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ABSTRACT

Recent empirical studies on domain generalization (DG) have shown that DG
algorithms that perform well on some distribution shifts fail on others, and no
state-of-the-art DG algorithm performs consistently well on all shifts. Moreover,
real-world data often has multiple distribution shifts over different attributes; hence
we introduce multi-attribute distribution shift datasets and find that the accuracy of
existing DG algorithms falls even further. To explain these results, we provide a for-
mal characterization of generalization under multi-attribute shifts using a canonical
causal graph. Based on the relationship between spurious attributes and the classifi-
cation label, we obtain realizations of the canonical causal graph that characterize
common distribution shifts and show that each shift entails different independence
constraints over observed variables. As a result, we prove that any algorithm based
on a single, fixed constraint cannot work well across all shifts, providing theoretical
evidence for mixed empirical results on DG algorithms. Based on this insight, we
develop Causally Adaptive Constraint Minimization (CACM), an algorithm that
uses knowledge about the data-generating process to adaptively identify and apply
the correct independence constraints for regularization. Results on fully synthetic,
MNIST, small NORB, and Waterbirds datasets, covering binary and multi-valued
attributes and labels, show that adaptive dataset-dependent constraints lead to the
highest accuracy on unseen domains whereas incorrect constraints fail to do so. Our
results demonstrate the importance of modeling the causal relationships inherent in
the data-generating process.

1 INTRODUCTION

To perform reliably in real world settings, machine learning models must be robust to distribution
shifts – where the training distribution differs from the test distribution. Given data from multiple
domains that share a common optimal predictor, the domain generalization (DG) task (Wang et al.,
2021; Zhou et al., 2021) encapsulates this challenge by evaluating accuracy on an unseen domain.
Recent empirical studies of DG algorithms (Wiles et al., 2022; Ye et al., 2022) have characterized
different kinds of distribution shifts across domains. Using MNIST as an example, a diversity shift
is when domains are created either by adding new values of a spurious attribute like rotation (e.g.,
Rotated-MNIST dataset (Ghifary et al., 2015; Piratla et al., 2020)) whereas a correlation shift is
when domains exhibit different values of correlation between the class label and a spurious attribute
like color (e.g., Colored-MNIST (Arjovsky et al., 2019)). Partly because advances in representation
learning for DG (Ahuja et al., 2021; Krueger et al., 2021; Mahajan et al., 2021; Arjovsky et al., 2019;
Li et al., 2018a; Sun & Saenko, 2016) have focused on either one of the shifts, these studies find that
performance of state-of-the-art DG algorithms are not consistent across different shifts: algorithms
performing well on datasets with one kind of shift fail on datasets with another kind of shift.

In this paper, we pose a harder, more realistic question: What if a dataset exhibits two or more
kinds of shifts simultaneously? Such shifts over multiple attributes (where an attribute refers to a
spurious high-level variable like rotation) are often observed in real data. For example, satellite
imagery data demonstrates distribution shifts over time as well as the region captured (Koh et al.,
2021). To study this question, we introduce multi-attribute distribution shift datasets. For instance,
in our Col+Rot-MNIST dataset (see Figure 1), both the color and rotation angle of digits can shift
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Figure 1: (a) Our multi-attribute distribution shift dataset Col+Rot-MNIST. We combine Colored
MNIST (Arjovsky et al., 2019) and Rotated MNIST (Ghifary et al., 2015) to introduce distinct shifts
over Color and Rotation attributes. (b) The causal graph representing the data generating process for
Col+Rot-MNIST. Color has a correlation with Y which changes across environments while Rotation
varies independently. (c) Comparison with DG algorithms optimizing for different constraints shows
the superiority of Causally Adaptive Constraint Minimization (CACM) (full table in Section 5).

across data distributions. We find that existing DG algorithms that are often targeted for a specific
shift fail to generalize in such settings: best accuracy falls from 50-62% for individual shift MNIST
datasets to <50% (lower than a random guess) for the multi-attribute shift dataset.

To explain such failures, we propose a causal framework for generalization under multi-attribute
distribution shifts. We use a canonical causal graph to model commonly observed distribution shifts.
Under this graph, we characterize a distribution shift by the type of relationship between spurious
attributes and the classification label, leading to different realized causal DAGs. Using d-separation
on the realized DAGs, we show that each shift entails distinct constraints over observed variables
and prove that no conditional independence constraint is valid across all shifts. As a special case of
multi-attribute, when datasets exhibit a single-attribute shift across domains, this result provides an
explanation for the inconsistent performance of DG algorithms reported by Wiles et al. (2022); Ye
et al. (2022). It implies that any algorithm based on a single, fixed independence constraint cannot
work well across all shifts: there will be a dataset on which it will fail (Section 3.3).

We go on to ask if we can develop an algorithm that generalizes to different kinds of individual shifts
as well as simultaneous multi-attribute shifts. For the common shifts modeled by the canonical graph,
we show that identification of the correct regularization constraints requires knowing only the type of
relationship between attributes and the label, not the full graph. As we discuss in Section 3.1, the type
of shift for an attribute is often available or can be inferred for real-world datasets. Based on this, we
propose Causally Adaptive Constraint Minimization (CACM), an algorithm that leverages knowledge
about the data-generating process (DGP) to identify and apply the correct independence constraints
for regularization. Given a dataset with auxiliary attributes and their relationship with the target label,
CACM constrains the model’s representation to obey the conditional independence constraints satisfied
by causal features of the label, generalizing past work on causality-based regularization (Mahajan
et al., 2021; Veitch et al., 2021; Makar et al., 2022) to multi-attribute shifts.

We evaluate CACM on novel multi-attribute shift datasets based on MNIST, small NORB, and
Waterbirds images. Across all datasets, applying the incorrect constraint, often through an existing
DG algorithm, leads to significantly lower accuracy than the correct constraint. Further, CACM
achieves substantially better accuracy than existing algorithms on datasets with multi-attribute shifts
as well as individual shifts. Our contributions include:

• Theoretical result that an algorithm using a fixed independence constraint cannot yield an optimal
classifier on all datasets.

• An algorithm, Causally Adaptive Constraint Minimization (CACM), to adaptively derive the correct
regularization constraint(s) based on the causal graph that outperforms existing DG algorithms.

• Multi-attribute shifts-based benchmarks for domain generalization where existing algorithms fail.
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2 GENERALIZATION UNDER MULTI-ATTRIBUTE SHIFTS

We consider the supervised learning setup from (Wiles et al., 2022) where each row of train data
(xi,ai, yi)

n
i=1 contains input features xi (e.g., X-ray pixels), a set of nuisance or spurious attributes

ai (e.g., vertical shift, hospital) and class label yi (e.g., disease diagnosis). The attributes represent
variables that are often recorded or implicit in data collection procedures. Some attributes represent a
property of the input (e.g., vertical shift) while others represent the domain from which the input was
collected (e.g., hospital). The attributes affect the observed input features xi but do not cause the target
label, and hence are spurious attributes. The final classifier g(x) is expected to use only the input
features. However, as new values of attributes are introduced or as the correlation of attributes with the
label changes, we obtain different conditional distributions P (Y |X). Given a set of data distributions
P , we assume that the train data is sampled from distributions, PEtr = {PE1, PE2, · · · } ⊂ P while
the test data is assumed to be sampled from a single unseen distribution, PEte = {PEte} ⊂ P .
Attributes and class labels are assumed to be discrete.

2.1 RISK INVARIANT PREDICTOR FOR GENERALIZATION UNDER SHIFTS

The goal is to learn a classifier g(x) using train domains such that it generalizes and achieves a
similar, small risk on test data from unseen PEte as it achieves on the train data. Formally, given a set
of distributions P , we define a risk-invariant predictor (Makar et al., 2022) as,
Definition 2.1. Optimal Risk Invariant Predictor for P (from (Makar et al., 2022)) Define the risk
of predictor g on distribution P ∈ P as RP (g) = Ex,y∼P ℓ(g(x), y) where ℓ is cross-entropy or
another classification loss. Then, the set of risk-invariant predictors obtain the same risk across all
distributions P ∈ P , and set of the optimal risk-invariant predictors is defined as the risk-invariant
predictors that obtain minimum risk on all distributions.

grinv ∈ arg min
g∈Grinv

RP (g) ∀P ∈ P where Grinv = {g : RP (g) = RP ′(g)∀P, P ′ ∈ P} (1)

An intuitive way to obtain a risk-invariant predictor is to consider only the parts of the input features
(X) that cause the label Y and ignore any variation due to the spurious attributes. Let such latent,
unobserved causal features be Xc. Due to independence and stability of causal mechanisms (Peters
et al., 2017), we can assume that P (Y |Xc) remains invariant across different distributions. Using the
notion of risk invariance, we can now define the multi-attribute generalization problem as,
Definition 2.2. Generalization under Multi-attribute shifts. Given a target label Y , input features
X , attributes A, and latent causal features Xc, consider a set of distributions P such that P (Y |Xc)
remains invariant while P (A|Y ) changes across individual distributions. Using a training dataset
(xi,ai, yi)

n
i=1 sampled from a subset of distributions PEtr ⊂ P , the generalization goal is to learn

an optimal risk-invariant predictor over P .

Special case of single-attribute shift. When |A| = 1, we obtain the single-attribute shift problem
that is widely studied (Wiles et al., 2022; Ye et al., 2022; Gulrajani & Lopez-Paz, 2021).

2.2 A GENERAL PRINCIPLE FOR NECESSARY CONDITIONAL INDEPENDENCE CONSTRAINTS

Table 1: Statistic optimized by DG algorithms.
match matches the statistic across E. h is domain
classifier (loss ℓd) using shared representation ϕ.

Constraint Statistic Algo.

