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Abstract

Named Entity Recognition (NER) is an impor-001
tant task in Natural Language Processing with002
application in many domains. While the dom-003
inant paradigm of NER is sequence labelling,004
span-based approaches have become very popu-005
lar in recent times, but are less well understood.006
In this work, we study different aspects of span-007
based NER, namely the span representation,008
learning strategy, and decoding algorithms to009
avoid span overlap. We also propose an exact010
algorithm that efficiently finds the set of non-011
overlapping spans that maximize a global score,012
given a list of candidate spans. We perform our013
study on three benchmarks NER datasets from014
different domains. The code and supporting015
files for the experiments will be made publicly016
available.017

1 Introduction018

Named Entity Recognition (NER) is an important019

task in natural language processing whose goal is to020

identify and extract named entities such as person,021

organization, location from texts. NER systems022

are typically designed as sequence labelling, i.e.,023

token-level prediction utilizing the BIO scheme024

(Lample et al., 2016; Huang et al., 2015). While025

traditional approaches use hand-crafted features026

along with classical Machine Learning algorithms027

such as SVMs or decision trees (Zhou and Su,028

2002; Carreras et al., 2002; Li et al., 2004), recent029

deep learning models learn features directly from030

the data using for example bi-directional LSTMs031

(Hochreiter and Schmidhuber, 1997) or more re-032

cently pre-trained language models such as BERT033

(Devlin et al., 2019).034

Recently, span-based NER has gained in popu-035

larity. Unlike sequence tagging which operates at036

the token level, span-based NER operates directly037

at the span level. The main idea is to enumerate all038

possible spans (contiguous sequence of tokens) of039

an input text and predict their identity using neu- 040

ral networks (Lee et al., 2017). One of the major 041

advantages of the span-based NER is that it can 042

learn a rich representation of the span instead of 043

only learning the representation of each token. In 044

addition, a recent study by Fu et al. (2021) reveals 045

that span-based NERs are better in a context with 046

more OOV words and Li et al. (2021) showed that 047

span-based NERs are much better than sequence 048

labelling in settings with unlabelled entities. 049

However, unlike sequence labelling, uncon- 050

strained span-based approaches tend to produce 051

overlapping entities, which is undesirable for flat, 052

non-overlapping NER tasks. To avoid overlap in 053

span-based NER, two main approaches have been 054

adopted in the literature. The first is the Semi- 055

Markov conditional random field (Sarawagi and 056

Cohen, 2005; Kong et al., 2016; Sato et al., 2017) 057

that trains a globally normalized model and then 058

uses a Viterbi algorithm to produce the optimal 059

segmentation without span overlap. The second al- 060

gorithm is the one employed by Li et al. (2021) for 061

locally normalized span-based NER; it first elimi- 062

nates all non-entity spans and deals with the overlap 063

conflict by keeping the span with the highest pre- 064

diction probability while eliminating the others. In 065

this work, we call this approach "greedy decoding". 066

In this paper, we analyze and compare differ- 067

ent decoding algorithms for the span-based NER. 068

In addition to Semi-CRF decoding and greedy de- 069

coding, we propose an exact version of greedy de- 070

coding called "global-aware span selection" which 071

mitigates the myopic bias of greedy decoding by 072

returning a set of non-overlapping spans that max- 073

imize a global score, by formulating the problem 074

as finding the Maximum Weight Independent Set 075

(MWIS) (Hsiao et al., 1992; Pal and Bhattacharjee, 076

1996) of the span overlap graph. Furthermore, we 077

also explored different types of span representation 078

including max-pooling, convolution and endpoints 079
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(representing span by its extreme tokens).080

