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Abstract

Conventional forecasting minimizes overall error but overlooks the differing impor-1

tance of forecast ranges in downstream tasks. We propose a method that partitions2

predictions into segments and dynamically reweights them at inference, enabling3

flexible, on-demand targeted forecasting without retraining. Experiments on bench-4

marks and a new wireless dataset show improved accuracy in regions of interest5

and measurable downstream gains, highlighting the benefits of tighter integration6

between prediction and decision-making.7

1 Introduction8

Time-series forecasting (TSF) is a core area of machine learning (ML) with applications in eco-9

nomics [15], energy [26, 31], transportation [9], meteorology [39], inventory management [19], and10

healthcare [13, 32]. At its core, TSF builds predictive models for sequential data by leveraging11

historical patterns to forecast future values. Approaches range from classical statistical models, such12

as ARIMA [17] and ETS [6], to deep learning models, including MLPs [41], RNNs [42], LSTMs [35],13

TCNs [16], and Transformers [27, 20]. More recently, Large Time-Series Models (LTSMs), such as14

Timer [22], Moirai [37], TimesFM [11], Chronos [3], Moment [14], and Toto [10], have emerged,15

leveraging large-scale pretraining for zero-shot forecasting.16

Most TSF methods minimize predictive error while overlooking downstream integration, where17

forecast errors have unequal importance. This mismatch, observed in challenges such as Pre-18

dict+Optimize for Renewable Energy Scheduling [4] and the M5 Competition [25], highlights the19

need for models aligned with task-specific objectives. Prior work includes integrating learned weights20

into optimization[5], predictive loss functions tailored to optimization [12], and broader E2E learning21

paradigms [30].22

However, existing approaches assume fixed task specifications and static regions of importance. In23

practice, domains such as wireless traffic prediction [40, 29] demand adaptation to shifting priorities,24

for example, optimizing base-station deactivation during low-traffic periods or power allocation under25

extremes. Since such thresholds are rarely known a priori, TSF frameworks must allow post-hoc26

adjustment of importance during inference (Figure 1).27

Contributions. We address this gap by: (1) proposing a training methodology that enables mul-28

tivariate TSF models to adapt to multiple downstream tasks at inference without retraining, (2)29

conducting extensive experiments on synthetic and real-world traces with comprehensive baselines30

and ablations, and (3) releasing a new wireless mobile network dataset to support future research.31
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Figure 1: The figure depicts TSF in a wireless
network, from data collection to training and
downstream use. Applications include energy
efficiency, which depends on forecasting low-
traffic periods, and power allocation, requiring
accuracy across traffic bands. Our method allows
a single model to adapt to diverse tasks at infer-
ence, unlike traditional task-specific approaches.

2 The Forecasting Problem32

Time-Series. A multivariate time-series is a temporally ordered sequence of vectors. Let xt ∈33

Rn denote the n-dimensional observation at time t ∈ [T ], with xt = (xt,i)i∈[n]. The series is34

{x1, . . . ,xT }, where each component lies in a bounded set X ⊂ R. Temporal dependence is35

assumed, with xt potentially influenced by past values xt−k for k > 0.36

The Learning Problem. TSF is cast as supervised regression by forming input-output pairs via37

sliding windows. For forecast horizon τ and window size w, the input is Xt = xt−w:t−1 ∈ Xw×n,38

and the target is Yt = xt:t+τ−1 ∈ X τ×n. We assume an underlying operator f : Xw×n → X τ×n39

with noisy observations Yt = f(Xt) + ϵt. A parametric model fθ is trained on dataset D =40

{(Xt,Yt)}T−τ
t=w to minimize expected loss41

θ⋆ ∈ argmin
θ∈Rd

E(X,Y)∼D [l(fθ(X),Y)] . (1)

In practice, this is approximated by empirical risk with regularization R(θ) to control complexity and42

improve generalization [34]. Common choices of l include Mean Squared Error (MSE), estimating43

conditional expectations, and Mean Absolute Error (MAE), estimating conditional medians.44

3 Methodology45

We investigate five training policies of increasing flexibility. We begin with a baseline policy46

(B-Policy) corresponding to standard TSF training that ignores interval specificity, followed by47

a task-specific policy (E2E-Policy) that optimizes for a single target interval, representing the48

E2E approach when downstream tasks are known. We then introduce a continuous-interval policy49

(C-Policy) that incorporates intervals as covariates, enabling inference-time flexibility by exposing50

the model to all possible intervals during training. However, as shown in our experiments, this ap-51

proach suffers from instability and yields suboptimal results, motivating more structured alternatives.52

