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Abstract

Named Entity Recognition (NER) is an impor-
tant task in Natural Language Processing with
application in many domains. While the dom-
inant paradigm of NER is sequence labelling,
span-based approaches have become very popu-
lar in recent times, but are less well understood.
In this work, we study different aspects of span-
based NER, namely the span representation,
learning strategy, and decoding algorithms to
avoid span overlap. We also propose an exact
algorithm that efficiently finds the set of non-
overlapping spans that maximize a global score,
given a list of candidate spans. We perform our
study on three benchmarks NER datasets from
different domains. The code and supporting
files for the experiments will be made publicly
available.

1 Introduction

Named Entity Recognition (NER) is an important
task in natural language processing whose goal is to
identify and extract named entities such as person,
organization, location from texts. NER systems
are typically designed as sequence labelling, i.e.,
token-level prediction utilizing the BIO scheme
(Lample et al., 2016; Huang et al., 2015). While
traditional approaches use hand-crafted features
along with classical Machine Learning algorithms
such as SVMs or decision trees (Zhou and Su,
2002; Carreras et al., 2002; Li et al., 2004), recent
deep learning models learn features directly from
the data using for example bi-directional LSTMs
(Hochreiter and Schmidhuber, 1997) or more re-
cently pre-trained language models such as BERT
(Devlin et al., 2019).

Recently, span-based NER has gained in popu-
larity. Unlike sequence tagging which operates at
the token level, span-based NER operates directly
at the span level. The main idea is to enumerate all
possible spans (contiguous sequence of tokens) of

an input text and predict their identity using neu-
ral networks (Lee et al., 2017). One of the major
advantages of the span-based NER is that it can
learn a rich representation of the span instead of
only learning the representation of each token. In
addition, a recent study by Fu et al. (2021) reveals
that span-based NERs are better in a context with
more OOV words and Li et al. (2021) showed that
span-based NERs are much better than sequence
labelling in settings with unlabelled entities.

However, unlike sequence labelling, uncon-
strained span-based approaches tend to produce
overlapping entities, which is undesirable for flat,
non-overlapping NER tasks. To avoid overlap in
span-based NER, two main approaches have been
adopted in the literature. The first is the Semi-
Markov conditional random field (Sarawagi and
Cohen, 2005; Kong et al., 2016; Sato et al., 2017)
that trains a globally normalized model and then
uses a Viterbi algorithm to produce the optimal
segmentation without span overlap. The second al-
gorithm is the one employed by Li et al. (2021) for
locally normalized span-based NER; it first elimi-
nates all non-entity spans and deals with the overlap
conflict by keeping the span with the highest pre-
diction probability while eliminating the others. In
this work, we call this approach "greedy decoding".

In this paper, we analyze and compare differ-
ent decoding algorithms for the span-based NER.
In addition to Semi-CRF decoding and greedy de-
coding, we propose an exact version of greedy de-
coding called "global-aware span selection" which
mitigates the myopic bias of greedy decoding by
returning a set of non-overlapping spans that max-
imize a global score, by formulating the problem
as finding the Maximum Weight Independent Set
(MWIS) (Hsiao et al., 1992; Pal and Bhattacharjee,
1996) of the span overlap graph. Furthermore, we
also explored different types of span representation
including max-pooling, convolution and endpoints



(representing span by its extreme tokens).

In summary our contributions are as follow:

* We investigate different span representations
for span-base NER when using pretrained
transformer models.

* We propose an exact decoding algorithm to
eliminate span overlap on locally trained span-
based models that overcomes the myopic bias
of the greedy approach (Li et al., 2021).

* Our study reveals that Semi-CRFs are compet-
itive when training data is low but local span-
based approaches are superior when many
train data is available.

* Our empirical study finds that sequence la-
belling models provide a strong result when
the number of entity types is few while span-
based approaches are better when the number
of entity types is large.

We will make code for models and experiments
publicly available to facilitate future span-based
NER research.

