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ABSTRACT

In a distributed machine learning setting like Federated Learning where there are
multiple clients involved which update their individual weights to a single central
server, often training on the entire individual client’s dataset for each client be-
comes cumbersome. To address this issue we propose CORESET-PFEDBAYES:
a personalized coreset weighted federated learning setup where the training up-
dates for each individual clients are forwarded to the central server based on
only individual client coreset based representative data points instead of the en-
tire client data. Through theoretical analysis we present how the average gen-
eralization error is minimax optimal up to logarithm bounds (upper bounded by

O(n− 2β
2β+Λ

k log2δ
′
(nk))) and lower bounds of O(n− 2β

2β+Λ

k ), and how the overall
generalization error on the data likelihood differs from a vanilla Federated Learn-
ing setup as a closed form function ℑ(w, nk) of the coreset weights w and core-
set sample size nk. Our experiments on different benchmark datasets based on
a variety of recent personalized federated learning architectures show significant
gains as compared to random sampling on the training data followed by federated
learning, thereby indicating how intelligently selecting such training samples can
help in performance. Additionally, through experiments on medical datasets our
proposed method showcases some gains as compared to other submodular opti-
mization based approaches used for subset selection on client’s data.

1 INTRODUCTION

Distributed machine learning has a wide variety of applications in various domains like in recom-
mendation systems (Zhang et al., 2022a), healthcare and other areas. Given the advantages of data-
privacy, heterogeneity and resource efficiency, federated learning in particular stands out among all
other learning methods. For instance in recommendation systems based work (Luo et al., 2022)
(Zhang et al., 2023) or in healthcare (Lu et al., 2022), personalization and privacy preserving based
recommendations are currently most focused upon. However, often these require inference on larger
datasets which is often computationally expensive given the fact that often these datasets only consist
of a subset of representative data points (Kaushal et al., 2018), (Maheshwari et al., 2020).

Recently, researchers have tried to use Bayesian coresets for performing inference (Campbell &
Beronov, 2019),(Campbell & Broderick, 2018). Bayesian coreset refers to a subset of the complete
dataset which can be used to approximate the posterior inference as if it was performed on the com-
plete dataset. In Federated Learning, we have a distributed machine learning model where there are a
set of clients each having their own share of data and a server. This is prevalent in many production
level systems such as recommendation systems or machine learning models deployed for mobile

1



Published as a conference paper at ICLR 2024

apps. It is imperative for each client to get the same user satisfiability and personalized experience
with only a small chunk of data on their local devices. Instead of training on the entire user data
for a particular client, what if we can only learn based on a representative set of the user data for
each client and achieve near optimal accuracy? In this space (Huang et al., 2022) perform coresets
optimization for vertical federated learning where empirically they show that coresets optimization
help reducing the communication complexity among clients and server in the vertical FL setting.

Our contributions are as follows:

• Proposal of a new architecture to incorporate bayesian coresets optimization in the space
of Federated Learning.

• Proposal of multiple novel objective functions that take into account the optimization prob-
lem of general Federated Learning in a Bayesian coresets setting with particular focus on
personalized coreset weights for each individual clients.

• Theoretical analysis on the convergence rate shows our approach CORESET-PFEDBAYES
achieves convergence rate within logarithmic bounds.

• Experimental results across several benchmark datasets conducted with a wide array of
pre-existing baselines show promising results towards good performance in terms of model
accuracy even with less data at each client’s end.

2 RELATED WORK

It is well known in literature that training datasets offer diminishing returns in terms of performance.
It has also been demonstrated that one can train and obtain better returns in performance and en-
ergy efficiency by training models over subsets of data that are meticulously selected (Ghorbani &
Zou, 2019; Yoon et al., 2020; Katharopoulos & Fleuret, 2018; Strubell et al., 2019). This leads us
to the problem of coreset selection that deals with approximating a desirable quantity (e.g., gradi-
ent of a loss function) over an entire dataset with a weighted subset of it. Traditional methods of
coreset selection have used a submodular proxy function to select the coreset and are model depen-
dent (Wei et al., 2015; Kirchhoff & Bilmes, 2014; Kaushal et al., 2019; Har-Peled & Mazumdar,
2004; Mirzasoleiman et al., 2015). Coreset selection with deep learning models has become pop-
ular in recent years (Mirzasoleiman et al., 2020a;b; Killamsetty et al., 2021; Coleman et al., 2019;
Owen & Daskin, 1998). Coreset selection to approximately match the full-batch training gradient
is proposed in (Mirzasoleiman et al., 2020a). Killamsetty et al. (2021) propose algorithms to select
coresets that either match the full-batch gradient or the validation gradient. Mirzasoleiman et al.
(2020b) propose an approach to select a coreset that admits a low-rank jacobian matrix and show
that such an approach is robust to label noise. Most existing coreset selection approaches are pro-
posed in conventional settings wherein all the data is available in one place. In FL, since no client
or the server gets a holistic view of the training dataset, coresets can at best approximate only local
data characteristics and are thus inherently sub-optimal.

