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ABSTRACT

Score distillation sampling (SDS), the methodology in which the score from pre-
trained 2D diffusion models is distilled into 3D representation, has recently brought
significant advancements in text-to-3D generation task. However, this approach is
still confronted with critical geometric inconsistency problems such as the Janus
problem. Starting from our observation that such inconsistency problems are in-
duced by multiview inconsistencies between 2D diffusion scores predicted from
various viewpoints, we introduce Geometry-aware Score Distillation (GSD), a
simple and general plug-and-play framework for incorporating 3D consistency and
therefore geometry awareness into the SDS process. Our methodology is composed
of three components: 3D consistent noising, designed to produce 3D consistent
noise maps that follow the standard Gaussian distribution, geometry-based gradient
warping for identifying correspondences between predicted gradients of different
viewpoints, and gradient consistency loss to optimize the scene geometry toward
producing more consistent gradients. We demonstrate that our plug-and-play tech-
nique applied on various baseline score distillation-based methods significantly
improves performance, successfully addressing the geometric inconsistency prob-
lems with minimal computation cost.
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Figure 1: Teaser. Our framework incorporates 3D awareness into the score distillation sampling
(SDS) process through a 3D consistent noising and gradient consistency modeling, which improves
consistency of the 2D diffusion scores predicted from various viewpoints. As a general plug-and-play
module that can be attached to any SDS-based text-to-3D generation baselines (Poole et al., 2023;
Yi et al., 2023) with little computation cost, it brings about highly enhanced view consistency and
fidelity to 3D generation results.

1 INTRODUCTION

Text-to-3D generation, which is the task of generating a 3D scene from a text prompt, has seen great
advancements in recent years due to the advent of powerful generative models such as diffusion
model (Ho et al., 2020; Song et al., 2020). As the main objective of this task is to generate a
high-quality 3D model solely from user-given text, it enables even non-professional users to create
3D models easily with little to no handwork. Naturally, advancements in this task have opened up
numerous possibilities in various domains such as VR/AR, computer-generated graphics, and gaming.
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However, due to the limited size and quantity of 3D ground truth datasets compared to 2D images
or videos, directly training a diffusion model on 3D representations is challenging. To address this,
most methods (Jain et al., 2022; Lin et al., 2023; Chen et al., 2023a; Wang et al., 2023) use pretrained
2D diffusion models to optimize 3D representations (Mildenhall et al., 2020; Müller et al., 2022;
Kerbl et al., 2023) through score distillation sampling (SDS) (Poole et al., 2023), where the 3D
representation is refined using the 2D diffusion model’s score from noised scene renderings at various
viewpoints. However, since the 2D diffusion model lacks explicit knowledge of 3D domain, it often
results in geometric inconsistencies like the Janus problem (Seo et al., 2024; Shi et al., 2023), where
multi-faced geometries harm the global shape, making it unsuitable for real-world applications.

To understand and counter this issue, we analyze the SDS process from the perspective of multiview
consistency, observing that such geometric inconsistency problem is correlated to the independence
of each SDS process, which in turn causes the lack of multiview consistency between 2D scores
predicted from different viewpoints. More specifically, we focus on the fact that under the naiv̈e
SDS setting (Poole et al., 2023), a single point in 3D receives vastly different optimization signals
from various viewpoints, resulting artifacts and geometrically inconsistent geometric features such
as Janus problem. Under this observation, encouraging the multiview consistency of 2D diffusion
scores between nearby viewpoints would lead to reduction in such artifacts.

In this light, we propose a novel methodology, named Geometry-aware Score Distillation (GSD),
which incorporates multiview correspondence awareness to the SDS process to facilitate multiview
consistency of predicted gradients, as described in Fig. 1. Our method is a plug-and-play module
that can be attached to existing SDS-based baselines for enhanced geometric consistency, with little
computation cost and no need for additional networks or modules. Our method consists of three
components. First, to encourage multiview consistency of predicted 2D scores across viewpoints, we
introduce 3D consistent noising, combining point cloud representation with integral noising (Chang
et al., 2024) to produce 3D geometry-aware 2D Gaussian noises in SDS process. Our 3D consistent
noising imbues separate SDS denoising processes implicitly with 3D awareness. Secondly, we
propose geometry-based gradient warping to warp the generated gradient of a viewpoint to other
viewpoints, allowing for the comparison of gradients between corresponding locations across various
viewpoints. We finally leverage the warped gradients for our novel multiview gradient consistency
loss, which helps to regularize and reduce inconsistent scene features such as the Janus problem.

Our experimental results and analysis show that the application of our methodology strongly benefits
the optimization process across various SDS-based text-to-3D baselines (Yi et al., 2023; Tang et al.,
2024; Poole et al., 2023). Our methodology enhances the geometric consistency and fidelity of the
generated results, resulting 3D scenes competitive to state-of-the-art. Our ablation study demonstrates
that our contributions are strongly interconnected, justifying the need for all our components to be
used in conjunction with one another.

