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Abstract

McKean-Vlasov stochastic differential equations (MV-SDEs) provide a mathe-1

matical description of the behavior of an infinite number of interacting particles2

by imposing a dependence on the particle density. These processes differ from3

standard Itô-SDEs to the extent that MV-SDEs include distributional information4

in their individual particle parameterization. As such, we study the influence of5

explicitly including distributional information in the parameterization of the SDE.6

We first propose a series of semi-parametric methods for representing MV-SDEs,7

and then propose corresponding estimators for inferring parameters from data8

based on the underlying properties of the MV-SDE. By analyzing the properties of9

the different architectures and estimators, we consider their relationship to standard10

Itô-SDEs and consider their applicability in relevant machine learning problems.11

We empirically compare the performance of the different architectures on a series12

of real and synthetic datasets for time series and probabilistic modeling. The results13

suggest that including the distributional dependence in MV-SDEs is an effective14

modeling framework for temporal data under an exchangeability assumption while15

maintaining strong performance for standard Itô-SDE problems due to the richer16

class of probability flows associated with MV-SDEs.17

1 Introduction18

(a) Itô-SDE (b) MV-SDE

Figure 1: SDE sample paths of a double-well po-
tential, where the particles (a) do not interact and
(b) exhibit complex phase transitions as a result
only of interaction via weak attraction.

Stochastic differential equations (SDEs) model19

the evolution of a stochastic process through two20

functions known as the drift and diffusion func-21

tions. Beginning with Itô-SDEs, where individ-22

ual sample paths are assumed to be independent,23

neural representations of the drift and diffusion24

have achieved high performance in many appli-25

cations, such as time series and generative mod-26

eling [Song et al., 2020, Tashiro et al., 2021].27

On the other hand, interacting particle systems28

are also used to model stochastic processes using29

many of the same characteristics as an Itô-SDE,30

but they additionally dictate an interaction between the different sample paths [Liggett, 1997]. When31

the number of particles approaches infinity, these processes generalize Itô-SDEs to nonlinear SDEs32

known as McKean-Vlasov SDEs (MV-SDEs). The nonlinearity arises from the individual particle33

dependence on the whole particle density, often in the form of a mean-field term represented by an34

expectation with respect to the particle density. This distributional dependence allows for greater35

flexibility in the time marginal distributions that the MV-SDE can represent versus the Itô-SDE. An36
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example of the differences between the two frameworks is illustrated in Figure 1 where Figure 1a37

depicts an Itô-SDE where the sample paths are independent and Figure 1b depicts a MV-SDE where38

the sample paths interact through distributional dependence. While these models appear in a variety39

of disciplines such as in finance [Feinstein and Søjmark, 2021], biology [Keller and Segel, 1971], and40

social sciences [Carrillo et al., 2020], relatively few works have considered the problem of estimating41

parameters from observations or their application in machine learning tasks.42

This brings us to a motivating question:43

(Q1) Can we develop theoretically justified neural architectures to represent MV-SDEs?44

To answer (Q1), we use the relationship between the approximation capabilities of neural networks45

and properties of MV-SDEs. We consider two ideas: (i) expressing a layer in a neural network as an46

expectation with respect to a density and (ii) using generative models to capture distributions and47

generate samples.48

Our second question relates the theoretical generality of MV-SDEs to Itô-SDEs:49

(Q2) Does including explicit distributional dependence empirically affect modeling capabilities?50

We discuss a few theoretical properties that motivate this question and answer the question empirically51

by comparing different architectures for applications in time series and in probabilistic modeling.52

1.1 Related work53

Methods that estimate MV-SDEs from observations often assume known interaction kernels and54

drift parameters. They then rely on a large number of samples at regularly spaced time intervals55

to empirically approximate the expectation in the mean-field term [Messenger and Bortz, 2022,56

Della Maestra and Hoffmann, 2022, Yao et al., 2022, Della Maestra and Hoffmann, 2023]. In Pavliotis57

and Zanoni [2022], the authors describe a method of moments estimator for the parameters of the58