ϕ ⊥⊥ E match E[ϕ(x)|E] ∀ E MMD
maxE E[ℓd(h(ϕ(x)), E)] DANN
match Cov[ϕ(x)|E] ∀ E CORAL

Y ⊥⊥ E|ϕ match E[Y |ϕ(x), E] ∀ E IRM
match Var[ℓ(g(x), y)|E] ∀ E VREx

ϕ ⊥⊥ E|Y match E[ϕ(x)|E, Y = y] ∀ E C-MMD
maxE E[ℓd(h(ϕ(x)), E)|Y = y)] CDANN

In practice, the causal features Xc are unob-
served and a key challenge is to learn Xc using
the observed (X, Y,A). We focus on represen-
tation learning-based (Wang et al., 2021) DG
algorithms, typically characterized by a regu-
larization constraint that is added to a standard
ERM loss such as cross-entropy. Table 1 shows
three independence constraints that form the ba-
sis of many popular DG algorithms, assuming
environment/domain E as the attribute and ℓ as
the main classifier loss. We now provide a gen-
eral principle for deciding which constraints to
choose for learning a risk-invariant predictor for
a dataset.
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We utilize a strategy from past work (Mahajan et al., 2021; Veitch et al., 2021) to use graph structure
of the underlying data-generating process (DGP). We assume that the predictor can be represented
as g(x) = g1(ϕ(x)) where ϕ is the representation. To learn a risk-invariant ϕ, we identify the
conditional independence constraints satisfied by causal features Xc in the causal graph and enforce
that learnt representation ϕ should follow the same constraints. If ϕ satisfies the constraints, then any
function g1(ϕ) will also satisfy them. Below we show that the constraints are necessary under simple
assumptions on the causal DAG representing the DGP for a dataset. All proofs are in Suppl. B.
Theorem 2.1. Consider a causal DAG G over ⟨Xc,X,A, Y ⟩ and a corresponding generated dataset
(xi,ai, yi)

n
i=1, where Xc is unobserved. Assume that graph G has the following property: Xc is

defined as the set of all parents of Y (Xc → Y ); and Xc,A together cause X (Xc → X , and
A→ X). The graph may have any other edges (see, e.g., DAG in Figure 1(b)). Let PG be the set
of distributions consistent with graph G, obtained by changing P (A|Y ) but not P (Y |Xc). Then
the conditional independence constraints satisfied by Xc are necessary for a (cross-entropy) risk-
invariant predictor over PG . That is, if a predictor for Y does not satisfy any of these constraints,
then there exists a data distribution P ′ ∈ PG such that predictor’s risk will be higher than its risk in
other distributions.

Thus, given a causal DAG, using d-separation on Xc and observed variables, we can derive the
correct regularization constraints to be applied on ϕ. This yields a general principle to learn a
risk-invariant predictor. We use it to theoretically explain the inconsistent results of existing DG
algorithms (Sec. 3.3) and to propose an Out-of-Distribution generalization algorithm CACM (Sec. 4).
Note that constraints from CACM are necessary but not sufficient as Xc is not identifiable.

3 STUDYING DISTRIBUTION SHIFTS THROUGH A CANONICAL CAUSAL GRAPH

3.1 CANONICAL CAUSAL GRAPH FOR COMMON DISTRIBUTION SHIFTS

We consider a canonical causal graph (Figure 2) to specify the common data-generating processes
that can lead to a multi-attribute shift dataset. Shaded nodes represent observed variables X , Y ; and
the sets of attributes Aind , Aind , and E such that Aind ∪Aind ∪ {E} = A. Aind represents the
attributes correlated with label, Aind the attributes that are independent of label, while E is a special
attribute for the domain/environment from which a data point was collected. Not all attributes need to
be observed. For example, in some cases, only E and a subset of Aind , Aind may be observed. In
other cases, only Aind and Aind may be observed while E is not available. Regardless, we assume
that all attributes, along with the causal features Xc, determine the observed features X . And the
features Xc are the only features that cause Y . In the simplest case, we assume no label shift across
environments i.e. marginal distribution of Y is constant across train domains and test, PEtr(y) =
PEte(y) (see Figure 2a). More generally, different domains may have different distribution of causal
features (in the X-ray example, more women visit one hospital) as shown by E <–>Xc (Figure 2b).

Under the canonical graph, we characterize different kinds of shifts based on the relationship between
spurious attributes A and the classification label Y . Specifically, Aind is independent of the class
label and a change in P (Aind ) leads to an Independent distribution shift. For Aind , there are

(a) (b) (c)

Figure 2: (a) Canonical causal graph for specifying multi-attribute distribution shifts; (b) canonical
graph with E-Xc correlation. Anti-causal graph shown in Suppl. G. Shaded nodes denote observed
variables; since not all attributes may be observed, we use dotted boundary. Dashed lines denote
correlation, between Xc and E, and Y and Aind . E-Xc correlation can be due to confounding,
selection, or causal relationship; all our results hold for any of these relationships (see Suppl. F). (c)
Different mechanisms for Y -Aind relationship that lead to Causal, Confounded and Selected shifts.
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three mechanisms which can introduce the dashed-line correlation between Aind and Y (Figure
2c) – direct-causal (Y causing Aind ), confounding between Y and Aind due to a common cause,
or selection during the data-generating process. Overall, we define four kinds of shifts based on
the causal graph: Independent, Causal, Confounded, and Selected1. While the canonical graph in
Figure 2a is general, resolving each dashed edge into a specific type of shift (causal mechanism)
leads to a realized causal DAG for a particular dataset. As we shall see, knowledge of these shift
types is sufficient to determine the correct independence constraints between observed variables.

Our canonical multi-attribute graph generalizes the DG graph from Mahajan et al. (2021) that
considered an Independent domain/environment as the only attribute. Under the special case of a
single attribute (|A| = 1), the canonical graph helps interpret the validity of popular DG methods for
a dataset by considering the type of the attribute-label relationship in the data-generating process. For
example, let us consider two common constraints in prior work on independence between ϕ and a
spurious attribute: unconditional (ϕ(x) ⊥⊥ A) (Veitch et al., 2021; Albuquerque et al., 2020; Ganin
et al., 2016) or conditional on the label (ϕ(x) ⊥⊥ A|Y ) (Ghifary et al., 2016; Hu et al., 2019; Li
et al., 2018c;d). Under the canonical graph in Figure 2a, the unconditional constraint is true when
A ⊥⊥ Y (A ∈ Aind ) but not always for Aind (true only under Confounded shift). If the relationship
is Causal or Selected, then the conditional constraint is correct. Critically, as Veitch et al. (2021)
show for a single-attribute graph, the conditional constraint is not always better; it is an incorrect
constraint (not satisfied by Xc) under Confounded setting. Further, under the canonical graph [with
E-Xc edge] from Figure 2b, none of these constraints are valid due to a correlation path between Xc

and E. This shows the importance of considering the generating process for a dataset.

Inferring attributes-label relationship type. Whether an attribute belongs to Aind or Aind can be
learned from data (since Aind ⊥⊥ Y ). Under some special conditions with the graph in Figure 2a—
assuming all attributes are observed and all attributes in Aind are of the same type—we can also
identify the type of Aind shift: Y ⊥⊥ E|Aind implies Selected; if not, then X ⊥⊥ E|Aind ,Aind , Y
implies Causal, otherwise it is Confounded. In the general case of Figure 2b, however, it is not
possible to differentiate between Acause , Aconf and Asel using observed data and needs manual
input. Fortunately, unlike the full causal graph, the type of relationship between label and an attribute
is easier to obtain. For example, in text toxicity classification, toxicity labels are found to be spuriously
correlated with certain demographics (Aind ) (Dixon et al., 2018; Koh et al., 2021; Park et al., 2018);
while in medical applications where data is collected from small number of hospitals, shifts arise
due to different methods of slide staining and image acquisition (Aind ) (Koh et al., 2021; Komura &
Ishikawa, 2018; Tellez et al., 2019). Suppl. A contains additional real-world examples with attributes.

3.2 INDEPENDENCE CONSTRAINTS DEPEND ON ATTRIBUTE↔LABEL RELATIONSHIP

We list the independence constraints between ⟨Xc,A, Y ⟩ under the canonical graphs from Figure 2,
which can be used to derive the correct regularization constraints to be applied on ϕ (Theorem 2.1).
Proposition 3.1. Given a causal DAG realized by specifying the target-attributes relationship in
Figure 2a, the correct constraint depends on the relationship of label Y with the attributes A.
As shown, A can be split into Aind, Aind and E, where Aind can be further split into subsets
that have a causal (Acause), confounded (Aconf ), selected (Asel) relationship with Y (Aind =
Acause ∪Aconf ∪Asel). Then, the (conditional) independence constraints Xc should satisfy are,

1. Independent: Xc ⊥⊥ Aind; Xc ⊥⊥ E; Xc ⊥⊥ Aind|Y ; Xc ⊥⊥ Aind|E; Xc ⊥⊥ Aind|Y,E
2. Causal: Xc ⊥⊥ Acause|Y ; Xc ⊥⊥ E; Xc ⊥⊥ Acause|Y,E
3. Confounded: Xc ⊥⊥ Aconf ; Xc ⊥⊥ E; Xc ⊥⊥ Aconf |E
4. Selected: Xc ⊥⊥ Asel|Y ; Xc ⊥⊥ Asel|Y,E
Corollary 3.1. All the above derived constraints are valid for Graph 2a. However, in the presence of
a correlation between E and Xc (Graph 2b), only the constraints conditioned on E hold true.

Corollary 3.1 implies that if we are not sure about E-Xc correlation, E-conditioned constraints
should be used. By considering independence constraints over attributes that may represent any
observed variable, our graph-based characterization unites the single-domain (group-wise) (Sagawa
et al., 2020) and multi-domain generalization tasks. Whether attributes represent auxiliary attributes,
group indicators, or data sources, Proposition 3.1 provides the correct regularization constraint.

1Note that for Selected to satisfy the assumptions of Theorem 2.1 implies that Xc is fully predictive of Y or
that the noise in Y -Xc relationship is independent of the features driving the selection process.
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3.3 A FIXED CONDITIONAL INDEPENDENCE CONSTRAINT CANNOT WORK FOR ALL SHIFTS

Combining with Theorem 2.1, Proposition 3.1 shows that the necessary constraints for a risk-invariant
predictor’s representation ϕ(X) are different for different types of attributes. This leads us to our key
result: under multi-attribute shifts, a single (conditional) independence constraint cannot be valid for
all kinds of shifts. Remarkably, this result is true even for single-attribute shifts: any algorithm with a
fixed conditional independence constraint (e.g., as listed in Table 1 (Gretton et al., 2012; Arjovsky
et al., 2019; Li et al., 2018b; Sun & Saenko, 2016)) cannot work for all datasets.
Theorem 3.1. Under the canonical causal graph in Figure 2(a,b), there exists no (conditional)
independence constraint over ⟨Xc,A, Y ⟩ that is valid for all realized DAGs as the type of multi-
attribute shifts vary. Hence, for any predictor algorithm for Y that uses a single (conditional)
independence constraint over its representation ϕ(X), A and Y , there exists a realized DAG G and
a corresponding training dataset such that the learned predictor cannot be a risk-invariant predictor
for distributions in PG , where PG is the set of distributions obtained by changing P (A|Y ).

Corollary 3.2. Even when |A| = 1, an algorithm using a single independence constraint over
⟨ϕ(X), A, Y ⟩ cannot yield a risk-invariant predictor for all kinds of single-attribute shift datasets.