2 RELATED WORK

Text-to-3D generation. DreamFusion (Poole et al., 2023) and SJC (Wang et al., 2022) introduced
an optimization technique called score distillation sampling (SDS), which leverages pretrained
large-scale text-to-image diffusion models to generate 3D objects. Since its introduction, SDS has
been widely adopted in various text-to-3D generation models. Magic3D (Lin et al., 2023) and
Fantasia3D (Chen et al., 2023b) employ a coarse-to-fine strategy with SDS optimization, achieving
high-fidelity results. ProlificDreamer (Wang et al., 2023) has significantly improved the quality of 3D
objects generated from text-to-3D tasks. This progress is due to treating the model’s 3D parameters as
random variables instead of constants, as in SDS, and developing a gradient-based update rule using
the Wasserstein gradient flow. More recently, models such as DreamGaussian (Tang et al., 2024),
GSGEN (Chen et al., 2023b), LucidDreamer (Liang et al., 2023) and GaussianDreamer (Yi et al.,
2023) incorporates 3D Gaussian Splatting representation into SDS-based text-to-3D generation.

Geometric inconsistency problem within SDS. In text-to-3D generation tasks, maintaining 3D ge-
ometric consistency is crucial, yet a geometric inconsistency problem called the Janus problem (Wang
et al., 2023; Shi et al., 2023) commonly occurs. Various approaches have been attempted address
this. Multi-view Diffusion models such as MVDream (Shi et al., 2023) and EfficientDreamer (Zhao
et al., 2023) fine-tunes a pretrained Stable Diffusion (Rombach et al., 2022) model using a 3D dataset

2
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Figure 2: Overall framework. Our framework consists of three components for geometry-aware
score distillation: 3D consistent noising, geometry-based gradient warping, and gradient consistency
modeling. Through these components, our framework encourages multiview consistency between
predicted 2D scores and enhances the quality of generated 3D scenes.

and enabled the model to generate orthogonal multi-view images with robust geometric consistency.
3DFuse (Seo et al., 2024) proposes a method that injects coarse 3D priors into a pretrained diffusion
model. However, MVDream and EfficientDreamer rely on a large-scale 3D dataset Objaverse (Deitke
et al., 2023) during training, which is limited in terms of asset quality, causes the model to generate
clay-textured images similar to those in the Objaverse dataset. 3DFuse is also limited in another
aspect, still exhibiting numerous 3D geometric inconsistencies depending on the coarse 3D priors.

3 PRELIMINARIES

Diffusion models have demonstrated impressive capabilities in text-to-image generation (Nichol et al.,
2021; Saharia et al., 2022; Ahn et al., 2024). Building on this achievement, DreamFusion (Poole
et al., 2023) introduces the score distillation sampling (SDS), which generates plausible 3D objects
by leveraging pretrained text-to-image diffusion models to optimize 3D representation such as
NeRF (Mildenhall et al., 2020) parameterized by θ. SJC (Wang et al., 2022) formulates this
SDS based on the assumption that a 3D probability density of θ given prompt y, denoted by
pσt

(θ; y), is proportional to the expected probability densities of multiview 2D rendered images
zθ,π over the camera poses π sampled from the distribution of the camera viewpoints Π, denoted by
pσt(zθ,π; y), where σt denotes a noise level at time step t. This can be expressed as Et

[
pσt(θ; y)

]
∝

Eπ∼Π,t

[
pσt

(zθ,π; y)
]
. The score is the gradient of the log probability density of data, so the following

equation is derived using Jensen’s inequality, with log p̃σt
(θ; y) as the lower-bound of log pσt

(θ; y):

∇θLSDS := Et

∇θ log p̃σt(θ; y)︸ ︷︷ ︸
3D score

 = Eπ∼Π,t

∇zθ,π
log pσt(zθ,π; y)︸ ︷︷ ︸

2D score

·∂zθ,π
∂θ

 , (1)

where the 2D score, or the gradient of log pσt
(zθ,π; y), is obtained using pretrained 2D diffusion

models, e.g., pretrained Stable Diffusion (Rombach et al., 2022).

However, instead of directly using the rendered image zθ,π , perturb-and-average scoring (PAAS) is
required due to out-of-distribution problems, in which the 2D noise n ∼ N (0, I) is added to zθ,π.
Specifically, it defines the denoiserD(·) such thatD(zθ,π+σtn;σt, y) = (zθ,π+σtn)−σtϵϕ(zθ,π+
σtn, y, t) with the rendered image from θ at camera pose π, aggregated with noise n scaled by noise
level σt. The residual noise ϵϕ(·) is predicted from a frozen 2D diffusion model (Rombach et al.,
2022) parameterized by ϕ. It then defines a gradient map gθ,π representing the 2D score as follows:

gθ,π =
D(zθ,π + σtn;σt, y)− (zθ,π + σtn)

σ2
t

, (2)

3
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and when we compute expectation over these predicted gradients w.r.t random noise n, it gives us the
score, or the update direction, for the non-noisy rendered image zθ,π itself:

∇zθ,π
log p√2σt

(zθ,π) ≈En∼N (0,I),t [gθ,π]

=En∼N (0,I),t

[
D(zθ,π + σtn;σt, y)− zθ,π

σ2
t

]
−

��
���

���
En∼N (0,I),t

[
n

σt

]
︸ ︷︷ ︸

=0

, (3)

where log p√2σt
(·) appears because the diffusion model predicts the Gaussian noise of already noised

zθ,π , and as En∼N (0,I)

[
N (zθ,π + σtn;µ, σ

2
t I)
]
= N (zθ,π;µ, 2σ

2
t I), the variance becomes 2σ2

t in
regards to zθ,π and thus resulting a logarithm with the base of

√
2σt (Wang et al., 2022).