In summary our contributions are as follow:081

• We investigate different span representations082

for span-base NER when using pretrained083

transformer models.084

• We propose an exact decoding algorithm to085

eliminate span overlap on locally trained span-086

based models that overcomes the myopic bias087

of the greedy approach (Li et al., 2021).088

• Our study reveals that Semi-CRFs are compet-089

itive when training data is low but local span-090

based approaches are superior when many091

train data is available.092

• Our empirical study finds that sequence la-093

belling models provide a strong result when094

the number of entity types is few while span-095

based approaches are better when the number096

of entity types is large.097

We will make code for models and experiments098

publicly available to facilitate future span-based099

NER research.100

2 Span representation101

The goal of the span representation is to represent102

each span, i.e., a contiguous sequence of tokens,103

of an input text in an embedding vector for span104

prediction tasks. In this paper, we denote hi ∈ Rdh105

the representation of the word at the position i and106

sij ∈ Rds the representation of the span from in-107

dex i to j with the width k; here dh, ds ∈ N+108

are respectively the embedding size for word and109

span representations. The token representations110

are computed using BERT-based model (Devlin111

et al., 2019; Liu et al., 2019). However, since112

BERT-based tokenization divides the input words113

into subwords, we take the first subword to repre-114

sent the whole words, which has proven to be very115

competitive for several token classification tasks116

(Beltagy et al., 2019). In the following, we present117

different types of approaches to represent spans.118

Endpoints Endpoints span representation consist119

in representing spans using the representation of120

the tokens of its right and left extremities among121

with span width feature. Specifically, the span rep-122

resentation sij is computed as:123

sij = [hi;hj ;wk] (1)124

Span representation Num params.
Endpoints (2dh + dk)C

Maxpool dhC

Convolution 1
2d

2
hK(K + 1) + dhC

Convolution (shared) d2hK + dhC

FirstToken d2hK + dhC

Table 1: Number of parameters for different represen-
tation, without including the word representation layer
which is the same for any approach. dh, K and C are
respectively the word embedding size, the maximum
span width and the number of classes. Blue terms are
parameters for computing span representations and Red
terms denote number of parameters for the final layer.

In the above equation, wk is a learned vector 125

of span width k and [; ] denotes the concatenation 126

operation. This representation has been widely 127

used in previous works for span prediction tasks 128

such as NER and coreference resolution (Lee et al., 129

2017; Luan et al., 2019; Zhong and Chen, 2021). 130

Max-pooling Since spans consist of a contigu- 131

ous segment of tokens, pooling operations are a 132

fairly natural way to compute span representations. 133

In this context, we compute the representation of 134

a span by applying an element-wise max-pooling 135

operation to all tokens representing the span. For- 136

mally, the span representation of a span (i, j) is 137

computed as follows: 138

sij = MAX([hi;hi+1; . . . ;hj ]) (2) 139

Where MAX is the element-wise max pooling 140

operation. This maxpool span representation has 141

been previously used by Eberts and Ulges (2020) 142

for joint entity and relation extraction. 143

Convolution Instead of simply applying the pool- 144

ing operation to the token spans, we explored the 145

span representation by aggregating the tokens using 146

learned filters via 1D convolution. Specifically, the 147

representations of all spans of size k are computed 148

using a 1D convolution of kernel size k over the 149

token representations. An important consideration, 150

however, is to keep the number of parameters linear 151

with respect to the maximum span width, so we 152

share the convolution weights across the different 153

span widths. 154

sij = Conv1Dk([hi;hi+1; . . . ;hj ]) (3) 155

In the above equation, Conv1Dk is a convolu- 156

tion filter of size k where k is the width of the span 157
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from i to j. Lei et al. (2021) used this convolutional158