MV-SDE. Other approaches concerned analyzing the partial differential equation (PDE) associated59

with MV-SDEs as in Gomes et al. [2019]. In our work, we are primarily concerned with inference60

in regions where we have limited time-marginal data and the number of samples is not large. Other61

applications of MV-SDEs in machine learning topics include estimating optimal trajectories in scRNA-62

Seq data [Chizat et al., 2022] and stochastic control problems relating to mean-field games [Han et al.,63

2022]. Ruthotto et al. [2020] considered a machine learning approach for solving certain kinds of64

mean field games and mean field control problems. Inverse problems can also be solved by deriving65

an appropriate MV-SDE as the authors describe in Crucinio et al. [2022]. Extensive analysis of the66

dynamics of the parameters of a neural network under stochastic gradient descent has been conducted67

using the theory from MV-SDEs, e.g. [Hu et al., 2021]. These methods use a pre-described form of68

the drift to conduct their analyses whereas we’re interested in learning a representation of the drift.69

Our Contributions To address the lack of non-parametric MV-SDE estimators in the existing litera-70

ture, this paper contributes the following: First, we present two neural architectures for representing71

MV-SDEs based on learned measures and generative networks; then, we present three estimators,72

based on maximum likelihood, used in conjunction with the architectures without prior knowledge73

on the structure of the drift; next, we characterize the properties of implicit regularization and richer74

probability flows of these architectures; finally, we empirically demonstrate the applicability of the75

architectures on time series and generative modeling.76

2 Properties of MV-SDEs77

We begin by describing the background and properties of the transition densities of MV-SDEs.78

Figure 2 illustrates some of these concepts qualitatively where we first consider non-local dynamics79

and then consider jumps in the sample paths.80

2.1 Background81

Consider a domain D ⇢ Rd and let Pk(D) be the space of all probability distributions supported on82

D with finite kth moment. Let Wt 2 Rd be a d-dimensional Wiener process and let Xt 2 Rd be a83
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solution to the following MV-SDE84

dXt = b(Xt, pt, t)dt+
p
⌃(Xt, pt, t)dWt (1)

where pt denotes the law of Xt at time t and
p
⌃ denotes the Cholesky decomposition of ⌃. We85

assume that the drift vector b : Rd
⇥P2(D)⇥R+ ! Rd and the diffusion matrix ⌃ : Rd

⇥P2(D)⇥86

R+ ! SPD(Rd⇥d) are globally Lipshitz for the existence and uniqueness of the solution, with SPD87

denoting the space of symmetric, positive definite matrices.88

We focus on the case where the diffusion coefficient is a known constant, �, and focus on estimating89

the drift, b, from data. In addition, for simplicity in analysis, we suppose that b factors linearly90

into a non-interacting component, and an interacting component, where the mean-field term with91

dependence on pt is often written in terms of an expectation, specifically92

dXt = f(Xt, t)dt+ Eyt⇠pt [' (Xt, yt)]dt+ �dWt (2)

where f : Rd
⇥ R+ ! Rd can be seen as the Itô drift, the expectation as the mean-field drift, and93

' : Rd
⇥ Rd

! Rk as the interaction function describing the interaction between particles, e.g.94

attraction with '(x, y) = �(x� y) in Figure 1b and the left side of Figure 2. We also assume that95

all coefficients exhibit sufficient regularity such that the empirical law converges to the true law of96

the system (i.e. 1
N

PN
i=1 �X(i)

t
!N!1 pt(Xt)), i.e. propagation of chaos holds [Méléard, 1996].97

As mentioned, unlike Itô-SDEs which only consider dependence on Xt and t, MV-SDEs also depend98

on the marginal time distribution pt. By introducing a dependence on the marginal law, the transition99

density of the process satisfies a richer class of functions.100

2.2 Non-locality of the transition density101

Following the background, we describe a favorable property of the MV-SDE that induces non-local102

dependencies in the state space. The transition density of (2) can be written as the non-linear PDE103

