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ABSTRACT

The Indus Valley Civilization (IVC) left behind an undeciphered script, posing
a significant challenge to archaeologists and linguists. This paper introduces
FLAIR, a few-shot learning approach that aims to establish a foundational model
for recognizing and identifying individual graphemes from the limited available
Indus script. As a foundational model, FLAIR is designed to be versatile, support-
ing multiple potential applications in script recognition and beyond. It leverages
prototypical networks combined with a modified proposed encoder network for
segmentation, ProtoSegment to extract intricate features from the grapheme im-
ages. We evaluate FLAIR’s ability to generalize from minimal data using IVC
grapheme classification tasks and further experiment with pre-trained Omniglot
models for fine-tuning. Additionally, we simulate real-world data scarcity by in-
tentionally restricting training data on the Omniglot dataset. Our experiments
demonstrate FLAIR’s accuracy in digitizing and recognizing Indus Valley seal
graphemes, outperforming traditional machine learning classification approaches.
These results underscore FLAIR’s potential not only for the digitization of ancient
scripts with limited labeled datasets but also for broader applications where data
is scarce. FLAIR’s success in grapheme recognition highlights its promise as a
foundational model capable of extending to other undeciphered writing systems,
thereby contributing to the integration of classic scientific tools and data-driven
approaches.

1 INTRODUCTION

The history and civilizations of the past are preserved mainly in the languages of the past. But their
field is laborious, requiring specialists to work on a variety of demanding text-based tasks, such as
determining the authors of literary works, restoring damaged inscriptions, and translating lost lan-
guages Sommerschield et al. (2023). The texts that remain preserved to this day were written in a
variety of scripts (Brahmi, Old Chinese, Egyptian hieroglyphs, ancient Greek, Indus, Latin, Mayan,
and others) and on a range of materials (bone, metal, palm leaf, paper, papyri, parchment, potsherds,
stone, etc.). Technological innovation in machine learning has brought about revolutionary break-
throughs in the study of ancient languages and texts over the past 20 years. Modern Handwritten Text
Recognition (HTR) methods struggle to recognize manuscripts with uncommon scripts or alphabets
Sánchez et al. (2014); Bhunia et al. (2021); Souibgui et al. (2022); Kang et al. (2020). Conventional
machine learning techniques rely on vast quantities of labeled data for training which presents a
significant challenge for the Indus script due the scarcity of useful data. Generative AI, such as
GANs or diffusion models, can synthesize training data when real examples are scarce. However,
generating synthetic data for ancient scripts like the Indus script is challenging due to the lack of
deep knowledge of the script’s visual and contextual nuances, which remain speculative. Without
a substantial labeled corpus, generative models trained on limited data may produce unrealistic or
misleading samples that fail to capture the script’s true variability. Additionally, generative models
require extensive training on diverse examples to generate high-quality outputs, a need that the lim-
ited dataset of the Indus script cannot meet. This can lead to artifacts that distort model performance
rather than enhance it. Few-Shot Learning (FSL) provides a compelling solution to overcome this
challenge. Unlike traditional models, FSL excels in precisely the situation we face – limited data.
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These models are specifically designed to learn complex patterns from a remarkably small number
of labeled examples per class. There’s a possibility of encountering previously unseen symbols dur-
ing the digitization process. The FSL model can potentially adapt and classify these new symbols
based on its learned knowledge from similar classes.

The Indus Valley seals contain intricate patterns of graphemes and motifs, where the script remains
largely undeciphered, hindering our understanding of one of the world’s oldest civilizations Oakes
(2017); Daggumati & Revesz (2021). Unfortunately, despite sustained efforts from archaeologists
and linguists, the Indus script remains stubbornly undeciphered Varun Venkatesh & Ali Farghaly
(2023).The limited corpus of inscriptions, coupled with the absence of a bilingual Rosetta Stone
equivalent, has compelled researchers to explore alternative approaches, such as statistical analy-
ses of grapheme sequences, intra-script grapheme associations, and contextual clues derived from
archaeological artifacts Rao et al. (2009; 2010; 2015). These manual efforts, while insightful, are
labor-intensive, time-consuming, and limited in scalability. Furthermore, the existing collection of
Indus Valley texts is frustratingly limited.