Next, we consider a discretized policy (DL-Policy) that samples from a fixed set of intervals cover-53

ing the forecasting space, thereby reducing the interval search space. Since inference-time regions of54

interest need not align exactly with these discretized intervals, we propose a patching-augmented55

discretized policy (D⋆L-Policy), which combines finer discretization with a boundary-aware patching56

mechanism for improved adaptation.57

Baseline Policy (B-Policy). Follows the standard supervised training setup in Section 2, comput-58

ing loss across the full forecasting domain X , without interval awareness.59

Task-Specific Policy (E2E-Policy). Given a target interval I ⊆ X , this policy restricts the loss to60

I. The model is learned by solving θ⋆ ∈ argminθ∈Rd E(X,Y)∼D[l(fθ(X),Y) · 1(Y ∈ Iτ×n)].61

Continuous-Interval Policy (C-Policy). To generalize across intervals, we encode I as covariates62

(e.g., boundaries [Imin, Imax] ∈ X 2). The model fθ thus maps Xw×n+2 → X τ×n. Intervals63

are sampled uniformly from Uδ = {I ⊆ X : |I| ≥ δ}, where δ controls minimum length of an64

interval. The custom loss is L(fθ(Xt, It),Yt, It) = l(fθ(Xt, It),Yt)·1(Yt ∈ Iτ×n
t ), and training65

minimizes the expectation over both D and Uδ . In this formulation, the model θ explicitly conditions66

on both the input sequence Xt and the interval It to produce the forecast Ŷt = fθ(Xt, It).67
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Figure 2: Subfigures (a)–(f) present the performance of the iTransformer model trained on the
SynthDS trace. Each subfigure corresponds to a different policy: E2E, C, D4, D8, D18, and B, respec-
tively. The purple region marks the interval of interest, I = [0.75, 1.0]. In the 1-strategy, eight
intervals are patched into four. The filled region represents the classifier’s predicted probability
P(y ∈ I). Under the D18 policy, two intervals must be patched to generate a forecast for the selected
interval I. Black lines indicate target forecast values, while dashed lines denote the mean prediction
over time, with shaded areas showing the standard deviation computed over 10 random seeds.

Discretized-Interval Policy (DL-Policy). Instead of sampling from Uδ , intervals are drawn from68

a discrete set CL of L disjoint intervals covering X , i.e.,
⋃̇

I∈supp(CL)I = X .69

Patching-Augmented Policy (D⋆L-Policy). We refine DL-Policy by introducing two key com-70

ponents: (1) a patching mechanism that integrates forecasts from constituent intervals to enhance71

predictions within a target interval of interest, and (2) a soft boundary loss (decay function) designed72

to mitigate uncertainty near patching boundaries. A decay function modulates boundary contributions73

dν(y, I) = exp
(
−νmax

(
0, |y −∆avg| −∆diff

))
, where ∆avg and ∆diff are the midpoint and74

half-length of I.1 As ν → ∞, this reduces to the indicator function. The weighted regression and75

classification losses are76

Lν = l(fθ(Xt, It),Yt)
∏
i,t

dν(yt,i, It), L′
ν = l′(f c

θ(Xt, It),1(Yt∈It))
∏
i,t

dν(yt,i, It), (2)

respectively. The joint training objective is then θ⋆ = argminθ E(X,Y), I∼CL

[
Lν + ϕ · L′

ν

]
, where77

ϕ is a hyperparameter controlling the trade-off between regression and classification objectives.78

At inference, given interval I, we collect overlapping training intervals ΞL(I) ≜79

{I ′ ∈ supp (CL) : I ′ ∩ I ≠ ∅}. Predictions are then combined by: (1) Averaging strategy (1-80

strategy): Ŷ =
∑

I′∈ΞL(I) f
c
θ (X, I ′)fθ(X, I ′)(

∑
I′∈ΞL(I) f

c
θ (X, I ′))−1, (2) Maximum confi-81

dence strategy (∞-strategy): Ŷ = fθ(X, argmaxI′∈ΞL(I)f
c
θ (X, I ′)).82

4 Experiments83

Experimental Setup. This section reports the numerical results obtained from the proposed training84

policies and evaluates their forecasting performance in comparison with multiple baseline methods.85

We begin by describing the forecasting models, training policies, benchmark datasets, and training86

configurations employed. This is followed by both qualitative and quantitative analyses of the87

various training strategies applied to these models.2 We evaluate four state-of-the-art TSF models:88

iTransformer [21], DLinear [41], PatchTST [28], and TimeMixer [36]; further details on how89

these architectures are augmented to incorporate interval covariates and a classification head are90

provided in the Experimental Appendix. We consider five training policies introduced in Section 3:91

