Cornell) or 5E−5 (other datasets). The num-
ber of hidden states is set to 32 (Texas/Wisconsin/Cornell),
48 (Squirrel, Chameleon and Roman-Empire), 32 (Actor),
and 16 (Cora, Citeseer and Pubmed).

We utilize the two most popular GNNs, GCN (Kipf &
Welling, 2017) and GAT (Veličković et al., 2018), as a basis
and compare various methods for rewiring the input graph.

For all graph datasets, we randomly sample 60% of nodes
for training, allocate 20% for validation, and reserve an-
other 20% for testing. We also add self-loops to each node.
We report the average accuracy of each method across 100
random samples.

5.4. Results

Table 5 and 6 shows that the Delaunay Rewiring method
(DR), has obtained the best accuracy for the 7 heterophilic
datasets and the 3 homophilic datasets. On average, this
method demonstrated a substantial increase of 21.8% in
performance when compared to the basic GCN and GAT.
Baseline methods like SDRF, FOSR, BORF, and GTR have
shown promising advancements on heterophilic datasets but
demonstrate limitations when handling homophilic graphs.
The discrepancy in results primarily stems from existing
approaches focusing on mitigating oversmoothing and over-
squashing through adjustments to the graph’s original struc-
ture, neglecting to enhance homophily effectively.

5.5. Delaunay graph and k-NN graph

When structural information is not available, a common
strategy for solving classical graph learning problems is to
use nearest-neighbour graphs. This approach effectively
connects nodes with similar representations, promoting ho-
mophily within the network. However, this structure is
sub-optimal and does not offer significant advantages in
fully supervised scenarios (Errica, 2023), and its usefulness
is limited for large graphs due to its complexity O(N2)
(Dwivedi et al., 2022). In addition, the selection of the
parameter k is not straightforward, introducing challenges
such as non-connectivity in the resulting graph, making it
less suitable for some applications. Exploring alternatives
to the KNN graph with a manageable complexity is a in-
teresting area of research, currently under scrutiny (Errica,
2023; Wu et al., 2022).

To illustrate the advantages of using a Delaunay graph over
a simple k-NN graph for node classification tasks con-
structed with identical features, we perform experiments
with k=3 for fair comparison.

3-NN DR
Chameleon 72.69 ±0.44 74.28 ±0.48

Squirrel 64.91±0.25 65.25 ±0.26
Actor 39.64 ±0.23 41.36 ±0.20
Texas 67.93 ±1.71 70.46 ±1.69

Wisconsin. 67.81 ±1.51 70.98 ±1.50
Cornell 63.88 ±1.49 67.22±1.49

R-empire 63.01 ±0.17 61.99 ±0.14

Table 8: Experimental results on heterophilic datasets with
GCN as backbone. Best score in bold and second-best

score underlined.

DR has obtained the best accuracy for 6 of the 7 heterophilic
datasets. k-NN graph can obtain higher scores than the
baselines on such datasets but this method is not designed
to mitigate bottleneck structures.

6. Conclusion
In this paper, we introduce an innovative rewiring method
characterized by a reasonable complexity and an absence of
hyperparameters, leveraging Delaunay triangulation. Our
approach involves utilizing node features to restructure the
connectivity of the graph, showcasing the advantageous
effects of Delaunay triangulation in enhancing graph ho-
mophily and ensuring structural properties favorable to in-
formation diffusion.

Through the avoidance of strongly negatively and positively
curved edges, the newly constructed graph exhibits reduced
sensitivity to oversmoothing and oversquashing, thereby

8
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yielding a substantial performance boost across various
datasets in the context of node classification tasks. Our
empirical evaluations underscore the efficiency of our graph
construction method in comparison to the conventional k-
NN graph built exploiting the same node features. This
proposal paves the way for an alternative graph construc-
tion solution, particularly beneficial for non-graph-based
scenarios.