In this context, FLAIR is introduced as a foundational model for ancient script recognition, ad-
dressing a significant gap in the field. To the best of our knowledge, there is no widely recognized
foundational model specifically tailored for OCR or grapheme recognition that matches the versatil-
ity and adaptability seen in foundation models from other domains, such as NLP or general image
processing. While existing few-shot learning (FSL) architectures, like Prototypical Networks Snell
et al. (2017), are designed to classify new instances based on their similarity to learned prototypes,
they may struggle to capture the intricate features and complexities of ancient script characters, par-
ticularly when training data is limited. To address these limitations, we introduce ProtoSegment, a
novel few-shot learning approach that enhances prototypical networks with a segmentation encoder.
This modification enables the model to extract intricate features from graphemes (individual charac-
ters) in the Indus Valley script, leading to improved identification. By incorporating a segmentation
encoder, ProtoSegment can better capture the subtle details and variations within each character
class, even with limited training data. The segmentation encoder in ProtoSegment is designed to
identify and segment individual graphemes within the script. This segmentation process allows the
model to focus on the relevant visual features of each character, improving its ability to distinguish
between different classes. To evaluate the effectiveness of ProtoSegment, we conduct experiments
on two datasets. We have utilized the Omniglot dataset, a rich collection of handwritten characters
and mirrored the real-world data constraints of the IVC script by intentionally restricting it. This
controlled setting allows us to assess the model’s ability to generalize effectively with minimal data,
simulating the IVC grapheme recognition task. Our results demonstrate that ProtoSegment out-
performs existing few-shot learning and deep learning methods on both datasets, achieving higher
accuracy in grapheme classification tasks.

2 RELATED WORK

Few-Shot Learning with Limited Data: Recent years have seen various methods developed for
learning deep networks with scarce data. Taigman et al. Taigman et al. (2014) and Koch et al. Koch
et al. (2015) approached this as a verification problem, using Siamese neural networks Bromley
et al. (1993) to determine whether two samples belong to the same class by measuring the distance
between them in the learned embedding space. Huang et al. Huang et al. (2019) introduced Deep
Prototypical Networks (DPN) to address data insufficiency and class imbalance by capturing dis-
crepancies across classes in a main embedding space. DPN was further enhanced with a masking
module for robust classification, though it does not yet incorporate external knowledge sources. Re-
searchers Pahde et al. (2021) have also designed a cross-modal feature generation framework that
enriches low-population embedding spaces in few-shot scenarios by mapping text data into the vi-
sual feature space using generative models. Ji et al. Ji et al. (2020) proposed Improved Prototypical
Networks (IPN), incorporating an attention-based strategy to better capture intra-class distribution
by assigning weights to samples based on their representativeness.

Data-Level Approaches: A more logical approach to few-shot learning is to use a data-level ap-
proach, which means that by gathering more relevant data, the model’s performance can potentially
be enhanced. In addition to the initial training set, Douze et al. Douze et al. (2018) developed a
semi-supervised strategy that incorporated a sizable unlabeled dataset of comparable images. This

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

vast data collection was used in the few-shot learning scenario to facilitate label propagation. By
creating the squared gradient magnitude loss, which drives models to generalize successfully from
only a few samples, Hariharan et al. Hariharan & Girshick (2017) merged both strategies (data-
level and algorithm-level) and, created new images by hallucinating features. In order to provide
new training data for the latter, they trained a model to identify common transformations between
preexisting images.

Meta-Learning Techniques: Meta-learning techniques have been used in other contemporary
few-shot learning methodologies. In a few-shot learning environment, a long short-term memory
(LSTM) network was trained as a meta-learner Ravi & Larochelle (2016) to learn the precise op-
timization technique for training a learner neural network that carries out the classification. The
discovery that the update function of common optimization techniques, such as SGD, is comparable
to the updating of an LSTM’s cell state led to the proposal of this technique. Finn et al. Finn et al.
(2017) proposed a model-agnostic meta-learning technique (MAML) that trains a model on base
classes and then refines it on a limited number of unique classes to achieve optimal performance.
Furthermore, using a few-shot learning technique, Bertinetto et al. Bertinetto et al. (2016) trained a
meta-learner feed-forward neural network to predict the parameters of another discriminative feed-
forward neural network.

Attention Mechanisms: Another technique that has been applied successfully to few-shot learning
recently is attention Wang et al. (2022); Vaswani et al. (2017). To identify prototypes, Arık and
Pfister Arik & Pfister (2020) use an attention mechanism that compares the encoded representations
to samples. By adding a relational attention mechanism to an encoder, prototypical learning enables
novel capabilities. Sparsemax attention increases robustness to label noise and allows for the basis of
learning on a small number of relevant samples that may be returned at inference for interpretability.

Prototypical Learning: The principle of ProtoSegment is inspired by (Badrinarayanan et al. (2017);
Feng et al. (2021); Chang et al. (2020)) where they emphasize discarding the fully connected layers
in favour of retaining higher resolution feature maps at the deepest encoder output. Similar modifi-
cations have been made for prototypical networks based on varying application domain spaces Arik
& Pfister (2020); Ji et al. (2020); Tang et al. (2023); Ke et al. (2021); Du et al. (2023).