2 Span representation

The goal of the span representation is to represent
each span, i.e., a contiguous sequence of tokens,
of an input text in an embedding vector for span
prediction tasks. In this paper, we denote h; € R%
the representation of the word at the position 7 and
Sij € R the representation of the span from in-
dex i to j with the width k; here dj,, d;, € NT
are respectively the embedding size for word and
span representations. The token representations
are computed using BERT-based model (Devlin
et al., 2019; Liu et al., 2019). However, since
BERT-based tokenization divides the input words
into subwords, we take the first subword to repre-
sent the whole words, which has proven to be very
competitive for several token classification tasks
(Beltagy et al., 2019). In the following, we present
different types of approaches to represent spans.

Endpoints Endpoints span representation consist
in representing spans using the representation of
the tokens of its right and left extremities among
with span width feature. Specifically, the span rep-
resentation s;; is computed as:

8ij = [hi; hj; wy] (D

Span representation ‘ Num params.

Endpoints (2dp, + di)C
Maxpool d,C
Convolution %d}%K (K+1)+d,C
Convolution (shared) d,QlK + dpC
FirstToken d,%K + dp,C

Table 1: Number of parameters for different represen-
tation, without including the word representation layer
which is the same for any approach. dj, K and C are
respectively the word embedding size, the maximum
span width and the number of classes. Blue terms are
parameters for computing span representations and Red
terms denote number of parameters for the final layer.

In the above equation, wy, is a learned vector
of span width k and [; ] denotes the concatenation
operation. This representation has been widely
used in previous works for span prediction tasks
such as NER and coreference resolution (Lee et al.,
2017; Luan et al., 2019; Zhong and Chen, 2021).

Max-pooling Since spans consist of a contigu-
ous segment of tokens, pooling operations are a
fairly natural way to compute span representations.
In this context, we compute the representation of
a span by applying an element-wise max-pooling
operation to all tokens representing the span. For-
mally, the span representation of a span (i, j) is
computed as follows:
sij = MAX([hi; hiy1;.. .5 hjl) 2
Where MAX is the element-wise max pooling
operation. This maxpool span representation has
been previously used by Eberts and Ulges (2020)
for joint entity and relation extraction.

Convolution Instead of simply applying the pool-
ing operation to the token spans, we explored the
span representation by aggregating the tokens using
learned filters via 1D convolution. Specifically, the
representations of all spans of size k£ are computed
using a 1D convolution of kernel size k over the
token representations. An important consideration,
however, is to keep the number of parameters linear
with respect to the maximum span width, so we
share the convolution weights across the different
span widths.

Sij = COl’lVle([hi;hH_l;...;hj}) 3

In the above equation, Conv1Dg is a convolu-
tion filter of size k£ where k is the width of the span



from ¢ to 5. Lei et al. (2021) used this convolutional
approach to represent spans for neural keyphrase
extraction.

FirstToken Here we compute the span represen-
tations only using the representation of the start
token along with span width information:

Sij = W(k) hi (4)

W) e R ig the weight matrix associ-
ated to the span width k. Thus, for instance, the
representation of the span (0, 0) and (3, 5) are
respectivelly computed as sog = hOW(l) and
s36 = hg W@ Note that the computation of the
representation of all spans for this approach can
be done in parallel and in a single line of code
using, for example, the einsum operation. This rep-
resentation was inspired by the synthetic attention
from Tay et al. (2021), where the authors predict at-
tention maps without pairwise interaction between
tokens (resulting in linear attention).

Number of parameters The number of parame-
ters required for each span representation is shown
in Table 1. The endpoints and maxpool represen-
tations do not involve any parameters for the com-
putation of the span representation but only for the
final prediction. We can also observe that convolu-
tion with a shared filter considerably reduces the
number of parameters.

3 Model

After representing the spans, the next step is
to compute the prediction score or logits for each
span. We use an affine transformation to compute
the logits y;; € RY for a given span representation

SZ']‘Z
Yij = W(f)ReLU(Sij) + bf )

Here, W) € R%*C is the final weight ma-
trix, by € R is the bias vector, and ReLU is the
activation function.

We denote by ¢(3, j, y) the unnormalized score
of the label y for the span (i, j). For training our
models, we adopted two different approaches: a
locally normalized approach and a globally normal-
ized approach (or "Semi-CRF training") described
in the following subsections.