Relating back to Eq. 1, obtaining a 3D score for optimizing θ requires computing the expectation
over multiple camera viewpoints π. Assuming a rendered image zθ,π at the viewpoint π that is noised
with noise n, the final equation for score distillation is expressed as follows:

∇θLSDS ≈ Eπ∼Π,n∼N (0,I),t

[
D(zθ,π + σtn;σt, y)− zθ,π

σ2
t

· ∂zθ,π
∂θ

]
. (4)

4 METHODOLOGY

4.1 MOTIVATION AND OVERVIEW

In the standard SDS process (Poole et al., 2023; Wang et al., 2022; 2023), the 2D noise n is sampled
independently per viewpoint. This raises questions about cases where two sampled viewpoints are
close together, resulting in the rendered images zθ,π overlapping regions. Under the SDS setting, the
different renderings of the overlappings would result in largely unrelated 2D scores for supervision,
as the noises n are sampled independently. Put simply, it lacks multiview consistency. Our work
starts from this observation that such a lack of multiview consistency induces geometric inconsistency
problems such as the Janus problem. We seek to counter this problem by incorporating geometric
awareness into the SDS process (Poole et al., 2023; Wang et al., 2022; 2023).

Assume a mapping functionW(·) that holds the 3D correspondences between viewpoints. Given the
explicit 3D geometry represented by θ, we can obtainW(·) by identifying which locations in 2D
renderings correspond to the same point in 3D space, establishing geometry-based correspondence
across different viewpoints. This W(·) can then be used to map an image from one viewpoint
to another in a geometrically consistent way – a process known as warping. Intuitively, applying
Wj→i(·) to the noise nj ∼ N (0, I) at viewpoint πj and mapping it to nearby viewpoint πi would
result in multiview-consistent noiseWj→i(nj) for zθ,πi

. We observed that this approach ultimately
yields more similar and aligned 2D scores between the two viewpoints. The gradient map gw

θ,πi

predicted from viewpoint πi is defined as:

gw
θ,πi

=
∑

πj∈Πi,j

D(zθ,πi
+ σtWj→i(nj);σt, y)− (zθ,πi

+ σtWj→i(nj))

σ2
t

, (5)

where Πi,j denotes the set of camera poses near an anchor pose πi. The equation for multiview
consistent SDS loss is then defined as follows:

∇θLw
SDS ≈ Eπi∼Π,nj∼N (0,I),t

[
D(zθ,πi

+ σtWj→i(nj);σt, y)− zθ,πi

σ2
t

· ∂zθ,πi

∂θ

]
, (6)

assuming the warped noise mapWj→i(nj) retains the properties of the standard normal distribution
(ref. Section 4.2). Note that zθ,πi

can also be approximated as zθ,πi
≈ Wj→i(zθ,πj

). This means that
the nearer the viewpoints are andWj→i approaches identity mapping, the estimated scores of nearby
viewpoints in Eqn. 5 and Eq. 6 also increase in similarity and consistency. Based on Chang et al.
(2024), which shows that incorporating correspondence relationships between the noises significantly
enhances video generation quality, we hypothesize that maintaining consistency between the noises
and gradients across multiple viewpoints would similarly benefit the optimization process, leading to
more robust and coherent geometry.

4
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In this paper, we propose GSD, a general framework for facilitating the multiview consistency of
2D scores predicted through SDS, improving the geometric consistency and fidelity of generated
scenes, as shown in Fig. 2. In Section 4.2, we introduce 3D consistent noising, which grounds
each viewpoint’s denoising process on the 3D geometry of the given scene. In Section 4.3, we
conduct geometry-based gradient warping across different viewpoints. In Section 4.4, we describe our
correspondence-aware gradient consistency loss exploiting the warped gradients, which effectively
regularizes artifacts and inconsistencies by modeling multiview consistency of the 2D scores.

4.2 3D CONSISTENT NOISING
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Figure 3: PAAS-based illustration of our consistent nois-
ing. Introduction of 3D-consistent noising induces more con-
sistent SDS gradient across nearby viewpoints, whose en-
hanced consistency allows for coherent geometry.

We propose a 3D consistent noise
that incorporates 3D correspondence
prior nc, enabling robust 3D scene
generation. This promotes more con-
sistent 2D scores across different
viewpoints, as described in Fig. 3.
A key factor in designing nc is that
the 2D noise produced by consis-
tent noising should follow a stan-
dard normal distribution – namely,
its mean and variance being that of
N (0, I), and the noise should be
independently and identically dis-
tributed (i.i.d).