Coreset selection in federated learning has remained largely unexplored because of the intricacies
involved due to privacy and data partition across clients. Federated Learning can be modelled as a
cooperative game where it often uses Shapley values to select clients whose updates result in the best
reduction of the loss on a validation dataset held by the server. One work that comes very close to
ours is that of (Balakrishnan et al., 2021), that selects a coreset of clients1 whose update represents
the update aggregated across all the clients. They apply facility location algorithm on the gradient
space to select such a coreset of clients. In contrast to all these approaches, our proposal attempts to
select a coreset of the dataset at each client and is thus more fine-grained than such prior works. One
another paradigm of FL that is in contrast to our setup is Personalized FL, where the aim is to train
specialised models for each individual client (Collins et al., 2021; Fallah et al., 2020a; Marfoq et al.,
2022; Li et al., 2022; Jain et al., 2021). While personalized FL focuses on finetuning the model to
match each client’s data distribution, we build models to account for just the server’s distribution,
similar to (Karimireddy et al., 2020).

The algorithms that ensure privacy in FL include differential privacy (Dwork et al., 2006; Kairouz
et al., 2021), Homomorphic encryption (Segal et al., 2017; Li et al., 2020), etc.; which is not the

1As against selecting a coreset of data instances
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Figure 1: System Diagram : Coreset Weighted Personalized Federated Learning model with pa-
rameters under Gaussian assumptions. Each client uploads its updated distribution to the server
based its corresponding coreset training data (each client i’s data Di is weighted by wi) and then
the aggregrated global distribution is utilised from the server.

focus of our work. However, we note that all these methods can be easily integrated with our solution
approach and can be used in conjunction.

3 PRELIMINARIES AND PROBLEM SETTING

We consider the problem setting from (Zhang et al., 2022b) as follows: Consider a distributed system
that includes one server and N clients. Let the ith client’s dataset be Di = {(xi

j ,y
i
j)}nj=1.(assuming

all N clients have the same sample size n) Further, let the i-th client satisfy a regression model with
random covariates as yi

j = f i(xi
j) + ϵij , ∀j ∈ [1, . . . n] where xi

j ∈ Rs0 ,yi
j ∈ RsL+1 for ∀i =

1, . . . , N . Here f i(•) : Rs0 → RsL+1 denotes a nonlinear function (which is unknown and we want
to estimate) and ϵij denotes a Gaussian noise independent of xi

j i.e. ϵij
i.i.d∼ N (0, σ2

ϵ ) with variance σ2
ϵ .

We assume that f i(•) is β-Hölder-smooth functions (Takezawa, 2005) and the intrinsic dimension
of each of the client’s data is Λ. We assume each client has the same fully-connected deep neural
network (DNN), each having their individual neural network parameters. We denote the output of the
neural network as fθ(•) where θ ∈ RT represents the network parameters. Analogously the output
of the i-th client is denoted as f i

θ. Each neural network has L hidden layers, where the j-th hidden
layer has sj neurons and its corresponding activation functions σ(•). We denote S = {si}Li=1,
the set of all neurons in the neural network. The assumption made is that all the neural network
parameters are bounded i.e., ||θ||∞ ≤ Ω for Ω > 0.

The main aim is to architect a Federated Learning system that takes into consideration the coreset
problem for each individual client along with personalization and tackling overfitting. Using the
above problem setting we first formulate the client side objective and server side objective for the
Federated Learning setting as a bi-level optimization problem.