@tpt(x) = �r ·

0

BB@ ptf(x)
| {z }

Itô Drift

+ pt

Z
'(x� yt)pt(yt)dyt

| {z }
Non-Local Interactions

�
�2

2
rpt

| {z }
Diffusion

1

CCA . (3)

This non-local behavior has a variety of implications. For example, the distribution of particles “far104

away” from a reference particle can affect the behavior of the reference particle. This property is105

illustrated in the left side of Figure 2 with an example from the mean-field FitzHugh-Nagumo model106

used to model spikes in neuron activation, leading to interactions between distinct spikes [Crevat107

et al., 2019]. Notably, this is not possible when considering only the Itô drift, since that operator acts108

locally on the density.109

2.3 Discontinuous sample paths110

Figure 2: MV-SDE sample paths with non-local
dynamics (left) and discontinuities (right).

The richer class of densities modeled by MV-111

SDEs has direct influence on individual sample112

paths. In a modeling scenario, we may wish to113

approximate a process that exhibits jumps. For114

example, in finance, a number of related entities115

may have common exposure and experience fail-116

ure simultaneously [Nadtochiy and Shkolnikov,117

2019, Feinstein and Søjmark, 2021]. Similarly,118

in neuroscience, a number of neurons spiking119

simultaneously results in discontinuities in the120

sample paths [Carrillo et al., 2013]. The fact121

that the interaction of many particles can cause blowups leads to a remarkable property of MV-SDEs122

that allows discontinuous paths. The major benefit of this property is that we do not need to consider123

an additional jump noise process – we only need to specify a particular interaction between the124

particles to induce the jump behavior. A simple proof for the case of positive feedback is given125

in Hambly et al. [2019, Theorem 1.1].126

Having described the theoretical advantages of MV-SDEs as compared to Itô-SDEs, we will proceed127

to discuss the neural architectures for representing these processes.128
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Figure 3: Schematic comparing neural architectures for modeling MV-SDEs. Implicit measure (IM)
architecture uses a mean-field layer that represents particles as learned weights; the empirical measure
(EM) architecture computes the expectation with the observed particles; the marginal law (ML)
estimates the particle density, computing the expectation with samples from the estimated density.

3 Mean-field Architectures129

We now describe methods for representing the mean-field drift of a MV-SDE in (2). We first consider130

a modification of the cylindrical architecture [Pham and Warin, 2022] that empirically computes131

the expectation using observations, and denote it as the empirical measure (EM) architecture. We132

then propose two architectures – an architecture based on representing a learned measure with neural133

weights, denoted as the implicit measure (IM) architecture, and a generative architecture based on134

representing the marginal law of the samples (ML). Figure 3 provides a schematic of the different135

architectures and mean-field representations. We denote a function f parameterized by parameters ✓136

as f(·; ✓).137

3.1 Empirical measure architecture138

Suppose we observe N particles at each time t given by {X(i)
t }

N
i=1 and denote the discrete measure139

associated with these observations as p�t = 1
N

PN
i=1 �X(i)

t
. Then, we can use p�t to approximate the140

expectation in (2) as141

Eyt⇠pt [' (Xt, yt)] ⇡ Eyt⇠p�
t
[' (Xt, yt; ✓)] =

1

N

NX

i=1

'
⇣
Xt, X

(i)
t ; ✓

⌘
(4)

for a neural network '(·, ·; ✓) describing the interaction function between the particles [Pham and142

Warin, 2022]. Suppose the non-mean field component f is also represented with a neural network143

f(·, t; ✓). Assuming that ' and f are well learned, this architecture can represent the true MV-SDE144

drift in the limit as the number of observations N ! 1. We refer to this architecture as the145

empirical measure (EM) architecture since at each time step the expectation is taken with respect to146

the empirical measure derived from the observations.147

3.2 Implicit measure architecture148

While the EM architecture in (4) explicitly defines the relationship between the law pt and the149

interaction ', it relies on obtaining the empirical measure at each time point. This may be difficult in150

practice for a variety of reasons such as having few samples or the lack of data at some time points.151