This makes the naïve solution of
warping a 2D noise to another view-
point using W(·) unsuitable, as the
interpolation (e.g., bilinear, nearest neighborhood) involved in the warping process harms these
properties. To overcome this issue, the warping method proposed by Chang et al. (2024) interprets a
noise map as the integral of conditionally upsampled higher-resolution noise map and achieves ideal
noise warping through integral noising; however, this warping process is computationally intensive,
making it impractical for SDS, as it needs to be performed at each iteration.

To address this, we introduce 3D consistent integral noising, which satisfies the above criteria
by utilizing an intermediate 3D point cloud representation, incorporated with conditional noise
upsampling and discrete noise integral (Chang et al., 2024). We adopt 3DGS (Kerbl et al., 2023) as
our 3D representation, as the mean locations of the 3D Gaussians easily define a point cloud that
aligned with the geometry of the 3D scene, as described in Fig. 4(b). We then imbue each point with
a random noise value sampled from a normal distribution, resulting in a 3D noised point cloud n3D,
which will be projected and aggregated to produce 3D-consistent 2D noise maps, described below.

Conditionally upsampled point cloud. We adopt the conditional upsampling proposed in Chang
et al. (2024) to 3D point cloud setting, interpreting each value in 3D point as an integration of upsam-
pled points within a partitioned volume. Assuming this volume is a spherical volume surrounding
each original point in n3D, we generate an upscaled point cloud, whose locations are sampled from a
Gaussian distribution centered around the original point, as described in (c) of Fig. 4. The upscaling
occurs by a factor of hyperparameter N , meaning that N points are newly sampled for each original
point n3D ∈ n3D. Assuming an original point indexed k, whose noise value is n3D

k , the noise values
for its N upsampled points, designated m3D, are conditionally sampled from the original point:

m3D ∼ N (µ̄, Σ̄), with µ̄ =
1

N

∑
k

n3D
k , Σ̄ =

1

N

(
IN −

1

N
uu⊤

)
, (7)

where u = (1, ..., 1)⊤ whose size is N , IN being N ×N identity matrix. In implementation, this
corresponds to having N noise values sampled from N (0, I), removing their mean, and adding to
them n3D

k /N . This conditional sampling is conducted independently per channel of the noise map.

Discrete noise integral. After conditionally upsampling the point cloud, we project its points onto
a pixelized grid for a given viewpoint. Since the number of projected points may differ for each pixel,

5
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Figure 4: 3D consistent
∫

-noising. To produce a 3D geometry-aware 2D noise map that preserves
the properties of the standard Gaussian distribution, we conduct 3D conditional upsampling of point
clouds and discrete integral of projected noise values. Please refer to Sec. 4.2 for more detailed
explanation of the subfigures.

we perform the discrete noise integral to aggregate their values, obtaining a representative value for
each pixel, while preserving the overall Gaussian properties of the noise map. We denote the set of
noise values m3D of the projected upsampled noise points m3D, projected to a pixel p at viewpoint
π, as Ω(p). Our discrete noise is pixelwisely aggregated, summed and normalized to preserve the
Gaussian properties of the noise map:

nc(p) =
1√
|Ω(p)|

∑
m3D∈Ω(p)

m3D, (8)

where nc(p) stands for the final, aggregated noise value for the pixel p at camera π, with |Ω(p)|
being the size of the set, i.e., the total number of points projected to the pixel p. The points have no
volumes forcing that each point is projected to a single pixel, which allows the integral process to
occur discretely and guarantees the complete independence of pixels.

3D consistent noises and gradients. Our final gradient map for viewpoint π is defined as:

gc
θ,π =

D(zθ,π + σtn
c;σt, y)− (zθ,π + σtn

c)

σ2
t

, (9)

replacingWj→i(nj) with nc in Eq. 5. Our full 3D-consistency-aware SDS equation is defined as:

∇θLc
SDS ≈ Eπ∼Π,nc∼N (0,I),t

[
D(zθ,π + σtn

c;σt, y)− zθ,π
σ2
t

· ∂zθ,π
∂θ

]
. (10)

Our results in Sec. 5.2 show that our 3D consistent noising brings clear improvements to the overall
quality and convergence speed of the optimization process. As hypothesized, giving 3D-geometry-
aware noise to corresponding pixels in different viewpoints facilitates their SDS gradients to be more
consistent, leading to faster convergence and more high-fidelity generation results.

To make the 2D noises aligned solely with the rendered surfaces, we take into account only the points
that lie within a certain spherical distance from the rendered depth, preventing self-occluded surfaces
from the other side of the object from influencing the noise integral process.