approach to represent spans for neural keyphrase159

extraction.160

FirstToken Here we compute the span represen-161

tations only using the representation of the start162

token along with span width information:163

sij = W (k)hi (4)164

W (k) ∈ Rdh×dh is the weight matrix associ-165

ated to the span width k. Thus, for instance, the166

representation of the span (0, 0) and (3, 5) are167

respectivelly computed as s00 = h0W
(1) and168

s36 = h3W
(4). Note that the computation of the169

representation of all spans for this approach can170

be done in parallel and in a single line of code171

using, for example, the einsum operation. This rep-172

resentation was inspired by the synthetic attention173

from Tay et al. (2021), where the authors predict at-174

tention maps without pairwise interaction between175

tokens (resulting in linear attention).176

Number of parameters The number of parame-177

ters required for each span representation is shown178

in Table 1. The endpoints and maxpool represen-179

tations do not involve any parameters for the com-180

putation of the span representation but only for the181

final prediction. We can also observe that convolu-182

tion with a shared filter considerably reduces the183

number of parameters.184

3 Model185

After representing the spans, the next step is186

to compute the prediction score or logits for each187

span. We use an affine transformation to compute188

the logits yij ∈ RC for a given span representation189

sij :190

yij = W (f)ReLU(sij) + bf (5)191

Here, W (f) ∈ Rds×C is the final weight ma-192

trix, bf ∈ RC is the bias vector, and ReLU is the193

activation function.194

We denote by ϕ(i, j, y) the unnormalized score195

of the label y for the span (i, j). For training our196

models, we adopted two different approaches: a197

locally normalized approach and a globally normal-198

ized approach (or "Semi-CRF training") described199

in the following subsections.200

3.1 Locally normalized model 201

In this configuration, we compute the prediction 202

probability of each span independently using the 203

softmax function: 204

p(y|i, j) = expϕ(i, j, y)∑
y′ expϕ(i, j, y

′)
(6) 205

During training, we minimize the negative log- 206

likelihood of the gold label spans: 207

L = −
|Y |∑
l=1

log p(yl|il, jl) (7) 208

Where |Y | is the total number of spans batch in- 209

cluding all non-entity. Note that we did not employ 210

any negative sampling on non-entity spans like (Li 211

et al., 2021) since we assume that our training data 212

are well annotated. 213

Furthermore, for this approach, some con- 214

strained decoding is applied during inference for 215

solving overlap conflicts. For that, we used a 216

two-step decoding. The first step consist in fil- 217

tering the spans that has been predicted as "non- 218

entity" by the model, i.e dropping span (i, j) when 219

p∅ = maxy p(y|i, j) with p∅ the probability of the 220

span being non-entity. After this filtering step, the 221

second step is to solve overlapping conflicts with 222

greedy or global decoding which we detail in the 223

following. 224

Greedy decoding Given the candidate spans pro- 225

vided by the filtering step, this greedy algorithm 226

iteratively chose the max-probability entity span 227

not overlapping any previously chosen entity span. 228

This algorithm has a complexity of O(n log n). 229

However, one potential issue of this algorithm is 230

that it suffers from myopic bias. This decoding has 231

been previously employed by (Li et al., 2021). 232

Global decoding The motivation for global de- 233

coding is that the greedy approach is likely to suffer 234

from a myopic bias, i.e., a span is selected with- 235

out considering the future decision. Thus, the goal 236

of this global decoding is to select the best set of 237

spans that maximizes a certain global score, thus 238

neutralizing the myopic bias of the greedy algo- 239

rithm. In this work, following (Li et al., 2021; Fu 240

et al., 2021), we use probability to represent the 241

score of spans. 242

s∗ = argmax
s∈S

|s|∑
i=1

max
y

p(y|si) (8) 243
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Where S contains the list of all possible can-244