3.1 Locally normalized model

In this configuration, we compute the prediction
probability of each span independently using the
softmax function:

exp ¢(4, 5, y)
y/ eXp QZ)(/Lv jv y/)

p(yli,j) = ©)
2
During training, we minimize the negative log-
likelihood of the gold label spans:

Y|

L == logp(yli, jr) 7

=1

Where |Y'| is the total number of spans batch in-
cluding all non-entity. Note that we did not employ
any negative sampling on non-entity spans like (Li
et al., 2021) since we assume that our training data
are well annotated.

Furthermore, for this approach, some con-
strained decoding is applied during inference for
solving overlap conflicts. For that, we used a
two-step decoding. The first step consist in fil-
tering the spans that has been predicted as "non-
entity" by the model, i.e dropping span (i, j) when
pp = maxy, p(y|i, j) with py the probability of the
span being non-entity. After this filtering step, the
second step is to solve overlapping conflicts with
greedy or global decoding which we detail in the
following.

Greedy decoding Given the candidate spans pro-
vided by the filtering step, this greedy algorithm
iteratively chose the max-probability entity span
not overlapping any previously chosen entity span.
This algorithm has a complexity of O(nlogn).
However, one potential issue of this algorithm is
that it suffers from myopic bias. This decoding has
been previously employed by (Li et al., 2021).

Global decoding The motivation for global de-
coding is that the greedy approach is likely to suffer
from a myopic bias, i.e., a span is selected with-
out considering the future decision. Thus, the goal
of this global decoding is to select the best set of
spans that maximizes a certain global score, thus
neutralizing the myopic bias of the greedy algo-
rithm. In this work, following (Li et al., 2021; Fu
et al., 2021), we use probability to represent the
score of spans.

Is|

s* = arg max Z max p(y|s;) (8)
ses s Y



Where S contains the list of all possible can-
didates which are maximal and non-overlapping
subsets of the spans from the filtering step. Here,
the term "maximal" means that adding another span
to the set would break the non-overlap constraint.
To solve this optimization problem, we conceptual-
ize it as finding the Maximum Weight Independent
Set MWIS) from the overlapping entity graph G,
represented by its adjacency matrix A, defined as
follows:

A[Z‘,y] = {1’

0, otherwise

if has_overlap(z,y) ©)

Where has_overlap(z,y) is a function that
returns True if the spans x and y are overlapped
and not equal, and the weight of each node corre-
spond to their probability value provided by the
model. Finally, the solution to equation 8 is pro-
vided by MWIS of the graph G. We note that an
"independent set" is a subset of node(G) without
adjacent node (i.e a set of non-overlapping spans).
For general graph, computing the MWIS is NP-
Hard but since our graph is an interval graph (spans
can be considered as intervals), computing the so-
lution has a complexity of O(Slog S) or O(S) if
the spans are sorted by their left endpoint (Hsiao
et al., 1992).

We also consider the use of the average proba-
bility as a global score, that is by normalizing the
original global score by the number of spans:

|s|

s* = arg max — Z max p(y|s;)

(10)

This decoding requires enumerating all possible
candidates S which is NP-Hard, with a complexity
of 0(35/3) (Johnson et al., 1988; Raman et al.,
2007). However, since the number of entities is
limited for a well-trained model, the solution can
be obtained very quickly. Empirically, we found
that the number entity is approximately 0.15 x L
where L is the sentence length.

3.2 Globally normalized model

Rather than maximizing the likelihood for each
span, this approach instead maximizes the proba-
bility gold segmentation Y of the input sequence
against all possible segmentation using Semi-
Markov CRF (Sarawagi and Cohen, 2005), which
is an estimator of the form:

Y| ,,. .
exp Zi | é(ir, ji, yi) + Ty gy

11
5 (1n

p(Yl]r) =

Decoding algorithm ‘ Time complexity

CRF O(L|Y]?)
Semi-CRF O(LK|Y %)
Greedy decoding O(Slog S)
Global sum O(SlogS)
Global mean 0(3573)

Table 2: This table reports the complexity of the dif-
ferent decoding algorithms. L is the input length, K
the maximum segment width, |Y'| the number of classes
and S the number of spans after filtering non-entities,
which is approximately equal to 0.15 x L empirically.