Instead, let us first recall that a single layer in a multilayer perceptron (MLP) can be written in terms152

of an expectation as153

MLPW,b(x) =

Z
� (Wx+ b) d⌫ (W, b) (5)

where the expectation is taken over ⌫ (·), a measure over the space of parameters y = (W, b), and �154

is an activation function.155

When ⌫ = 1
N

PN
i=1 �y(i) , a discrete measure with N particles, the expectation is exactly a single156

layer of width N , suggesting a correspondence between an empirical measure with N samples and a157

single layer of width N . Building on this correspondence, we propose a mean-field layer:158

Definition 3.1 (Mean-field Layer). Define the weight of the mean-field layer with width n as the159

matrix W0 2 Rn⇥d and denote its ith row as W (i)
0 . The mean-field layer then is defined by the160
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operation161

MF(n)('(Xt)) :=
1

n

nX

i=1

'(Xt,W
(i)
0 )

dPt

dP0
. (6)

The mean-field layer (MF) can be thought of as another layer within the network architecture that162

approximates the law pt. Each row W (i)
0 is of size Rd, corresponding to the dimensions of X(i)

t 2 Rd.163

The activation function of the mean-field layer is the average over the augmented dimension over164

which MF operates. The change of measure dPt
dP0

can be learned as part of the estimator of the165

interaction function, '(·, ·, t; ✓). Importantly, the above representation allows modeling mean-field166

interactions without the need for a full set of observations at each time point and without the need to167

explicitly represent the distribution pt at each time point. Assuming that ' and MF are well learned,168

this architecture can represent the true MV-SDE drift in the limit as the width n ! 1. We note169

empirically that a finite n is sufficient and we provide examples of ablations in the appendix.170

A similar analysis can be made for the standard MLP architecture. However, the explicit separation171

of f and ' is not enforced in this case. This leads us to the following remark:172

Remark 3.2 (Itô-SDEs with drift represented using MLPs can model MV-SDEs). From the above173

discussion, the expectation with respect to the law pt may be implicitly represented by a MLP.174

Our motivation is then concerned with how a relatively more explicit distribution dependence with175

' and MF affect modeling capabilities. This explicit structure lends to an implicit regularization176

that promotes a smaller norm of the mean-field component under a maximum likelihood estimation177

framework, which we detail later in Section 5.1.178

3.3 Marginal law architecture179

A solution to the MV-SDE is the pair (X, p) such that pt = Law(Xt). In addition, if p is a solution180

to the SDE in (2), it is also a weak solution to the PDE in (3), and the converse holds. For this reason,181

p is often itself the main object of study. In the marginal law (ML) architecture, in conjunction with182

the drift, we introduce a generative model for representing the time-varying density. In this case, we183

approximate the expectation in (2) as184

Eyt⇠pt [' (Xt, yt)] ⇡ Eyt⇠P̂t
[' (Xt, yt; ✓)] =

1

n

nX

i=1

'
⇣
Xt, X̂

(i)
t ; ✓

⌘
(7)

where the expectation is taken with respect to the discrete measure derived from samples {X̂(i)
t }

n
i=1185

from the generative model P̂t. The parameter estimation problem then requires optimizing both the186

generative model P̂t and the networks f and ' representing the drift, while ensuring consistency187

between the two. Using knowledge of the PDE in (3), we regularize P̂t such that it matches the flow188

relating to the drift. Additional details regarding the PDE and its relationship to the ML architecture189

are in the appendix.190

4 Parameter Estimation191

Having presented the relevant architectures, we now describe the procedures for estimating the192

parameters of the different architectures. We first describe the likelihood function for use in cases193

with regularly sampled data. We then describe a bridge estimator for cases of irregularly sampled194

data. Finally, we describe an estimator for the generative architecture based on both the likelihood195

function and the transition density. For this section, we assume that we observe multiple paths, i.e.,196 n
{Xtj}

