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ABSTRACT

Collecting the paired training data is a difficult task in practice, but the unpaired
samples broadly exist. Thus, current approaches aim at generating synthesized
training data from the unpaired samples by exploring the relationship between the
corrupted and clean data. In this work, we propose LUD-VAE, a method to learn
the joint probability density function from the data sampled from marginal distri-
butions. Our method is based on the variational inference framework and maxi-
mizes the evidence lower bound (ELBO), the lower bound of the joint probability
density function. Furthermore, we show that the ELBO is computable without
paired samples under the inference invariant assumption. This property provides
the mathematical rationale of our approach in the unpaired setting. Finally, we
apply our method to the real-world image denoising and super-resolution tasks
and train the models using the synthetic data generated by the LUD-VAE. Exper-
imental results on four datasets validate the advantages of our method over other
learnable approaches.

1 INTRODUCTION

In recent years, deep learning based models have been an astonishing success in image restoration,
which requires large quantities of paired noisy-clean training data. However, in practice, collecting
such paired data is difficult or even impossible due to the high complexity of tasks, such as real-world
image denoising (Abdelhamed et al., 2018; 2019; Guo et al., 2019) and super-resolution (Lugmayr
et al., 2019a; Cai et al., 2019a;b). On the contrary, unpaired data broadly exists and is easily acces-
sible in many situations. For example, it is easy to obtain many images of different resolutions or
noisy and clean images through the internet. Consequently, designing deep learning methods with
unpaired data is of significant research interest and deserves deep exploration.

Currently, there are two common strategies along this line. One is the unsupervised image restoration
methods with a single noisy image (Ulyanov et al., 2018; Quan et al., 2020; Zheng et al., 2021) and
noisy image datasets Wu et al. (2020); Laine et al. (2019), which do not consider clean images. As
a result, those methods are either time-consuming and or inferior to supervised methods. The other
strategy is to learn the degradation model from the unpaired noisy-clean datasets. After learning a
generative model to construct the synthetic paired training data, it trains an image restoration model
using conventional supervised deep learning algorithms. The main difficulty of these methods is
to develop effective methods such that the synthetic paired data is close to the underlying paired
data. Mathematically, assume y = D(x,n), where x represents the clean image, y represents the
noisy image, n represents the unknown random noise, and D represents the unknown degradation
process, the goal is to learn the stochastic degradation process D and n through unpaired samplings
of x and y. Current methods mainly adopt generative adversarial networks (GANs) (Goodfellow
et al., 2014) and draw on the idea of cycle-consistency constraint in Cycle-GAN (Bulat et al., 2018;
Lugmayr et al., 2019a; Zhu et al., 2017) and domain adversarial objectives (Bell-Kligler et al., 2019;
Fritsche et al., 2019; Wei et al., 2021). However, these methods often require careful adjustment
of different losses, and the heuristic constraint of cycle consistency is too weak for our problem
and lacks theoretical rigorousness. More importantly, those GAN-based methods usually obtain a
deterministic mapping while ignoring the randomness in the degradation generation process. Very
recently, the DeFlow (Wolf et al., 2021) method, which models the unpaired degradation process
using a flow model, has shown promising performance in super-resolution. However, the training
process of the DeFlow method encounters unstable problems.
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Figure 1: Synthetic noisy images obtained by LUD-VAE learned from unpaired noisy-clean data.
The first row is from the AIM2019 (Lugmayr et al., 2019b) dataset, and the second row is from the
NTIRE2020 (Lugmayr et al., 2020) dataset.

In this work, we propose LUD-VAE, a variational auto-encoder (VAE) (Kingma & Welling, 2013)
based learning method for unpaired data. In concrete, given x ∼ p(x) and y ∼ p(y), our goal
is to approximate the joint distribution p(x,y) with a carefully designed generative graph. This
graph consists of two independent latent variables z, which represents the image information, and
zn, which represents the degradation information. The generation relationship is as follows: x is
generated from z, and y is generated from z, zn. Using the idea from VAE, we introduce an encoder
network for the inference and a decoder network for the generative process such that we can model
the conditional distribution p(y | x). In addition, we impose the inference invariant condition on
z that requires the same latent representations of paired x and y and prove that the ELBO can be
computed via unpaired noisy and clean data. This property gives us a clear and explainable loss for
training the networks.

We apply our LUD-VAE model to the problem of real-world image denoising and super-resolution.
LUD-VAE is used to learn the degradation model with unpaired data and synthesize paired training
data for the downstream supervised models. We demonstrate the model performance of on two real-
world super-resolution datasets: AIM2019 (Lugmayr et al., 2019b) and NTIRE2020 (Lugmayr et al.,
2020), and one real-world image denoising dataset: SIDD (Abdelhamed et al., 2018). Our model
outperforms other GAN-based approaches. Compared with DeFlow, the results of LUD-VAE are
very competitive and using much fewer network parameters.