In the equation above, Y is the gold segmenta-
tion and |Y'| is it’s size, and following (Sarawagi
and Cohen, 2005), we assume that segments have
strictly positive lengths, adjacent segments touch
and we assume that non-entity spans have unit
length. For instance, a segmentation of the sen-
tence "Michael Jordan eats an apple ." would be
Y=[(0, I, PER), (2, 2, O), (3, 3, O), (4, 4, O), (5, 5,
O)]. The terms ¢(i;, j;, ;) and Ty, ,, , are respec-
tively the emission score and the transition score.
Here, we assume a Markov dependence of order 1
between the labels. Finally, the Z(z) term in the
denominator is a normalization factor (or "partition
function") which is computed as follows:

Y’]

Z(l‘) = Z exp Z ¢(il/, jl’? yl’) —+ Tyzuy1u1
Y'ey U
12)
Where ) contains all possible segmentations of
the input sequence. This normalization term can
be computed in polynomial time using dynamic
programming (Sarawagi and Cohen, 2005). Dur-
ing training, the objective is to maximize the log-
likelihood log(Y'|x) on the training set.

Viterbi decoding For decoding Semi-CRF
model, we the segmentation version of the viterbi
algorithm from Sarawagi and Cohen (2005) which
produce the optimal segmentation of the input se-
quence.

4 Experiments setup

4.1 Datasets

We evaluated our model on three benchmark
datasets for Named Entity Recognition: Conll-
2003 (Tjong Kim Sang and De Meulder, 2003)
and OntoNotes 5.0 (Weischedel et al., 2013) and
TDM dataset (Hou et al., 2021). Conll-2003 is a



Span Representation
Model Convolution Endpoints Maxpool FirstToken
P R F P R F P F P R F
Conll-2003
Local 90.48 90.39 90.44 | 91.05 90.25 90.65 | 91.51 90.74 91.12 | 90.56 89.72 90.14
+ Greedy 91.51 90.13 90.81 | 91.46 89.76 90.60 | 92.15 90.37 91.25 | 90.74 89.58 90.16
+ Global sum | 91.47 90.11 90.79 | 91.42 89.74 90.57 | 92.05 90.34 91.18 | 90.74 89.58 90.16
+ Global mean | 91,54 90.14 90.84 | 91,60 89.83 90.70 | 92.15 90.37 91.25 | 90.74 89.58 90.16
Semi-CRF 89.73 89.51 89.62 | 89.37 89.25 89.31 | 89.11 88.58 88.85 | 89.18 89.16 89.17
OntoNotes 5.0
Local 88.40 89.18 88.79 | 88.87 89.36 89.12 | 88.55 89.34 88.95 | 87.89 88.99 88.44
+ Greedy 89.19 88.84 89.02 | 89.50 88.95 89.22 | 89.49 88.95 89.22 | 88.70 88.44 88.57
+ Global sum | 89.16 88.84 89.00 | 89.51 88.98 89.24 | 89.44 8895 89.20 | 88.73 88.49 88.61
+ Global mean | 89.19 88.81 89.00 | 89.50 88.95 89.22 | 89.52 8893 89.22 | 88.71 88.44 88.58
Semi-CRF 87.69 87.46 87.58 | 87.33 88.44 87.88 | 86.89 8853 87.70 | 87.82 87.85 87.83
TDM
Local 76.68 63.50 69.47 | 72.89 6893 70.85 | 71.98 70.14 71.05 | 65.85 65.16 65.50
+ Greedy 77.16 63.20 69.49 | 75.37 68.33 71.68 | 73.42 69.98 71.66 | 66.88 64.25 65.54
+ Global sum | 77.16 6320 69.49 | 7537 6833 71.68 | 73.42 69.98 71.66 | 66.88 64.25 65.54
+ Global mean | 77.16 6320 69.49 | 7546 68.17 71.63 | 73.38 69.83 71.56 | 66.88 64.25 65.54
Semi-CRF 67.89 7240 70.07 | 69.25 7541 7220 | 69.63 68.48 69.04 | 68.78 70.44 69.60