Ancient Script Recognition Approaches: There have been a few approaches developed, with ref-
erence to few-shot learning approaches for Ancient Script Recognition. Hu et al. Wenbo Hu et al.
(2023) proposed a Visually Guided Text Spotting (VGTS) approach that accurately spots novel char-
acters using just one annotated support sample. Souibgui et al. Mohamed Ali Souibgui et al. (2020)
use few-shot object detection for the task of handwritten ciphers recognition. The method includes
detection of all symbols of a given alphabet in a line image, and then a decoding step to map the
symbol similarity scores to the final sequence of transcribed symbols. They use the Omniglot dataset
Yang Li et al. (2021) to create synthetic query lines that simulate handwritten ciphered lines. The
study by Varun Venkatesh et al. Venkatesh & Farghaly (2023) investigated the Indus script by ana-
lyzing patterns and positions of individual signs, pairs, and sequences. They built statistical models
and algorithms to predict sign behavior based on their position. This analysis revealed significant
differences in the language used in Indus texts from West Asia compared to those from the Indian
subcontinent, suggesting distinct regional dialects within the Indus civilization. Ansari et al. Ansari
et al. while being not directly related to deep learning, provides comparative visual analysis with
valuable insights for future deep learning approaches. By comparing the visual features of Indus
symbols with those from other writing systems, researchers Rao et al. (2009) had bearings on iden-
tifying potential similarities in form or structure. This comparative analysis can inform the design
of deep learning models by highlighting specific visual characteristics that the model might focus
on when analyzing Indus script characters. Palaniappan & Adhikari (2017) Palaniappan & Adhikari
(2017) address the time-consuming task of creating standardized corpora for undeciphered scripts
like the Indus Valley Script. They propose a deep learning pipeline to automate this process. The
pipeline segments images into regions, classifies them as textual or not, refines textual regions, iso-
lates individual symbols, and classifies them based on a reference corpus. While achieving 92%
accuracy for identifying a specific symbol, this work demonstrates the initial potential of deep learn-
ing to expedite corpus creation and advance research on the Indus Valley Script.

Our contribution: In contrast to prior work that primarily focused on character detection or cor-
pus creation, FLAIR directly addresses the core task of grapheme recognition. The integration of
a segmentation encoder within the prototypical network architecture enables the model to capture
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finer-grained features and spatial relationships within graphemes, leading to improved recognition
performance even with limited labeled data. The development and evaluation of FLAIR on the IVC
dataset establishes a benchmark for future research in this domain and contributes to the advance-
ment of efforts to decode the Indus script and other undeciphered writing systems.

3 METHOD

We present the methodology for IVC Script grapheme recognition in Figure 1. Our approach lever-
ages few-shot learning to address the challenge of limited labeled data in this domain. We begin
by curating a dataset of Indus Valley script graphemes, drawing from Parpola’s CISI volumes Joshi
et al. (1987) and Mahadevan’s seminal work, ”The Indus Script: Texts, Concordance and Tables”
Mahadevan (1977). This dataset comprises 262 images distributed across 39 classes, each metic-
ulously annotated to delineate individual graphemes. These annotations, stored in XML format,
enable an automated script to crop and classify each grapheme into one of 39 distinct classes as
defined by Mahadevan (Figures 2, 3).

Figure 1: IVC Script Grapheme Recognition and Methodology

To facilitate the digitization of this dataset, Atturu Atturu (2024) developed ASR-Net for grapheme
identification, which is based on MobileNetSinha & El-Sharkawy (2019). These tools automate the
digitization of Indus seals, providing researchers with efficient means to analyze vast collections
of artifacts and glean insights into the socio-cultural and economic facets of the Indus Civilization.
Complementing these efforts, a comprehensive database of high-resolution Indus seal images has
been established, complete with metadata detailing provenance, dimensions, and associated inscrip-
tions. This database serves as a cornerstone for Indus Valley research, offering a rich repository of
visual and contextual data for training and validating our machine learning models.

For few-shot learning on this IVC dataset, we employ two models: re-implemented ProtoNets Feng
et al. (2021) from the literature and our proposed ProtoSegment, a novel extension of ProtoNets,
which incorporates a segmentation encoder network for enhanced feature extraction. Both models
are trained to learn prototypical representations of each grapheme class from limited labeled data.
During inference, new images are classified by comparing them to these learned prototypes. This
approach aims to achieve state-of-the-art performance in grapheme identification on the challenging
data starved IVC dataset. We expand on the individual methodology blocks in further sections.

3.1 IVC DATASET PRE-PROCESSING

Figure 2: Sample grapheme images for class label M8, M104, and M336.
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Figure 3: Sample grapheme labels as assigned by Mahadevan Mahadevan (1977)Mahadevan &
Research Library

.