2 RELATED WORK

Unpaired degradation modeling. Learning the degradation model from unpaired data can be con-
sidered as the image-to-image transfer task, a long-standing problem in computer vision. Most of the
existing works employ the GANs (Goodfellow et al., 2014), mainly using cycle-consistency Bulat
et al. (2018); Lugmayr et al. (2019a) proposed in Cycle-GAN (Zhu et al., 2017) and domain adver-
sarial (Bell-Kligler et al., 2019; Fritsche et al., 2019; Wei et al., 2021) to characterize the conditional
relationship between p(x) and p(y). However, these methods often use heuristic losses, lack theo-
retical guarantees, and need elaborate fine-tuning of those losses. Meanwhile, GAN-based methods
may have issues such as unstable training and model collapse. Our model is based on variational
inference, each term in our loss function can be derived from the evidence lower bound, and there
are no adversarial losses as in GANs. There are also handcrafted methods to synthesize degradation
images (Ji et al., 2020), but lack generalization ability. Recently, Wolf et al. (2021) proposed the
DeFlow model, a flow-based degradation modeling method without paired data, which has achieved
excellent performance on real-world super-resolution tasks.

Unpaired learning with VAEs. Variational auto-encoder (VAE) (Kingma & Welling, 2013) based
unpaired learning for degradation modeling is currently less developed; here, we investigate some
related topics. Zhao & Chen (2021) proposed to train an Energy-Based Model (EBM) in the la-
tent space of a trained VAE to realize image-to-image transfer. However, this method uses Markov
Chain Monte Carlo (MCMC) algorithms to sample from the latent space; thus, the generation speed
is relatively slow. Meanwhile, this method has no theoretical constraints to ensure the rationality of
the transformation of x to y, which is mainly used for the transformation between human faces or
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animal images. Zheng et al. (2021) proposed a single image based unsupervised denoising method
with VAEs. The problem is that this method requires training a new network for each image, which
is time-consuming. Moreover, this algorithm has too many hyperparameters, and it needs to be care-
fully adjusted for different Noise types. Prakash et al. (2020) proposed a dataset based unsupervised
denoising algorithm for microscopy images with VAEs, which needs to know the noise distribution
and requires multiple re-samplings to boost the performance. In addition, it only verifies the effec-
tiveness for microscopy images and text images, whereas the texture and content of natural images
are more complicated. In this work, we learn the degradation model with unpaired data, design an
explainable and reasonable loss with successful applications in real-world image restoration tasks.

3 OUR METHODOLOGY

In this section, we present our method for learning the unknown degradation model using unpaired
noisy and clean images. Formally, assume the data {xi} and {yj} are i.i.d. sampled from p(x) and
p(y) respectively, our goal is to generate paired samples from the conditional distribution p(y | x).
In the following context, we assume clean images x lie in the source domain, and noisy images y
lie in the target domain.

3.1 BASIC IDEA

zn

y

z

x

Figure 2: Graphical model of
the image generation process.
z represents the content infor-
mation of the image, and zn
represents the degradation in-
formation.

To find the transformation from x to y, one straightforward idea
is to estimate the conditional density p(y | x). However, due to
the lack of paired data, it is difficult to model the conditional den-
sity function directly. Thus, we consider to model the joint density
function p(x,y) instead. To achieve unpaired learning, our basic
idea is to decouple the joint density function into the source do-
main and target domain. Since the independent assumption for x,y
can not hold, we impose the conditional independence by assum-
ing the joint random variable (x,y) has two latent variables: z and
zn. For a paired data (x,y) sampled from p(x,y), we assume the
image content comes from latent variable z and the degradation in-
formation comes from zn. The generating relationship is given in
Figure 2. Under the above assumptions, the conditional joint distri-
bution becomes

p(x,y | z, zn) = p(x | z)p(y | z, zn), (1)

and the conditional log-likelihood is∑
i

log p(xi,yi | z, zn) =
∑
i

log p(xi | z) + log p(yi | z, zn)

=
∑
i

log p(xi | z) +
∑
j

log p(yj | z, zn),
(2)

which removes the dependence of paired data. Inspired by the above observation, we can rigorously
obtain the approximated joint distribution in the next subsection.

3.2 PROPOSED LUD-VAE METHOD

To conduct the inference of the graphical model given by Figure 2, we apply the variational inference
framework. Since the generation/inference process is too complicated and usually represented by
deep neural networks, traditional Coordinate Ascent Variational Inference (CAVI) and Expectation
Maximization (EM) (Bishop, 2006) are not applicable, see Appendix A for the details. To avoid
the direct update of the inference model q(z, zn | x,y), we adopt the idea from VAE (Kingma &
Welling, 2013) by parameterizing the q(z, zn | x,y) with an encoder network, which is the proposed
LUD-VAE method.