B-Policy, E2E-Policy, C-Policy, DL-Policy, and D⋆L-Policy, where the symbol ⋆ specifies92

the patching method (⋆ = 1 for average patching and ⋆ = ∞ for maximum-confidence patching). For93

benchmarking, we use both synthetic and real-world datasets: SynthDS (synthetic trace for controlled94

evaluation), BLW-TrafficDS [1] (beam-level wireless traffic, released with this work), Traffic [7]95

(road occupancy), Electricity [33] (power consumption), and Weather [38] (meteorological data).96

We provide additional results in the Experimental Appendix on the sensitivity of different policies to97

hyperparameters (e.g., number and length of sampled intervals, patching strategy, decay rate), as well98

as their impact on a realistic downstream energy-saving optimization task.99

1This function is depicted in Figure 3.
2The code for all experiments is available at (Omitted for anonymity).
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Models DLinear TimeMixer PatchTST iTransformer

Intervals
Policies DL D12L D∞2L B C0.2

Impro-
vement DL D12L D∞2L B C0.2

Impro-
vement DL D12L D∞2L B C0.2

Impro-
vement DL D12L D∞2L B C0.2

Impro-
vement

BLW-TrafficDS (×103, L = 8)
I1 167.1 172.3 164.9 163.8 218.0 0.0% 127.5 148.1 138.0 125.9 143.7 0.0% 102.8 158.2 117.8 124.1 118.1 17.2% 119.3 121.1 122.8 130.8 133.1 8.8%
I2 76.0 74.9 75.7 82.4 84.8 9.1% 40.1 37.8 41.7 83.0 50.7 54.5% 31.1 30.4 35.3 77.9 34.6 60.9% 74.7 75.9 75.7 77.3 75.6 3.4%
I3 56.7 56.0 56.7 62.0 58.8 9.7% 24.3 22.9 23.8 64.9 32.0 64.7% 18.3 17.2 20.8 60.3 22.5 71.5% 57.1 58.4 57.6 59.5 56.0 5.9%
I4 44.2 43.8 44.4 48.9 43.4 11.2% 16.1 15.4 15.8 48.1 20.8 68.0% 11.4 10.4 12.6 47.2 15.2 78.0% 44.0 44.6 44.1 46.8 42.1 10.0%
I5 33.5 33.4 33.8 37.6 31.7 15.7% 10.8 10.2 10.4 35.8 13.1 71.5% 7.1 6.5 7.9 34.9 9.8 81.4% 31.4 32.1 31.9 35.5 28.7 19.2%
I6 28.1 27.9 28.2 31.8 26.4 16.9% 8.0 7.8 8.0 30.2 9.3 74.2% 4.5 4.0 5.0 29.4 6.8 86.3% 25.2 25.7 25.7 29.8 23.3 21.8%
I7 19.3 19.2 19.4 21.7 18.8 13.4% 5.5 5.5 5.6 21.8 6.1 74.8% 2.7 2.4 2.8 20.4 3.9 88.2% 19.2 19.5 19.5 20.6 18.1 12.1%
I8 11.1 11.1 11.2 12.5 10.9 12.8% 3.3 3.5 3.4 12.1 3.6 72.7% 1.7 1.5 1.8 11.7 2.6 87.2% 11.2 11.2 11.2 11.8 11.4 5.1%

I1–I8 54.0 54.8 54.3 57.6 61.6 6.3% 29.4 31.4 30.9 52.7 34.9 44.2% 22.4 28.8 25.5 50.7 26.7 55.8% 47.8 48.6 48.6 51.5 48.5 7.2%

Traffic (×500, L = 4)
I1 1.70 1.53 1.67 1.79 1.82 14.5% 1.90 1.71 1.73 2.44 2.17 29.9% 1.08 1.02 1.06 1.41 1.11 27.7% 1.29 1.30 1.32 1.41 1.36 8.5%
I2 1.65 1.35 1.44 1.99 1.71 32.2% 1.25 1.23 1.27 2.02 1.52 39.2% 0.91 0.90 0.93 1.42 0.89 37.3% 1.19 1.22 1.24 1.50 1.13 20.7%
I3 0.61 0.44 0.47 0.81 0.62 45.7% 0.39 0.36 0.41 0.74 0.51 51.5% 0.32 0.30 0.35 0.65 0.30 53.9% 0.53 0.54 0.55 0.66 0.53 19.7%
I4 0.45 0.31 0.33 0.59 0.45 47.5% 0.22 0.20 0.24 0.59 0.35 66.2% 0.16 0.16 0.19 0.53 0.16 69.8% 0.35 0.36 0.37 0.51 0.35 31.4%