Corollary 3.2 adds theoretical evidence for past empirical demonstrations of inconsistent performance
of DG algorithms (Wiles et al., 2022; Ye et al., 2022).To demonstrate its significance, we provide
OoD generalization results on a simple “slab” setup (Shah et al., 2020) with three datasets (Causal,
Confounded, and Selected shifts) in Suppl. E.2. We evaluate two constraints motivated by DG
literature Mahajan et al. (2021): unconditional Xc ⊥⊥ A|E, and conditional on label Xc ⊥⊥ A|Y,E.
As predicted by Corollary 3.2, neither constraint obtains best accuracy on all three datasets (Table 6).

4 CAUSALLY ADAPTIVE CONSTRAINT MINIMIZATION (CACM)

Motivated by Sec. 3, we present CACM, an algorithm that adaptively chooses regularizing constraints
for multi-attribute shift datasets (full algorithm for any general DAG in Suppl. C). It has two phases.

Phase I. Derive correct independence constraints. If a dataset’s DGP satisfies the canonical graph,
CACM requires a user to specify the relationship type for each attribute and uses the constraints from
Proposition 3.1. For other datasets, CACM requires a causal graph describing the dataset’s DGP and
uses the following steps to derive the independence constraints. Let V be the set of observed variables
in the graph except Y , and C be the list of constraints.

1. For each observed variable V ∈ V , check whether (Xc, V ) are d-separated. Add Xc ⊥⊥ V to C.
2. If not, check if (Xc, V ) are d-separated conditioned on any subset Z of the remaining observed

variables in Z = {Y } ∪ V \ {V }. For each subset Z with d-separation, add Xc ⊥⊥ V |Z to C.

Phase II. Apply regularization penalty using derived constraints. In Phase II, CACM applies those
constraints as a regularizer to the standard ERM loss, g1, ϕ = argming1,ϕ; ℓ(g1(ϕ(x)), y) +
RegPenalty, where ℓ is cross-entropy loss. The regularizer optimizes for valid constraints over
all observed variables V ∈ V . Below we provide the regularizer term for datasets following the
canonical graphs from Figure 2 (V = A). We choose Maximum Mean Discrepancy (MMD) (Gretton
et al., 2012) to apply our penalty (in principle, any metric for conditional independence would work).

Since A includes multiple attributes, the regularizer penalty depends on the type of distribution shift
for each attribute. For instance, for A ∈ Aind (Independent), to enforce ϕ(x) ⊥⊥ A, we aim to
minimize the distributional discrepancy between P (ϕ(x)|A = ai) and P (ϕ(x)|A = aj), for all i, j
values of A. However, since the same constraint is applicable on E, it is statistically efficient to apply
the constraint on E (if available) as there may be multiple closely related values of A in a domain
(e.g., slide stains collected from one hospital may be spread over similar colors, but not exactly the
same). Hence, we apply the constraint on distributions P (ϕ(x)|E = Ei) and P (ϕ(x)|E = Ej) if E
is observed (and A may/may not be unobserved), otherwise we apply the constraint over A.

RegPenaltyAind
=

|Aind |∑
i=1

∑
j>i

MMD(P (ϕ(x)|ai,ind), P (ϕ(x)|aj,ind)) (2)

ForA ∈ Acause (Causal), following Proposition 3.1, we consider distributions P (ϕ(x)|A = ai, Y =
y) and P (ϕ(x)|A = aj , Y = y). We additionally condition on E as there may be a correlation

6



Published as a conference paper at ICLR 2023

between E and Xc (Figure 2b), which renders other constraints incorrect (Corollary 3.1). We
similarly obtain regularization terms for Confounded and Selected (Suppl. C).

RegPenaltyAcause =
∑
|E|

∑
y∈Y

|Acause |∑
i=1

∑
j>i

MMD(P (ϕ(x)|ai,cause, y), P (ϕ(x)|aj,cause, y))

The finalRegPenalty is a sum of penalties over all attributes,RegPenalty =
∑

A∈A λAPenaltyA,
where λA are the hyperparameters. Unlike prior work (Makar et al., 2022; Veitch et al., 2021), we do
not restrict ourselves to binary-valued attributes and classes.

CACM’s relationship with existing DG algorithms. Table 1 shows common constraints used by
popular DG algorithms. CACM’s strength lies in adaptively selecting constraints based on the causal
relationships in the DGP. Thus, depending on the dataset, applying CACM for a single-attribute
shift may involve applying the same constraint as in MMD or C-MMD algorithms. For example,
in Rotated-MNIST dataset with E = Aind = rotation, the effective constraint for MMD, DANN,
CORAL algorithms (ϕ ⊥⊥ E) is the same as CACM’s constraint ϕ ⊥⊥ Aind for Independent shift.

5 EMPIRICAL EVALUATION

We perform experiments on MNIST, small NORB, and Waterbirds datasets to demonstrate our
main claims: existing DG algorithms perform worse on multi-attribute shifts; CACM with the
correct graph-based constraints significantly outperforms these algorithms; and incorrect constraints
cannot match the above accuracy. While we provide constraints for all shifts in Proposition 3.1, our
empirical experiments with datasets focus on commonly occurring Causal and Independent shifts. All
experiments are performed in PyTorch 1.10 with NVIDIA Tesla P40 and P100 GPUs, and building
on DomainBed (Gulrajani & Lopez-Paz, 2021) and OoD-Bench (Ye et al., 2022). Regularizing on
model’s logit scores provides better accuracy than ϕ(x); hence we adopt it for all our experiments.

5.1 DATASETS & BASELINE DG ALGORITHMS

We introduce three new datasets for the multi-attribute shift problem. For all datasets, details of
environments, architectures, visualizations, and setup generation are in Suppl. D.1.

MNIST. Colored (Arjovsky et al., 2019) and Rotated MNIST (Ghifary et al., 2015) present Causal
(Acause = color) and Independent (Aind = rotation) distribution shifts, respectively. We combine
these to obtain a multi-attribute dataset with Acause and Aind (col + rot). For comparison, we also
evaluate on single-attribute Acause (Colored) and Aind (Rotated) MNIST datasets.

small NORB (LeCun et al., 2004). This dataset was used by Wiles et al. (2022) to create a
challenging DG task with single-attribute shifts, having multi-valued classes and attributes over
realistic 3D objects. We create a multi-attribute shift dataset (light+azi), consisting of a causal
connection, Acause =lighting, between lighting and object category Y ; and Aind =azimuth that
varies independently across domains. We also evaluate on single-attribute Acause (lighting) and
Aind (azimuth) datasets.

Waterbirds. We use the original dataset (Sagawa et al., 2020) where bird type (water or land) (Y ) is
spuriously correlated with background (Acause ). To create a multi-attribute setup, we add different
weather effects (Aind ) to train and test data with probability p = 0.5 and 1.0 respectively.

Baseline DG algorithms & implementation. We consider baseline algorithms optimizing for
different constraints and statistics to compare to causal adaptive regularization: IRM (Arjovsky
et al., 2019), IB-ERM and IB-IRM (Ahuja et al., 2021), VREx (Krueger et al., 2021), MMD (Li
et al., 2018b), CORAL (Sun & Saenko, 2016), DANN (Gretton et al., 2012), Conditional-MMD
(C-MMD) (Li et al., 2018b), Conditional-DANN (CDANN) (Li et al., 2018d), GroupDRO (Sagawa
et al., 2020), Mixup (Yan et al., 2020), MLDG (Li et al., 2018a), SagNet (Nam et al., 2021), and
RSC (Huang et al., 2020). Following DomainBed (Gulrajani & Lopez-Paz, 2021), a random search
is performed 20 times over the hyperparameter distribution for 3 seeds. The best models obtained
across the three seeds are used to compute the mean and standard error. We use a validation set that
follows the test domain distribution consistent with previous work on these datasets (Arjovsky et al.,
2019; Sagawa et al., 2020; Wiles et al., 2022; Ye et al., 2022). Further details are in Suppl. D.
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Table 2: Colored + Rotated MNIST: Accuracy on unseen domain for singe-attribute
(color, rotation) and multi-attribute (col + rot) distribution shifts; small NORB: Accuracy on
unseen domain for single-attribute (lighting, azimuth) and multi-attribute (light+azi) distribution
shifts. Waterbirds: Worst-group accuracy on unseen domain for single- and multi-attribute shifts.

Algo
Colored+Rotated MNIST

Accuracy
small NORB

Accuracy
Waterbirds

Worst-group accuracy

color rotation col+rot lighting azimuth light+azi original multi-attr

ERM 30.9 ±1.6 61.9 ±0.5 25.2 ±1.3 65.5 ±0.7 78.6 ±0.7 64.0 ±1.2 66.0 ± 3.7 37.0 ± 1.1
IB-ERM 27.8 ±0.7 62.1 ±0.8 41.2 ±4.1 66.0 ±0.9 75.9 ±1.2 61.2 ±0.1 66.9 ± 4.6 40.8 ± 5.6
IRM 50.0 ±0.1 61.2 ±0.3 39.6 ±6.7 66.7 ±1.5 75.7 ±0.4 61.7 ±0.5 61.2 ± 5.2 37.7 ± 1.7
IB-IRM 49.9 ±0.1 61.4 ±0.9 49.3 ±0.3 64.7 ±0.8 77.6 ±0.3 62.2 ±1.2 62.3 ± 7.7 46.9 ± 6.5
VREx 30.3 ±1.6 62.1 ±0.4 23.3 ±0.4 64.7 ±1.0 77.6 ±0.5 62.5 ±1.6 68.8 ± 2.5 38.1 ± 2.3
MMD 29.7 ±1.8 62.2 ±0.5 24.1 ±0.6 66.6 ±1.6 76.7 ±1.1 62.5 ±0.3 68.1 ± 4.4 45.2 ± 2.4
CORAL 28.5 ±0.8 62.5 ±0.7 23.5 ±1.1 64.7 ±0.5 77.2 ±0.7 62.9 ±0.3 73.6 ± 4.8 54.1 ± 3.0
DANN 20.7 ±0.8 61.9 ±0.7 32.0 ±7.8 64.6 ±1.4 78.6 ±0.7 60.8 ±0.7 78.5 ± 1.8 55.5 ± 4.6
C-MMD 29.4 ±0.2 62.3 ±0.4 32.2 ±7.0 65.8 ±0.8 76.9 ±1.0 61.0 ±0.9 77.0 ± 1.2 52.3 ± 1.9
CDANN 30.8 ±8.0 61.8 ±0.2 32.2 ±7.0 64.9 ±0.5 77.3 ±0.3 60.8 ±0.9 69.9 ± 3.3 49.7 ± 3.9
DRO 33.9 ±0.4 60.6 ±0.9 25.3 ±0.5 65.5 ±0.7 77.1 ±1.0 62.3 ±0.6 70.4 ± 1.3 53.1 ± 2.2
Mixup 25.1 ±1.2 61.4 ±0.6 21.1 ±1.6 66.2 ±1.3 80.4 ±0.5 57.1 ±1.5 74.2 ± 3.9 64.7 ± 2.4
MLDG 31.0 ±0.3 61.6 ±0.8 24.4 ±0.7 66.0 ±0.7 77.9 ±0.5 64.2 ±0.6 70.8 ± 1.5 34.5 ± 1.7
SagNet 28.2 ±0.8 60.7 ±0.7 23.7 ±0.2 65.9 ±1.5 76.1 ±0.4 62.2 ±0.5 69.1 ± 1.0 40.6 ± 7.1
RSC 29.1 ±1.9 62.3 ±0.4 22.8 ±0.3 62.4 ±0.4 75.6 ±0.6 61.8 ±1.3 64.6 ± 6.5 40.9 ± 3.6

CACM 70.4 ±0.5 62.4 ±0.4 54.1 ±1.3 85.4 ±0.5 80.5 ±0.6 69.6 ±1.6 84.5 ± 0.6 70.5 ± 1.1

Table 3: small NORB Causal shift. Comparing
Xc ⊥⊥ Acause |Y,E with incorrect constraints.