The log-likelihood function log p(x,y) has the decomposition:

log p(x,y) = Eq(z,zn|x,y) log
p(z, znx,y)

q(z, zn | x,y)
+DKL (q(z, zn | x,y)‖p(z, zn | x,y)) , (3)
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where

Eq(z,zn|x,y) log
p(z, znx,y)

q(z, zn | x,y)
= Eq(z,zn|x,y) log p(x,y | z, zn)−DKLq(z, zn | x,y)‖p(zn, z)

(4)
is called the evidence lower bound (ELBO). Instead of maximizing the intractable log-likelihood,
we maximize the ELBO that is a lower bound of the log-likelihood. Suppose the image information
is contained in the pair data (x,y) and the degrading information is only contained by the noisy data
y, we choose the inference model has the decomposition

q(zn, z | x,y) = q(z | x,y)q(zn | y). (5)

Moreover, the graphical model in Figure 2 gives

p(zn, z) = p(zn)p(z), p(x,y | z, zn) = p(x | z)p(y | z, zn). (6)

Combining Eq. 5 with Eq. 6, the ELBO in Eq. 4 satisfies

ELBO =Eq(z|x,y) log p(x | z) + Eq(z|x,y)q(zn|y) log p(y | zn, z)︸ ︷︷ ︸
Reconstruction

−DKL(q(z | x,y)‖p(z))−DKL(q(zn | y)‖p(zn))︸ ︷︷ ︸
KL

.
(7)

Due to the existence of q(z | x,y) in Eq. 7, it still needs the pair information. Thus, to decouple it,
we impose the inference invariant condition on q(z | x,y) as

q(z | x,y) = q(z | x) = q(z | y). (8)

This assumption shows that for paired data (x,y), the latent image information z can be obtained
from either clean image x or noisy image y. In practice, this assumption is not strong and can be
easily satisfied using a pre-trained network or predefined operations. For instance, the noisy data
and the clean data are the same in low frequency counterpart, this assumption can be approximately
satisfied by passing the input image through a low-pass filter. More discussion on this assumption is
present in Section 3.3. Now, we are ready to propose the objective function of our unpaired learning
model in the next proposition and the proof is given in Appendix B.

Proposition 1 Assume the inference model q(z | x,y) satisfies the inference invariant condition in
Eq. 8, then maximize the ELBO in Eq. 7 with paired data (x,y) ∼ p(x,y) is equivalent to maximize
the following objective function:

∑
i

Eq(z|xi) log p(xi | z)− 1

2
DKL(q(z | xi)‖p(z)),

∑
j

Eq(z|yj)q(zn|yj) log p(yj | zn, z)− 1

2
DKL(q(z | yj)‖p(z))−DKL(q(zn | yj)‖p(zn)),

(9)
where {xi} and {yj} are i.i.d. samples from p(x) and p(y) respectively.

Remark 1 The recent DeFlow model (Wolf et al., 2021) can also estimate the joint density p(x,y)
by directly maximizing two marginal log-likelihood functions log p(x) and log p(y). Their work
assumes that there are two latent variables zx and zy where zx and zy are not independent, which
is the main difference with our method. In this case, the log-likelihood of the joint density cannot be
estimated by maximizing the marginal log-likelihood functions and requires the paired data infor-
mation. Please see the Appendix C for more details. It is worth mentioning that the DeFlow method
introduces a domain invariant function and the conditional flow model. This modified model may
help decorrelate the latent representations, but the exact mechanism is not clear.

3.3 METHOD DETAILS

In this section, we give the detailed settings in our LUD-VAE model.

Generate synthetic paired data. After the training procedure, there are three methods to generate
paired data.
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Method 1 Method 2 Method 3

Figure 3: Three methods to generate paired data. Method 3 is used in LUD-VAE.

1. Sample zn ∼ p(zn), z ∼ p(z), then generate (x,y) from p(y | z, zn) and p(x | z).

2. Sample y ∼ p(y), inference the latent variable z with q(z | y), then generate the corre-
sponding x from p(x | z).

3. Sample x ∼ p(x), inference the latent variable z with q(z | x), sample zn ∼ p(zn), then
generate the corresponding y from p(y | z, zn).

See Figure 3 for the graphical explanations. In LUD-VAE, we adopt method 3 to generate paired
training data for the downstream tasks since sampling from the prior distribution p(z) may be diffi-
cult and obtaining the latent variable z from the clean image is better than that from degraded data.