I1–I4 1.10 0.90 0.98 1.29 1.15 30.2% 0.94 0.88 0.91 1.45 1.14 39.3% 0.62 0.59 0.63 1.01 0.62 41.6% 0.84 0.85 0.87 1.02 0.84 17.6%

Weather (×2, L = 4)
I1 1.05 0.76 0.75 0.78 1.32 3.9% 2.25 0.73 0.71 1.00 1.94 27.0% 0.40 0.67 0.53 0.65 1.17 38.5% 0.49 0.48 0.49 0.68 1.72 29.4%
I2 0.36 0.23 0.29 0.42 0.36 45.2% 0.37 0.22 0.26 0.54 0.43 59.3% 0.22 0.23 0.28 0.37 0.22 40.5% 0.32 0.32 0.32 0.42 0.49 23.8%
I3 0.13 0.09 0.10 0.20 0.26 55.0% 0.19 0.08 0.09 0.26 0.25 69.2% 0.08 0.09 0.11 0.22 0.08 63.6% 0.18 0.17 0.18 0.23 0.39 26.1%
I4 0.16 0.14 0.21 0.21 0.27 33.3% 0.17 0.12 0.13 0.27 0.26 55.6% 0.10 0.13 0.14 0.23 0.11 56.5% 0.19 0.19 0.19 0.21 0.38 9.5%

I1–I4 0.43 0.31 0.34 0.40 0.55 22.5% 0.75 0.29 0.30 0.52 0.72 44.2% 0.20 0.28 0.26 0.37 0.40 46.0% 0.30 0.29 0.29 0.38 0.74 23.7%

Electricity (×10−1, L = 4)
I1 3.81 3.82 3.82 3.77 3.95 0.0% 3.83 3.95 3.95 4.50 4.86 14.9% 3.33 4.66 4.69 3.32 3.78 0.0% 12.8 10.3 10.5 3.26 3.67 0.0%
I2 1.15 1.16 1.16 1.17 1.14 2.23% 1.11 1.07 1.09 1.41 1.37 24.3% 0.919 1.24 1.34 1.01 0.990 9.37% 4.67 3.69 3.84 1.05 1.02 2.48%
I3 0.916 0.929 0.932 0.955 0.890 6.81% 0.807 0.782 0.836 1.08 0.984 27.6% 0.671 0.852 0.931 0.835 0.689 19.6% 2.08 1.84 1.98 0.861 0.822 4.53%
I4 0.369 0.379 0.380 0.399 0.353 7.52% 0.297 0.277 0.288 0.449 0.388 38.3% 0.238 0.248 0.272 0.370 0.243 35.7% 0.567 0.509 0.522 0.372 0.322 13.4%

I1–I4 1.56 1.57 1.57 1.57 1.58 0.7% 1.51 1.52 1.54 1.86 1.90 18.8% 1.29 1.75 1.81 1.39 1.42 6.93% 5.02 4.09 4.21 1.39 1.46 0.0%

SynthDS (×103, L = 4)
I1 15.0 14.5 18.5 50.9 24.8 71.5% 16.2 15.7 17.9 45.5 17.5 65.5% 13.2 13.2 15.1 37.9 15.3 65.2% 14.1 14.1 17.5 40.2 20.0 65.0%
I2 11.7 11.9 12.8 20.3 12.8 42.4% 11.4 12.2 15.0 18.8 13.5 39.4% 9.08 10.2 11.2 26.8 11.0 66.2% 7.96 9.17 9.65 26.2 10.6 69.6%
I3 11.7 11.2 10.7 17.1 10.6 38.1% 11.5 11.7 13.3 13.9 10.8 22.4% 7.74 8.61 8.92 14.9 9.19 48.0% 7.97 8.38 8.63 16.2 8.71 50.9%
I4 16.8 16.8 18.2 41.0 20.3 59.1% 15.5 17.3 19.7 34.9 16.6 55.5% 12.7 12.9 13.3 36.8 13.7 65.6% 13.1 12.4 13.6 33.7 13.4 63.2%

I1–I4 13.8 13.6 15.1 32.3 17.1 57.9% 13.7 14.2 16.5 28.3 14.6 51.7% 10.7 11.2 12.1 29.1 12.3 63.3% 10.8 11.0 12.3 29.1 13.2 62.9%

Table 1: MAE (↓) and relative improvement (↑) over the baseline for DLinear, TimeMixer,
iTransformer, and PatchTST under five policies. MAE values are rescaled per dataset (×103

for SynthDS/BLW-TrafficDS, ×500 for Traffic, ×2 for Weather, ×10−1 for Electricity).
For BLW-TrafficDS, patching uses L = 8, 16 intervals. Bold indicates best per model; underline
marks overall best.