Limitations and future works Given the dependency
of our method on features, it is imperative to ensure the
quality of these features. In cases where the original fea-
tures are suboptimal or the learning method struggles to
acquire effective representations, the resultant graph from
the triangulation process may lack quality. For prospective
research, it would be valuable to explore the applicability
of our method to long-range graph benchmarks. An intrigu-
ing avenue for further investigation involves evaluating our
method in scenarios where only features are accessible. This
exploration could shed light on the method’s effectiveness
in applications where structural information is limited or
unavailable.
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A. Notes about triangulation dimension
In the paper, we present a triangulation in 2 dimensions (resulting from the dimensionality reduction of node embeddings).
In high dimensions, a Delaunay triangulation is defined as a triangulation where no point lies within the hypersphere
circumscribed by a simplex of the triangulation. In this section we discuss the effects of choosing a different dimension for
the triangulation. First of all, it should be noted that, as the dimensionality increases, the number of vertices in the graph
also increases. For instance, in dim=3 the generalization of triangles is tetrahedra, which have 6 edges, while in dim=4 the
generalization of triangles has 10 edges. Thus, performing triangulation in higher dimensions yields denser resulting graphs.
We present the results of GCN and GAT for higher dimensions. In the vast majority of cases, reducing the dimension to 2
yields better results. Moreover Triangulation in two dimensions typically takes less than a second for the datasets used in
our experiments. However, triangulation in higher dimensions may require a longer time.

A.1. Experiments on larger dimension

Original Graph DR DR (dim =3) DR (dim =4) DR (dim =5) DR (dim =7)
Homophily 0.06 0.58 0.54 0.48 0.42

Number of edges 22662 135922 238366 422404 803846
Max degree 14 21 49 124 257

Mean degree 3 6 10 20 38
Accuracy GCN 51.66 ±0.2 61.99 ±0.1 61.84 ±0.2 60.87 ±0.2 58.40 ±0.2
Accuracy GAT 49.23 ±0.3 61.80 ±0.2 61.59 ±0.2 60.31 ±0.2 59.49 ±0.2

Time for triangulation (in sec) - ≤ 1 2 12 105

Table 9: Experimental results with Delaunay Rewiring in differents dimensions reduction Roman-Empire dataset.

Original Graph DR DR (dim =3) DR (dim =4) DR (dim =5) DR (dim =7)
Homophily 0.06 0.65 0.63 0.60 0.54 0.44

Number of edges 499 1470 2534 4064 6266 16148
Max degree 24 14 24 42 57 167

Mean degree 12 6 12 18 28 66
Accuracy GCN 55.12±1.51 70.98±1.5 69.45 ±1.5 68.59 ± 1.5 68.55 ±1.5 66.42 ± 1.7
Accuracy GAT 46.05 ±1.49 74.33 ±1.24 74.23 ± 1.4 70.75 ± 1.4 72.43±1.5 67.16 ±1.7

Time for triangulation (in sec) - ≤ 1 ≤ 1 ≤ 1 2 50

Table 10: Experimental results with Delaunay Rewiring in different dimensions reduction for Wisconsin dataset.

Original Graph DR DR (dim =3) DR (dim =4) DR (dim =5) DR (dim =7)
Homophily 0.11 0.67 0.58 0.51 0.47 0.38

Number of edges 295 1064 1780 2888 4342 10406
Max degree 94 21 18 34 52 117

Mean degree 3 6 10 17 26 66
Accuracy GCN 44.78 ±1.5 67.22 ±1.5 64.97 ±1.6 64.27 ±1.6 62.75 ±1.6 49.19 ±1.6
Accuracy GAT 46.05 ±1.5 68.03 ±1.6 67.62 ±1.6 64.16 ±1.6 63.81 ±1.6 59.35 ±1.6

Time for triangulation (in sec) - ≤ 1 ≤ 1 ≤ 1 ≤ 1 19

Table 11: Experimental results with Delaunay Rewiring in different dimensions reduction for Cornell dataset.
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Original Graph DR DR (dim =3) DR (dim =4) DR (dim =5) DR (dim =7)
Homophily 0.06 0.63 0.64 0.54 0.53

Number of edges 181 1072 1718 2780 4172 10948
Max degree 104 10 16 33 53 123

Mean degree 3 6 10 16 25 70
Accuracy GCN 56.19 ±1.61 70.46 ±1.61 69.24 ±1.7 65.78 ±1.7 65.56 ±1.7 56.05 ±2.0
Accuracy GAT 56.84 ±1.61 74.30 ±1.38 0.7378 ±1.6 69.29 ±1.7 70.54 ±1.7 66.81 ±1.8

Time for triangulation (in sec) - ≤ 1 ≤ 1 ≤ 1 ≤ 1 18

Table 12: Experimental results with Delaunay Rewiring in different dimensions reduction for Texas dataset.