Choice of latent space. There are two latent variables zn, z in our model, and the choice of their
prior distributions is critical. It is known that in the traditional VAE models usually generate unreal-
istic and blurry Dosovitskiy & Brox (2016) samples, unless using the hierarchical structure (Vahdat
& Kautz, 2020; Child, 2020). To alleviate this problem, inspired by the idea in VQ-VAE (Oord
et al., 2017), we choose p(z) as a discrete space, which can facilitate the model’s reconstruction of
data, and assume p(zn) as a traditional continuous spaceN (0, I), which is convenient for sampling
the latent variables. This choice facilitates the inference method 3 to generate the synthetic paired
data as it does not need to sample form p(z). Thus, we only adopt the stage-one in VQ-VAE and
do not need to train a PixelCNN (Oord et al., 2016) for sampling from p(z). For the degradation
part, we use the latent space assumption of the traditional VAE, which makes it easy to sample the
degradation, and we use the diagonal Gaussian distributions for the degradation inference model.
The reparameterization trick is used to train the neural networks end-to-end with backpropagation
algorithm.

Inference invariant condition. The assumption for the establishment of Proposition 1 is to assume
that our inference model satisfies the inference invariant condition in Eq. 8, which means that for
paired clean and noisy data (x,y) ∼ p(x,y), their latent variable z is the same. This assumption
makes sense since we assume that z represents the image information, and for paired clean-noisy
data, their latent image information should be the same. To satisfy this constraint, we pass the input
data through a low-pass filter h. It can be considered that for paired clean-noisy data x,y, they have
the same low frequency parts i.e., h(x) = h(y), then

q(z | h(x), h(y)) = q(z | h(x)) = q(z | h(y)). (10)

We choose q(z | x) = q(z | h(x)), q(z | y) = q(z | h(y)), then the inference invariant condition
hold from Eq. 10. In practice, we implement h by simple convolutions: h(x) = x ∗Gs

σ , where Gs
σ

is a Gaussian blur kernel with size s and variance σ2.

Remark 2 It is noted that the inference invariant condition is flexible, and h(·) can be considered
as a pre-processing operator. If there are paired samples {xi,yi}Ni=1, we can define h(xi) = xi
and h(yi) = xi, ∀i = 1, ...N , the inference invariant condition is automatically satisfied. Thus, our
model can handle both paired and unpaired learning tasks.

KL anneal. When training the VAE models, one commonly encountered problem is the KL-
Vanishing (Bowman et al., 2015), which means that the VAE models make the data and the latent
variable to be independent. In this case, the inference model q(z | x) equals the prior p(z), the
KL divergence equals 0, and data reconstruction does not depend on the latent variable. In our
model, there are two latent spaces of different nature. One is a discrete latent space representing
image information p(z), and the other is a continuous latent space representing degradation infor-
mation p(zn). Since we are using method 3 in Figure 3 to generate paired data, we need to prevent
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q(zn | y) from the KL-Vanishing problem. There are many methods to achieve this (Kingma et al.,
2016; Chen et al., 2016; Shen et al., 2018), here we apply the the KL annealing method Bowman
et al. (2015). We multiply a weight coefficient α in front of DKL(q(zn | yi)‖p(zn)) in Eq. 9, and
choose α equals to the current number of iterations divide by 5e8.

y 𝑝 𝒛𝒏

𝑝 𝒛

Noise
Encoder

Image
Encoder

Noise
Decoder

Image
Decoder

y

x x

Noisy

Clean

Figure 4: The model architecture used in our paper.

Model architecture. We use the
hierarchical VQ-VAE (Razavi et al.,
2019) with two layers as the main
body of our model, which has better
reconstruction quality. For the degra-
dation part, we use a traditional VAE
with the same encoder/decoder struc-
ture as VQ-VAE. The model architec-
ture is illustrated in Figure 4, the de-
graded image y is encoded by both
noise encoder and image encoder and
reconstructed by the combination of
noise decoder and image decoder, while the clean image x is only encoded by the image en-
coder/decoder. Latent variables zn and z interact in the latent space, indicating that the degradation
process may be signal dependent.

4 EXPERIMENTS AND RESULTS

We evaluate the performance of our LUD-VAE model on real-world image denoising and super-
resolution tasks. First, we use LUD-VAE to learn the unknown degradation model under the un-
paired learning settings, generate the synthetic training dataset, and then use an off-the-shelf super-
vised learning algorithm to learn the restoration model. All experiments are evaluated in the sRGB
space.

4.1 DATASETS AND EVALUATION METRICS

Two real-world super-resolution datasets and one real-world denoising dataset are chosen for evalu-
ating our method:

AIM19: Track 2 of the AIM 2019 real-world super-resolution challenge (Lugmayr et al., 2019b)
provides a dataset of unpaired noisy-clean images. The noisy images are synthesized with an un-
known combination of noise and compression, which mainly manifests as structural and low fre-
quency noises. The task is to learn a super-resolution model from the unpaired dataset, which
restores high-resolution clean images from the low-resolution noisy inputs. The challenge also
provides a validation set of 100 paired images, where different models can be compared with quan-
titative metrics. We refer to this dataset as the AIM19 dataset.