Qualitative Comparison. We begin with the SynthDS trace to illustrate how training policies adapt100

to intervals of interest. Baseline: Training with B-Policy yields averaged forecasts centered around101

the global mean (Fig. 4b), showing no adaptation to interval-specific distributions. End-to-End:102

Using E2E-Policy with I = [0.75, 1] (Fig. 2a) demonstrates best-case performance: forecasts103

align with the interval-specific signal but require retraining per interval. Continuous Exploration:104

Under C-Policy, the model must map all possible I ⊂ X to their hypotheses. As shown in Fig. 2b,105

this approach underfits; restricting interval length (|I| ≥ δ) improves results but introduces bias106

if δ is too large (Fig. 9). Discrete Sampling: With DL-Policy, the model trains on a finite set of107

intervals (Fig. 2c). Performance matches E2E-Policy while retaining inference-time adaptability.108

However, it assumes prior knowledge of relevant intervals. Patching: To relax this assumption,109

we overparameterize the interval set and apply patching at inference (Figs. 2d, 2e). Despite slight110

degradation relative to DL-Policy, patched models still recover the underlying hypotheses and adapt111

flexibly to unseen intervals, motivating their use in foundation TSF settings.112

Quantitative Comparison. Table 1 reports MAE across datasets and models. As expected,113

B-Policy performs worst, while C-Policy yields modest gains but struggles to separate hypotheses.114

DL-Policy improves markedly when its intervals match ground truth, though this assumption is un-115

realistic in practice. D⋆L-Policy maintains comparable accuracy while enabling broader adaptability,116

and in some cases even surpasses the discrete baseline due to ensemble-like effects. These trends117

extend to real-world datasets, with stronger models (iTransformer, PatchTST) benefiting most, while118

weaker ones (DLinear) show less consistent improvements. Overall, patching provides a practical119

compromise between performance and flexibility.120

5 Conclusion121

This work introduces a training methodology that extends existing TSF models into foundation-122

style architectures capable of inference-time adaptation to diverse downstream tasks. Extensive123

empirical evaluation confirms the effectiveness of the proposed approach. Future directions include124

scaling to broader domains and adapting large pre-trained TSF models [22, 37, 11, 3, 14, 10] for125

arbitrary-interval forecasting.126
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A Detailed Experimental Setup238

Time-Series Forecasting Models. We evaluate four state-of-the-art TSF models: iTransformer [21],239

DLinear [41], PatchTST [28], and TimeMixer [36]. To incorporate target interval information I, we240

modify each architecture accordingly. Given an interval of interest I ⊆ X , the vectorized form of241

I is concatenated with the temporal encoding in iTransformer, while for DLinear, PatchTST, and242

TimeMixer, it is introduced as two additional temporal channels. We further extend these regression243

models to support a dual-task objective—forecasting and classification—by adding a classification244

head. This is implemented by doubling the output dimension of the final projection layer (equal to the245

forecasting horizon τ ) and partitioning it into regression outputs (first τ dimensions) and classification246

logits (remaining τ dimensions). This enables the models to both predict future values and estimate247

the probability that these forecasts fall within the target interval I.248

Benchmarking Datasets. In our experimental evaluation, we employ several benchmark datasets249

to substantiate our claims:250

1. SynthDS is a synthetic dataset designed to highlight the various components of our proposed251

methodology. The trace is constructed by combining an input signal252 (
sin

(
πn
2D

))
n∈[w]

, (3)

where w = 24 denotes the signal length, with an output signal selected uniformly at random253

(u.a.r.) from the set254 {
1
4

(
sin

(
π
2wn+ π

2

)
+ k

)
n∈[w]

: k ∈ [4]
}
. (4)

To produce a trace spanning T = 3.1× 103 timesteps, the same randomly selected signal is255

concatenated multiple times. Gaussian noise with mean and standard deviation 0.05 is then256

added to the trace. A noise-free version, without the addition of Gaussian noise, is shown in257

Figure 4a.258

2. BLW-TrafficDS [1] is released to the public domain as part of this study. We consider a259

subset of the DLPRB modality, which contains wireless beam-level measurements for 100260

beams over 103 timesteps.261

3. Traffic [7] contains hourly road occupancy rates (ranging from 0 to 1) collected by sensors262

on San Francisco Bay Area freeways between 2015 and 2016, covering a total of 48 months.263