(i)
j=1...K

o

i=1...N
. Full details of all algorithms are in the appendix.197

4.1 Maximum likelihood estimation198

We use an estimator based on the path-wise likelihood derived from Girsanov’s theorem and an199

Euler-Maruyama discretization for the likelihood, considered in Sharrock et al. [2021]. The likelihood200
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function is given as201

L(✓; t1, tK) := exp

✓
1

�2

Z tK

t1

b (Xs, ps, s; ✓) dXs �
1

2�2

Z tK

t1

b (Xs, ps, s; ✓)
2 ds

◆
. (8)

Following discretization, with the approximations �Xtj = Xtj+1 �Xtj and �tj = tj+1 � tj , the202

log-likelihood is approximated by203

log L(✓; t1, tK) ⇡
K�1X

j=1

b
�
Xtj , ptj , tj ; ✓

�
(Xtj+1 �Xtj )�

1

2

K�1X

j=1

b
�
Xtj , ptj , tj ; ✓

�2
(tj+1 � tj).

If the time interval �t is large, then this likelihood loses accuracy, as is a property of the Euler-204

Maruyama discretization. Optimization is performed using standard gradient based optimizers with205

the drift b represented as one of the presented architectures.206

4.2 Estimation with Brownian bridges207

Often data are not collected at uniform intervals in time, but rather, the time marginals may be208

collected at irregular intervals. In that case, we consider an interpolation approach to maximizing the209

likelihood following the results of Lavenant et al. [2021] and Cameron et al. [2021] in the Itô-SDE210

case. We can write the likelihood conditioned on the set of observations (dropping the particle index211

for ease of notation) as212

LBB(✓) = EQ

2

4
Y

j=1...K�1

1{Ztj+1 �Xtj+1}L(✓; tj , tj+1)

3

5

where {Zs : s 2 [tj , tj+1]} is a Brownian bridge from Xtj to Xtj+1 and Q is the Wiener measure.213

Brownian bridges can easily be sampled and reused for computing the expectation, which reduces214

the variance of the estimator. By applying Jensen’s inequality, we can write an evidence lower bound215

(ELBO) as216

logLBB � EQ

2

4
X

j=1...K�1

logL(✓; tj , tj+1)

����
�
Ztj = Xtj

 K

j=1

3

5 . (9)

The ELBO in this case aims to fit the observed marginal distributions exactly while penalizing217

deviations in regions without data that deviate from the Brownian bridge paths.218

4.3 Estimation with explicit marginal law P̂t219

Returning to the ML architecture described in Section 3.3, where we explicitly model the density pt220

with a generative network P̂t, our estimator should enforce the regularity of pt through its PDE in (3).221

Let the parameters of the drift be ✓ and the parameters of the generative model be �, then we solve222

the optimization problem223

max
✓,�

E
⇥
L(✓,� | {Xtj}j=1...K)

⇤
s.t. (10)

Z tj+1

tj

���P̂s(x;�)� E
h
P̂tj+1

⇣
X̂tj+1 ;�

⌘
| X̂s = x

i��� ds = 0 (11)

for time intervals indexed by j = 1 . . .K � 1, the state space x 2 supp(Xt), and where the224

trajectories of X̂t follow the dynamics of the ML architecture, specifically225

dX̂t = f(X̂t, t; ✓)dt+ Eyt⇠P̂t(·;�)

h
'
⇣
X̂t, yt; ✓

⌘i
dt+ �dWt. (12)

The likelihood at the observed margins is first maximized in (10). In (11), the marginals at previous226

times are regularized using the correspondence between the PDE and its associated SDE via the227

nonlinear Kolomogorov backwards equation [Buckdahn et al., 2017], which describes pt as an228

expectation of trajectories at a terminal time, i.e. pt(x) = E[pT (XT )|Xt = x] for t < T .229
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5 Modeling Properties230