3.1 FEDERATED LEARNING OBJECTIVES

The standard BNN model Jordan et al. (1999) aims to solve the optimization problem to find the
closest distribution qi(θ) for the i-th client from the family of distributionsQi to match the posterior
distribution π(θ|Di) of the given data Di via minimizing the KL-divergence as follows.

Client Side Objective

Fi(z) ≜ min
qi(θ)∈Qi

DKL(q
i(θ)||π(θ|Di))⇔ min

qi(θ)∈Qi

reconstruction error over D︷ ︸︸ ︷
−Eqi(θ)[logPθ(Di)] +ζ

regularization term︷ ︸︸ ︷
DKL(q

i(θ)||π(θ))

(1)

3



Published as a conference paper at ICLR 2024

Here π(θ) denotes the prior distribution and Pθ(Di) denotes the likelihood and ζ is a personaliza-
tion constant that defines the weightage towards more regularization thus leading to more personal-
ization.

Server Side Objective On the server side the global model tries to find the closest distribution in
Qz to the client’s distribution by minimizing the aggregrate KL divergence from all the clients as
follows:

min
z(θ)∼Qz

F(z) ≜ 1

N

∑
i=1

Fi(z) (2)

3.2 BAYESIAN CORESETS OPTIMIZATION

We now introduce the notion of coreset weights i.e. we assign to each client i’s data Di a weight
vector wi ∈ Rn that will act as the corresponding coreset weight for the i-th client. In standard
bayesian coresets optimization setting, the goal is to control the deviation of coreset log-likelihood
from the true log-likelihood via some sparsity (nk << n). In accordance to (Zhang et al., 2021) we
utilise the following optimization objective for the i-th client:

arg min
wi∈Rn

Gi(wi) :=
∥∥Pθ(Di)− Pθ,wi

(Di)
∥∥2
π̂,2

s.t. ||wi||0 ≤ nk, ∀i ∈ [N ] (3)

where the coreset weights wi are considered over the data points Di and L2(π̂)-norm as the distance
metric is considered in the embedding Hilbert Space. Specifically, π̂ is the weighting distribution
that has the same support as true posterior π. The above equation can be further approximated to
the following where ĝj is a Monte-Carlo approximation over gj = Pθ(Di

j) − Eθ∼π̂Pθ(Di
j) for

Monte-carlo samples (the derivation can be found in Appendix 2)

arg min
w∈Rn

Gi(wi) :=

∥∥∥∥∥
n∑

i=1

ĝj −
n∑

i=1

wiĝj

∥∥∥∥∥
2

2

s.t. ||wi||0 ≤ nk, ∀i ∈ [N ] (4)

The above sparse regression problem is non-convex due to the combinatorial nature of the con-
straints. (Campbell & Broderick, 2018) uses the l2-norm formulation which however results in less
approximation accuracy compared to (Campbell & Beronov, 2019). As the authors in (Zhang et al.,
2021) point out both the above approaches have expensive computation cost and hence they propose
a better alternative via accelerated iterative thresholding Appendix 10.7.

4 METHODOLOGY - CORESET-PFEDBAYES

We now proceed towards formulating our problem for combining the coreset optimization problem
in a federated learning setting.

4.1 MODIFIED FEDERATED LEARNING OBJECTIVES - INCORPORATING CORESET WEIGHTS

Modified Client Side Objective We now aim towards incorporating the coreset formulation from
Eq: 3 in our federated learning setting Eq: 1. Assuming the bayesian coreset weights setup for each
client i from , we introduce a new modified client objective function

Fw
i (z) ≜ min

qi(θ)∼Qi

[−Eqi(θ) log(Pθ,wi(Di)) + ζDKL(q
i(θ)||z(θ))] (5)

where z(θ) and qi(θ) denote the global distribution and the local distribution for the i-the client that
is to be optimized respectively. Here, Fw

i (•) and Fi(•) indicates the coreset weighted i-th client
objective and full data based client objective respectively.