Analysis. The validity of our method is demonstrated in Fig. 5, where we compare the 3D-consistent
noise nc

i at pose πi produced by our method with other methods, such as warping and random noising.
To this end, we compute the covariance of the produced noise, its cross-covariance with the noise of
nearby viewpoint nc

j at pose πj , and the distribution of the generated noise values. Random noising

6
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(a) shows no correlation with nearby viewpoints, while the distributions of bilinear warping (b) and
nearest warping (c) show discrepancies with standard normal distribution, with (b) especially lacking
the i.i.d characteristic, as shown in the covariance matrix. 2D integral noising (Chang et al., 2024) (d)
is accurate, but its heavy computation limits its usage for SDS, as the warping process must occur
multiple times within a single iteration. Our method preserves the Gaussian properties such as mean,
variance, and its i.i.d nature, as well as accurately representing the interpolative correlation between
viewpoints, resulting an ideal 3D-consistent noise map, while computationally efficient.

4.3 GEOMETRY-BASED GRADIENT WARPING

(d) ∫ - noising(b) Bilinear (c) Nearest (e) Ours(a) Random
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Figure 5: Gaussian properties. Our 3D
∫

-noising preserves the prop-
erties of standard Gaussian distribution while remaining 3D consistent.

To strengthen the multi-
view consistency between
SDS gradients during the
optimization process, we
introduce an additional
loss based on 3D-
consistent noising. This
considers a mapping be-
tween 3D-corresponding
locations across different
viewpoints, allowing the
comparison of gradients
generated from distinct
viewpoints. Using depth
information from the
rendered 3D scene (in our
case, the 3DGS baseline),
the 2D gradient map of one viewpoint is geometrically warped to another, ensuring consistency.
Specifically, the depth map, d, helps establish pixel correspondences between viewpoints, enabling
the warping of gradient maps between two viewpoints, denoted as gc

1 and gc
2.

Given two viewpoints, π1 and π2, and the transformation matrix R1→2, the corresponding pixel
location p1→2 in gc

2 is calculated using the rendered depth d1 and the intrinsic matrix K. This
forms a 3D geometry-based mapping functionW1→2(·), which contains correspondence information
between the pixels of viewpoint π1 and gc

2. By applying this mapping, the warped gradient map gc
2→1

is generated using a nearest sampling operator, ensuring geometric consistency between viewpoints.
The warping process is formalized as: gc

2→1(p1) = sampler(gc
2;W1→2(p1)).

4.4 CORRESPONDENCE-AWARE GRADIENT CONSISTENCY LOSS

We introduce correspondence-aware gradient consistency loss, where we penalize the dissimilarity
between the gradients that have a 3D-correspondence mapping to guide the scene toward a more
robust and consistent appearance and geometry. The motivation for such a loss is intuitive. Equation 6
shows that using 3D consistent noise removes much of the randomness that the noising process
brought upon the SDS process, which in turn indicates that the differences between generated
gradients are predominantly caused by variations in appearance and geometry.

As we are comparing the gradients generated from nearby viewpoints with nearby camera pose
differences, heavy differences between corresponding gradients are highly likely to be caused by
a sharp change in appearance or geometry. These sharp changes can generally be attributed to
artifacts (Kwak et al., 2023; Kim et al., 2022) and geometrically inconsistent features, such as Janus
problems, produced on the 3D scene. In this light, a similarity loss that forces the corresponding
gradients to be more similar to one another has a regularizing effect.

Let us assume we have a gradient map gc
i at the viewpoint πi and a warped gradient map gc

j→i from
the viewpoint πj . Because gc

j→i has been warped according to 3D geometry, the consistency loss
between two adjacent viewpoints πi and πj , in which gc

j has been warped to πi, is defined as follows:

Lsim :=
∑
πi∈Π

∑
πj∈Πi,j

∑
p

oj→i(p) ·

(
1−

gc
i (p) · gc

j→i(p)

∥gc
i (p)∥∥gc

j→i(p)∥

)
, (11)
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Figure 6: Qualitative improvement over GaussianDreamer (Yi et al., 2023) baseline. The
incorporation of GSD framework enhances the 3D consistency generated scenes.

where oj→i stands for self-occlusion mask adopted from (Kwak et al., 2023), which masks out
erroneously warped locations at gc

j→i. Note that we back-propagate this loss only to the rendered
depth d which was used in warping image gc

j to πi, as this loss is essentially a geometry regularizing
loss. Our experimental result at 5.3 demonstrates the effectiveness of our loss in reducing geometric
inconsistencies as well as aiding the generation of more fine-detailed geometry, and also shows that
our loss must be used in conjunction with 3D consistent noising for proper effectiveness.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We have implemented our method using the PyTorch framework, and all our experiments were
conducted with the Stable Diffusion model based on LDM (Rombach et al., 2022). The majority of
our implementations were conducted on the Threestudio (Guo et al., 2023) baseline of Gaussian-
Dreamer (Yi et al., 2023), and we utilized the off-the-shelf Point-E (Nichol et al., 2022) module to
obtain the initial point cloud for 3D Gaussian Splatting (Kerbl et al., 2023). Our noised point cloud
upsampling ratio N = 9, and for each iteration of the optimization process, we render batches of
images separated by 5◦ from each other for consistent noising and gradient modeling.