Constraint Accuracy

Xc ⊥⊥ Acause 72.7 ± 1.1
Xc ⊥⊥ Acause |E 76.2 ± 0.9
Xc ⊥⊥ Acause |Y 79.7 ± 0.9

Xc ⊥⊥ Acause |Y,E 85.4 ± 0.5

Table 4: Comparing Xc ⊥⊥ Acause |Y,E and
Xc ⊥⊥ Acause |Y for Causal shift in MNIST and
small NORB. The constraint implied by E-Xc

correlation (Fig. 2b, Prop. 3.1) affects accuracy.

Constraint MNIST small NORB

Xc ⊥⊥ Acause |Y 69.7 ± 0.2 79.7 ± 0.9
Xc ⊥⊥ Acause |Y,E 70.4 ± 0.5 85.4 ± 0.5

5.2 RESULTS

Correct constraint derived from the causal graph matters. Table 2 shows the accuracy on test
domain for all datasets. Comparing the three prediction tasks for MNIST and small NORB, for
all algorithms, accuracy on unseen test domain is highest under Aind shift and lowest under two-
attribute shift (Aind ∪Acause ), reflecting the difficulty of a multi-attribute distribution shift. On the
two-attribute shift task in MNIST, all DG algorithms obtain less than 50% accuracy whereas CACM
obtains a 5% absolute improvement. Results on small NORB dataset are similar: CACM obtains
69.6% accuracy on the two-attribute task while the nearest baseline is MLDG at 64.2%.

On both MNIST and small NORB, CACM also obtains highest accuracy on the Acause task. On
MNIST, even though IRM and VREx have been originally evaluated for the Color-only (Acause ) task,
under an extensive hyperparameter sweep as recommended in past work (Gulrajani & Lopez-Paz,
2021; Krueger et al., 2021; Ye et al., 2022), we find that CACM achieves a substantially higher
accuracy (70%) than these methods, just 5 units lower than the optimal 75%. While the Aind task is
relatively easier, algorithms optimizing for the correct constraint achieve highest accuracy. Note that
MMD, CORAL, DANN, and CACM are based on the same independence constraint (see Table 1).
As mentioned in Section 4, we use the the domain attribute E for CACM’s regularization constraint
for Aind task, for full comparability with other algorithms that also use E. The results indicate the
importance of adaptive regularization for generalization.

Table 2 also shows the OoD accuracy of algorithms on the original Waterbirds dataset (Sagawa et al.,
2020) and its multi-attribute shift variant. Here we evaluate using worst-group accuracy consistent
with past work (Sagawa et al., 2020; Yao et al., 2022). We observe that on single-attribute (Acause ) as
well as multi-attribute shift, CACM significantly outperforms baselines (∼6% absolute improvement).
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Incorrect constraints hurt generalization. We now directly compare the effect of using correct
versus incorrect (but commonly used) constraints for a dataset. To isolate the effect of a single
constraint, we first consider the single-attribute shift on Acause and compare the application of
different regularizer constraints. Proposition 3.1 provides the correct constraint for Acause : Xc ⊥⊥
Acause |Y,E. In addition, using d-separation on Causal-realized DAG from Figure 2, we see the
following invalid constraints, Xc ⊥⊥ Acause |E, Xc ⊥⊥ Acause. Without knowing that the DGP
corresponds to a Causal shift, one may apply these constraints that do not condition on the class.
Results on small NORB (Table 3) show that using the incorrect constraint has an adverse effect: the
correct constraint yields 85% accuracy while the best incorrect constraint achieves 79.7%. Moreover,
unlike the correct constraint, application of the incorrect constraint is sensitive to the λ (regularization
weight) parameter: as λ increases, accuracy drops to less than 40% (Suppl. E.3, Figure 7).

Comparing these constraints on small NORB and MNIST (Table 4) reveals the importance of making
the right structural assumptions. Typically, DG algorithms assume that distribution of causal features
Xc does not change across domains (as in the graph in Fig. 2a). Then, both Xc ⊥⊥ Acause |Y,E
and Xc ⊥⊥ Acause |Y should be correct constraints. However, conditioning on both Y and E
provides a 5% point gain over conditioning on Y in NORB while the accuracy is comparable for
MNIST. Information about the data-generating process explains the result: Different domains in
MNIST include samples from the same distribution whereas small NORB domains are sampled from
a different set of toy objects, thus creating a correlation between Xc and E, corresponding to the
graph in Fig. 2b. Without information on the correct DGP, such gains will be difficult.

Finally, we replicate the above experiment for the multi-attribute shift setting for small NORB. To
construct an incorrect constraint, we interchange the variables before inputting to CACM algorithm
(Aind gets used as Acause and vice-versa). Accuracy with interchanged variables (65.1± 1.6) is
lower than that of correct CACM (69.6 ± 1.6). More ablations where baseline DG algorithms are
provided CACM-like attributes as environment are in Suppl. E.4.

6 RELATED WORK

Improving the robustness of models in the face of distribution shifts is a key challenge. Several
works have attempted to tackle the domain generalization problem (Wang et al., 2021; Zhou et al.,
2021) using different approaches – data augmentation (Cubuk et al., 2020; He et al., 2016; Zhu
et al., 2017), and representation learning (Arjovsky et al., 2019; Deng et al., 2009; Higgins et al.,
2017) being popular ones. Trying to gauge the progress made by these approaches, Gulrajani and
Lopez-Paz (Gulrajani & Lopez-Paz, 2021) find that existing state-of-the-art DG algorithms do not
improve over ERM. More recent work (Wiles et al., 2022; Ye et al., 2022) uses datasets with different
single-attribute shifts and empirically shows that different algorithms perform well over different
distribution shifts, but no single algorithm performs consistently across all. We provide (1) multi-
attribute shift benchmark datasets; (2) a causal interpretation of different kinds of shifts; and (3) an
adaptive algorithm to identify the correct regularizer. While we focus on images, OoD generalization
on graph data is also challenged by multiple types of distribution shifts (Chen et al., 2022).

Causally-motivated learning. There has been recent work focused on causal representation learn-
ing (Arjovsky et al., 2019; Krueger et al., 2021; Locatello et al., 2020; Schölkopf et al., 2021) for
OoD generalization. While these works attempt to learn the constraints for causal features from
input features, we show that it is necessary to model the data-generating process and have access to
auxiliary attributes to obtain a risk-invariant predictor, especially in multi-attribute distribution shift
setups. Recent research has shown how causal graphs can be used to characterize and analyze the
different kinds of distribution shifts that occur in real-world settings (Makar et al., 2022; Veitch et al.,
2021). Our approach is similar in motivation but we extend from single-domain, single-attribute
setups in past work to formally introduce multi-attribute distribution shifts in more complex and
real-world settings. Additionally, we do not restrict ourselves to binary-valued classes and attributes.

7 DISCUSSION

We introduced CACM, an adaptive OoD generalization algorithm to characterize multi-attribute
shifts and apply the correct independence constraints. Through empirical experiments and theoretical
analysis, we show the importance of modeling the causal relationships in the data-generating process.
That said, our work has limitations: the constraints from CACM are necessary but not sufficient for a
risk-invariant predictor (e.g., unable to remove influence of unobserved spurious attributes).
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8 ETHICS AND BROADER IMPACT STATEMENT

Our work on modeling the data-generating process for improved out-of-distribution generalization is
an important advance in building robust predictors for practical settings. Such prediction algorithms,
including methods building on representation learning, are increasingly a key element of decision-
support and decision-making systems. We expect our approach to creating a robust predictor to be
particularly valuable in real world setups where spurious attributes and real-world multi-attribute
settings lead to biases in data. While not the focus of this paper, CACM may be applied to mitigate
social biases (e.g., in language and vision datasets) whose structures can be approximated by the
graphs in Figure 2. Risks of using methods such as CACM, include excessive reliance or a false
sense of confidence. While methods such as CACM ease the process of building robust models,
there remain many ways that an application may still fail (e.g., incorrect structural assumptions).
AI applications must still be designed appropriately with support of all stakeholders and potentially
affected parties, tested in a variety of settings, etc.

9 REPRODUCIBILITY STATEMENT

We provide all required experimental details in Suppl. D including dataset details, training details and
hyperparameter search sweeps. We additionally submit our code as part of supplementary material
which can be used to reproduce the experiments. We provide a demo notebook for prediction using
CACM in the DoWhy2 library. We provide proofs for all our theoretical results in Suppl. B.

10 ACKNOWLEDGEMENTS

We thank Abhinav Kumar, Adith Swaminathan, Yiding Jiang, and Dhruv Agarwal for helpful
feedback and comments on the draft. We would also like to thank the anonymous reviewers for their
valuable feedback.

REFERENCES

Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio,
Ioannis Mitliagkas, and Irina Rish. Invariance principle meets information bottleneck for out-of-
distribution generalization. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, 2021. URL https://openrevi
ew.net/forum?id=jlchsFOLfeF.