In particular, let the family of distributions of the i-th client Qiand server Qzsatisfy

Qi,k ∼ N (µi,k, σ
2
i,k), Qz,k ∼ N (µz,k, σ

2
z,k) k = 1, . . . , T (6)

where the above gaussian parameters correspond to the mean and variance for the k-th parameter of
the i-th client respectively. Similar holds true for the server. This is a valid assumption commonly
used in literature (Blundell et al., 2015) that let’s us simplify the evaluation of KL divergence score
DKL between qi(θ) and z(θ), resulting in a closed form solution.
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4.2 NOVEL OBJECTIVE : ACHIEVING NEAR-OPTIMAL CLIENT DISTRIBUTION BASED ON
OPTIMAL CORESET WEIGHTS

Let z∗(θ) be the optimal variational solution of the problem in Eq: (2) and q̂i(θ) be its corre-
sponding variational solution for the i’th client’s objective in Eq: (1). Now, for the same z∗(θ),
let q̂i(θ;w) denote the corresponding variational solution for the weighted coreset client objective
in Eq: 5. We want to ensure that the optimal distribution q̂i(θ;w) which minimizes the coreset
objective does not deviate too much from the original distribution q̂i(θ) (which acts a solution for
Eq: 1) and hence we want to fixate on w accordingly. This intuition comes from the fact that we
want to choose w in such a way that the performance of our federated learning system in terms of
accuracy does not drop too further in the face of training on a small percentage of data dictated by
the coreset weights w (in our problem setting we denote coresets weights as wi for each client i).
From here forward, let Fw

i (•)arg denote q̂i(θ;w) and Fi(•)arg denote q̂i(θ).

4.3 OBSERVATIONS AND MOTIVATION FOR A NEW OBJECTIVE

If we observe the client equation Eq: 1 closely, we will see that for each client i we are first fixing
z(θ) in the equation. For a fixed z(θ), we now search for the optimal distribution q̂i(θ) among the
whole family of distributions local to that client Qi. This is similar also for Eq: 5 for the coreset
weighted client objective.

Our objective is the learned optimal local distribution for the general client optimization objective
should be as close as possible to that of the weighted coreset based client optimization objective for
the same value of z.

So we want to formulate a new objective function such that for each client i we minimize the di-
vergence between the two optimal distributions resulting from the coreset and normal objective
functions.

{wi
∗} ≜ argmin

w
DKL(Fw

i (z)arg||Fi(z)arg) ⇔ argmin
w

DKL(q̂i(θ,w)||q̂i(θ)) ∥wi∥0 ≤ nk

(7)

4.4 INCORPORATING LIKELIHOOD INTO MODIFIED CLIENT OBJECTIVE

Although the above minimization objective Eq: 7 captures the intuition behind matching the near-
optimal performance (accuracy) with only a small coreset of the original client’s data to that by
using the entire data, this approach does not take into account how close the likelihood of each of
the client’s coreset weighted data subset Pθ,wi(Di) is to that of the original client’s data Pθ(Di).

More specifically, we now want to choose the optimal coreset weights (wi (personal coreset weights)
by not only minimizing the KL divergence between the corresponding client distributions ( q̂i(θ;w)

and q̂i(θ)) but also taking into account the closeness of the coreset weighted data likelihood to that
of the original likelihood.

{wi
∗} ≜ argmin

w
DKL(q̂i(θ,w)||q̂i(θ)) +

∥∥Pθ(Di)− Pθ,wi(Di)
∥∥2
π̂,2

||wi||0 ≤ nk (8)

5 ALGORITHM

We showcase our complete algorithm for CORESET-PFEDBAYES in Table 1 below In line with
(Zhang et al., 2022b) we utilise a reparameterization trick for θ via variables µ and ρ i.e. θ =
h(v, g), where θm = h (vm, gm) = µm + log (1 + exp (ρm)) · gm, gm ∼ N (0, 1), where m ∈
[1, . . . , T ]. For the first term in Equation 5, we use a minibatch stochastic gradient descent to get an
estimate for the i-th client as follows:

Ωi(vw) ≈ −n

b

1

K

b∑
j=1

K∑
k=1

log pih(vw,gk)

(
Di

j

)
+ ζDKL

(
qivw

(θ;w)∥zvw(θ)
)

(9)
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Algorithm 1: CORESET-PFEDBAYES

Server side Objective & Coreset Update Client Side Objective
Cloud server executes: ClientUpdate (i, wi,v

t) :
Input T,R, S, λ, η, β, b,v0 =

(
µ0,σ0

)
vt
z,0 = vt

for t = 0, 1, . . . , T − 1 do for r = 0, 1, . . . , R− 1 do
for i = 1, 2, . . . , N in parallel do Di