NTIRE20: Track 1 of NTIRE 2020 super-resolution challenge (Lugmayr et al., 2020) follows the
same setting as the AIM19 dataset, where it features a completely different type of degradation,
namely highly correlated high-frequency noise. As AIM19, a validation set contains 100 paired
images exists, enabling a quantitative-based evaluation. We refer to this dataset as the NTIRE20
dataset.

SIDD: The smartphone image denoising dataset (SIDD) (Abdelhamed et al., 2018) provides 30,000
noisy images from 10 scenes under different lighting conditions using five representative smartphone
cameras and generates their ground truth images. We use the SIDD-Small Dataset and ignored the
original index of clean noisy images to set up an unpaired dataset. It also provides the validation
and benchmark datasets, each of which is cropped into 32 blocks of size 256 × 256, resulting in a
total of 1024 image blocks in each dataset. We refer to this dataset as the SIDD dataset.

For both three datasets, we report the peak signal-to-noise ratio (PSNR) and the structural simi-
larity index (SSIM) (Wang et al., 2004). For AIM19 and NTIRE20 datasets, we also compute the
LPIPS (Zhang et al., 2018) distance, which is based on the comparison between features of a neural
network, here we use a pre-trained AlexNet (Krizhevsky et al., 2012) model.
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ESRGAN-B ESRGAN-FS Impressionism DASR DeFlow-NP LUD-VAE

Figure 5: Visual comparison on real-world super-resolution: AIM19 (top) and NTIRE20 (bottom).

Table 1: Quantitative comparison on real-world super-resolution datasets AIM19 and NTIRE20.
AIM19 NTIRE20 Num of

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Parameters
ESRGAN-B 21.69 0.5517 0.517 20.45 0.3241 0.675 -
ESRGAN-FS 20.81 0.5242 0.387 21.07 0.4356 0.414 1.62M
Impressionism 21.99 0.6060 0.420 25.27 0.6731 0.229 -

DASR 21.06 0.5658 0.375 23.70 0.5748 0.328 1.70M
DeFlow-NP 21.06 0.5842 0.346 24.81 0.6777 0.225 62.94M
LUD-VAE 22.13 0.6165 0.377 25.74 0.7135 0.228 10.07M

DeFlow 22.25 0.6214 0.349 25.87 0.7005 0.218 62.94M
CinCGAN 21.60 0.6129 0.461 24.83 0.6752 0.509 53.22M

4.2 IMPLEMENTATION DETAILS

We train all LUD-VAE models for 200k iterations with the Adam (Kingma & Ba, 2014) optimizer.
The learning rate is fixed to 1e−4. We use a batch size of 16, containing random crops of size 160×
160. Batches are sampled randomly such that images from each domain are drawn with the same
possibility. Random flips and rotates are used as data augmentation. For the super-resolution task,
we train the LUD-VAE models using the bicubic downsampled images as clean dataset {xi} and
the noisy images as degraded dataset {yj}. After the training process, we use LUD-VAE to transfer
the clean dataset to the degraded dataset, forming a paired training set with the high-resolution clean
images. For the AIM19 dataset, we normalize the noisy image, such that it has the same channel-
wise mean and standard deviation as the clean domain as the DeFlow model (Wolf et al., 2021),
and then de-normalize the synthetic noisy image to constitute the training dataset. For the denoising
task, we first learn the noise model with unpaired data and then transform the clean image into the
corresponding noisy image to obtain the paired training set. For AIM19, we use a Gaussian blur
kernel of size s = 9 and σ = 4; for NTIRE20 we use kernel size s = 9 and σ = 3; for SIDD we use
kernel size s = 21 and σ = 10 since the noise level in this dataset is larger.

4.3 REAL-WORLD SUPER-RESOLUTION

We compare LUD-VAE with four unpaired degradation models namely ESRGAN-FS (Fritsche
et al., 2019) the winner of the AIM 2019 real-world super-resolution challenge (Lugmayr et al.,
2019b), Impressionism (Ji et al., 2020) the winner of the NTIRE 2020 real-world super-resolution
challenge (Lugmayr et al., 2020), DASR (Wei et al., 2021) a recently proposed GAN-based method,
and DeFlow (Wolf et al., 2021) a flow-based unpaired degradation modeling method. For a fair
comparison, we used the settings without the pre-trained network to retrain the DeFlow model,
denoted as DeFlow-NP. We use LUD-VAE and these four methods to learn the unknown degrada-
tion model, then bicubic downsample the high-resolution images and generate the low-resolution
noisy images to obtain the paired training dataset. In addition, we use the bicubic downsampled
low-resolution data without degradation as the baseline, denoted as ESRGAN-B. When we have the
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Figure 6: Visual comparison on real-world image denoising dataset SIDD benchmark.