Original Graph DR DR (dim =3) DR (dim =4) DR (dim =5) DR (dim =7)
Homophily 0.24 0.40 0.36 0.34 0.32 0.31

Number of edges 33544 45520 81876 156058 295208 662438
Max degree 1303 16 36 123 344

Mean degree 7 6 11 22 40
Accuracy GCN 30.02±0.2 41.36 ±0.2 42.59±0.3 41.08 ±0.3 40.15 ±0.3 42.15
Accuracy GAT 29.92 ±0.2 40.25 ±0.2 41.12 ±0.3 40.79 ±0.3 40.43 ±0.3

Time for triangulation (in sec) - ≤ 1 ≤ 1 4 20 856

Table 13: Experimental results with Delaunay Rewiring in different dimensions reduction for Actor dataset.

Original Graph DR DR (dim =3) DR (dim =4) DR (dim =5) DR (dim =7)
Homophily 0.25 0.69 0.67 0.60 0.52 0.38

Number of edges 36101 13630 23544 42454 78516 318376
Max degree 732 14 49 123 273 1216

Mean degree 28 6 12 21 36 142
Accuracy GCN 65.35±0.5 74.28 ±0.5 66.11±0.6 67.21 ±0.6 67.43 ±0.6 66.87 ±0.6
Accuracy GAT 65.07 ±0.4 72.04 ±0.4 74.03 ±0.5 73.21 ±0.5 70.82 ±0.5 68.71 ±0.6

Time (in sec) ≤ 1 ≤ 1 ≤ 1 ≤ 1 5 296

Table 14: Experimental results with Delaunay Rewiring in different dimensions reduction for Chameleon dataset.

Original Graph DR DR (dim =3) DR (dim =4) DR (dim =5) DR (dim =7)
Homophily 0.22 0.59 0.57 0.54 0.49 0.43

Number of edges 217073 31170 54780 103652 199156 467702
Max degree 1905 13 55 155 637 2268

Mean degree 76 6 11 21 40 94
Accuracy GCN 51.30±0.4 65.25 ±0.3 65.19 ±0.5 64.42 ±0.6 63.76 ±0.6 63.49 ±0.6
Accuracy GAT 50.87 ±0.6 64.47 ±0.3 66.26 ±0.5 64.08 ±0.5 63.28 ±0.7 63.08 ±0.6

Time (in sec) - ≤ 1 ≤ 1 2 12 399

Table 15: Experimental results with Delaunay Rewiring in different dimensions reduction for Squi dataset.

Original Graph DR DR (dim =3) DR (dim =4) DR (dim =5) DR (dim =7)
Homophily 0.83 0.88 0.85 0.78 0.71 0.51

Number of edges 5429 16214 28578 49990 87738 237164
Max degree 168 12 65 222 493 1173

Mean degree 4 6 11 20 34 96
Accuracy GCN 87.73 ±0.3 91.39 ±0.2 90.05 ± 0.3 89.39 ± 0.3 87.59± 0.3 83.47 ± 0.4
Accuracy GAT 87.65 ±0.2 91.37 ±0.2 90.21 ± 0.3 89.58 ± 0.3 87.76± 0.3 85.30 ± 0.3

Time (in sec) - ≤ 1 ≤ 1 ≤ 1 5 324

Table 16: Experimental results with Delaunay Rewiring in different dimensions reduction for Cora dataset.
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Original Graph DR DR (dim =3) DR (dim =4) DR (dim =5) DR (dim =7)
Homophily 0.71 0.78 0.73 0.70 0.62 0.52

Number of edges 4715 19923 32075 62828 108710 283162
Max degree 99 14 54 167 399 1138

Mean degree 3 6 11 20 35 92
Accuracy GCN 76.01 ±0.3 81.14 ±0.3 80.82 ±0.3 80.45 ±0.3 80.01 ±0.3 77.57 ±0.4
Accuracy GAT 76.20 ±0.3 81.61 ±0.3 80.86 ±0.3 80.18 ±0.3 80.66 ±0.3 78.09 ±0.4

Time (in sec) - ≤ 1 ≤ 1 ≤ 1 6 306

Table 17: Experimental results with Delaunay Rewiring in different dimensions reduction for Citeseer dataset.