Isabela Albuquerque, João Monteiro, Mohammad Darvishi, Tiago H. Falk, and Ioannis Mitliagkas.
Generalizing to unseen domains via distribution matching, 2020.
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A PRESENCE OF AUXILIARY ATTRIBUTE INFORMATION IN DATASETS

Unlike the full causal graph, attribute values as well as the relationships between class labels and
attributes is often known. CACM assumes access to attribute labels A only during training time,
which are collected as part of the data collection process (e.g., as metadata with training data (Makar
et al., 2022)). We start by discussing the availability of attributes in WILDS (Koh et al., 2021), a set
of real-world datasets adapted for the domain generalization setting. Attribute labels available in the
datasets include, the time (year) and region associated with satellite images in FMoW dataset (Christie
et al., 2018) for predicting land use category, hospital from where the tissue patch was collected for
tumor detection in Camelyon17 dataset (Bandi et al., 2018) and the demographic information for
CivilComments dataset (Borkan et al., 2019). (Koh et al., 2021) create different domains in WILDS
using this metadata, consistent with our definition of E ∈ A as a special domain attribute.

In addition, CACM requires the type of relationship between label Y and attributes. This is often
known, either based on how the dataset was collected or inferred based on domain knowledge or
observation. While the distinction between Aind and Aind can be established using a statistical test
of independence on a given dataset, in general, the distinction between Acause ,Asel and Aconf

within Aind needs to be provided by the user. As we show for the above datasets, the type of
relationship can be inferred based on common knowledge or information on how the dataset was
collected.

For FMoW dataset, time can be considered an Independent attribute (Aind ) since it reflects the
time at which images are captured which is not correlated with Y ; whereas region is a Confounded
attribute since certain regions associated with certain Y labels are over-represented due to ease of
data collection. Note that region cannot lead to Causal shift since the decision to take images in a
region was not determined by the final label nor Selected for the same reason that the decision was
not taken based on values of Y . Similarly, for the Camelyon17 dataset, it is known that differences in
slide staining or image acquisition leads to variation in tissue slides across hospitals, thus implying
that hospital is an Independent attribute (Aind ) (Koh et al., 2021; Komura & Ishikawa, 2018; Tellez
et al., 2019); As another example from healthcare, a study in MIT Technology Review3 discusses
biased data where a person’s position (Aconf ) was spuriously correlated with disease prediction
as patients lying down were more likely to be ill. As another example, (Sagawa et al., 2020)
adapt MultiNLI dataset for OoD generalization due to the presence of spurious correlation between
negation words (attribute) and the contradiction label between “premise” and “hypothesis” inputs.
Here, negation words are a result of the contradiction label (Causal shift), however this relationship
between negation words and label may not always hold. Finally, for the CivilComments dataset, we
expect the demographic features to be Confounded attributes as there could be biases which result in
spurious correlation between comment toxicity and demographic information.

To provide examples showing the availability of attributes and their type of relationship with the
label, Table 5 lists some popular datasets used for DG and the associated auxiliary information
present as metadata. In addition to above discussed datasets, weinclude the popularly used Waterbirds
dataset (Sagawa et al., 2020) where the type of background (land/water) is assigned to bird images
based on bird label; hence, being a Causal attribute (results on Waterbirds dataset are in Table 2).

Table 5: Commonly used DG datasets include auxiliary information.

Dataset Attribute(s) Y −A relationship
FMoW-WILDS (Koh et al., 2021) time Aind

region Aconf

Camelyon17-WILDS (Koh et al., 2021) hospital Aind

Waterbirds (Sagawa et al., 2020) background (land/water) Acause

MultiNLI (Sagawa et al., 2020) negation word Acause

CivilComments-WILDS (Koh et al., 2021) demographic Aconf

3https://www.technologyreview.com/2021/07/30/1030329/machine-learning-a
i-failed-covid-hospital-diagnosis-pandemic/
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B PROOFS

B.1 PROOF OF THEOREM 2.1

Theorem 2.1. Consider a causal DAG G over ⟨Xc,X,A, Y ⟩ and a corresponding generated dataset
(xi,ai, yi)

n
i=1, where Xc is unobserved. Assume that graph G has the following property: Xc is

defined as the set of all parents of Y (Xc → Y ); and Xc,A together cause X (Xc → X , and
A→ X). The graph may have any other edges (see, e.g., DAG in Figure 1(b)). Let PG be the set
of distributions consistent with graph G, obtained by changing P (A|Y ) but not P (Y |Xc). Then
the conditional independence constraints satisfied by Xc are necessary for a (cross-entropy) risk-
invariant predictor over PG . That is, if a predictor for Y does not satisfy any of these constraints,
then there exists a data distribution P ′ ∈ PG such that predictor’s risk will be higher than its risk in
other distributions.

Proof. We consider X, Y,Xc,A as random variables that are generated according to the data-
generating process corresponding to causal graph G. We assume that Xc represents all the parents
of Y . Xc also causes the observed features X but X may be additionally affected by the attributes
A. Let ŷ = g(x) be a candidate predictor. Then g(X) represents a random vector based on a
deterministic function g of X .

Suppose there is an independence constraint ψ that is satisfied by Xc but not g(X). 4 Below we
show that such a predictor g is not risk-invariant: there exist two data distributions with different
P (A|Y ) such that the risk of g is different for them.

Without loss of generality, we can write g(x) as,

g(x) = (g(x)/h(xc)) ∗ h(xc) = g′(x,xc)h(xc) ∀x (3)

where h is an arbitrary, non-zero, deterministic function of the random variable Xc. Since Xc

satisfies the (conditional) independence constraint ψ and h is a deterministic function, h(Xc) also
satisfies ψ. Also since the predictor g(X) does not satisfy the constraint ψ, it implies that the random
vector g′(X,Xc) cannot satisfy the constraint ψ. Thus, g′(X,Xc) cannot be a function of Xc only;
it needs to depend on X too. Since X has two parents in the causal graph, Xc and A, this implies
that g′(X,Xc) must depend on A too, and hence g′(X,Xc) and A are not independent.

Now, let us construct two data distributions P1 and P2 with the same marginal distributions of
P (Y ), P (A) and P (Xc), such that P (A|Y ) changes across them. Note that P (Y |Xc) stays
invariant because of the independent and stable causal mechanism property, i.e., P1(Y |Xc) =
P2(Y |Xc). For these two data distributions, change in P (A|Y ) implies a change in P (Y |A), i.e.,
P1(Y |A) ̸= P2(Y |A), since P (Y |A) = P (A|Y )P (Y )/P (A). Also, since g′(X,Xc) and A are
not independent, P (Y |g′(X,Xc)) will change, i.e., P1(Y |g′(X,Xc)) ̸= P2(Y |g′(X,Xc)).

The risk over any distribution P can be written as (using the cross-entropy loss),

RP (g) = EP [ℓ(Y, g
′(X,Xc)h(Xc))]

= −EP [
∑
y

y log g′(X,Xc)h(Xc)]

= −EP [
∑
y

y log g′(X,Xc)]− EP [
∑
y

y log h(Xc)]

(4)

The risk difference is,

RP2
(g)−RP1

(g)

= EP1 [
∑
y

y log g′(X,Xc)]− EP2 [
∑
y

y log g′(X,Xc)] + EP1 [
∑
y

y log h(Xc)]− EP2
[
∑
y

y log h(Xc)]

= EP1
[
∑
y

y log g′(X,Xc)]− EP2
[
∑
y

y log g′(X,Xc)]

4In practice, the constraint may be evaluated on an intermediate representation of g, such that g can be
written as, g(X) = g1(ϕ(X)) where ϕ denotes the representation function. However, for simplicity, we assume
it is applied on g(X).
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where the third and fourth terms cancel out because P1(Xc, Y ) = P2(Xc, Y ) and thus the risk
of h(Xc) is the same across P1 and P2. However, the risk for g′(X,Xc) is not the same since
P1(Y |g′(X,Xc)) ̸= P2(Y |g′(X,Xc)). Thus the absolute risk difference is non-zero,

|RP2
(g)−RP1

(g)| > 0 (5)

and g is not a risk-invariant predictor. Hence, satisfying conditional independencies that Xc satisfies
is necessary for a risk-invariant predictor.

Remark. In the above Theorem, we considered the case where P (A|Y ) changes across distri-
butions. In the case where A and Y are independent, P (A|Y ) = P (A) and thus P (A) would
change across distributions while P (Y |A) = P (Y ) remained constant. Since g′(X,Xc) depends
on A and Xc, we obtain P1(Y |g′(X,Xc)) = P2(Y |g′(X,Xc)). However, the risk difference can
still be non-zero since P1(A) ̸= P2(A) and the risk expectation EP [

∑
y y log g

′(X,Xc)] is over
P (Y,Xc,A).

B.2 PROOF OF PROPOSITION 3.1

Proposition 3.1. Given a causal DAG realized by specifying the target-attributes relationship in
Figure 2a, the correct constraint depends on the relationship of label Y with the attributes A.
As shown, A can be split into Aind, Aind and E, where Aind can be further split into subsets
that have a causal (Acause), confounded (Aconf ), selected (Asel) relationship with Y (Aind =
Acause ∪Aconf ∪Asel). Then, the (conditional) independence constraints Xc should satisfy are,

1. Independent: Xc ⊥⊥ Aind; Xc ⊥⊥ E; Xc ⊥⊥ Aind|Y ; Xc ⊥⊥ Aind|E; Xc ⊥⊥ Aind|Y,E
2. Causal: Xc ⊥⊥ Acause|Y ; Xc ⊥⊥ E; Xc ⊥⊥ Acause|Y,E
3. Confounded: Xc ⊥⊥ Aconf ; Xc ⊥⊥ E; Xc ⊥⊥ Aconf |E
4. Selected: Xc ⊥⊥ Asel|Y ; Xc ⊥⊥ Asel|Y,E

Proof. The proof follows from d-separation (Pearl, 2009) on the causal DAGs realized from Figure 2a.
For each condition, Independent, Causal, Confounded and Selected, we provide the realized causal
graphs below and derive the constraints.

(a) Independent shift (b) Causal shift

(c) Confounded shift (d) Selected shift

Figure 3: Causal graphs for distinct distribution shifts based on Y −A relationship.