Having discussed the architectures and estimators, we now discuss specific properties of the modeling231

framework, which follow from the theoretical discussion presented in Section 2. We first discuss how232

the factorization into ' and MF lends to an implicit regularization of the IM architecture. We then233

compare the gradient flows of Itô-SDEs and MV-SDEs.234

5.1 Implicit regularization of the implicit measure architecture235

Closely related to the IM architecture are neural Itô-SDEs, where we previously remarked can model236

MV-SDEs. On the other hand, the factorization of the IM architecture into ' and MF leads to a type237

of implicit regularization when the parameters are estimated using gradient descent.238

Proposition 5.1 (Implicit Regularization). Suppose f , ' known and fixed. Further, assume that ' is239

twice differentiable. Then, for each time step t, the minimizing finite width MF with weight matrix240

W0 2 Rn⇥d and ith row W (i)
0 under gradient descent satisfies the following optimization problem241

min
W0

X

i=1...n

X

j=1...d

'(Xt,W
(i)
0 )j s.t. E


1

2�t
kXt+�t �Xt � b(Xt, pt, t)k

2
�
= 0.

Proof. We follow the blueprint in Belabbas [2020] and give full details in the appendix.242

Proposition 5.1 effectively says that the mean-field system approximated is the one that has the least243

influence from the other particles under perfectly matched marginals. In the case where ' can be244

decomposed as a norm, this amounts to finding the drift parameterized by weight W0 with smallest245

norm while still matching the marginals.246

5.2 Gradient flows of the MV-SDE247

To illustrate the difference between the MV-SDE and Itô-SDE particle flows, we invoke the analysis248

in Santambrogio [2017, Section 4.6] to describe the functionals that are minimized by each.249

Remark 5.2 (Functional Minimizer). Consider two drifts B = rf(X) and BMF = B +250

E[r'(X � y)]. Consider a functional F [p] =
R
log pdp+

R
f(X)dp for some measure p absolutely251

continuous with respect to the Lebesgue measure. Then, the gradient flow satisfying the linear252

Fokker-Planck equation with drift B minimizes F . On the other hand, the nonlinear Fokker-Planck253

associated with drift BMF minimizes the functional FMF[p] = F [p] +
R
'(X � Y )dp(X)dp(Y ).254

This has an important implication, for example, if we take '(·) = 2k · kdq
dp � k · k

2
� k · k

2
⇣

dq
dp

⌘2
255

then the functional is minimizing the squared energy distance between a target measure q as well as256

the entropy. We use this example to motivate some of the experiments on probabilistic modeling.257

6 Numerical Experiments258

We discussed Q1 on modeling and inferring distributional dependence. We now wish to answer259

Q2 and quantify the effect of distributional dependence in machine learning tasks. To do this, we260

test the methods on synthetic and real data for time series estimation and sample generation. The261

main goal is to determine the difference between standard Neural Itô-SDE and the proposed Neural262

MV-SDEs under different modeling scenarios. In that sense, the baseline we consider is the Itô-SDE263

parameterized using an MLP. However, we also consider other deep learning based methods for264

comparison in a broader context. We abbreviate the different architectures as the Empirical Measure265

(EM) in Section 3.1, Implicit Measure (IM) in Section 3.2, and Marginal Law (ML) in Section 3.3.266

Full descriptions of the models, baselines, and datasets are given in the appendix.267

Synthetic data experiments Motivated by the application of MV-SDEs in physical, biological,268

social, and financial settings, we benchmark the proposed methods on 4 canonical MV-SDEs: the269

Kuramoto model which describes synchronizing oscillators [Sonnenschein and Schimansky-Geier,270

2013], the mean-field FitzHugh-Nagumo model which characterizes spikes in neuron activations271
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Figure 4: Top row: sample paths from the different synthetic datasets. Bottom row: mean squared
error (MSE) of different architectures’ performance on drift estimation, under the effect of different
levels of observation noise. Reported value is an average of 10 runs.