5.2 QUALITATIVE ANALYSIS

Fig 6 shows the improvement that GSD brings to its baseline model, which is the Threestudio (Guo
et al., 2023)-based GaussianDreamer (Tang et al., 2024) model. We demonstrate that our method
counters such errors and geometric inconsistencies successfully, reducing multi-faced Janus problems
drastically as well as fixing incoherent geometries such as multiple beaks on “a goose made out of
gold” or two heads appearing on “a turtle.”

In addition, in Fig. 7, to show our method’s universal effectiveness across different SDS-based
methodologies, we combine GSD with an Instant-NGP (Müller et al., 2022) based method, Prolific-
Dreamer, (Wang et al., 2023) and observe the effects. As our methodology requires a point cloud
aligned with scene geometry, we leverage depth map rendered via volumetric rendering to acquire
the point cloud at every iteration, eliminating dependencies on external models (such as Point-E) or

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Pr
ol

ifi
cD

re
am

er
+G

SD

“Viking axe, fantasy,
weapon, blender, 8k, HD” “a bulldog” “a bald eagle

carved out of wood”

Pr
ol

ifi
cD

re
am

er
+G

SD

“a DSLR photo of a ghost
eating a hamburger”

“a goose
made out of gold”

“Handpainted watercolor
windmill, hand-painted”

Figure 7: Qualitative improvement over ProlificDreamer (Wang et al., 2023) baseline. To
demonstrate the effectiveness of our approach on other SDS methodologies, we apply to Prolific-
Dreamer (Wang et al., 2023). Even without external models (Point-E, 3DFuse) or initializing shapes,
our method improves upon overall generation, reducing various view inconsistencies and artifacts.

shape initializations. The results demonstrate that application of our approach reduces artifacts and
Janus problems even in such settings. We provide more extensive experiments on other baselines in
Fig. 13 which is located at our Appendix D.

5.3 ABLATION STUDY AND ANALYSIS

𝜋 
= 

0°
𝜋 

= 
90
°

𝜋 
= 

32
0°

(a) Naïve (d) Ours(c) 𝐧! only(b) ℒ"#$ only

Figure 8: Ablation. Our experiments show that
without 3D consistent noising, our consistency loss
shows little to no effect on the generation process.
The prompt is a “a cute meercat”.

Enhancement in convergence speed. Our
method shows effectiveness in improving the
speed of SDS convergence. As shown in Fig. 9,
adjusting the noise sampling strategy and ap-
plying gradient consistency loss leads to faster
optimization. For example, hats and faces ap-
pear earlier when generating a “full body of a
cat with a hat.” This supports our approach of
aligning noise maps with 3D geometry, which
produces more consistent gradients and accel-
erates 3D representation convergence.

Ablation on 3D consistent noising and gradi-
ent consistency loss. We conduct an ablation
study regarding our 3D consistent noising and
the gradient consistency loss in Fig. 8. Our
experimental results show that when the two components are used in conjunction, it brings about
enhancement in geometric robustness and increased fidelity from the naiv̈e result (a), as clearly shown
in (d). However, when the consistency loss is used without consistent noising, its effects are dimin-
ished, as shown in (b). Sole usage of 3D consistent noise nc brings about only limited improvement
as well, observable in (c). This indicates that gradient similarity incurred by 3D consistent noising is

9
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Naïve
noising
(Baseline)

GSD
(Ours)

200th iter 400th iter 600th iter 800th iter 1000th iter 1400th iter1200th iter
Figure 9: Convergence speed comparison. Comparison between naïve noising and 3D-aware noising
shows that our method of 3D consistent noising and similarity loss achieves quicker convergence over
baseline, GaussianDreamer (Yi et al., 2023). The prompt “a full body of a cat with a hat” is used.

“a beautiful rainbow fish”

“a product photo of a toy tank”

“a peacock with a crown”MVDream Ours
Figure 10: Comparison to MVDream. Generation results of GSD-combined SDS / VSD (Wang
et al., 2023) baseline shows superior textural and geometric details in comparison to multiview
generation models such as MVDream (Shi et al., 2023) given above.

crucial for gradient consistency modeling in allowing meaningful geometry regularization to take
place with consistency loss.
Comparison to multiview generation model. We compare our framework with MVDream, a
multiview generation model fine-tuned on Objaverse, which generates faster and avoids view in-
consistencies. However, such fine-tuning on Objaverse, which is limited in diversity and quality
of its 3D assets, causes its generation results to be constrained by having claylike, low-fidelity tex-
tures, as demonstrated in Fig. 10. In contrast, GSD combined with SDS methods produces detailed,
high-fidelity scenes with strong geometric consistency.

Table 1: User study. The user study is conducted
by surveying 39 participants to evaluate 3D coher-
ence, prompt adherence, and rendering quality.