Table 2: Quantitative comparison on real-world image denoising dataset SIDD benchmark (top) and
SIDD validation (bottom).

AWGN MCWNNM N2S DeFlow-NP LUD-VAE DeFlow DnCNN
PSNR ↑ 32.12 33.37 29.56 33.54 34.63 33.81 36.54
SSIM ↑ 0.868 0.875 0.808 0.875 0.915 0.897 0.927
PSNR ↑ 32.06 33.40 30.72 33.53 34.64 33.82 36.83
SSIM ↑ 0.809 0.815 0.787 0.817 0.868 0.846 0.870

training dataset, we use the real-world super-resolution model ESRGAN (Wang et al., 2018) to get
the final super-resolution results for all methods. We use the training code from Impressionism and
train the ESRGAN model for 60k iterations, then choose the final model with the best LPIPS score
on the validation dataset every 5k iterations. We also compare with a recently proposed unsupervised
super-resolution model CinCGAN (Yuan et al., 2018).

The quantitative results are given in Table 1. For the evaluation metrics, PSNR and SSIM focus on
the restoration of the overall content of the image, while LPIPS pays more attention to the image
details, so these two types of metrics are mutually exclusive to each other. Most models tend to
perform well on only one type of metric, where LUD-VAE performs uniformly well on these three
metrics. For the AIM19 dataset, the degradation type mainly behaves as low-frequency and struc-
tured noise, while the NTIRE20 dataset is primarily high-frequency noise. We found that LUD-VAE
can learn these different types of degradation models without paired data.

Comparison with DeFlow/DeFlow-NP. We find that our model has inferior quantitative perfor-
mance than the DeFlow model that uses the pre-trained model and better PSNR and SSIM than the
DeFlow-NP model that does not use the pre-trained model. This may be because the pre-trained
network is trained on paired low-resolution and high-resolution data, which provides strong prior
knowledge, and the quantitative metrics are worse on DeFLow-NP without this prior. In addition,
the amount of parameters in DeFlow is much larger than our model, which will bring difficulties to
practical use. From the visual results in Figure 5, our result removes the noise and is smoother and
clearer than the DeFlow-NP model.

Comparison with GAN-based methods. We find that our model is more robust and effective. This
may be because GAN-based methods often need to fine-tune different loss functions, and the cycle-
consistency constraint is too weak to attain the theoretical guarantee for image restoration tasks. In
addition, we find that the performance of LUD-VAE on PSNR and SSIM is better than LPIPS. This
may be because we are using the VAE model and the loss function is the Mean Squared Error (MSE)
loss, which lacks attention to the image details, making the LPIPS score worse. In the LUD-VAE
model, we do not use any heuristic loss function, such as perceptual loss or GAN-style loss, to
further improve the quantitative score. The visual results in Figure 5 show that the performance of
the GAN-based method is unstable; some images are still noisy, while our approach is more robust.
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Table 3: Ablation study of LUD-VAE model. Left: Different generation methods on SIDD bench-
mark (top) and SIDD validation (bottom) datasets. Right: Validate inference invariant condition on
AIM19 dataset.

Method 2 Method 3 PSNR ↑ SSIM ↑ LPIPS ↓
PSNR ↑ 33.96 34.63 No blur h(x) = x 21.51 0.5208 0.476
SSIM ↑ 0.902 0.915 Kernel size s = 9, σ = 2 21.16 0.4631 0.460
PSNR ↑ 34.08 34.64 Kernel size s = 9, σ = 4 22.13 0.6165 0.377
SSIM ↑ 0.856 0.868 Kernel size s = 9, σ = 6 21.45 0.5874 0.361

4.4 REAL-WORLD IMAGE DENOISING

We compare LUD-VAE with the unsupervised denoising method MCWNNM (Xu et al., 2017), the
dataset-based denoising method N2S (Batson & Royer, 2019), the degradation modeling method
DeFlow/DeFlow-NP (Wolf et al., 2021), and the fully supervised method DnCNN (Zhang et al.,
2017). We also set up a baseline method for Additive White Gaussian Noise degradation, denoted
as AWGN. Since the SIDD dataset contains images with different noise levels, we synthetic the
degraded images with random noise levels using different degradation methods. For AWGN, we
randomly apply Gaussian noise with zero mean and standard deviation σ ∈ [0.05, 0.5] to each
image; for DeFLow/DeFlow-NP and LUD-VAE we randomly apply synthetic noise with the noise
level parameter t ∈ [1, 4] to each image. For AWGN, LUD-VAE, and DeFlow/DeFlow-NP, we use
the DnCNN (Zhang et al., 2017) for downstream denoising tasks for 50k iterations with an initial
learning rate 1e−4 and halved in 25k iteration. We test each method on the validation set every 500
iterations, and choose the final model with the best PSNR to evaluate on the benchmark set.