The initial dataset of 262 images underwent preprocessing to remove duplicates and annotate indi-
vidual graphemes within each image. Annotations were stored in XML files, specifying the location
and class of each grapheme. An automated script then cropped and sorted the graphemes into
39 classes based on Mahadevan’s classification Mahadevan (1977). These classes were selected
based on having at least six image samples (3 for query and 3 for support) per class, ensuring suf-
ficient data for training, validation, and testing. The 39 selected class labels are: M8, M12, M15,
M17, M19, M28, M48, M51, M53, M59, M102, M104, M141, M162, M173, M174, M176, M204,
M205, M211, M216, M245, M249, M267, M287, M294, M296, M302, M307, M326, M327, M328,
M330, M336, M342, M387, M389, and M391. The ’M’ prefix denotes Mahadevan’s classification,
followed by the specific identifier assigned by him.

3.2 PROTOSEGMENT MODEL

Existing prototype-based neural networks can be architecturally deconstructed into three primary
interconnected components. The first component is a convolutional neural network (CNN) f , pa-
rameterized by a set of weights wconv , which serves as a latent feature extractor that processes input
images x. The CNN f converts each input image x into a set of high-dimensional ”patch” vectors
zi ∈ RD, where each vector zi corresponds to the latent feature representation of a spatial region
or patch from the original input image space. The second core component is the prototype layer p,
which operates directly on the convolutional output f(x) comprising the set of latent patch vectors
zi. Each prototype is the mean vector of the embedded support points belonging to its class k (ck):

ck =
1

|Sk|
∑

(xi,yi)∈Sk

f(ϕ(xi)) (1)

where ck is the M-dimensional representation, S = (x1, y1), ..., (xN , yN ) is a small support set of
N labeled examples and Sk denotes the set of examples labeled with class k. The prototype layer
compares each patch vector zi against a learned set of m prototype vectors P = {pj}mj=1, where
each prototype vector pj ∈ IRD resides in the same high-dimensional latent space:

pϕ(y = k|x) = exp(−d(f(ϕ(x)), ck))∑
k′ exp(−d(f(ϕ(x)), ck0

))
(2)

as the image patch vectors, where d is the metric function. For every prototype vector pj , the
prototype layer calculates a similarity score gpj · f(x) that is a monotonically decreasing function
of the distance between pj and the closest latent patch vector z̃ ∈ f(x) in the model’s feature space.
Learning proceeds by minimizing the negative log-probability:

J(ϕ) = − log pϕ(y = k|x) (3)

of the true class k via SGD Snell et al. (2017). Training episodes consist of a subset of classes from
the training set that are chosen at random, followed by the selection of a subset of instances from
each class to serve as the support set and a subset of the remaining classes to act as query points.

The third component is a prototype class assignment mechanism h that follows the prototype layer
gp. This mechanism assigns evidence logits to each output class based on the prototype similarity
scores gpj

· f(x) calculated in the previous layer, in conjunction with a set of class assignment
weights wh. These evidence logits are then normalized via a softmax function to yield the model’s
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final predicted probability distribution over the output classes for the given input image x. Crucially,
in the final instantiation of the model, each prototype vector pj is constrained to be exactly equal to
a specific latent patch vector z̃ ∈ f(xi) extracted from the CNN’s representation of some training
image xi. Specifically, when making a prediction on a test input image x, the model is effectively

Figure 4: The classification process of ProtoSegment Model

comparing the salient latent features encoded in each patch vector zi ∈ f(x) against the salient
features underlying the previously seen training image patches that are encapsulated and represented
by the prototype vectors pj . The similarity scores gpj

· f(x) calculated by the prototype layer p
quantify the degree to which each test patch vector zi matches or differs from the corresponding
prototype pj in the high-dimensional latent space. Higher scores indicate a closer match between a
test patch and a learned prototype. These scores then get converted into class evidence logits by the
final assignment mechanism h. This overall reasoning process of matching test patches to learned
prototypes derived from training examples provides a visually-grounded interpretability mechanism.
One can visualize and examine the specific training image patches that each prototype is tied to, in
order to understand what high-level semantic concepts or visual patterns that prototype represents
and captures.

The architecture of the ProtoSegment model is illustrated in Figure 4. The model consists of a
segmentation encoder, a feature extractor, and a prototypical layer. The segmentation encoder g is
a crucial component designed to address the challenge of isolating individual graphemes within the
intricate Indus script. It employs a convolutional encoder-decoder architecture with skip connections
to accurately segment the input image x into distinct regions, each ideally corresponding to a single
grapheme. The output of this encoder is a set of segmented regions (S = s1, s2, ..., sn), where
each si represents a distinct grapheme. This segmentation process allows the subsequent feature
extractor to focus on individual characters, mitigating the complex nature of the script. The feature
extractor, f , is implemented as a Convolutional Neural Network (CNN) with four convolutional
blocks. Each block consists of a 3x3 convolutional layer, batch normalization, a ReLU activation
function, and 2x2 max-pooling. This architecture effectively captures hierarchical features from
each segmented grapheme region si, producing a corresponding 64-dimensional embedding zi =
f(si). The choice of 64 dimensions was empirically determined to balance representational capacity
and computational efficiency. The prototypical layer, p, computes a representative prototype for each
grapheme class k by averaging the embeddings of the support set samples belonging to that class:

ck =
1

|Sk|
∑

si∈Sk

zi (4)

where Sk is the set of segmented regions belonging to class k. The distance between a query
sample’s embedding zq and the class prototypes ck is calculated using a distance metric d(zq, ck),
such as Euclidean distance. The predicted class for the query sample is then determined by:

ŷq = argmin
k

d(zq, ck) (5)

By incorporating the segmentation encoder, ProtoSegment can capture finer-grained features and
spatial relationships within graphemes, leading to more distinct embeddings and improved discrim-
ination between visually similar characters.
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4 EXPERIMENTS AND RESULTS

4.1 OMNIGLOT FEW-SHOT CLASSIFICATION

Here we describe how we developed the proposed foundation model by pre-training the prototypical
network on the labeled OmniGlot data set. The Omniglot dataset Lake et al. (2011) comprises 1623
handwritten character samples collected across 50 alphabets, with 20 examples per character drawn
by distinct human subjects. Following the experimental setup of Vinyals et al. Vinyals et al. (2016),
we preprocess the grayscale images by resizing them to 28 × 28 pixels and augmenting the character
classes through rotations in 90-degree increments. We allocate 1200 characters plus their rotated
variants for training (4,800 classes in total), with the remaining classes and their rotations reserved
for testing.

Table 1: Few-shot classification accuracies on Omniglot
5-way Acc. 20-way Acc.

Model Fine Tune 1-shot 5-shot 1-shot 5-shot

MANN Santoro et al. (2016) N 82.8% 94.9% - -
Siamese Nets Koch et al. (2015) N 96.7% 98.4% 88.0% 96.5%
Siamese Nets Koch et al. (2015) Y 97.3% 98.4% 88.1% 97.0%
Matching Networks Vinyals et al. (2016) N 98.1% 98.1% 98.1% 98.1%
Matching Networks Vinyals et al. (2016) Y 97.9% 98.7% 93.5% 98.7%
Siamese Nets with Memory Kaiser et al. (2017) N 98.4% 99.6% 95.0% 98.6%
Neural Statistician Edwards & Storkey (2016) N 98.1% 99.5% 93.2% 98.1%
Meta Nets Munkhdalai & Yu (2017) N 99.0% - 97.0% -
Prototypical Networks Snell et al. (2017) N 98.8% 99.7% 96.0% 98.9%
Relation Net Sung et al. (2018) N 99.4% 99.7 % 97.4% 99.0%

ProtoSegment (Ours) N 98.3% 99.4% 95.8% 98.6%
ProtoSegment (Ours) Y 98.9% 99.7% 96.5% 99.2%

The input block is composed of a 3 × 3 convolutional layer with 64 filters, down-sampled to 32
filters and then is up-sampled back to 64 filters, followed by batch normalization Ioffe & Szegedy
(2015), a ReLU nonlinearity, and a 2 × 2 max-pooling operation. When applied to the 28 × 28
Omniglot images, this architecture yields a 64-dimensional embedding space. We utilize the same
encoder network for embedding both support and query examples. Model training was performed
via stochastic gradient descent with the Adam optimizer Kingma & Ba (2014), using an initial
learning rate of 10−3 that was halved every 2000 episodes. No explicit regularization was employed
beyond batch normalization. We trained ProtoSegment Networks under the 1-shot and 5-shot learn-
ing scenarios, with each training episode comprising 60 classes and 5 query points per class. We
observed improved performance when matching the training-shot to the test-shot, and by using a
higher ”way” (number of classes) per training episode. For performance evaluation, we computed
the classification accuracy averaged over 1000 randomly sampled episodes from the test set. We
compared against several baselines, including the neural statistician Edwards & Storkey (2016) and
both fine-tuned and non-fine-tuned versions of matching networks Vinyals et al. (2016). The results,
presented in Table 1, represent the current state-of-the-art on this dataset to our knowledge.

4.2 IVC FEW-SHOT CLASSIFICATION

4.2.1 DEEP LEARNING APPROACH

The initial approach ASR-NetAtturu (2024), employs Convolutional Neural Networks (CNNs) to
recognize characters within bounding boxes, leveraging their ability to learn and extract features
from images automatically. The MobileNet model is integrated into this architecture to provide
further refinement in character recognition. Unlike traditional CNNs that operate on entire images,
MobileNet focuses specifically on the characters within bounding boxes, ensuring precise decoding
of sequences of graphemes. Additionally, multiple layers of CNN-based classification models are
utilized as part of the validation process, working in conjunction with MobileNet to validate and re-
fine the accuracy of character recognition. Furthermore, transfer learning techniques are explored to
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enhance the approach’s performance. Pre-trained transfer learning-based models, including popular
architectures like ResNet and DenseNet, are considered for adaptation and fine-tuning to improve
character recognition within bounding boxes. The highest training accuracy is 94% and the highest
validation accuracy is 95%. The model has been trained on 40 classes with around 12,264 images
with pre-augmentation. The validation data does not undergo the augmentation which has 200 im-
ages in total for all the classes. By integrating transfer learning techniques with the ASR-Net model,
the initial approach aims to leverage the knowledge and features learned from large datasets, thereby
improving the accuracy and efficiency of character recognition in diverse scenarios.