didates which are maximal and non-overlapping245

subsets of the spans from the filtering step. Here,246

the term "maximal" means that adding another span247

to the set would break the non-overlap constraint.248

To solve this optimization problem, we conceptual-249

ize it as finding the Maximum Weight Independent250

Set (MWIS) from the overlapping entity graph G,251

represented by its adjacency matrix A, defined as252

follows:253

A[x, y] =

{
1, if has_overlap(x, y)
0, otherwise

(9)254

Where has_overlap(x, y) is a function that255

returns True if the spans x and y are overlapped256

and not equal, and the weight of each node corre-257

spond to their probability value provided by the258

model. Finally, the solution to equation 8 is pro-259

vided by MWIS of the graph G. We note that an260

"independent set" is a subset of node(G) without261

adjacent node (i.e a set of non-overlapping spans).262

For general graph, computing the MWIS is NP-263

Hard but since our graph is an interval graph (spans264

can be considered as intervals), computing the so-265

lution has a complexity of O(S logS) or O(S) if266

the spans are sorted by their left endpoint (Hsiao267

et al., 1992).268

We also consider the use of the average proba-269

bility as a global score, that is by normalizing the270

original global score by the number of spans:271

s∗ = argmax
s∈S

1

|s|

|s|∑
i=1

max
y

p(y|si) (10)272

This decoding requires enumerating all possible273

candidates S which is NP-Hard, with a complexity274

of O(3S/3) (Johnson et al., 1988; Raman et al.,275

2007). However, since the number of entities is276

limited for a well-trained model, the solution can277

be obtained very quickly. Empirically, we found278

that the number entity is approximately 0.15× L279

where L is the sentence length.280

3.2 Globally normalized model281

Rather than maximizing the likelihood for each282

span, this approach instead maximizes the proba-283

bility gold segmentation Y of the input sequence284

against all possible segmentation using Semi-285

Markov CRF (Sarawagi and Cohen, 2005), which286

is an estimator of the form:287

p(Y |x) =
exp

∑|Y |
l ϕ(il, jl, yl) + Tyl,yl−1

Z(x)
(11)288

Decoding algorithm Time complexity
CRF O(L|Y |2)
Semi-CRF O(LK|Y |2)
Greedy decoding O(S logS)

Global sum O(S logS)

Global mean O(3S/3)

Table 2: This table reports the complexity of the dif-
ferent decoding algorithms. L is the input length, K
the maximum segment width, |Y | the number of classes
and S the number of spans after filtering non-entities,
which is approximately equal to 0.15× L empirically.

In the equation above, Y is the gold segmenta- 289

tion and |Y | is it’s size, and following (Sarawagi 290

and Cohen, 2005), we assume that segments have 291

strictly positive lengths, adjacent segments touch 292

and we assume that non-entity spans have unit 293

length. For instance, a segmentation of the sen- 294

tence "Michael Jordan eats an apple ." would be 295

Y =[(0, 1, PER), (2, 2, O), (3, 3, O), (4, 4, O), (5, 5, 296

O)]. The terms ϕ(il, jl, yl) and Tyl,yl−1
are respec- 297

tively the emission score and the transition score. 298

Here, we assume a Markov dependence of order 1 299

between the labels. Finally, the Z(x) term in the 300

denominator is a normalization factor (or "partition 301

function") which is computed as follows: 302

Z(x) =
∑
Y ′∈Y

exp

|Y ′|∑
l′

ϕ(il′ , jl′ , yl′) + Tyl′ ,yl′−1

(12) 303

Where Y contains all possible segmentations of 304

the input sequence. This normalization term can 305

be computed in polynomial time using dynamic 306

programming (Sarawagi and Cohen, 2005). Dur- 307

ing training, the objective is to maximize the log- 308

likelihood log(Y |x) on the training set. 309

Viterbi decoding For decoding Semi-CRF 310

model, we the segmentation version of the viterbi 311

algorithm from Sarawagi and Cohen (2005) which 312

produce the optimal segmentation of the input se- 313

quence. 314

4 Experiments setup 315

4.1 Datasets 316

We evaluated our model on three benchmark 317

datasets for Named Entity Recognition: Conll- 318

2003 (Tjong Kim Sang and De Meulder, 2003) 319

and OntoNotes 5.0 (Weischedel et al., 2013) and 320

TDM dataset (Hou et al., 2021). Conll-2003 is a 321
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Model
Span Representation