Table 3: This table reports the main results of our study. It shows the performance along different settings including
the datasets, the trainings, decodings and span representations. Bold numbers indicate the best model/decoding for
a fixed representation and underlined numbers indicate the best representation for a fixed model/decoding.

dataset from the news domain that was designed
for extracting entities such as person, location and
organisation from texts. OntoNotes 5.0 is a large
corpus comprising various genres of text including
newswire, broadcast news, broadcast conversation,
magazine, web data and telephone conversation.
It contains in total 18 different entity types such
as Person, organization, location, product or date.
TDM is a NER dataset that was recently published
and it was designed for extracting Tasks, Datasets,
and Metrics entities from Natural Language Pro-
cessing papers. In our study, we set the maximum
width of the spans to 6 tokens and reject data in-
stances that contain entities longer than this maxi-
mum value.

4.2 Evaluation metrics

We evaluate our models on the test splits of the
corresponding datasets. Our evaluation is based on
the exact match between true and gold entities by
discarding non-entity spans. We report the micro-
averaged precision, recall and F1.

4.3 Implementation details

Backbone models As base models, we used
RoBERTa-base (Liu et al., 2019) for models trained
on Conll-2003 and OntoNotes 5.0 because they
come from general domains and we employed

Dataset P R F

Conll-2003 91.36 90.63 90.99
OntoNotes 5.0 | 88.10 89.38 88.74
TDM 66.35 74.36 70.13

Table 4: Performance for the baseline sequence labelling
approach, a BERT-CRF tagger.

SciBERT (Beltagy et al., 2019) for models trained
on TDM, which is a scientific NER data set.

Baseline We compare the span-based approaches
to a sequence labelling BERT-CREF, same as the
NER model used by (Beltagy et al., 2019). Specif-
ically, this model first encodes an input sequence
using a pretrained transformer model and the fi-
nal token representations are linearly projected to
compute the logits. A Conditional Random Field
(Lafferty et al., 2001) layer is also added to the out-
put to ensure valid BIO tagging during decoding by
constraining the transition matrix, which facilitates
the evaluation.

Hyperparameters All models were trained for
up to 25 epochs using Adam (Kingma and Ba,
2017) as the optimizer with a learning rate of le-5.
We opted for a batch size of 10, except for the Semi-
CRF models trained on OntoNotes, where our GPU
ran out of memory, because this dataset has 18 en-



#Examples
Dataset Model 100 250 500 1000 2500 5000 AIl
CRF 6663 78.84 81.42 85.07 87.67 88.11 90.99
Local 6508 7174 7723 8281 8555 8776 90.65
Contiaons | +Greedy 6844 7402 7870 83.63 86.50 8831 90.60
+Global sum | 68.65 7429 7859 8358 86.50 88.32 90.57
+ Global mean | 67.37 7345 78.64 83.70 86.40 88.20 90.57
Semi-CRF 7028 7384 79.00 8349 87.08 87.84 8931
CRF 6193 6314 7266 772 8023 8184 88.74
Local 6034 6779 7353 7692 80.09 81.92 89.12
OntoNotes 5.0 |+ Greedy 6238 70.14 7498 7750 8139 82.65 89.22
+Global sum | 63.35 7025 75.03 7754 8128 82.62 89.24
+Global mean | 61.73 6973 7479 77.44 8134 8255 89.22
Semi-CRF 63.08 7009 7396 7812 8024 81.86 87.88
CRF 6228 6778 69.92 70.12
Local 5725 63.15 67.65 70.85
DM + Greedy 5846 6528 67.84 71.68
+Global sum | 60.55 65.18 67.62 71.68
+ Global mean | 57.54 61.84 67.46 71.63
Semi-CRF 6049 6506 66.52 72.20

Table 5: Performance (F1-score) across all datasets and different training set sizes. T The train size of Conll-2003,
OntoNotes 5.0 and TDM are respectively 11110, 48788 and 980.

tity types, which results in a large transition matrix,
and so we used a batch size of 5 and added a 2-
step gradient accumulation. We further used early
stopping with a patience of 5 (on the F1 score) and
keep the best model on the validation set for test-
ing. We implement our model with pytorch (Paszke
et al., 2019). The pre-trained transformer models
were loaded from the HuggingFace’s Transform-
ers (Wolf et al., 2020). We employed AllenNLP
(Gardner et al., 2018) for data preprocessing and
the seqeval library (Nakayama, 2018) for evaluat-
ing the baseline sequence labelling model. Fur-
thermore, Our Semi-CRF implementation is based
on pytorch-struct (Rush, 2020). All models were
trained using a single V100 GPU. For this project,
we used approximately 200 GPU hours.