Independent: As we can see in Figure 3a, we have a collider X on the path from Xc to Aind and
Xc to E. Since there is a single path here, we obtain the independence constraints Xc ⊥⊥ Aind

and Xc ⊥⊥ E. Additionally, we see that conditioning on Y or E would not block the path from
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Xc to Aind , which results in the remaining constraints: Xc ⊥⊥ Aind |Y ; Xc ⊥⊥ Aind |E and
Xc ⊥⊥ Aind |Y,E. Hence, we obtain,

Xc ⊥⊥ Aind ;Xc ⊥⊥ E;Xc ⊥⊥ Aind |Y ;Xc ⊥⊥ Aind |E;Xc ⊥⊥ Aind |Y,E

Causal: From Figure 3b, we see that while the path Xc → X → Acause from Xc to Acause

contains a collider X , Xc ⊥̸⊥ Acause due to the presence of node Y as a chain. By the d-separation
criteria, Xc and Acause are conditionally independent given Y =⇒ Xc ⊥⊥ Acause|Y . Additionally,
conditioning on E is valid since E does not appear as a collider on any paths between Xc and
Acause =⇒ Xc ⊥⊥ Acause |Y,E. We get the constraint Xc ⊥⊥ E since all paths connecting
Xc to E contain a collider (collider X in Xc → X → Acause → E, collider Acause in
Xc → Y → Acause → E). Hence, we obtain,

Xc ⊥⊥ Acause |Y ;Xc ⊥⊥ E;Xc ⊥⊥ Acause |Y,E

Confounded: From Figure 3c, we see that all paths connecting Xc and Aconf contain a collider
(collider X in Xc →X → Aconf , collider Y in Xc → Y → C → Aconf ). Hence, Xc ⊥⊥ Aconf .
Additionally, conditioning on E is valid since E does not appear as a collider on any paths between
Xc and Aconf =⇒ Xc ⊥⊥ Aconf |E. We get the constraint Xc ⊥⊥ E since all paths connecting
Xc and E also contain a collider (collider X in Xc → X → Aconf → E, collider Y in
Xc → Y → C → Aconf → E). Hence, we obtain,

Xc ⊥⊥ Aconf ;Xc ⊥⊥ E;Xc ⊥⊥ Aconf |E

Selected: For the observed data, the selection variable is always conditioned on, with S = 1 indicating
inclusion of sample in data. The selection variable S is a collider in Figure 3d and we condition on
it. Hence, Xc ⊥̸⊥ Asel . Conditioning on Y breaks the edge Xc → Y , and hence all paths between
Xc and Asel now contain a collider (collider X in Xc → X → Asel ) =⇒ Xc ⊥⊥ Asel |Y .
Additionally, conditioning on E is valid since E does not appear as a collider on any paths between
Xc and Asel =⇒ Xc ⊥⊥ Asel |Y,E. Hence, we obtain,

Xc ⊥⊥ Asel |Y ;Xc ⊥⊥ Asel |Y,E

B.2.1 PROOF OF COROLLARY 3.0.1

Corollary 3.1. All the above derived constraints are valid for Graph 2a. However, in the presence of
a correlation between E and Xc (Graph 2b), only the constraints conditioned on E hold true.

If there is a correlation between Xc and E, Xc ⊥̸⊥ E. We can see from Figure 3 that in the presence
of Xc − E correlation, Xc ⊥̸⊥ Aind ; Xc ⊥̸⊥ Aind |Y ( 3a), Xc ⊥̸⊥ Acause |Y ( 3b), Xc ⊥̸⊥ Aconf

( 3c) and Xc ⊥̸⊥ Asel |Y ( 3d). Hence, conditioning on environment E is required for the valid
independence constraints.

B.3 PROOF OF THEOREM 3.1

Theorem 3.1. Under the canonical causal graph in Figure 2(a,b), there exists no (conditional)
independence constraint over ⟨Xc,A, Y ⟩ that is valid for all realized DAGs as the type of multi-
attribute shifts vary. Hence, for any predictor algorithm for Y that uses a single (conditional)
independence constraint over its representation ϕ(X), A and Y , there exists a realized DAG G and
a corresponding training dataset such that the learned predictor cannot be a risk-invariant predictor
for distributions in PG , where PG is the set of distributions obtained by changing P (A|Y ).

Proof. The proof follows from an application of Proposition 3.1 and Theorem 2.1.

First claim. Under the canonical graph from Figure 2(a or b), the four types of attribute shifts
possible are Independent, Causal, Confounded and Selected. From the constraints provided for these
four types of attribute shifts in Proposition 3.1, it is easy to observe that there is no single constraint
that is satisfied across all four shifts. Thus, given a data distribution (and hence, dataset) with specific
types of multi-attribute shifts such that Xc satisfies a (conditional) independence constraint w.r.t.
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a subset of attributes As ⊆ A, it is always possible to change the type of at least one of the those
attributes’ shifts to create a new data distribution (dataset) where the same constraint will not hold.

Second Claim. To prove the second claim, suppose that there exists a predictor for Y based on a
single conditional independence constraint over its representation, ψ(ϕ(X),As, Y ) where As ⊆ A.
Since the same constraint is not valid across all attribute shifts, we can always construct a realized
graph G (and a corresponding data distribution) by changing the type of at least one attribute shift
A ∈ As, such that Xc would not satisfy the same constraint as ϕ(X). Further, under this G,
Xc would satisfy a different constraint on the same attributes. From Theorem 2.1, all conditional
independence constraints satisfied by Xc under G are necessary to be satisfied for a risk-invariant
predictor. Hence, for the class of distributions PG , a single constraint-based predictor cannot be a
risk-invariant predictor.

Corollary 3.2. Even when |A| = 1, an algorithm using a single independence constraint over
⟨ϕ(X), A, Y ⟩ cannot yield a risk-invariant predictor for all kinds of single-attribute shift datasets.

Proof. Given a fixed (conditional) independence constraint over a predictor’s representation,
ψ(ϕ(X),As, Y ), the proof of Theorem 3.1 relied on changing the target relationship type (and
hence distribution shift type) for the attributes involved in the constraint. When |A| = 1, the
constraint is on a single attribute A, ψ(ϕ(X), A, Y ) and the same proof logic follows. From Propo-
sition 3.1, given a fixed constraint, we can always choose a single-attribute shift type (and realized
DAG G) such that the constraint is not valid for Xc. Moreover, under G, Xc would satisfy a different
conditional independence constraint wrt the same attribute. From Theorem 2.1, since the predictor
does not satisfy a conditional independence constraint satisfied by Xc, it cannot be a risk-invariant
predictor for datasets sampled from PG .

C CACM ALGORITHM

We provide the CACM algorithm for a general graph G below (Algorithm 1).

Algorithm 1 CACM

Input: Dataset (xi,ai, yi)
n
i=1, causal DAG G

Output: Function g(x) = g1(ϕ(x)) : X → Y
A ← set of observed variables in G except Y,E (special domain attribute)
C ← {} ▷ mapping of A to As

Phase I: Derive correct independence constraints
for A ∈ A do

if (Xc, A) are d-separated then
Xc ⊥⊥ A is a valid independence constraint

else if (Xc, A) are d-separated conditioned on any subset As of the remaining observed
variables in A \ {A} ∪ {Y } then

Xc ⊥⊥ A|As is a valid independence constraint
C[A] = As

end if
end for
Phase II: Apply regularization penalty using constraints derived
for A ∈ A do

if Xc ⊥⊥ A then
RegPenaltyA =

∑
|E|

∑|A|
i=1

∑
j>i MMD(P (ϕ(x)|Ai), P (ϕ(x)|Aj))

else if A is in C then
As = C[A]

RegPenaltyA =
∑

|E|
∑

a∈As

∑|A|
i=1

∑
j>i MMD(P (ϕ(x)|Ai, a), P (ϕ(x)|Aj , a))

end if
end for
RegPenalty =

∑
A∈A λARegPenaltyA

g1, ϕ = argming1,ϕ; ℓ(g1(ϕ(x)), y) +RegPenalty
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Remark. If E is observed, we always condition on E because of Corollary 3.1.

For the special case of Figure 2, CACM uses the following regularization penalty (RegPenalty) for
Independent, Causal, Confounded and Selected shifts,

RegPenaltyAind
=

|E|∑
i=1

∑
j>i

MMD(P (ϕ(x)|ai,ind), P (ϕ(x)|aj,ind))

RegPenaltyAcause =
∑
|E|

∑
y∈Y

|Acause |∑
i=1

∑
j>i

MMD(P (ϕ(x)|ai,cause, y), P (ϕ(x)|aj,cause, y))

RegPenaltyAconf
=

∑
|E|

|Aconf |∑
i=1

∑
j>i

MMD(P (ϕ(x)|ai,conf ), P (ϕ(x)|aj,conf ))

RegPenaltyAsel
=

∑
|E|

∑
y∈Y

|Asel |∑
i=1

∑
j>i

MMD(P (ϕ(x)|ai,sel, y), P (ϕ(x)|aj,sel, y))

D EXPERIMENTAL DETAILS

D.1 DATASETS

MNIST. Rotated (Ghifary et al., 2015) and Colored MNIST (Arjovsky et al., 2019) present distinct
distribution shifts. While Rotated MNIST only has Aind wrt. rotation attribute (R), Colored MNIST
only has Acause wrt. color attribute (C). We combine these datasets to obtain a multi-attribute
dataset with Acause = {C} and Aind = {R}. Each domain Ei has a specific rotation angle ri
and a specific correlation corri between color C and label Y . Our setup consists of 3 domains:
E1, E2 ∈ Etr (training), E3 ∈ Ete (test). We define corri = P (Y = 1|C = 1) = P (Y = 0|C = 0)
in Ei. In our setup, r1 = 15◦, r2 = 60◦, r3 = 90◦ and corr1 = 0.9, corr2 = 0.8, corr3 = 0.1. All
environments have 25% label noise, as in (Arjovsky et al., 2019). For all experiments on MNIST,
we use a two-layer perceptron consistent with previous works (Arjovsky et al., 2019; Krueger et al.,
2021).

Y = 0 Y = 1

(a)

Y = 0 Y = 1

(b)

Y = 0 Y = 1

(c)

Figure 4: (a), (b) Train and (c) Test domains for MNIST.

small NORB. Moving beyond simple binary classification, we use small NORB (LeCun et al.,
2004), an object recognition dataset, to create a challenging setup with multi-valued classes and
attributes over realistic 3D objects. It consists of images of toys of five categories with varying
lighting, elevation, and azimuths. The objective is to classify unseen samples of the five categories.
(Wiles et al., 2022) introduced single-attribute shifts for this dataset. We combine the Causal shift,
Acause = lighting wherein there is a correlation between lighting condition lightingi and toy
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category yi; and Independent shift, Aind = azimuth that varies independently across domains,
to generate our multi-attribute dataset light + azi. Training domains have 0.9 and 0.95 spurious
correlation with lighting whereas there is no correlation in test domain. We add 5% label noise in all
environments. We use ResNet-18 (pre-trained on ImageNet) for all settings and fine tune for our task.

Y = 0 Y = 1 Y = 2 Y = 4Y = 3

(a)

Y = 0 Y = 1 Y = 2 Y = 4Y = 3

(b)

Y = 0 Y = 1 Y = 2 Y = 4Y = 3

(c)

Figure 5: (a), (b) Train and (c) Test domains for small NORB.