Convolution Endpoints Maxpool FirstToken
P R F P R F P R F P R F

Conll-2003
Local 90.48 90.39 90.44 91.05 90.25 90.65 91.51 90.74 91.12 90.56 89.72 90.14
+ Greedy 91.51 90.13 90.81 91.46 89.76 90.60 92.15 90.37 91.25 90.74 89.58 90.16
+ Global sum 91.47 90.11 90.79 91.42 89.74 90.57 92.05 90.34 91.18 90.74 89.58 90.16
+ Global mean 91,54 90.14 90.84 91,60 89.83 90.70 92.15 90.37 91.25 90.74 89.58 90.16
Semi-CRF 89.73 89.51 89.62 89.37 89.25 89.31 89.11 88.58 88.85 89.18 89.16 89.17

OntoNotes 5.0
Local 88.40 89.18 88.79 88.87 89.36 89.12 88.55 89.34 88.95 87.89 88.99 88.44
+ Greedy 89.19 88.84 89.02 89.50 88.95 89.22 89.49 88.95 89.22 88.70 88.44 88.57
+ Global sum 89.16 88.84 89.00 89.51 88.98 89.24 89.44 88.95 89.20 88.73 88.49 88.61
+ Global mean 89.19 88.81 89.00 89.50 88.95 89.22 89.52 88.93 89.22 88.71 88.44 88.58
Semi-CRF 87.69 87.46 87.58 87.33 88.44 87.88 86.89 88.53 87.70 87.82 87.85 87.83

TDM
Local 76.68 63.50 69.47 72.89 68.93 70.85 71.98 70.14 71.05 65.85 65.16 65.50
+ Greedy 77.16 63.20 69.49 75.37 68.33 71.68 73.42 69.98 71.66 66.88 64.25 65.54
+ Global sum 77.16 63.20 69.49 75.37 68.33 71.68 73.42 69.98 71.66 66.88 64.25 65.54
+ Global mean 77.16 63.20 69.49 75.46 68.17 71.63 73.38 69.83 71.56 66.88 64.25 65.54
Semi-CRF 67.89 72.40 70.07 69.25 75.41 72.20 69.63 68.48 69.04 68.78 70.44 69.60

Table 3: This table reports the main results of our study. It shows the performance along different settings including
the datasets, the trainings, decodings and span representations. Bold numbers indicate the best model/decoding for
a fixed representation and underlined numbers indicate the best representation for a fixed model/decoding.

dataset from the news domain that was designed322

for extracting entities such as person, location and323

organisation from texts. OntoNotes 5.0 is a large324

corpus comprising various genres of text including325

newswire, broadcast news, broadcast conversation,326

magazine, web data and telephone conversation.327

It contains in total 18 different entity types such328

as Person, organization, location, product or date.329

TDM is a NER dataset that was recently published330

and it was designed for extracting Tasks, Datasets,331

and Metrics entities from Natural Language Pro-332

cessing papers. In our study, we set the maximum333

width of the spans to 6 tokens and reject data in-334

stances that contain entities longer than this maxi-335

mum value.336

4.2 Evaluation metrics337

We evaluate our models on the test splits of the338

corresponding datasets. Our evaluation is based on339

the exact match between true and gold entities by340

discarding non-entity spans. We report the micro-341

averaged precision, recall and F1.342

4.3 Implementation details343

Backbone models As base models, we used344

RoBERTa-base (Liu et al., 2019) for models trained345

on Conll-2003 and OntoNotes 5.0 because they346

come from general domains and we employed347

Dataset P R F
Conll-2003 91.36 90.63 90.99
OntoNotes 5.0 88.10 89.38 88.74
TDM 66.35 74.36 70.13

Table 4: Performance for the baseline sequence labelling
approach, a BERT-CRF tagger.