5 Results

5.1 Span representation

We analyze the performance of the span represen-
tations on both the local model and the Semi-CRF
model, as shown in the following table 3.

Local model Using the local model without de-
coding, we notice that the best results on the task
are obtained by the Maxpool and Endpoint repre-
sentations. The Maxpool representation shows the

best result on the Conll-2003 and TDM datasets
and the second best result on OntoNotes 5.0; while
the Endpoint representation scores the best result
on OntoNotes 5.0 and the second best on the Conll-
2003 and TDM datasets. In addition, the convolu-
tion representation performed competitively, but it
is consistently inferior to Maxpool and Endpoints,
which is somewhat surprising on account of it hav-
ing a larger number of parameters. Finally, the
FirstToken approach has the weakest performance
on all datasets but can maintain reasonable per-
formance while using only a single token repre-
sentation to represent a span, demonstrating that
the token representation of pre-trained transformer
models is indeed capable of holding rich informa-
tion.

Global model With the Semi-CREF, the Endpoints
representation remains competitive by achieving
the best result on two of the three datasets. How-
ever, unlike the local model, Maxpool gets the
worst performance; it gets the lowest F1 score on
the conll-2003 and TDM datasets, which is quite
surprising. Furthermore, while FirstToken was the
worst representation on the local model, we found
that it can sometimes outperform other approaches
in the Semi-CRF framework. Finally, the convo-
lution approach has the best result on conll-2003
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Figure 1: Shows how overlapping conflicts are handled by the different decoding algorithms. We only include
overlaps involving at least three entities, because otherwise all decodings produce the same result.

and the second best on TDM, while performing the
worst on OntoNotes 5.0.

Overall, we found that the representation perfor-
mance is not consistent across the different training
schemes, except for the Endpoints that were found
to be competitive in both cases.

5.2 Decoding algorithm

We herein compare the different types of decoding
algorithms to avoid overlapping in the span-based
NER. Table 3 shows the performance results of the
different decoding algorithms under different set-
tings. For the local models, one of the first things
we can notice is that applying the application of de-
coding, most of the time improve the performance.
However, there is no significant difference between
greedy and global decodings since the models are
already well trained and thus, overlap filtering does
not provide much difference in terms of quantita-
tive results.

Qualitative analysis As we did not have a large
difference in performance between the greedy de-
coding and the two global decodings, we performed
a qualitative analysis to compare the three ap-
proaches. This study is presented in Figure 1,
which shows the input text (truncated), the raw
prediction with overlap, and the results after ap-
plying greedy decoding and the global decodings
(mean and sum). We only include overlaps involv-
ing more than two spans, because when two spans
overlap, all algorithms take the span with the high-
est probability.

We can see that the greedy approach always re-
trieves the most probable entity since it iteratively
selects the best spans that do not overlap with pre-
viously selected spans. However, this algorithm
tends to suffer from a myopic bias. Second, the
global sum approach, which maximizes the sum
of probabilities, tends to select as many spans as

possible, which means that it favours shorter spans
over longer ones. Also, global sum decoding has
a slightly higher recall score most of the time than
other decoding algorithms. Finally, global aver-
age decoding, which selects the set of spans that
maximizes the average probability, tends to se-
lect the smallest number of spans, but the selected
spans generally have a high probability. In general,
this decoding tends to favour precision over recall
score.