Λ ← sample a minibatch Λ with size b from Di

vt+1
i ← CoresetOptUpdate (i,vt) Di

Λ,w ← sample a minibatch Λ with size b from wiD
i

St ← Random subset of clients with size S gi,r ← Randomly draw K samples from N (0, 1)

vt+1 = (1− β)vt + β
S

∑
i∈St v

t+1
i Ωi (vt

r)← Use Eq:9 with gi,r,D
i
Λ and vt

r

CoresetOptUpdate(i,vt) : ∇vΩ
i (vt

r)← Back propagation w.r.t vt
r

y = Pθ(D
i),Φwi = Pθ,wi(Di) vt

r ← Update with ∇vΩ
i (vt

r) using GD algorithms
Objective f(w) = DKL(q

i
w||qi) + ||y − Φwi||22 Ωi

z

(
vt
z,r

)
← Forward propagation w.r.t v

t = 0, l0 = 0, wi
0 = 0 ∇Ωi

z

(
vt
z,r

)
← Back propagation w.r.t v

wi ← wi
0, v

t
z,R ← 0 Update vt

z,r+1 with∇Ωi
z

(
vt
z,r

)
using GD algorithms

repeat Repeat the above 7 steps for
vtz, q

i, qiw ← ClientUpdate (i, wi,v
t) the weighted stochastic estimate

f(w) = DKL(q
i
w||qi) + ||y − Φwi||22 ˆqi(z)← arg Ωi

z

(
vt
z,R

)
, ˆqiw(z)← arg Ωi

z

(
vt
w,z,R

)
Accelerated-IHT(f(w))(Algo 10.7) return vt

z,R,
ˆqi(z), ˆqiw(z)

until Stop criteria met return vt
z,R to the cloud server

where b and K are minibatch size and Monte Carlo sample size, respectively.

Here R indicates the number iterations after which the clients upload the localized global models
to the server. Like (T Dinh et al., 2020), we use an additional parameter β in order to make the
algorithm converge faster.

6 THEORETICAL CONTRIBUTIONS

Here we provide theoretical analysis related to the averaged generalization error for
CORESET-PFEDBAYES w.r.t our baseline PFEDBAYES. The main results and derivations of the
proofs can be found in the Appendix 9. We first provide certain definitions here.
Definition 1. The Hellinger distance for a particular client i between the estimate likelihood Pi

θ

and the true likelihood Pi is defined as follows d2(Pi
θ,Pi) = EXi(1− e

−

[
fi
θ(Xi)−fi(Xi)

]2
8σ2

ϵ )

Let q̂i(θ;w) be the corresponding variational solution for the i-th client’s subproblem under
the coreset weighted regime and let us define the following term Generalization Error Term:∫
Θ
d2(Pi

θ,w,Pi)q̂i(θ;w)dθ as the i-th client’s generalization error.
Theorem 1. The difference in the upper bound incurred in the overall generalization error of
CORESET-PFEDBAYES as compared w.r.t that of PFEDBAYES is always upper bounded by a closed
form positive function that depends on the coreset weights and coreset size- ℑ(w, nk). generaliza-
tion error in the original full data setup[

1

N

N∑
i=1

∫
Θ

d2(Pi
θ,Pi)q̂i(θ)dθ

]
u.b.

−

[
1

N

N∑
i=1

∫
Θ

d2(Pi
θ,w,Pi)q̂i(θ;w)dθ

]
u.b.

≤ ℑ(w, nk)

This indicates that the extra estimation error and approximation model incurred by the coreset
weighted objective is a direct function of the coreset weight and thus the coreset size and hence
can be measured in closed form. Proof. in Appendix 1
Theorem 2. The convergence rate of the generalization error under L2 norm of
CORESET-PFEDBAYES is minimax optimal up to a logarithmic term (in order nk) for bounded
functions (β-Hölder-smooth functions) {f i}Ni=1, {f i

θ}Ni=1 and {f i
θ,w}Ni=1 where C2, C3 and δ′ are

constants (defined in Appendix ) and Λ being the intrinsic dimension of each client’s data:

CF

N

N∑
i=1

∫
θ

∥∥f i
θ,w

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ;w)dθ ≤ C2n
− 2β

2β+Λ

k log2δ
′
(nk).
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and

inf{
∥fi

θ,w∥∞≤F
}N

i=1
{∥fi∥∞≤F}N

i=1

CF

N

N∑
i=1

∫
θ

∥∥f i
θ,w

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ;w)dθ ≥ C3n
− 2β

2β+Λ

k

where nk denotes the coreset size per client dataset and n denotes the original per client dataset

size and
d2(P i

θ,w,P i)
∥fi

θ,w(Xi)−fi(Xi)∥2
L2

≥
1−exp

(
− 4F2

8σ2
ϵ

)
4F 2 ≜ CF .