SciBERT (Beltagy et al., 2019) for models trained 348

on TDM, which is a scientific NER data set. 349

Baseline We compare the span-based approaches 350

to a sequence labelling BERT-CRF, same as the 351

NER model used by (Beltagy et al., 2019). Specif- 352

ically, this model first encodes an input sequence 353

using a pretrained transformer model and the fi- 354

nal token representations are linearly projected to 355

compute the logits. A Conditional Random Field 356

(Lafferty et al., 2001) layer is also added to the out- 357

put to ensure valid BIO tagging during decoding by 358

constraining the transition matrix, which facilitates 359

the evaluation. 360

Hyperparameters All models were trained for 361

up to 25 epochs using Adam (Kingma and Ba, 362

2017) as the optimizer with a learning rate of 1e-5. 363

We opted for a batch size of 10, except for the Semi- 364

CRF models trained on OntoNotes, where our GPU 365

ran out of memory, because this dataset has 18 en- 366
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Dataset Model
#Examples

100 250 500 1000 2500 5000 All†

Conll-2003

CRF 66.68 78.84 81.42 85.07 87.67 88.11 90.99
Local 65.08 71.74 77.23 82.81 85.55 87.76 90.65
+ Greedy 68.44 74.02 78.70 83.63 86.50 88.31 90.60
+ Global sum 68.65 74.29 78.59 83.58 86.50 88.32 90.57
+ Global mean 67.37 73.45 78.64 83.70 86.40 88.20 90.57
Semi-CRF 70.28 73.84 79.00 83.49 87.08 87.84 89.31

OntoNotes 5.0

CRF 61.93 68.14 72.66 77.2 80.23 81.84 88.74
Local 60.34 67.79 73.53 76.92 80.09 81.92 89.12
+ Greedy 62.38 70.14 74.98 77.50 81.39 82.65 89.22
+ Global sum 63.35 70.25 75.03 77.54 81.28 82.62 89.24
+ Global mean 61.73 69.73 74.79 77.44 81.34 82.55 89.22
Semi-CRF 63.08 70.09 73.96 78.12 80.24 81.86 87.88

TDM

CRF 62.28 67.78 69.92 70.12
Local 57.25 63.15 67.65 70.85
+ Greedy 58.46 65.28 67.84 71.68
+ Global sum 60.55 65.18 67.62 71.68
+ Global mean 57.54 61.84 67.46 71.63
Semi-CRF 60.49 65.06 66.52 72.20

Table 5: Performance (F1-score) across all datasets and different training set sizes. † The train size of Conll-2003,
OntoNotes 5.0 and TDM are respectively 11110, 48788 and 980.