Figure 5: Comparison of confusion matrices for Prototypical Networks and ProtoSegment Network,
presented on 15 classes here to save space.

Table 2: Grapheme Classification Accuracies on IVC Dataset. ASR-net is validated only where
sufficient data were available.

5-way Acc. 15-way Acc. Acc.
Model 1-shot 1-shot 12,264 Images

Prototypical Networks Snell et al. (2017) 90.7% 92.4% -
ASR-Net DL Atturu (2024) - - 95%
ProtoSegment (Ours) 99.4% 99.9% -

4.2.2 FEW-SHOT LEARNING APPROACH

For our few-shot learning approach, we use ProtoSegment and evaluate it against ProtoNets. The
model was trained using the Adam optimizer with a learning rate of 0.001 and a gamma value of 0.5.
The learning rate was decayed by a factor of 0.1 every 20 steps. The input images were expected
to have 3 channels (RGB) with a size of 32x32 pixels and channels were repeated for gray scale
images. The model was trained for 200 episodes, with evaluation occurring after every episode.
The distance metric used for computing similarities between embeddings and prototypes was the
Euclidean distance. During training, the number of classes was set to 5 and 15 (refer to Tab. 2),
and the number of query samples per class was set to 1 and the number of support samples per class
was set to 1. For validation, the number of classes was also set to 5 and 15 (Tab. 2). The training
process was set to run for 100 iterations with a patience of 10 epochs and a minimum improvement
threshold of 0.01 for early stopping. The results presented in Table 2, represent the current state-
of-the-art on Indus Valley Script to our knowledge for grapheme identification. The testing process
involves sampling graphemes classes randomly from the IVC dataset during each iteration. Due to
this random sampleing and the limited number of classes being tested per iteration, the resulting
confusion matrix (Figure 5) appears near perfect for ProtoSegment. This is because the models are
being evaluated on a subset of the entire dataset in each iteration. The confusion matrix indicates
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Figure 6: Confusion matrix for Indus Valley Civilization (IVC) grapheme classification for 31
classes, highlighting misclassifications of visually similar symbols (M373, M296, M228, M51, and
M9) with corresponding example images from our proposed model. Misrecognized graphemes are
visually very similar.

that all grapheme samples within the selected 15 classes for this iteration were correctly classified in
the case of ProtoSegment. For each sampled class, one image is used as a query image, and another
image from the same class is used as a support image. This process is repeated for 100 iterations and
the average accuracy across all iterations is reported as the final performance metric (Table 2). The
random sampling of classes in each iteration ensures that the models are evaluated on a diverse set of
graphemes, providing a comprehensive assessment of their ability to generalize to unseen samples.

5 LIMITATIONS AND SOCIETAL IMPACT

While ProtoSegment demonstrates strong performance in grapheme identification, the confusion
matrix (Figure 6) reveals a limitation in distinguishing between visually similar graphemes. For
instance, M373 is frequently misclassified as M296, and M228 is often confused with M51. This
suggests that the model may struggle to capture subtle differences in stroke patterns or shapes, es-
pecially when graphemes share similar overall structures. Addressing this limitation could involve
incorporating additional features, such as contextual information or stroke order, to enhance the
model’s ability to discriminate between visually similar characters. Another potential avenue for
improvement lies in exploring alternative segmentation encoder architectures or incorporating at-
tention mechanisms to focus on the most discriminative features of each grapheme. The model’s
performance is inherently tied to the quality and diversity of the training data. In cases where the
available data is limited or biased, the model’s ability to generalize to unseen graphemes might be
compromised. Additionally, the model’s reliance on prototypical representations assumes a degree
of visual similarity within each grapheme class. However, variations in handwriting styles and po-
tential degradation of ancient inscriptions could introduce challenges for accurate recognition. From
a societal impact perspective, FLAIR’s potential to aid in deciphering ancient scripts like the Indus
Valley script is significant. By automating and accelerating the process of grapheme identification,
FLAIR could contribute to a deeper understanding of ancient civilizations, their languages, and their
cultural practices. However, it’s crucial to approach the interpretation of deciphered texts with cau-
tion, as misinterpretations (e.g., between stylistic variation of a grapheme as a different one) could
have unintended consequences for historical narratives and cultural heritage. Upon acceptance of
this paper, we will release FLAIR, including the source code, pre-trained model weights, and rele-
vant documentation, on GitHub to ensure transparency and reproducibility of our results.
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6 CONCLUSION