This indicates that the minimax optimality of the generalization error for CORESET-PFEDBAYES is
in logarithmic bounds w.r.t the coreset size nk. Proof. in Appendix 2
Theorem 3. The lower bound (l.b.) incurred for the deviation for the weighted coreset
CORESET-PFEDBAYES (5) generalization error is always higher than the lower bound of that for

the original PFEDBAYES objective (1) with a delta difference (Error I - Error II) as O(n− 2β
2β+Λ

k )[
N∑
i=1

∫
Θ

∥∥f i
θ,w

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ,w)dθ︸ ︷︷ ︸
Coreset weighted objective Generalization Error (Error I)

]
l.b.

>

[
N∑
i=1

∫
Θ

∥∥f i
θ

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂i(θ)dθ︸ ︷︷ ︸

Vanilla objective Generalization Error (Error II)

]
l.b.

This simply implies that the generalization error suffers in the case due to limited coreset samples
but that is bounded in closed form w.r.t. the coreset sample size. Proof. in Appendix: 3
Theorem 4. The lower bound incurred in the overall generalization error across all N clients of
CORESET-PFEDBAYES is always higher compared to that of the generalization error in the original
full data setup[

1

N

N∑
i=1

∫
Θ

d2(Pi
θ,w,Pi)q̂i(θ;w)dθ

]
l.b.

≥

[
1

N

N∑
i=1

∫
Θ

d2(Pi
θ,Pi)q̂i(θ)dθ

]
l.b.

Both Theorem 1 and 4 implies that the overall spread of the Generalization Error Term in case of
coreset weighted objective CORESET-PFEDBAYES is much more wider than that of the original
PFEDBAYES case. Proof. in Appendix 4

7 EXPERIMENTS

Here we perform our experiments to showcase the utility of our method CORESET-PFEDBAYES
compared to other baselines like PFEDBAYES and do an in-depth analysis of each of the components
involved as follows.

7.1 UTILITY OF A-IHT IN VANILLA BAYESIAN CORESETS OPTIMIZATION

In Algorithm 1, since we are employing A-IHT algorithm during coreset updates, we first want to
study the utility of applying A-IHT (Accelerated Iterative Thresholding) in a simplistic Bayesian
coresets setting using the algorithm proposed by (Huang et al., 2022). For analysis we test the same
on Housing Prices 2018 2data. Figure 3 showcases the experiments done on the dataset using a
riemann linear regression for different coreset sizes of the data (k = 220, 260, 300). As it can be
seen the radius capturing the weights w.r.t to the coreset points matches closely at k=300 with that
of the true posterior distribution (extreme right), thereby indicating the correctness of approximation
and recovery of the true posterior by the A-IHT algorithm.

7.2 EXPERIMENTS ON CORESET-PFEDBAYES AGAINST S.O.T.A FEDERATED LEARNING
METHODS

Here, we compare the performance of the proposed method CORESET-PFEDBAYES with a variety
of baselines such as FedAvg (McMahan et al., 2017), BNFed (Yurochkin et al., 2019), pFedMe

2https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads

7



Published as a conference paper at ICLR 2024

Figure 2: Experiments on Bayesian reimann linear function regression for different settings of core-
set size =220,260,300 constructed by Accelerated IHT II. Coreset points are presented as black dots,
with their radius indicating assigned weights. Extreme right showcases the true posterior distribu-
tion

(T. Dinh et al., 2020), perFedAvg (Fallah et al., 2020b), PFedBayes (Zhang et al., 2022b) based
on non-i.i.d. datasets. We generate the non-i.i.d. datasets based on three public benchmark
datasets, MNIST (Lecun et al., 1998), FMNIST (Fashion- MNIST) (Xiao et al., 2017) and CIFAR-
10 (Krizhevsky et al., 2009). For MNIST, FMNIST and CIFAR-10 datasets, we follow the non-i.i.d.
setting strategy in (T Dinh et al., 2020). In our use case we considered total 10 clients each of whom
holds a unique local data.