tity types, which results in a large transition matrix,367

and so we used a batch size of 5 and added a 2-368

step gradient accumulation. We further used early369

stopping with a patience of 5 (on the F1 score) and370

keep the best model on the validation set for test-371

ing. We implement our model with pytorch (Paszke372

et al., 2019). The pre-trained transformer models373

were loaded from the HuggingFace’s Transform-374

ers (Wolf et al., 2020). We employed AllenNLP375

(Gardner et al., 2018) for data preprocessing and376

the seqeval library (Nakayama, 2018) for evaluat-377

ing the baseline sequence labelling model. Fur-378

thermore, Our Semi-CRF implementation is based379

on pytorch-struct (Rush, 2020). All models were380

trained using a single V100 GPU. For this project,381

we used approximately 200 GPU hours.382

5 Results383

5.1 Span representation384

We analyze the performance of the span represen-385

tations on both the local model and the Semi-CRF386

model, as shown in the following table 3.387

Local model Using the local model without de-388

coding, we notice that the best results on the task389

are obtained by the Maxpool and Endpoint repre-390

sentations. The Maxpool representation shows the391

best result on the Conll-2003 and TDM datasets 392

and the second best result on OntoNotes 5.0; while 393

the Endpoint representation scores the best result 394

on OntoNotes 5.0 and the second best on the Conll- 395

2003 and TDM datasets. In addition, the convolu- 396

tion representation performed competitively, but it 397

is consistently inferior to Maxpool and Endpoints, 398

which is somewhat surprising on account of it hav- 399

ing a larger number of parameters. Finally, the 400

FirstToken approach has the weakest performance 401

on all datasets but can maintain reasonable per- 402

formance while using only a single token repre- 403

sentation to represent a span, demonstrating that 404

the token representation of pre-trained transformer 405

models is indeed capable of holding rich informa- 406

tion. 407

Global model With the Semi-CRF, the Endpoints 408

representation remains competitive by achieving 409

the best result on two of the three datasets. How- 410

ever, unlike the local model, Maxpool gets the 411

worst performance; it gets the lowest F1 score on 412

the conll-2003 and TDM datasets, which is quite 413

surprising. Furthermore, while FirstToken was the 414

worst representation on the local model, we found 415

that it can sometimes outperform other approaches 416

in the Semi-CRF framework. Finally, the convo- 417

lution approach has the best result on conll-2003 418
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Figure 1: Shows how overlapping conflicts are handled by the different decoding algorithms. We only include
overlaps involving at least three entities, because otherwise all decodings produce the same result.

and the second best on TDM, while performing the419

worst on OntoNotes 5.0.420

Overall, we found that the representation perfor-421

mance is not consistent across the different training422

schemes, except for the Endpoints that were found423

to be competitive in both cases.424

5.2 Decoding algorithm425

We herein compare the different types of decoding426

algorithms to avoid overlapping in the span-based427

NER. Table 3 shows the performance results of the428

different decoding algorithms under different set-429

tings. For the local models, one of the first things430

we can notice is that applying the application of de-431

coding, most of the time improve the performance.432

However, there is no significant difference between433

greedy and global decodings since the models are434

already well trained and thus, overlap filtering does435

not provide much difference in terms of quantita-436

tive results.437

Qualitative analysis As we did not have a large438

difference in performance between the greedy de-439

coding and the two global decodings, we performed440

a qualitative analysis to compare the three ap-441

proaches. This study is presented in Figure 1,442

which shows the input text (truncated), the raw443

prediction with overlap, and the results after ap-444

plying greedy decoding and the global decodings445

(mean and sum). We only include overlaps involv-446

ing more than two spans, because when two spans447

overlap, all algorithms take the span with the high-448

est probability.449

We can see that the greedy approach always re-450

trieves the most probable entity since it iteratively451

selects the best spans that do not overlap with pre-452

viously selected spans. However, this algorithm453

tends to suffer from a myopic bias. Second, the454

global sum approach, which maximizes the sum455

of probabilities, tends to select as many spans as456

possible, which means that it favours shorter spans 457

over longer ones. Also, global sum decoding has 458

a slightly higher recall score most of the time than 459

other decoding algorithms. Finally, global aver- 460

age decoding, which selects the set of spans that 461

maximizes the average probability, tends to se- 462

lect the smallest number of spans, but the selected 463

spans generally have a high probability. In general, 464

this decoding tends to favour precision over recall 465

score. 466

5.3 Few-shot performance 467

We conduct a study to compare the performance of 468

each model in a few-shot scenario. The evaluation 469

is performed on the test set of each dataset using 470

from 100 to the full training dataset. For this study, 471

we use the Endpoints representation for spans be- 472

cause it is the most widely used representation in 473

the literature and it consistently achieves good per- 474

formance across different training and decoding 475

schemes. The results of the few-shot evaluation are 476

presented in Table 5. 477

Semi-CRF is better than the local spans-based 478

approach when overlap filtering is not performed. 479

Moreover, using only 100 training data on Conll- 480

2003, a Semi-CRF model can outperform a local 481

model by up to 5 points in terms of F1 score. How- 482

ever, most of the time, the local approach performs 483

better than Semi-CRF when the number of data is 484

large (>2500). 485

In general, the local model with decoding, es- 486

pecially global mean decoding, outperforms Semi- 487

CRF in both low and high data settings. Moreover, 488

in a few-shot scenario using the local model, de- 489

coding can increase the F1 by more than 3 points. 490

Furthermore, we also remark that the increase in 491

performance by decoding is higher when a local 492

model is training on a few datasets while the differ- 493

ence becomes less significant when the number of 494
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Figure 2: The learning curve for all the datasets and for different training scheme. The x-axis of the charts represents
the learning epochs and the y-axis shows the F1-score on the development set.