The quantitative results are given in Table 2. We find that LUD-VAE has achieved the best results
except for the supervised method DnCNN. DeFlow does not perform very well on this dataset; the
reason may be the incomplete loss function of the model (see Appendix C) and the instability of the
training process. The dataset-based denoising method N2S performed poorly because the noise does
not satisfy the spatial uncorrelated assumption. The visual results in Figure 6 show that our results
are closer to DnCNN’s, with complete noise removal than the other methods.

4.5 ABLATION STUDY AND DISCUSSION

Generation method. We compared different methods in Figure 3 for generating paired data in our
model. For method 1, we need to train an additional PixelCNN to sample from the prior distribution
p(z), which is inconvenient for practical use; thus, we do not adopt this method. For method 2 and
method 3, we evaluate them on the SIDD dataset. The results are shown in Table 3 (left), and we
find that method 3 achieves better performance than method 2. One possible reason is that method 2
is a deterministic mapping, while method 3 is stochastic. Since one clean image has many different
degraded counterparts, method 3 is more suitable for the downstream denoising model.

Inference invariant. We verify the inference invariant condition on the AIM19 dataset. The quan-
titative results are in table 3 (right). From the table, we find that if the inference invariant condition,
in case ”No blur” and Kernel size s = 9, σ = 2, does not hold, the model cannot learn the un-
known degradation process, resulting in poor performance. Moreover, we find that increasing the
size of the Gaussian blur kernel will result in worse PSNR and SSIM, but better LPIPS. This may
be because using a large blur kernel will cause excessive loss of high-frequency information in the
image, making the downstream super-resolution model pay more attention to restoring the image’s
high-frequency content, making LPIPS better PSNR and SSIM becomes worse.

5 CONCLUSION

In this paper, we propose LUD-VAE, a degradation modeling method using unpaired data based on
variational inference. We establish the equivalency between paired and unpaired learning for LUD-
VAE is under the inference invariant condition. We use LUD-VAE to generate synthetic training
datasets for the downstream supervised learning method and evaluate it on real-world denoising and
super-resolution tasks. The experimental results show that our model is lightweight and has very
competitive performance.
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A VARIATIONAL INFERENCE FOR PROPOSED MODEL

To inference though the graphical model in Figure 2, traditional methods include Coordinate ascent
variational inference (CAVI) and Expectation maximization (EM) algorithms. For CAVI in Algo-
rithm 1, it requires to know the generation process p(x | z), p(y | z, zn) and the prior distribution
p(z), p(zn). However, in image generation, we do not know the the two distributions, so the alternate
iteration process in Algorithm 1 cannot be realized. For EM in Algorithm 2, in the E step, it needs to
update the inference model q(z) and q(zn) by the true posterior distribution p(z, zn | x,y), which
is also unavailable in image generation. In this paper, we use the idea of VAEs Kingma & Welling
(2013), which avoids updating q(z, zn | x,y) directly and needing to be aware of p(z, zn | x,y).

Algorithm 1 Coordinate ascent variational inference
Input: Dataset D = {(xi,yi)}Ni=1.
Output: Inference model q(z) and q(zn).

1: Initialize q(z) and q(zn).
2: while ELBO has not converged do
3: q(z) ∝ exp{Eq(zn)p(zn)p(z)

∏N
i=1 p(xi | z)

∏N
i=1 p(yi | z, zn)}

4: q(zn) ∝ exp{Eq(z)p(zn)p(z)
∏N
i=1 p(xi | z)

∏N
i=1 p(yi | z, zn)}

5: return q(z) and q(zn).

B PROOF OF PROPOSITION 1

Suppose q(z | x,y) satisfies Eq. 8, then for a paired dataset {(xi,yi)}Ni=1, where (xi,yi) ∼ p(x,y),
we have

ELBO =

N∑
i

Eq(z|xi,yi) log p(xi | z) + Eq(z|xi,yi)q(zn|yi) log p(yi | zn, z)

−DKL(q(z | xi,yi)‖p(z))−DKL(q(zn | yi)‖p(zn))

=

N∑
i

Eq(z|xi,yi) log p(xi | z)− 1

2
DKL(q(z | xi,yi)‖p(z))

+

N∑
i

Eq(z|xi,yi)q(zn|yi) log p(yi | zn, z)− 1

2
DKL(q(z | xi,yi)‖p(z))

−DKL(q(zn | yi)‖p(zn))

=
∑
i

Eq(z|xi) log p(xi | z)− 1

2
DKL(q(z | xi)‖p(z))

+
∑
j

Eq(z|yj)q(zn|yj) log p(yj | zn, z)− 1

2
DKL(q(z | yj)‖p(z))

−DKL(q(zn | yj)‖p(zn))

(11)

So maximizing the ELBO in Eq. 7 with paired data is equivalent to maximize Eq. 9, where we can
shuffle the index to achieve unpaired training, thus Proposition 1 holds.
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Algorithm 2 Expectation maximization
Input: Dataset D = {(xi,yi)}Ni=1.
Output: Inference model q(z), q(zn), and generating model p(x,y | z, zn).