Table 1: Comparative results of personal and global accuracies (in %) across all 7 methods

Method (Percentage = sampling fraction) MNIST FashionMNIST CIFAR
Personal Model Global Model Personal Model Global Model Personal Model Global Model

FedAvg (Full/ 50%) - 92.39(90.60) - 85.42(83.90) - 79.05(56.73)
BNFed (Full / 50%) - 82.95(80.02) - 70.1(69.68) - 44.37(39.52)

pFedMe (Full / 50%) - 91.25(89.67) 92.02(84.71) 84.41(83.45) 77.13(66.75) 70.86(51.18)
perFedAvg (Full / 50%) 98.27 - 88.51(84.90) - 69.61(52.98) -

PFEDBAYES (Full / 50%) 98.79(90.88) 97.21(92.33) 93.01(85.95) 93.30(82.33) 83.46(73.94) 64.40(60.84)
RANDOMSUBSET (50%) 80.2 88.4 87.12 90.75 48.31 61.35

CORESET-PFEDBAYES (k = 50%) 92.48 96.3 89.55 92.7 69.66 71.5

(a) We report accuracies on both global and personal model for the current set of proposed methods across major
datasets like MNIST, CIFAR, FashionMNIST. Red indicates the highest accuracy column-wise. Similarly
Orange and Magenta indicates the 2nd and 3rd best modelwise accuracy. (-) indicates no accuracy reported
due to very slow convergence of the corresponding algorithm. Full indicates training on full dataset and
50% is on using half the data size after randomly sampling 50% of the training set.
In Table 3, we showcase the accuracy statistics of the corresponding baselines discussed above
with our method CORESET-PFEDBAYES across two different configurations Full Dataset Train-
ing and 50% Training indicating half of the training samples were selected at random and
then the corresponding algorithm was trained). As observed in almost all cases our method
CORESET-PFEDBAYES beats PFEDBAYES(random 50% data sampled) by the following margins
: +4.87% on MNIST, +8.61% on FashionMNIST, +9.71% and almost on other baselines (random
50% data sampled) and some baselines even when they were trained on full dataset (e.g. our method
does better than PFedMe on FashionMNIST). In Appendix 10.2 we showcase the communication
complexity of our proposed method.

7.3 EXPERIMENTS ON CORESET-PFEDBAYES AGAINST SUBMODULAR SUBSET SELECTION

In order to showcase the advantage of model-centric subset selection methods over traditional data-
centric(model-agnostic) methods like our proposed work CORESET-PFEDBAYES which takes into
account matching the client distribution under coreset setting qi(θ;w) to that in normal setting
qi(θ). Hence, we compare our proposed method CORESET-PFEDBAYES against submodular
based functions (See Appendix 7 for definition) (specifically, diversity based submodular functions
as the aim is to select a subset of data points that are most diverse). The discussion on some of
the common diversity functions and their properties with regard to monotonicity and submodularity
are provided in Appendix 10.5. Each of the medical datasets consists of 3 classes out of which
1 class (Normal is kept as common) between 2 clients and the data about the other two classes is
distributed separately to the 2 clients. Our aim here is to deploy our proposed method in this setting
and compare against submodular based subset selection approaches.
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(a) The optimal distribution parameters learnt af-
ter taking a coreset of the data tend to match up
with parameters, when trained on the full dataset
after few epochs resulting in decreasing KL diver-
gence score. This is in line with our initial hypoth-
esis 4.3

(b) We are comparing a random subset selection
of the data vs when a subset is selected using
our method, the early convergence of the KL-
divergence shows the better performance of our
method. When trained on a random subset of data,
the model takes more epochs to converge.

Figure 3: KL Divergence Plot over Number of Epochs (MNIST Dataset)

More details regarding the dataset description along with the experimental configurations can be
found under Appendix. Note for each of the submodular function baselines, the data was sampled
using a submodular function optimization strategy post which FedAvg was applied as the Federated
Learning algorithm.