4. Electricity [33] records hourly electricity consumption (in kWh) for 321 clients from264

2012 to 2014.265

5. Weather [38] contains 21 meteorological variables, including air temperature and humidity,266

recorded every 10 minutes throughout 2020.267

Training Configuration. To ensure the reproducibility of our experiments, we provide a compre-268

hensive description of the training setup. The datasets were divided into training, validation, and269

testing subsets. A 66-17-17 split was used for the SynthDS, Traffic, Electricity, and Weather270

datasets, while the BLW-TrafficDS dataset used a 70-10-20 split. Four state-of-the-art time series271

forecasting models—iTransformer, DLinear, PatchTST, and TimeMixer—were evaluated across the272

designated tasks.273

The BLW-TrafficDS, Traffic, Electricity, and Weather datasets were processed using274

a multivariate-to-multivariate configuration, whereas the SynthDS dataset used a univariate-to-275

univariate setup. Input sequence lengths and forecasting horizons were tailored to each dataset: 48/24276

for SynthDS, 96/24 for BLW-TrafficDS, and 168/48 for Traffic, Electricity, and Weather.277

The number of input channels was cropped to 100 for all datasets except Weather, which used 21278

channels due to its limited dimensionality.279

Model configurations across all experiments included 3 layers with a model dimension of 256.280

TimeMixer was configured with a channel dimension of 100. All models were trained with a batch281

size of 32 for 50 epochs. The AdamW optimizer [23] was used with an initial learning rate of 10−3282

and a cosine annealing schedule with η_min = 10−5, defined as:ηt = ηmin + 0.5(ηmax − ηmin)(1 +283

cos(π · t/nepochs)).284
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Figure 3: Impact of decay on the overlap of four intervals spanning the range [0, 1]. The figure
illustrates the weighting associated with the intervals I1 = [0, 0.25] and I3 for various decay rates
ν ∈ {37, 50, 100}. Note how increasing the decay rate reduces the overlap between the intervals. For
ν = 37, the weight value reaches 1% at the midpoint of the adjacent interval.

0 10 20 30 40

Time

0.00

0.25

0.50

0.75

1.00

V
al

u
e

(a) Noise-free hypotheses in SynthDS
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(b) Averaging tendencies of B-Policy

Figure 4: Subfigure (a) depicts the expected hypotheses used to construct the synthetic trace SynthDS.
Subfigure (b) depicts the inability of the baseline policy B-Policy to distinguish between the different
patterns in SynthDS dataset, as it predicts the average hypothesis (red line at 0.5). The model used is
a trained iTransformer. Each subplot shows a time-shift of six steps. The black dotted line indicates
the true values. The blue line shows the model’s predictions. over 10 random seeds.

The MAE loss was used for regression tasks, while Binary Cross Entropy loss was applied for285

classification tasks when applicable. Early stopping with a patience of 5 epochs and checkpoint286

saving mechanisms were employed to reduce overfitting. Validation loss was computed as the average287

loss over each training interval.288

The D⋆L-Policy was evaluated using 4 and 8 intervals for the SynthDS, Traffic, Electricity,289

and Weather datasets, and 8 and 16 intervals for the BLW-TrafficDS dataset. Interval endpoint290

sampling was performed per sample within each batch and incorporated into the forward pass as291

detailed in Section 3.292

The dataset sizes are as follows: SynthDS—3,456 points, BLW-TrafficDS—1,025 points, Weather—293

52,696 points, Traffic—17,544 points, and Electricity—26,304 points. To set forecasting294

boundaries, the maximum values were assigned as max (X ) ∈ {0.2, 500.0, 10000.0} for Traffic,295

Weather, and Electricity, respectively. All experiments were executed on a system with 6 Tesla296

V100/16GB GPUs and an Intel(R) Xeon(R) Platinum 8164 CPU (104 cores).297
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∞-strategy performs better, while γ > 1 favors the 1-strategy.
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Figure 8: Comparison of the performance of the different decay rates for the PatchTST model trained
with the D8-Policy.