1: while not converged do
2: E-step: Let q(z) = p(z | D) and q(zn) = p(zn | D).
3: M-step: maximize ELBO = Eq(z,zn) log p(z,znx,y)

q(z,zn)
w.r.t. p(z, znx,y).

4: return q(z), q(zn), and p(x,y | z, zn).

C DISCUSSIONS ON MAXIMAL LIKELIHHOOD

Considering the generative model in Figure 7 that is suggested by the DeFlow method, where zx ∼
N (0, I), zy = zx + u, u ∼ N (µu,Σu). In the DeFlow method, it maximizes the log-likelihood
function of the two marginal densities:

max
θ

∑
i

log p(xi) +
∑
j

log p(yj). (12)

zx

x

zy

y

Figure 7: Generative process
in DeFlow model.

where
log p(x) = log |detDfθ(x)|+ logN (fθ(x); 0, I)

log p(y) = log |detDfθ(y)|+ logN (fθ(y);µu, I + Σu)
(13)

by the change of variables formula, where fθ is an invertible nor-
malizing flow. In the next, we show that the objective function in
Eq. 12 is incomplete for representing the log-likelihood log p(x,y).
Define

F (x,y) = (fθ(x), fθ(y)) = (zx, zy), (14)

then (zx, zy) ∼ N
([

0
µu

]
,

[
I I
I I + Σu

])
as zy = zx +u. Using

the change of variables formula, we have

p(x,y) = |detDF (x,y)| · N
(
F (x,y);

[
0
µu

]
,

[
I I
I I + Σu

])
. (15)

Since

F

([
x
y

])
=

[
fθ(x)
fθ(y)

]
⇒ DF

([
x
y

])
=

[
Dfθ(x) 0

0 Dfθ(y)

]
, (16)

then

p(x,y) =
|detDfθ(x)| |detDfθ(y)|√

(2π)2n det Σu
exp

{
−1

2

[
fθ(x)

fθ(y)− µu

]T [
I + Σ−1u −Σ−1u
−Σ−1u Σ−1u

] [
fθ(x)

fθ(y)− µu

]}
,

(17)
where n is the dimension of random variables zx and zy. Then the log-likelihood function
log p(x,y) can be decomposed into

log p(x,y) = logN (fθ(x); 0, I) + log |detDfθ(x)|
+ logN (fθ(y);µu, I + Σu) + log |detDfθ(y)|
+ logN (fθ(x);−µu,Σu) + fTθ (x)Σ−1u fθ(y)

+
1

2
log ((2π)n det(Σu))− 1

2
µTuΣ−1u µu.

(18)

Using marginal distribution notation, the maximal likelihood estimation is

max
θ

∑
i

log p(xi,yi) = max
θ

∑
i

log p(xi) +
∑
j

log p(yj)

+
∑
i

logN (fθ(xi);−µu,Σu) + fTθ (xi)Σ
−1
u fθ(yi)

+
1

2
log ((2π)n det(Σu))− 1

2
µTuΣ−1u µu.

(19)
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The additional term
∑
i f

T
θ (xi)Σ

−1
u fθ(yi) in Eq. 19 requires the paired information. But, in the

DeFlow model, it further introduces conditional marginal likelihood and its relationship with condi-
tional likelihood is still unknown and deserves further exploration. Inspired by the above derivations,
we propose our generative graph in which the two latent variables are independent that is relatively
easy for constructing an approximation of the log-likelihood.

D MORE VISUAL RESULTS

We show more visual results of real-world super-resolution and denoising. See Figure 8 in page
15 for results from AIM19 dataset; see Figure 9 in page 16 for results from NTIRE20 dataset; see
Figure 10 in page 17 for results from SIDD dataset.
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ESRGAN-B ESRGAN-FS Impressionism DASR DeFlow-NP LUD-VAE

Figure 8: Visual results of real-world super-resolution from AIM19 dataset.
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ESRGAN-B ESRGAN-FS Impressionism DASR DeFlow-NP LUD-VAE

Figure 9: Visual results of real-world super-resolution from NTIRE20 dataset.
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Noisy AWGN MCWNNM DeFlow-NP LUD-VAE DnCNN

Figure 10: Visual results of real-world image denoising from SIDD dataset.
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