B. Effects of Delaunay triangulation on the degree of graphs.
In this section, we show the degree distribution for the datasets used in the experiments. For Delaunay graphs, the degrees
generally range between 3 and 15. Conversely, for the original graphs, degrees vary between very low (1) and very high
values, such as 100 for a master node. As indicated by (Deac et al., 2022) , nodes with very high degree, like master nodes,
create a bottleneck, exacerbating the phenomenon of oversquashing.
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Figure 4: Histogram of the degree distribution for the
original Cornell graph
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Figure 5: Histogram of the degree distribution for the
Delaunay Cornell graph
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Figure 6: Histogram of the degree distribution for the
original Texas graph
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Figure 7: Histogram of the degree distribution for the
Deauney Texas graph
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Figure 8: Histogram of the degree distribution for the
original Wisconsin graph
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Figure 9: Histogram of the degree distribution for the
Delaunay Wisconsin graph

2 14
0

0.5

1

·104

Degree

N
b

of
no

de
s

Figure 10: Histogram of the degree distribution for the
original Roman-Empire graph
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Figure 11: Histogram of the degree distribution for the
Delaunay Roman-Empire
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Figure 12: Histogram of the degree distribution for the
original Cora graph

3 13
0

200

400

600

800

Degree

N
b

of
no

de
s

Figure 13: Histogram of the degree distribution for the
Delaunay Cora graph

2 99
0

500

1,000

1,500

Degree

N
b

of
no

de
s

Figure 14: Histogram of the degree distribution for the
original Citeseer graph
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Figure 15: Histogram of the degree distribution for the
original Citeseer graph
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Figure 16: Histogram of the degree distribution for the
original chameleon graph
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Figure 17: Histogram of the degree distribution for the
Delaunay chameleon graph

C. Details of datasets
We detail the content of the 7 heterophilic datasets and 3 homophilic datasets:

• WebKB: The WebKB dataset encompasses data from Cornell, Texas, and Wisconsin, where nodes symbolize web
pages connected by hyperlinks. Node features are represented by bag-of-words representations of the web pages, while
labels include student, project, course, staff, and faculty.

• Actor: Actor nodes signify individual actors, with edges denoting co-occurrences on Wikipedia pages (Tang et al.,
2009). Node features correspond to keywords found within Wikipedia pages, with a requirement to classify nodes into
five distinct classes.

• Wikipedia network: Within the Squirrel and Chameleon datasets, nodes depict web pages interconnected by mutual
links (Rozemberczki et al., 2021). Node features are determined by informative nouns extracted from Wikipedia pages.
Nodes are to be categorized into five distinct classes based on their popularity, gauged by the average monthly traffic to
the web page.

• Roman-empire: Based on the Roman Empire article from English Wikipedia, this dataset is notable for being one
of the longest articles on Wikipedia (Platonov et al., 2023). Each node represents a word in the text, with edges
connecting words that follow each other in the text or are linked in the sentence’s dependency tree. Node classification
is determined by the syntactic role of each word.

• Scientific publication networks: Cora, Citeseer, Pubmed datasets (Sen et al., 2008) document citations to scientific
publications. Each publication is characterized by a bag-of-words representation indicating the presence or absence of
words in the publication abstract. Classes represent categories of publications.
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D. Experiments details
We show here all the results on the datasets using a triangulation on the original features (OF) and on the learned features
(LF) on all datasets;

GCN (O) GCN + DGOF GCN + DGLF

Chameleon 65.35±0.54 27.82 ±0.48 74.28 ±0.48
Squirrel 51.30±0.38 22.73 ±0.29 65.25 ±0.26

Actor 30.02 ±0.22 30.73 ±0.26 41.36 ±0.20
Texas 56.19 ±1.61 70.68 ±1.60 67.38 ±1.50

Wisconsin 55.12±1.51 70.98 ±1.50 63.63 ±1.37
Cornell 44.78 ±1.45 67.22 ±1.48 61.01 ±1.48

Romain-Empire 51.66 ±0.17 61.99 ±0.14 50.47 ±0.12
Cora 87.73 ±0.25 66.78 ±0.37 91.39 ±0.24

Citeseer 76.20 ±0.27 32.56 ±0.41 81.61 ±0.25
Pubmed 87.39 ±0.11 75.27 ±0.11 89.14 ±0.09

Table 18: Experimental results. O denotes GCN on the original input graph, DGOF denotes the GCN on the Delaunay
Graph based on the Original Feature and DGLF denotes Delaunay Graph based on the Learned Feature. Best score in bold.

On some datasets we note that triangulation on original features gives better results than features learned by a GCN. This
may be due to the poor performance of the GCN on these datasets and the variability of the results.
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