B Implications for Downstream Task: Forecasting for Energy-Saving298

We consider a heterogeneous wireless network comprising two tiers: a capacity cell (e.g., a small299

or micro cell) providing high-throughput service within a localized area, and an overlaid coverage300

cell (e.g., a macro cell) ensuring broad-area connectivity. Two-tier architectures with dynamic small301

cell control have emerged as a key strategy for balancing spectral efficiency and energy savings in302

5G and beyond [8, 18, 40, 24, 2]. In particular, recent work has shown that monitoring DLPRB303

utilization provides an effective signal for real-time sleep mode activation in energy-aware networks.304

We assume that the capacity cell can be selectively deactivated to reduce energy consumption when305
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Figure 9: Interval-separation percentage (δ) impact on C-Policy.

traffic demand is low. To govern this behavior, we adopt a threshold-based energy-saving policy that306

operates based on the observed DLPRB utilization. This mirrors widely-used control strategies that307

compare traffic load against fixed or learned thresholds to trigger cell activation or sleep [8, 18].308

Let u(t) ∈ [0, 1] denote the normalized DLPRB utilization at discrete time index t ∈ Z≥0, and let309

uth ∈ [0, 1] represent a fixed utilization threshold. The binary state variable S(t) ∈ {0, 1} indicates310

whether the capacity cell is active (S(t) = 1) or deactivated (S(t) = 0). The policy is defined as:311

S(t) =

{
1, if u(t) ≥ uth,

0, otherwise.
(5)

The instantaneous cell traffic load, denoted L(t), is computed as the product of DLPRB utilization312

and the maximum throughput capacity of the capacity cell:313

L(t) ≜ u(t) · Ccap, (6)
where Ccap > 0 is the peak service rate (in Mbps) of the capacity cell.314

Realized Throughput. The realized throughput, R(t), is constrained by the physical limits of315

the serving infrastructure. When the capacity cell is active, it serves the traffic directly, up to its316

maximum capacity. If deactivated, the traffic is offloaded to the coverage cell, subject to its own317

capacity constraint and a possible degradation in service quality. This is formalized as:318

R(t) =

{
min (L(t), Ccap) , if S(t) = 1,

α ·min (L(t), Ccov) , if S(t) = 0,
(7)

where Ccov > 0 denotes the capacity of the coverage cell and α ∈ (0, 1] is a degradation factor that319

accounts for reduced performance when traffic is offloaded.320

Energy Consumption. To evaluate the energy-performance trade-off, we associate an energy cost321

with each state. Let Eon and Eoff represent the per-time-unit energy consumption when the capacity322

cell is active or inactive, respectively. The total energy consumption at time t is then:323

E(t) = S(t) · Eon + (1− S(t)) · Eoff . (8)

Over a time horizon of T intervals, the average throughput and average energy consumption are given324

by:325

R̄ =
1

T

T∑
t=1

R(t), Ē =
1

T

T∑
t=1

E(t). (9)

This model captures the core dynamics of a load-aware energy-saving policy in a two-tier network,326

balancing energy efficiency with service quality under realistic physical constraints.327

Downstream Application Optimization Problem. We consider the following optimization prob-328

lem that balances average throughput and energy consumption:329

max
uth∈[0,1]

(1− λ) R̄(uth)− λ Ē(uth) (10)

where λ ∈ [0, 1] is a scalar trade-off parameter that governs the relative importance of energy330

efficiency versus throughput performance. Let u⋆
th(λ) denote the optimal threshold that solves331

problem (10) for a given value of λ.332
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Instantiation and Numerical Results. We instantiate the problem using representative parameter333

values from prior work [8, 18]. In particular, the capacity cell peak throughput was set to Ccap =334

100 Mbps, while the coverage cell peak throughput was Ccov = 30 Mbps. An offloading degradation335

factor of α = 0.5 was applied to model performance reduction during traffic redirection. The energy336

consumption of a capacity cell was configured as Eon = 1266 Wh when active and Eoff = 320 Wh337

when inactive. These parameters define the operational conditions under which forecasting models338

were evaluated.339

Specifically, we train the iTransformer model on the BLW-TrafficDS dataset under two distinct340

policies: the B-Policy and the D⋆L-Policy (L = 4 intervals), with a forecasting horizon length of341

H = 24, with a test set rolled over 96 hours. We then evaluate and compare the performance of these342

policies. Since the threshold of interest is not known a priori, we deliberately select a slightly broader343

interval, [0, 0.5], to ensure coverage; this involves patching together two intervals for the D⋆L-Policy.344