In conclusion, this paper presents FLAIR as not only a novel approach for Indus script grapheme
identification but also as a potential foundational model for OCR. By leveraging few-shot learn-
ing and incorporating the modified segmentation encoder network (ProtoSegment), FLAIR demon-
strates the capability to achieve state-of-the-art performance even with the limited labeled data avail-
able for the Indus script. The model’s ability to generalize from minimal examples and its potential
adaptability to unseen symbols position it as a powerful tool for not only digitizing and analyzing
ancient scripts but also potentially contributing to their decipherment. The development and eval-
uation of FLAIR on the curated IVC dataset establishes a benchmark for future research, inviting
further exploration and refinement. The insights gained from FLAIR’s performance can inform the
design of future models, potentially incorporating additional features like contextual information or
stroke order to further enhance recognition accuracy. By automating and accelerating the process
of grapheme identification, FLAIR can significantly contribute to the field of digital humanities, in-
cluding paleography, epigraphy, and historical linguistics, enabling researchers to efficiently process
and analyze large volumes of textual data. This could lead to new discoveries and interpretations of
ancient texts, shedding light on the languages, cultures, and histories of past civilizations. While ac-
knowledging the limitations related to data quality and variability, FLAIR’s contribution to cultural
heritage preservation and its potential for broader applications in deciphering undeciphered writing
systems are significant.
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Lei Kang, Marçal Rusinol, Alicia Fornés, Pau Riba, and Mauricio Villegas. Unsupervised writer
adaptation for synthetic-to-real handwritten word recognition. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 3502–3511, 2020.

Lei Ke, Xia Li, Martin Danelljan, Yu-Wing Tai, Chi-Keung Tang, and Fisher Yu. Proto-
typical cross-attention networks for multiple object tracking and segmentation. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, volume 34, pp. 1192–1203. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/911dd89c81efc624c4e1c39381179505-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/911dd89c81efc624c4e1c39381179505-Paper-Conference.pdf
https://doi.org/10.1145/3357384.3358162
https://doi.org/10.1145/3357384.3358162
https://www.sciencedirect.com/science/article/pii/S0167865520302610
https://www.sciencedirect.com/science/article/pii/S0167865520302610
https://proceedings.neurips.cc/paper_files/paper/2021/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning of
simple visual concepts. In Proceedings of the annual meeting of the cognitive science society,
volume 33, 2011.

Iravatham Mahadevan. The indus script: texts, concordance, and tables. (No Title), 1977.

Iravatham Mahadevan and Roja Muthiah Research Library. URL https://indusscript.
in/.

Mohamed Ali Souibgui, Mohamed Ali Souibgui, Alı́cia Fornés, Alicia Fornés, Yousri Kessentini,
Yousri Kessentini, Yousri Kessentini, Crina Tudor, and Crina Tudor. A Few-shot Learning Ap-
proach for Historical Ciphered Manuscript Recognition. arXiv: Computer Vision and Pattern
Recognition, 2020. doi: 10.1109/icpr48806.2021.9413255. ARXIV ID: 2009.12577 MAG ID:
3088733400 S2ID: cb23abd7a50f0c489cea879fe6da98863b6c476f.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International conference on machine
learning, pp. 2554–2563. PMLR, 2017.

Michael Philip Oakes. Statistical analysis of the tables in mahadevan’s concordance of the indus val-
ley script. Journal of Quantitative Linguistics, 26(1):22–47, Dec 2017. doi: 10.1080/09296174.
2017.1406294.

Frederik Pahde, Mihai Puscas, Tassilo Klein, and Moin Nabi. Multimodal prototypical networks
for few-shot learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 2644–2653, January 2021.

Satish Palaniappan and Ronojoy Adhikari. Deep learning the indus script. arXiv preprint
arXiv:1702.00523, 2017.

Rajesh PN Rao, Nisha Yadav, Mayank N Vahia, Hrishikesh Joglekar, Ronojoy Adhikari, and Ira-
vatham Mahadevan. A markov model of the indus script. Proceedings of the National Academy
of Sciences, 106(33):13685–13690, 2009.

Rajesh PN Rao, Nisha Yadav, Mayank N Vahia, Hrishikesh Joglekar, Ronojoy Adhikari, and Ira-
vatham Mahadevan. Commentary and discussion: Entropy, the indus script, and language: A
reply to r. sproat. Computational Linguistics, 36(4):795–805, 2010.

Rajesh PN Rao, Rob Lee, Nisha Yadav, Mayank Vahia, Philip Jonathan, and Pauline Ziman. On
statistical measures and ancient writing systems. Language, 91(4):e198–e205, 2015.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
conference on learning representations, 2016.