Method 3D Prompt Overall
coherence adherence quality

Baseline + GSD (Ours) 65.4% 68.4% 61.5%

Baseline 34.6 % 31.6 % 38.4 %

User study. In a user study with 39 partici-
pants (Tab. 1), six multiview renderings from
GaussianDreamer and ProlificDreamer were
compared to GSD-combined results. Partici-
pants evaluated three aspects: realistic 3D ge-
ometry, adherence to the prompt, and overall
quality. The results show a clear preference for
GSD, demonstrating significant improvements.

6 CONCLUSION

Our method, GSD, integrates geometry-based correspondence into the SDS process, improving
multiview consistency and geometric fidelity in text-to-3D generation. Through 3D consistent
noising, gradient warping, and a multiview consistency loss, we address geometric inconsistencies
without extra training or modules. GSD achieves competitive results and is validated by an ablation
study, confirming its effectiveness in enhancing SDS-based 3D generation.
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A SPHERICAL BACKGROUND NOISING

We generate 2D noise maps for the foreground and background separately and combine them to
gain the final noise map, as described in Fig 2. For the foreground process, to make the 2D noises
aligned solely with the rendered surfaces, we take into account only the points that lie within a
certain euclidean distance, or points belonging to radius neighbor, from the rendered surface depth,
preventing self-occluded surfaces from the other side of the object from influencing the noise integral
process. For the background, we create a spherical point cloud surrounding the scene, which we
noise, upscale, and integrate likewise, and add this noise to the empty regions of the foreground noise
to produce a final, full 2D noise map retaining standard normal distribution properties.

B PSEUDOCODE ALGORITHM OF 3D CONSISTENT NOISING

Algorithm 1 3D Consistent Noising Process
1: if consistent_noise = True then
2: Configure rasterization: image_size← R, point sampling radius← rsurf
3: Extract points: P← Tensor(original point cloud)
4: if P = ∅ then
5: Generate random tensors:
6: N ∼ N (0, 1)(n,cnoise), Lrand, Frand
7: Upscale foreground points and features: (Pnoise,Vnoise)← NOISEUPSCALER(P,N)
8: Compute depth map: D← RENDERDEPTH(P)
9: Project foreground noise to 2D: Mfore ← REPROJECTOR(Pnoise,Vnoise,D)

10: if background = True then
11: Generate background noise: (Pbg,Vbg)← SPHERENOISE()
12: Project background noise to 2D: Mbg ← REPROJECTOR(Pbg,Vbg)
13: end if
14: end if
15: Add foreground and background noise map: Mnoise ←Mfore + (Mfore = 0) ·Mbg
16: end if

C EMULATING THE JANUS PROBLEM IN 2D SCORE DISTILLATION SAMPLING

(a) 

Independently

Noised SDS

(b) 

Consistently

Noised SDS

“A DSLR photo of a 

DMC Delorean car”

Consistent Noising

Independent Noising

Figure 11: Design for consistent noising experiment in 2D SDS. To observe the effects of consistent
noising within SDS process, we design an experiment which compares the generation results of
panoramic image generated from independently-noised 2D SDS process with that of consistently-
noised 2D SDS process.
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To verify our hypothesis that the key reason for the Janus problems in text-to-3D generation is
inconsistent gradient between different viewpoints, we design a toy experiment in a simplified setting,
which is SDS-based optimization of 2D image pixels similar to (Hertz et al., 2023). Our objective
is to observe the effect that such noise consistency between SDS processes induces upon the score
distillation process. As described in Figure 11, we optimize a rectangular, panorama-shaped 2D
tensor by cropping it into multiple square subsections and applying SDS on each crop. This setting
bears a strong analogy to text-to-3D optimization in that a single global representation is cropped
into multiple subsections, which are optimized separately via score distillation.

First, let us assume a naïve setting in which all subsections are passed through independent diffusion
processes, in which the correspondences within overlapping areas of neighboring subsections are
completely ignored. This setting, as shown in the top row of Fig 12, results in a broken image
with each crop containing separate, inconsistent generations, displaying difficulty in optimizing the
overlapping region and failing to achieve global coherency. Notice that this phenomenon closely
resembles the Janus problem occurring in text-to-3D, with multiple faces appearing across the crops.
It also clearly demonstrates how giving consistent noise to overlapped regions largely removes these
effects, allowing coherent single scene to emerge across different cropped windows.

This “2D version of the Janus problem” shown in the toy experiment strengthens the hypothesis that
the culprit behind the Janus problem is indeed the absence of correspondence awareness in the current
SDS formulation, and how it can be largely resolved simply by applying consistent noising to the
overlapped regions.

Independently
Noised SDS

Consistently
Noised SDS

“a chimpanzee brewing 
a magic potion”

“a DSLR photo of
a Delorean Car”

“a bald eagle carved 
out of wood”

“a squirrel
eating a hamburger”

Figure 12: Effect of consistent noising in 2D SDS. In the top row, where all subsections (windows)
are passed through independent diffusion processes, Janus-like effect in 2D panoramic image occurs,
showing multi-faced artifacts in different sections of the image. When consistency between noise
between the windows are introduced, it can be seen that overall consistent image is generated.