5.3 Few-shot performance

We conduct a study to compare the performance of
each model in a few-shot scenario. The evaluation
is performed on the test set of each dataset using
from 100 to the full training dataset. For this study,
we use the Endpoints representation for spans be-
cause it is the most widely used representation in
the literature and it consistently achieves good per-
formance across different training and decoding
schemes. The results of the few-shot evaluation are
presented in Table 5.

Semi-CREF is better than the local spans-based
approach when overlap filtering is not performed.
Moreover, using only 100 training data on Conll-
2003, a Semi-CRF model can outperform a local
model by up to 5 points in terms of F1 score. How-
ever, most of the time, the local approach performs
better than Semi-CRF when the number of data is
large (>2500).

In general, the local model with decoding, es-
pecially global mean decoding, outperforms Semi-
CRF in both low and high data settings. Moreover,
in a few-shot scenario using the local model, de-
coding can increase the F1 by more than 3 points.
Furthermore, we also remark that the increase in
performance by decoding is higher when a local
model is training on a few datasets while the differ-
ence becomes less significant when the number of
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Figure 2: The learning curve for all the datasets and for different training scheme. The x-axis of the charts represents
the learning epochs and the y-axis shows the F1-score on the development set.

training data is large.

We find that the baseline sequence labelling,
BERT-CREF approach is indeed competitive. It most
of the time obtains a better performance on Conll-
2003 and TDM datasets across any dataset sizes.
However, the span-based approach is better on the
OntoNotes 5.0 dataset. This can be explained by
the fact that OntoNotes 5.0 contains 18 entity types
and, therefore, the labelling approach would re-
quire 54 labels since it uses a BIO scheme, which
makes the task much more difficult.

5.4 Learning curve

In the following, we discuss the training speed
of the different training schemes by analyzing the
learning curve shown in Figure 2, which shows the
evolution of the F1 score across training epochs.
We observe that the Semi-CRF model can achieve
better results with only a few learning steps com-
pared to the local model. Thus, Semi-CRF models
are not only more data-efficient but also require
fewer learning steps. However, after a sufficient
number of epochs, the local model generally out-
performs the Semi-CRF model. In terms of com-
putational speed, empirically, for the same number
of training steps, it typically takes 1.5 to 2 times
longer to train a Semi-CRF compared to the local
span-based approach, as the computation of the
Semi-CRF’s partition function Z is computation-
ally expensive.

6 Related Works

Different approaches for NER NER is an im-
portant task in Natural Language Processing and
is used in many downstream information extrac-
tion applications. Usually, NER tasks are designed
as sequence labelling (Chiu and Nichols, 2016;
Huang et al., 2015; Ma and Hovy, 2016; Lample
et al., 2016; Strubell et al., 2017; Rei, 2017; Akbik

et al., 2018) where the goal is to predict BIO tags.
Recently, different approaches have been proposed
to perform NER tasks that go beyond traditional
sequence labelling. One approach that has been
widely adopted is the span-based approach (Liu
etal., 2016; Luan et al., 2018, 2019; Fu et al., 2021;
Li et al., 2021) where the prediction is done in the
span level instead of entity level. Li et al. (2020)
has also approached NER as a question answer-
ing task in which named entities are extracted by
retrieving answer spans. In addition, recent work
such as (Cui et al., 2021) considers NER as tem-
plate filling by fine-tuning a BART (Lewis et al.,
2019) encoder-decoder model.

Decodings For the spans-based approach, Semi-
Markov has been used previously (Sarawagi and
Cohen, 2005; Liu et al., 2016; Kong et al., 2016;
Sato et al., 2017; Ye and Ling, 2018), however,
their use with a BERT-type model has been little
explored, something we did in this paper. The work
of Fu et al. (2021) and Li et al. (2021) employed a
heuristic decoding to avoid overlap for span-based
NER. Their algorithm iteratively chooses the maxi-
mum probability entity span that does not overlap
with a previously chosen entity span. In this paper,
we have proposed an exact version of this algo-
rithm.

7 Conclusion

In this paper, we present an empirical study of
different aspects of span-based NER. We found
that any design choice, such as span representation,
training strategy, and decoding can have significant
impacts on task performance. We also found that
the performance of different approaches can vary
depending on the size of the training dataset, the
number of feature types in the dataset as well as
the number of training steps.
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