[Mischler et al., 2016], the opinion dynamic model on the formation of opinion groups [Sharrock272

et al., 2021], and the mean-field atlas model for pricing equity markets [Jourdain and Reygner,273

2015]. We additionally benchmark the proposed methods on two Itô-SDEs: an Ornstein–Uhlenbeck274

(OU) process and a circular motion equation to determine the performance on Itô-SDEs. Finally, to275

understand the performance on discontinuous paths, we benchmark the proposed methods on an OU276

process with jumps. We focus on recovering the drift from observations.277

Figure 5: Left: Average paths of true and estimated OU
process with 4 jumps. Right: Energy distance between
true and generated paths.

Since the true drifts of the synthetic data are278

known, we directly compare the estimated279

drifts to the true drifts. The performance280

on five different datasets with three differ-281

ent levels of added observational noise is282

presented in Figure 4. The proposed mean-283

field architectures outperform the standard284

MLP in modeling MV-SDEs; moreover,285

our experiments on OU and circular pro-286

cess suggest that incorporating explicit dis-287

tributional depedence does not diminish the288

performance in estimating non-interacting289

Itô-SDEs. When modeling processes with290

jump discontinuities, Figure 5 highlights the flexibility of the proposed methods, IM, ML, to match291

such models. The EM likely does not perform as well due to the high variance of the empirical292

measure, leading to difficulties in learning. Additionally, the MLP does not have an explicit decompo-293

sition between the MV and Itô components, resulting in issues when estimating the feedback between294

the particles inducing jumps.295

Real data experiments Extending from the synthetic examples, we consider two real examples:296

brain activity recorded by electroencephalograms (EEG), which is closely related to the Kuramoto297

model [Nguyen et al., 2020]; and chemically stimulated movement of organisms (chemotaxis), which298

can be modeled by the Keller-Segel model [Tomašević, 2021, Keller and Segel, 1971].299

We evaluate the proposed architectures in these modeling tasks by comparing the goodness-of-fit300

of generated path samples to the observed path samples. We compute the Continuous Ranked301

Probability Score (CRPS) defined in Gneiting and Raftery [2007] (see appendix for details) for302

the 1-dimensional EEG data, and the normalized MSE (normalized with sample variance) for the303

3-dimensional chemotaxis data with respect to the held out data. We also benchmark against the304

DeepAR probabilistic time series forecaster [Salinas et al., 2020] with RNN, GRU, LSTM, and305

Transformer (TR) backbones as another baseline model to compare the goodness-of-fit.306

The performances of different architectures are presented in Table 1. For EEG, the proposed307

architectures generally perform better than the baselines in generating paths within the training time308

steps, and on par with the DeepAR architectures for forecasting (full results presented in appendix).309

For chemotaxis data, the MV-SDE based architectures all outperform the DeepAR baselines.310
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Table 1: Time series estimation on held out trajectories. NA/A stands
for non-alcoholics/alcoholics. Bolded values and italic values are best
and second best respectively.

CRPS # MSE #
NA-EEG A-EEG C.Cres E.Coli

MLP (Itô) 5.52 (1.40) 4.33 (1.14) 0.096 (0.002) 0.080 (0.003)
IM 5.23 (1.24) 4.30 (1.21) 0.094 (0.003) 0.080 (0.001)
ML 5.10 (1.22) 4.05 (1.12) 0.093 (0.002) 0.084 (0.002)
EM 5.35 (1.22) 4.09 (1.11) 0.093 (0.004) 0.086 (0.004)

LSTM 6.27 (2.02) 5.68 (2.56) 1.159 (0.234) 0.585 (0.350)
RNN 6.22 (2.07) 4.64 (1.38) 1.563 (1.070) 0.773 (0.092)
GRU 6.35 (2.01) 6.18 (2.73) 0.826 (0.289) 0.568 (0.301)
TR 5.95 (1.45) 4.29 (1.36) 1.503 (0.212) 1.204 (0.212)

Figure 6: ELBO of generated
paths from standard Gaussian
to eight Gaussian mixture (in
increasing dimension) evalu-
ated against OT mapping.