Based on the generated forecasts, we fix a threshold value and observe the resulting sequence of345

decisions, denoted as S(t) for t ∈ [T ], where T is the length of the forecast horizon. We analyze the346

discrepancies in sleep durations induced by the forecasts under the different policies and restrict our347

attention to a specific range of thresholds: Uth ∈ [0, 0.025].348

As shown in Figure 5, the task-specific policy corresponding to a selected threshold yields decisions349

that are more closely aligned with the optimal policy—that is, the policy a decision-maker would350

follow with perfect foresight of future DLPRB values. This alignment demonstrates that the task-351

specific forecasts lead to better downstream optimization performance. Quantitatively, the task-352

specific policy produces forecasts that reduce the sleep duration error by a factor of three (×3),353

corresponding to an average reduction of one hour in sleep duration error per day. This improvement354

translates into an energy saving error of only 337 watts, in contrast to a significantly higher mismatch355

of 0.950 kilowatts observed under the baseline policy per day.356

C Hyperparameter Sensitivity Analysis357

We conducted experiments on the specific hyperparameters introduced by our work, namely the358

number of intervals L in which we divided the time series domain X , the decay rate ν ∈ [0,∞] and359

the patching strategies (1-strategy and ∞-strategy).360

Interval Granularity (L). Among the hyperparameters introduced, the number of intervals L plays361

the most critical role. It determines the granularity of the discretization over the time series domain362

X , directly influencing both model complexity and performance. Figure 6 illustrates the effect of363

varying L on model performance. To assess this, we trained the PatchTST model on the SynthDS,364

under four instances of D⋆L-Policy. Each policy corresponds to a partitioning of the domain X into365

L ∈ {4, 8, 16, 32} intervals, with a fixed decay rate ν across all runs. For evaluation, we measured366

the MAE over coarser partitions obtained via powers-of-two binning. The results demonstrate a clear367

trade-off: increasing the number of intervals improves granularity but may lead to decreased accuracy368

at coarser levels due to over-patching. This underscores the importance of selecting an appropriate369

value of L to balance detail sensitivity with robustness across scales. For practical applications, a370

preliminary sweep over L is recommended to identify the configuration that best controls patching371

frequency while maintaining predictive accuracy.372

Patching Strategies Comparison (⋆). To systematically investigate the performance trade-off373

between the 1-strategy and the ∞-strategy, we formulated an evaluation strategy centered on the374

MAE across varying interval lengths. For this purpose, the PatchTST model, one of the best models375

from our empirical studies, was trained on the noiseless SynthDS dataset under four distinct policies:376

D4, D8, D16, and D32. A comparative evaluation of the 1-strategy and ∞-strategy was then conducted377

for each policy. This evaluation was performed on partitions of the codomain of the time-series378

where the total number of intervals corresponded to a power of two. Figure 7 presents a comparative379

analysis of the two patching mechanisms where we divided the MAE of the ∞-strategy by the MAE380

of the 1-strategy and we observed the results over different intervals length.381

We observe that for smaller intervals where the hypotheses are well-defined and there is no need for382

averaging, the ∞-strategy outperforms the 1-strategy. As the intervals are getting larger, the need for383

averaging grows, thus making the 1-strategy better.384
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This analysis shows that for a dataset, when performing inference on small intervals or intervals with385

clearly defined hypotheses, the ∞-strategy is needed, while for larger intervals on which the B-Policy386

would average, the 1-strategy is needed.387

Decay Rate Analysis (ν). In the same context as the experiment involving the number of intervals,388

we conducted an experiment related to the behaviors of the decay rate. We employed the D32 policy389

and studied decay rates in the set {0, 1, 2, 5,∞}. The results of the experiment can be seen in Figure 8.390

We observe that the decay rate ν plays a significant role in enhancing forecasting accuracy, particularly391

in scenarios where substantial patching is required, i.e., when the interval length is large. In the392

extreme case where all 32 training intervals are aggregated into a single target interval (resulting in393

an interval length of 1), the best performance is achieved when ν = ∞, corresponding to a no-decay394

setting. However, as the intervals of interest become smaller, corresponding to finer-grained target395

partitions, we observe improved performance when a finite decay rate is applied. In these cases,396

the decay mechanism effectively introduces a soft overlap between training intervals, promoting397

smoother generalization across neighboring regions of the domain. This highlights the importance of398

tuning ν based on the level of aggregation or granularity used in the target interval structure.399

Interval Separation (δ). As introduced in Section 3, the C-Policy incorporates a hyperparameter,400

the interval separation δ. In this section, we investigate its effect using the iTransformer model trained401

on the SynthDS trace. Specifically, we vary δ within the range [0, 0.4] over the domain X = [0, 1].402

Figure 9 illustrates the effect of constraining the sampling space of training intervals by enforcing403

a minimum separation constraint I ≥ δ. Reducing the sampling space initially yields improved404

performance; however, beyond a critical threshold δ′ ≈ 5%, performance degrades as the model tends405

to overestimate true interval lengths, thereby introducing bias. It is worth noting that in SynthDS, the406

ground-truth hypotheses are separated by intervals of length 1/4.407
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