Joan Andreu Sánchez, Vicent Bosch, Verónica Romero, Katrien Depuydt, and Jesse De Does. Hand-
written text recognition for historical documents in the transcriptorium project. In Proceedings
of the first international conference on digital access to textual cultural heritage, pp. 111–117,
2014.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine learn-
ing, pp. 1842–1850. PMLR, 2016.

Debjyoti Sinha and Mohamed El-Sharkawy. Thin mobilenet: An enhanced mobilenet architecture.
In 2019 IEEE 10th annual ubiquitous computing, electronics & mobile communication conference
(UEMCON), pp. 0280–0285. IEEE, 2019.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical Networks for Few-shot Learning,
June 2017. URL http://arxiv.org/abs/1703.05175. arXiv:1703.05175 [cs, stat].

12

https://indusscript.in/
https://indusscript.in/
http://arxiv.org/abs/1703.05175


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Thea Sommerschield, Yannis Assael, John Pavlopoulos, Vanessa Stefanak, Andrew Senior, Chris
Dyer, John Bodel, Jonathan Prag, Ion Androutsopoulos, and Nando de Freitas. Machine Learning
for Ancient Languages: A Survey. Computational Linguistics, 49(3):703–747, September 2023.
ISSN 0891-2017. doi: 10.1162/coli a 00481. URL https://doi.org/10.1162/coli_
a_00481.

Mohamed Ali Souibgui, Ali Furkan Biten, Sounak Dey, Alicia Fornés, Yousri Kessentini, Lluis
Gomez, Dimosthenis Karatzas, and Josep Lladós. One-shot compositional data generation for
low resource handwritten text recognition. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 935–943, 2022.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 1199–1208, 2018.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to
human-level performance in face verification. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1701–1708, 2014.

Weiliang Tang, Biqi YANG, Xianzhi Li, Yun-Hui Liu, Pheng-Ann Heng, and Chi-Wing Fu.
Prototypical variational autoencoder for 3d few-shot object detection. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 2566–2579. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/076a93fd42aa85f5ccee921a01d77dd5-Paper-Conference.pdf.

Varun Venkatesh and Ali Farghaly. Deciphering the Indus Script: Decoding Missing and Unclear
Indus signs and Identifying Anomalous Indus texts from West Asia using Markov Chain Language
Models. International Symposium on Electronic Commerce, 2023. doi: 10.1109/isec57711.2023.
10402308. S2ID: adcce564218b624cbc55b845b5e1849bbf44ecce.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Varun Venkatesh and Ali Farghaly. Identifying anomalous indus texts from west asia using markov
chain language models. In 2023 14th International Conference on Computing Communication
and Networking Technologies (ICCCNT), pp. 1–7. IEEE, 2023.

Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. CoRR, abs/1606.04080, 2016. URL http://arxiv.
org/abs/1606.04080.

Wenjian Wang, Lijuan Duan, Qing En, Baochang Zhang, and Fangfang Liang. Tpsn:
Transformer-based multi-prototype search network for few-shot semantic segmentation. Com-
puters and Electrical Engineering, 103:108326, 2022. ISSN 0045-7906. doi: https://
doi.org/10.1016/j.compeleceng.2022.108326. URL https://www.sciencedirect.com/
science/article/pii/S004579062200547X.

Wenbo Hu, Hong-Jian Zhan, Cong Liu, Bing Yin, and Yao Lu. OTS: A One-shot
Learning Approach for Text Spotting in Historical Manuscripts. arXiv.org, April 2023.
doi: 10.48550/arxiv.2304.00746. ARXIV ID: 2304.00746 MAG ID: 4362598601 S2ID:
a3ecd977e28f189f5acc0f3a073367b4ca5e5b12.

Yang Li, Yiting Dong, Dongcheng Zhao, and Yijing Zeng. N-Omniglot: a Large-
scale Dataset for Spatio-Temporal Sparse Few-shot Learning. 2021. S2ID:
0e887315f733ba44ea37cac0f813db113ad18592.

13

https://doi.org/10.1162/coli_a_00481
https://doi.org/10.1162/coli_a_00481
https://proceedings.neurips.cc/paper_files/paper/2023/file/076a93fd42aa85f5ccee921a01d77dd5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/076a93fd42aa85f5ccee921a01d77dd5-Paper-Conference.pdf
http://arxiv.org/abs/1606.04080
http://arxiv.org/abs/1606.04080
https://www.sciencedirect.com/science/article/pii/S004579062200547X
https://www.sciencedirect.com/science/article/pii/S004579062200547X

	Introduction
	Related Work
	Method
	IVC Dataset Pre-processing
	ProtoSegment Model

	Experiments and Results
	Omniglot Few-Shot Classification
	IVC Few-Shot Classification
	Deep Learning Approach
	Few-Shot Learning Approach


	Limitations and Societal Impact
	Conclusion