training data is large.495

We find that the baseline sequence labelling,496

BERT-CRF approach is indeed competitive. It most497

of the time obtains a better performance on Conll-498

2003 and TDM datasets across any dataset sizes.499

However, the span-based approach is better on the500

OntoNotes 5.0 dataset. This can be explained by501

the fact that OntoNotes 5.0 contains 18 entity types502

and, therefore, the labelling approach would re-503

quire 54 labels since it uses a BIO scheme, which504

makes the task much more difficult.505

5.4 Learning curve506

In the following, we discuss the training speed507

of the different training schemes by analyzing the508

learning curve shown in Figure 2, which shows the509

evolution of the F1 score across training epochs.510

We observe that the Semi-CRF model can achieve511

better results with only a few learning steps com-512

pared to the local model. Thus, Semi-CRF models513

are not only more data-efficient but also require514

fewer learning steps. However, after a sufficient515

number of epochs, the local model generally out-516

performs the Semi-CRF model. In terms of com-517

putational speed, empirically, for the same number518

of training steps, it typically takes 1.5 to 2 times519

longer to train a Semi-CRF compared to the local520

span-based approach, as the computation of the521

Semi-CRF’s partition function Z is computation-522

ally expensive.523

6 Related Works524

Different approaches for NER NER is an im-525

portant task in Natural Language Processing and526

is used in many downstream information extrac-527

tion applications. Usually, NER tasks are designed528

as sequence labelling (Chiu and Nichols, 2016;529

Huang et al., 2015; Ma and Hovy, 2016; Lample530

et al., 2016; Strubell et al., 2017; Rei, 2017; Akbik531

et al., 2018) where the goal is to predict BIO tags. 532

Recently, different approaches have been proposed 533

to perform NER tasks that go beyond traditional 534

sequence labelling. One approach that has been 535

widely adopted is the span-based approach (Liu 536

et al., 2016; Luan et al., 2018, 2019; Fu et al., 2021; 537

Li et al., 2021) where the prediction is done in the 538

span level instead of entity level. Li et al. (2020) 539

has also approached NER as a question answer- 540

ing task in which named entities are extracted by 541

retrieving answer spans. In addition, recent work 542

such as (Cui et al., 2021) considers NER as tem- 543

plate filling by fine-tuning a BART (Lewis et al., 544

2019) encoder-decoder model. 545

Decodings For the spans-based approach, Semi- 546

Markov has been used previously (Sarawagi and 547

Cohen, 2005; Liu et al., 2016; Kong et al., 2016; 548

Sato et al., 2017; Ye and Ling, 2018), however, 549

their use with a BERT-type model has been little 550

explored, something we did in this paper. The work 551

of Fu et al. (2021) and Li et al. (2021) employed a 552

heuristic decoding to avoid overlap for span-based 553

NER. Their algorithm iteratively chooses the maxi- 554

mum probability entity span that does not overlap 555

with a previously chosen entity span. In this paper, 556

we have proposed an exact version of this algo- 557

rithm. 558

7 Conclusion 559

In this paper, we present an empirical study of 560

different aspects of span-based NER. We found 561

that any design choice, such as span representation, 562

training strategy, and decoding can have significant 563

impacts on task performance. We also found that 564

the performance of different approaches can vary 565

depending on the size of the training dataset, the 566

number of feature types in the dataset as well as 567

the number of training steps. 568
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