D ADDITIONAL RESULTS ACROSS VARIOUS BASELINES

In Fig. 13, to show our method’s universal effectiveness across various SDS-based methodologies,
we combine GSD with other Instant-NGP Müller et al. (2022) based baseline methods Poole et al.
(2023); Wang et al. (2023) and observe the effects. As our methodology requires a point cloud aligned
with scene geometry, we leverage 3DFuse Seo et al. (2024), which conditions scene optimization
on a point cloud. As the generated scene geometry closely follows the point cloud, we leverage
this point cloud to conduct 3D consistent integral noising. Our results reveal that despite using
3DFuse, which is designed to enhance view consistency of generated 3D scenes, artifacts and view
inconsistency problems such as the Janus problem persist in numerous generated results. Application
of our approach brings about clear enhancements in these aspects, resulting in more geometrically
robust and well-textured 3D scenes.

E ADDITIONAL COMPARISON TO PREVIOUS WORKS

In Fig. 14, we compare the performance of our method to other baseline methods Poole et al.
(2023); Wang et al. (2023); Yi et al. (2023); Seo et al. (2024). Other approaches are shown to yield
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Figure 13: Qualitative improvement over Dreamfusion (Poole et al., 2023) and Prolific-
Dreamer (Wang et al., 2023) baselines combined with 3DFuse (Seo et al., 2024). To demonstrate
the effectiveness of our approach on other SDS methodologies, we apply GSD to 3DFuse (Seo et al.,
2024)-combined Dreamfusion (Poole et al., 2023) and ProlificDreamer (Wang et al., 2023). Our
method improves upon overall generation, reducing various view inconsistencies and artifacts.

inconsistent, distorted geometries across multiple directions, or undergo the Janus problem, producing
features that should be seen at the front in other viewpoints of the scene. Erroneous markings on the
texture can also be observed. Our approach, however, displays robustness regarding both geometric
consistency and texture of the scene, as demonstrated by the given figures.

F ANALYSIS IN COMPARISON TO MULTIVIEW GENERATION MODEL

In Fig. 10, we compare the generation results of our framework with MVDream Shi et al. (2023),
a multiview generation diffusion model fine-tuned on a 3D dataset, Objaverse Deitke et al. (2023).
This family of text-to-3D generation models Liu et al. (2023); Shi et al. (2023) is capable of directly
predicting novel viewpoints of a given image or text, allowing for faster generation speed that
SDS-based frameworks, with MVDream nearly completely free from view inconsistency problems.
However, such fine-tuning on Objaverse, which is limited in diversity and quality of its 3D assets,
causes its generation results to be constrained by having claylike, low-fidelity textures. In comparison,
we show that GSD combined with SDS methodologies (GaussianDreamer and ProlificDreamer in
given results) is capable of creating scenes of highly detailed geometry and fidelity, fully leveraging
the generative capability of a pretrained 2D diffusion that has not been fine-tuned to Objaverse,
while also demonstrating strong geometric robustness and consistency as our GSD encourages
view-consistent generation through score distillation process itself.

G 360◦ VISUALIZATION OF 3D SCENE AND CONSISTENT NOISE

Fig. 15 displays a 360◦ comparison of our methodology with that of baseline, which shows dras-
tic improvement induced by the application of GSD. The experiment shows an interesting case
demonstrating how our method functions: even though the conditioning geometry is completely
identical due to constraint by 3DFuse, the incorporation of our methodology encourages a more
view-consistent and realistic interpretation of this given geometry, outputting a drastically enhanced
3D scene optimization result, as well displayed.
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vintage car”
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of a ceramic lion”

Figure 14: Comparison to previous works. We compare our framework with other text-to-3D
frameworks: DreamFusion Poole et al. (2023), ProlificDreamer Wang et al. (2023) and Gaussian-
Dreamer Yi et al. (2023). Our method achieves more geometrically consistent results while being
closely faithful to the text prompt given, demonstrating its effectiveness and stability.

H CONSISTENCY ANALYSIS WITH CLIP SIMILARITY

To measure the consistency of generated 3D objects, we follow previous work (Hong et al., 2023)
of measuring the CLIP similarity between the generated images and the front view and back view
prompts across various prompts and provide the result at Fig. 16. However, we do not find a significant
correlation between the view prompts and the images corresponding to each view. This appears to be
partially because the CLIP model, being discriminative, does not accurately evaluate the similarity
between detailed prompts and images.
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Figure 15: 360◦ visualization. 360◦ comparison between the baseline model, which is Prolific-
Dreamer (Wang et al., 2023) combined with 3DFuse (Seo et al., 2024), and results with GSD added,
along with 3D consistent noise visualization.

Figure 16: CLIP similarities between each rendered image and view-augmented prompt and
images. We compute CLIP similarities for each image and view-augmented prompt (e.g., “front
view of” and “back view of”). The x-axis value (image index) corresponds to the azimuth, where
0 stands for the front view and 60 for the back view. The baseline used for this experiment is
GaussianDreamer (Yi et al., 2023).
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