Waterbirds. We use the Waterbirds dataset from Sagawa et al. (2020). This dataset classifies birds
as “waterbird” or “landbird”, where bird type (Y ) is spuriously correlated with background (bgd) –
“waterbird” images are spuriously correlated with “water” backgrounds (ocean, natural lake) and
“landbird” images with “land” backgrounds (bamboo forest, broadleaf forest). Since background
is selected based on Y , Acause = background. The dataset is created by pasting bird images
from CUB dataset (Wah et al., 2011) onto backgrounds from the Places dataset (Zhou et al., 2018).
There is 0.95 correlation between the bird type and background during training i.e., 95% of all
waterbirds are placed against a water background, while 95% of all landbirds are placed against a
land background. We create training domains based on background (|Etr| = |Acause | = 2) as in Yao
et al. (2022). We evaluate using worst-group error consistent with past work, where a group is defined
as (background, y). We generate the dataset using the official code from Sagawa et al. (2020) and
use the same train-validation-test splits.

To create the multi-attribute shift variant of Waterbirds, we add weather effects (Aind ) using the
Automold library5. We add darkness effect (darkness coefficient = 0.7) during training with 0.5
probability and rain effect (rain type = ‘drizzle’, slant = 20) with 1.0 probability during test. Hence,
|Aind |=3 ({no effect, darkness, rain}). Weather effect is applied independent of class label Y . Our
training domains are based on background and we perform worst-group evaluation, same as the setup
described above. Examples from train and test domains for multi-attribute shift dataset are provided
in Figure 6.

We use ResNet-50 (pre-trained on ImageNet) for all settings consistent with past work (Sagawa et al.,
2020; Yao et al., 2022). All models were evaluated at the best early stopping epoch (as measured by
the validation set), again consistent with Sagawa et al. (2020).

Y = 0 Y = 1

(a)

Y = 0 Y = 1

(b)

Y = 0 Y = 1

(c)

Figure 6: (a), (b) Train and (c) Test domains for Waterbirds.

5https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
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D.2 IMPLEMENTATION DETAILS

All methods are trained using Adam optimizer. MNIST dataset is trained for 5000 steps (default in
DomainBed (Gulrajani & Lopez-Paz, 2021)) while Waterbirds and small NORB are trained for 2000
steps. Consistent with the default value in DomainBed, we use a batch size of 64 per domain for
MNIST. For small NORB, we use a batch size of 128 per domain and a batch size of 16 per domain
for Waterbirds.

Model Selection. We create 90% and 10% splits from each domain to be used for training/evaluation
and model selection (as needed) respectively. We use a validation set that follows the test domain dis-
tribution consistent with previous work on these datasets (Arjovsky et al., 2019; Ye et al., 2022; Wiles
et al., 2022; Yao et al., 2022). Specifically, we adopt the test-domain validation from DomainBed for
Synthetic, MNIST, and small NORB datasets where early stopping is not allowed and all models are
trained for the same fixed number of steps to limit test domain access. For Waterbirds, we perform
early stopping using the validation set consistent with past work (Sagawa et al., 2020; Yao et al.,
2022).

MMD implementation details. We use the radial basis function (RBF) kernel to compute the
MMD penalty. Our implementation is adopted from DomainBed (Gulrajani & Lopez-Paz, 2021). The
kernel bandwidth is a hyperparameter and we perform a sweep over the hyperparamaeter search space
to select the best RBF kernel bandwidth. The search space for hyperparameter sweeps is provided in
Table 9, where γ corresponds to 1/bandwidth.

CACM and baselines implementation details. We provide the regularization constraints for
different shifts used by CACM in Section C. For statistical efficiency, we use a single λ value as
hyperparameter for MNIST and small NORB datasets. The search space for hyperparameters is given
in Table 9.

In MNIST and NORB, we input images and domains (E = Aind ) to all baseline methods; CACM
receives additional input Acause . Hence, in the Independent single-attribute shift, CACM and all
baselines have access to exactly the same information. In Waterbirds, since E is not defined in the
original dataset, we follow the setup from Yao et al. (2022) to create domains based on backgrounds.
Here, we provide images and domains (E = background) as input to all baselines except GroupDRO;
to ensure fair comparison with GroupDRO, we follow Sagawa et al. (2020) and provide 4 groups
as input based on (background, y), along with images. For CACM, we do not use background
domains but provide the attribute Acause = background for the single-attribute dataset, and both
Acause = background and Aind = weather for the multi-attribute shift dataset. Hence, for the
single-shift Waterbirds dataset, all baselines receive the same information as CACM.

D.3 HYPERPARAMETER SEARCH

Following DomainBed (Gulrajani & Lopez-Paz, 2021), we perform a random search 20 times over the
hyperparameter distribution and this process is repeated for total 3 seeds. The best models are obtained
across the three seeds over which we compute the mean and standard error. The hyperparameter
search space for all datasets and algorithms is given in Table 9.

E RESULTS

E.1 SYNTHETIC DATASET

Our synthetic dataset is constructed based on the data-generating processes of the slab dataset (Maha-
jan et al., 2021; Shah et al., 2020). The original slab dataset was introduced by (Shah et al., 2020) to
demonstrate the simiplicity bias in neural networks as they learn the linear feature which is easier to
learn in comparison to the slab feature. Our extended slab dataset, adds to the setting from (Mahajan
et al., 2021) by using non-binary attributes and class labels to create a more challenging task and
allows us to study DG algorithms in the presence of linear spurious features.

Our dataset consists of 2-dimensional input X consisting of features Xc and Aind. This is consistent
with the graph in Figure 2 where attributes and causal features together determine observed features
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X; we concatenate Xc and Aind to generate X in our synthetic setup. Causal feature Xc has a
non-linear “slab” relationship with Y while Aind has a linear relationship with Y . We create three
different datasets with Causal (E.1.1), Confounded (E.1.2) and Selected (E.1.3)Aind−Y relationship
respectively.

Implementation details. In all setups, Xc is a single-dimensional variable and has a uniform
distribution Uniform[0, 1] across all environments. We use the default 3-layer MLP architecture from
DomainBed and use mean difference (L2) instead of MMD as the regularization penalty given the
simplicity of the data. We use a batch size of 128 for all datasets.

E.1.1 Causal SHIFT

We have three environments, E1, E2 ∈ Etr (training) and E3 ∈ Ete (test). Xc has a uniform
distribution Uniform[0, 1] across all environments.

y =


0 if Xc ∈ [0, 0.2)
1 if Xc ∈ [0.2, 0.4)
2 if Xc ∈ [0.4, 0.6)
3 if Xc ∈ [0.6, 0.8)
4 if Xc ∈ [0.8, 1.0]

Acause =

{
y with prob. = p

abs(y − 1) with prob. = 1− p

Hence, we have a five-way classification setup (|Y | = 5) with multi-valued attributes. Following (Ma-
hajan et al., 2021), the two training domains have p as 0.9 and 1.0, and the test domain has p = 0.0.
We add 10% noise to Y in all environments.

E.1.2 Confounded SHIFT

We have three environments, E1, E2 ∈ Etr (training) and E3 ∈ Ete (test). Xc has a uniform distri-
bution Uniform[0, 1] across all environments. Our confounding variable c has different functional
relationships with Y and Aconf which vary across environments.

cE1,E2 =

{
1 with prob. = 0.25
0 with prob. = 0.75

cE3 =

{
1 with prob. = 0.75
0 with prob. = 0.25

The true function for Y is given by,

ytrue =


0 if Xc ∈ [0, 0.25)
1 if Xc ∈ [0.25, 0.5)
2 if Xc ∈ [0.5, 0.75)
3 if Xc ∈ [0.75, 1.0]

Observed Y and Aconf are functions of confounding variable c and their distribution changes across
environments as described below:

yE1,E2 =

{
ytrue + c with prob. = 0.9

ytrue with prob. = 0.1
yE3 = ytrue

Aconf =

{
2 ∗ c with prob. = p

0 with prob. = 1− p ; pE1
= 1.0, pE2

= 0.9, pE3
= 0.8
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E.1.3 Selected SHIFT

Selected shifts arise due to selection effect in the data generating process and induce an association
between Y and Asel . A data point is included in the sample only if selection variable S = 1 holds;
S is a function of Y and Asel . The selection criterion may differ between domains (Veitch et al.,
2021).

We construct three environments, E1, E2 ∈ Etr (training) and E3 ∈ Ete (test). Xc has a uniform
distribution Uniform[0, 1] across all environments. Our selection variable S is a function of Y and
Asel. We add 10% noise to Y in all environments.

Xc ∼ Uniform[0, 1]; Asel ∈ {1, 2, 3, 4}

The true function for Y is given by,

ytrue =


0 if Xc ∈ [0, 0.25)
1 if Xc ∈ [0.25, 0.5)
2 if Xc ∈ [0.5, 0.75)
3 if Xc ∈ [0.75, 1.0]

The function used to decide the selection variable S (and hence the selection shift) varies across
environments through the parameter p.

S = 1 if

{
Asel + y = 4 with prob. = p
Asel − y = 1 with prob. = 1− p ; pE1 = 0.9, pE2 = 1.0, pE3 = 0.0

E.2 A FIXED CONDITIONAL INDEPENDENCE CONSTRAINT CANNOT WORK ACROSS ALL
SHIFTS

Here, we compare the performance of two popular independence constraints in the literature Mahajan
et al. (2021): unconditional Xc ⊥⊥ A|E, and conditional on label Xc ⊥⊥ A|Y,E (we condition on
E for fully generality) on Synthetic Causal, Confounded and Selected shift datasets (Table 6).

We train a model using ERM (cross-entropy) where the representation is regularized using either of
the constraints. As predicted by Theorem 3.1, neither constraint obtains best accuracy on all three
datasets. The conditional constraint is better on Acause and Asel datasets, whereas the unconditional
constraint is better on Aconf , consistent with Proposition 3.1. Predictors with the correct constraint
are also more risk-invariant, having lower gap between train and test accuracy.

Table 6: Comparison of constraints Xc ⊥⊥ A|Y,E and Xc ⊥⊥ A|E in Causal, Confounded and
Selected shifts. Xc ⊥⊥ A|Y,E is a correct constraint for Causal and Selected shift but invalid for
Confounded shift; while Xc ⊥⊥ A|E is correct for Confounded but invalid for Causal, Selected.