311

Generative modeling experiments We focus on applying the bridge estimator discussed in Sec-312

tion 4.2 to map between a Gaussian and a target distribution. We are interested in two aspects: 1) the313

properties of the learned mapping, and 2) the generated trajectories. We first study the properties of314

the learned mapping using a synthetic eight Gaussian mixture with increasing dimensionality. We315

compare the performance of different architectures through the ELBO of the sample paths generated316

by the optimal transport (OT) mapping between the initial distribution and held out target samples.317

We next evaluate the generated trajectories through the energy distance (see appendix for details)318

between generated and held-out data for 5 real data density estimation experiments. In addition,319

we compare to common density estimators of variational autoencoder (VAE) [Kingma and Welling,320

2013], Wasserstein generative adversarial network (W-GAN) [Gulrajani et al., 2017], masked autore-321

gresive flow (MAF) [Papamakarios et al., 2017] and score-based generative modeling through SDEs,322

which corresponds to a constrained form of the MLP [Song et al., 2020]. The MV-SDE architectures323

not only outperform the Itô architecture for all dimensions in the eight Gaussian experiment, as324

shown in Figure 6, but also for the 5 real data density estimation experiments, as shown in Table 2,325

while outperforming common baselines. All sampling is performed using standard Euler-Maruyama,326

with full details of the sampling and inference algorithms in the appendix. This again suggests the327

MV-SDE provides a more amenable probability flow for modeling compared with the Itô case.328

Table 2: Density estimation: Energy distance between observed samples and generated samples of
different methods. Bolded values and italic values are best and second best correspondingly.

POWER MINIBOONE HEPMASS GAS CORTEX
MLP (Itô) 0.342 (0.096) 0.674 (0.048) 0.537 (0.052) 0.405 (0.08) 0.742 (0.062)
IM 0.292 (0.078) 0.395 (0.045) 0.405 (0.025) 0.287 (0.082) 0.53 (0.026)
ML 0.282 (0.083) 0.443 (0.034) 0.366 (0.03) 0.305 (0.063) 0.568 (0.03)
EM 0.328 (0.116) 0.455 (0.036) 0.429 (0.046) 0.298 (0.036) 0.577 (0.037)

VAE 1.19 (0.024) 2.117 (0.148) 1.763 (0.031) 1.516 (0.023) 2.412 (0.197)
W-GAN 1.248 (0.017) 2.079 (0.003) 1.819 (0.013) 1.3 (0.016) 2.19 (0.011)
MAF 0.288 (0.041) 0.467 (0.009) 0.308 (0.017) 0.519 (0.033) 0.532 (0.026)
Score-Based 0.302 (0.049) 0.499 (0.019) 0.324 (0.028) 0.562 (0.043) 0.582 (0.020)

7 Discussion329

In this paper we discuss an alternative viewpoint of the standard Itô-SDE parameterization. In330

particular, we focus on MV-SDEs and discuss how neural networks can represent a process that331

depends on the distribution, and we describe ways of making this dependence more explicit. We332

demonstrated the efficacy of the proposed architectures on a number of synthetic and real benchmarks.333

The results suggest that the proposed architectures provide an improvement over baselines in certain334

generative modeling and time series applications.335

Limitations We only studied the implicit regularization of the IM architecture under gradient descent,336

but the extension of the analysis to the other proposed architectures is important to understand the337

corresponding regularization. Additionally, computing expectations incurs additional computational338

cost. Improving the computational accuracy using a multilevel scheme as proposed in Szpruch et al.339

[2019] could improve the performance of the methods.340
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