Constraint
Accuracy

Acause Aconf Asel

train test train test train test

Xc ⊥⊥ A|E 96.5 ± 0.2 62.4 ± 5.7 81.1 ± 2.0 67.1 ± 1.7 96.4 ± 0.4 72.3 ± 0.9
Xc ⊥⊥ A|Y,E 89.1 ± 3.8 89.3 ± 2.3 78.4 ± 2.6 60.3 ± 1.2 91.1 ± 1.7 88.7 ± 0.9

E.3 EFFECT OF VARYING REGULARIZATION PENALTY COEFFICIENT

To understand how incorrect constraints affect model generalization capabilities, we study the
Causal shift setup in small NORB. From Theorem 3.1, we know the correct constraint for Acause :
Xc ⊥⊥ Acause |Y,E. In addition, we see the following invalid constraint, Xc ⊥⊥ Acause |E.
We compare the performance of these two conditional independence constraints while varying the
regularization penalty coefficient (λ) (Figure 7). We perform our evaluation across three setups
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with different spurious correlation values of training environments and have consistent findings. We
observe that application of the incorrect constraint is sensitive to λ (regularization weight) parameter :
as λ increases, accuracy drops to less than 40%. However, accuracy with the correct constraint stays
invariant across different values of λ.
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CACM Incorrect (0.90, 0.95)
CACM Incorrect (0.85, 0.90)
CACM Incorrect (0.80, 0.85)

Figure 7: Accuracy of CACM (Xc ⊥⊥ Acause |Y,E) and incorrect constraint ( Xc ⊥⊥ Acause |E)
on small NORB Causal shift with varying λ {1, 10, 100} and spurious correlation in training
environments (in parantheses in legend).

E.4 PROVIDING ATTRIBUTE INFORMATION TO DG ALGORITHMS FOR A FAIRER COMPARISON

CACM leverages attribute labels to apply the correct independence constraints derived from the causal
graph. However, existing DG algorithms only use the input features X and the domain attribute.
Here we provide this attribute information to existing DG algorithms to create a more favorable
setting for their application. We show that even in this setup, these algorithms are not able to close
the performance gap with CACM, showing the importance of the causal information through graphs.

E.4.1 SYNTHETIC DATASET

We consider our Synthetic dataset with Causal distribution shift where our observed features X =
(Xc,Acause ). Note that by construction of X , one of our input dimensions already consists of
Acause . Hence, all baselines do receive information about Acause in addition to the domain attribute
E.

However, to provide a fairer comparison with CACM, we now additionally explicitly make Acause

available to all DG algorithms for applying their respective constraints by creating domains based on
Acause in our new setup. Using the same underlying data distribution, we group the data (i.e., create
environments/domains) based on Acause i.e, each environment E has samples with same value of
Acause .

In this setup (Table 7, third column), we see IB-IRM, DANN, and Mixup show significant improve-
ment in accuracy but the best performance is still 14% lower than CACM. We additionally observe
baselines to show higher estimate variance in this setup. This reinforces our motivation to use the
causal graph of the data-generating process to derive the constraint, as the attribute values alone
are not sufficient. We also see MMD, CORAL, GroupDRO, and MLDG perform much worse than
earlier, highlighting the sensitivity of DG algorithms to domain definition. In contrast, CACM uses
the causal graph to study the structural relationships and derive the regularization penalty, which
remains the same in this new dataset too.

E.4.2 WATERBIRDS

We perform a similar analysis on the Waterbirds multi-attribute shift dataset. In order to provide
the same information to other DG algorithms as CACM, we create domains based on Acause x
Aind in this setup (Table 8). We observe mixed results – while some algorithms show significant
improvement (ERM, IRM, VREx, MMD, MLDG, RSC), there is a performance drop for some others
(IB-ERM, IB-IRM, CORAL, C-MMD, GroupDRO, Mixup). CACM uses the knowledge of the causal
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Table 7: Synthetic dataset. Accuracy on unseen domain for Causal distribution shift when Acause is
provided in input (column 2) and when Acause is additionally used to create domains (column 3).

Algo. Accuracy
Acause (input) Acause (input+domains)

ERM 73.3 ± 1.3 71.8 ± 3.8
IB-ERM 69.3 ± 2.4 68.2 ± 4.9
IRM 68.4 ± 2.9 64.1 ± 0.8
IB-IRM 67.8 ± 2.6 73.6 ± 0.4
VREx 77.4 ± 1.2 75.0 ± 1.6
MMD 72.3 ± 4.3 68.8 ± 4.1
CORAL 75.5 ± 0.7 72.1 ± 0.8
DANN 60.8 ± 4.7 65.8 ± 11.9
C-MMD 71.7 ± 2.7 67.9 ± 4.9
CDANN 71.1 ± 2.5 68.4 ± 5.8
GroupDRO 79.9 ± 2.2 65.4 ± 3.4
Mixup 58.3 ± 1.8 61.5 ± 10.7
MLDG 73.3 ± 2.6 65.3 ± 3.3
SagNet 72.5 ± 2.3 71.6 ± 2.8
RSC 70.9 ± 3.4 71.5 ± 1.7

CACM 89.3 ± 2.3

relationships between attributes and the label and hence the evaluation remains the same. Hence, we
empirically demonstrate the importance of using information of the causal graph in addition to the
attributes.

Table 8: Waterbirds. Accuracy on unseen domain for multi-attribute distribution shift when Acause

is used to create domains (column 2) and when Acause x Aind is used to create domains (column 3).

Algo. Worst-group Accuracy

Acause Acause x Aind

ERM 37.0 ± 1.1 43.0 ± 7.8
IB-ERM 40.8 ± 5.6 34.4 ± 1.0
IRM 37.7 ± 1.7 42.2 ± 2.5
IB-IRM 46.9 ± 6.5 43.3 ± 4.6
VREx 38.1 ± 2.3 48.0 ± 3.4
MMD 45.2 ± 2.4 53.3 ± 1.9
CORAL 54.1 ± 3.0 47.5 ± 2.8
DANN 55.5 ± 4.6 57.7 ± 6.5
C-MMD 52.3 ± 1.9 45.9 ± 4.9
CDANN 49.7 ± 3.9 50.7 ± 5.8
GroupDRO 53.1 ± 2.2 40.9 ± 3.1
Mixup 64.7 ± 2.4 50.3 ± 1.5
MLDG 34.5 ± 1.7 43.6 ± 3.8
SagNet 40.6 ± 7.1 38.0 ± 1.7
RSC 40.9 ± 3.6 46.5 ± 5.3

CACM 84.5 ± 0.6

F E −Xc RELATIONSHIP

The E-Xc edge shown in Figure 2b represents correlation of E with Xc, which can change across
environments. As we saw for the Y -Aind edge, this correlation can be due to causal relationship
(Figure 8a), confounding with a common cause (Figure 8b), or selection (Figure 8c); all our results
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(Proposition 3.1, Corollary 3.1) hold for any of these relationships. To see why, note that there is no
collider introduced on Xc or E in any of the above cases.

(a) (b) (c)

Figure 8: (a) Causal, (b) Confounded and (c) Selection mechanisms leading to E-Xc correlation.

G ANTI-CAUSAL GRAPH

(a) (b)

Figure 9: Corresponding anti-causal graphs for Figure 2. Note the graphs are identical to Figure 2
with the exception of the causal arrow pointing from Y −→Xc instead of from Xc −→ Y .

Figure 9 shows causal graphs used for specifying multi-attribute distribution shifts in an anti-causal
setting. These graphs are identical to Figure 2, with the exception of change in direction of causal
arrow from Xc −→ Y to Y −→Xc.

We derive the (conditional) independence constraints for the anti-causal DAG for Independent,
Causal, Confounded and Selected shifts.
Proposition G.1. Given a causal DAG realized from the canonical graph in Figure 9a, the correct
constraint depends on the relationship of label Y with the nuisance attributes A. As shown, A can be
split into Aind , Aind andE, where Aind can be further split into subsets that have a causal (Acause ),
confounded (Aconf ), selected (Asel ) relationship with Y (Aind = Acause ∪Aconf ∪Asel ). Then,
the (conditional) independence constraints that Xc should satisfy are,

1. Independent: Xc ⊥⊥ Aind ; Xc ⊥⊥ E; Xc ⊥⊥ Aind |Y ; Xc ⊥⊥ Aind |E; Xc ⊥⊥ Aind |Y,E
2. Causal: Xc ⊥⊥ Acause |Y ; Xc ⊥⊥ E; Xc ⊥⊥ Acause |Y,E
3. Confounded: Xc ⊥⊥ Aconf |Y ; Xc ⊥⊥ E; Xc ⊥⊥ Aconf |Y,E
4. Selected: Xc ⊥⊥ Asel |Y ; Xc ⊥⊥ Asel |Y,E

Proof. The proof follows from d-separation using the same logic as earlier proof in Section B.2. We
observe that for all attributes A ∈ Aind (Acause , Aconf , Asel ), it is required to condition on Y
to obtain valid constraints as Y node appears as a chain or fork in the causal graph but never as a
collider due to the Y −→Xc causal arrow.

Corollary G.1. All the above derived constraints are valid for Graph 9a. However, in the presence
of a correlation between E and Xc (Graph 9b), only the constraints conditioned on E hold true.
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Table 9: Search space for random hyperparameter sweeps.

Condition Sweeps
MLP learning rate: [1e-2, 1e-3, 1e-4, 1e-5]

dropout: 0

ResNet learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
dropout: [0, 0.1, 0.5]

MNIST weight decay: 0
generator weight decay: 0

not MNIST weight decay: 10Uniform(−6,−2)

generator weight decay: 10Uniform(−6,−2)

IRM λ: [0.01, 0.1, 1, 10, 100]
iterations annealing: [10, 100, 1000]

IB-ERM, IB-IRM λIB : [0.01, 0.1, 1, 10, 100]
iterations annealingIB : [10, 100, 1000]
λIRM : [0.01, 0.1, 1, 10, 100]
iterations annealingIRM : [10, 100, 1000]

VREx λ: [0.01, 0.1, 1, 10, 100]
iterations annealing: [10, 100, 1000]

MMD λ: [0.1, 1, 10, 100]
γ: [0.01, 0.0001, 0.000001]

CORAL λ: [0.1, 1, 10, 100]

DANN, CDANN generator learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
discriminator learning rate: [1e-2, 1e-3, 1e-4, 1e-5]
discriminator weight decay: 10Uniform(−6,−2)

λ: [0.1, 1, 10, 100]
discriminator steps: [1, 2, 4, 8]
gradient penalty: [0.01, 0.1, 1, 10]
adam β1: [0, 0.5]

C-MMD λ: [0.1, 1, 10, 100]
γ: [0.01, 0.0001, 0.000001]

GroupDRO η: [0.001, 0.01, 0.1]

Mixup α: [0.1, 1.0, 10.0]

MLDG β: [0.1, 1.0, 10.0]

SagNet adversary weight: [0.01, 0.1, 1.0, 10.0]

RSC feature drop percentage: Uniform(0, 0.5)
batch drop percentage: Uniform(0, 0.5)

CACM λ: [0.1, 1, 10, 100]
γ: [0.01, 0.0001, 0.000001]
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