Table 2: Comparative results of classwise global accuracies of all 9 methods on 3 different medical
datasets and 2 clients

Method (Percentage = sampling fraction) COVID-19 Radiography Database APTOS 2019 Blindness Detection OCTMNIST Dataset
Normal
X-ray

COVID
X-ray

Lung Opacity
X-ray

Normal
Retina

Mild Diabetic
Retinopathy

Severe Diabetic
Retinopathy

Normal
Retina DME Drusen

Vanilla FedAvg (Full) 0.914 ± 0.007 0.924 ± 0.005 0.898 ± 0.007 0.968 ± 0.023 0.927 ± 0.019 0.853 ± 0.004 0.908 ± 0.026 0.837 ± 0.103 0.855 ± 0.092
PFEDBAYES(Full) 0.953 ± 0.006 0.938 ± 0.004 0.902 ± 0.011 0.951 ± 0.057 0.941 ± 0.052 0.911 ± 0.028 0.926 ± 0.013 0.851 ± 0.021 0.874 ± 0.012

Independent Learning (Full) 0.898 ± 0.001 0.869 ± 0.002 0.884 ± 0.003 0.945 ± 0.025 0.877 ± 0.049 0.830 ± 0.053 0.890 ± 0.073 0.798 ± 0.076 0.890 ± 0.041
RandomSub FedAvg (50%) 0.892 ± 0.024 0.670 ± 0.059 0.583 ± 0.033 0.918 ± 0.047 0.835 ± 0.091 0.832 ± 0.021 0.811 ± 0.070 0.753 ± 0.089 0.805 ± 0.068

LogDet FedAvg (50%) 0.887 ± 0.046 0.838 ± 0.086 0.810 ± 0.062 0.918 ± 0.027 0.885 ± 0.082 0.850 ± 0.057 0.842 ± 0.046 0.897 ± 0.039 0.845 ± 0.068
DispSum FedAvg (50%) 0.907 ± 0.015 0.925 ± 0.049 0.812 ± 0.086 0.945 ± 0.043 0.890 ± 0.095 0.852 ± 0.061 0.834 ± 0.044 0.887 ± 0.082 0.863 ± 0.094
DispMin FedAvg (50%) 0.866 ± 0.018 0.780 ± 0.045 0.751 ± 0.069 0.963 ± 0.021 0.851 ± 0.067 0.765 ± 0.033 0.831 ± 0.011 0.892 ± 0.066 0.835 ± 0.085

CORESET-PFEDBAYES (50%) 0.932 ± 0.003 0.919 ± 0.013 0.871 ± 0.025 0.921 ± 0.016 0.894 ± 0.029 0.886 ± 0.017 0.916 ± 0.042 0.805 ± 0.008 0.816 ± 0.011

(a) We report classwise accuracies for the current set of proposed methods for all 3 medical datasets. Red indi-
cates the highest value in accuracy column-wise (i.e. for a particular class for a dataset across all 9 baselines).
Similarly Orange and Magenta indicates the 2nd and 3rd best classwise accuracy. Colors for Vanilla FedAvg,
PFEDBAYES , CORESET-PFEDBAYES are grouped together to primarily compare against subset selection
strategies

As observed in Table 2 CORESET-PFEDBAYES performs better than submodular based approaches
on average across Covid-19 and APTOS. This is promising as it indicates model centric subset
selection is much more useful in terms of performance than model agnostic subset selection methods.

8 CONCLUSION & FUTURE WORK

In this work we proposed several novel objective formulations that draw and synthesize from pre-
vious works of two separate domains: coreset optimization and federated learning. Through our
extensive experimentations, our proposed method showcases significant gains over traditional fed-
erated learning approaches and submodularity based optimization functions followed by Federated
Learning. We also showcased through theoretical analysis, how the average generalization error is
minimax optimal upto logarithm bounds and how that estimation and approximation error compares
against PFEDBAYES. In future we want to look into how client-wise data distribution affects the
current scheme and how we can make the model more robust towards adversarial attacks from (say)
skewed data distribution over client-side model parameters. Also, the interplay of how such coreset
weights can affect model updates in a privacy-preserving manner is somewhat interesting to explore
further.
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Supplementary Material: Bayesian Coreset Optimization for Personalized
Federated Learning

In this supplementary material we discuss extensively on the proofs. involved for the theoretical
analysis for CORESET-PFEDBAYES along with more fine-grained experimental details and corre-
sponding baselines.

9 PROOFS

Here we discuss the proofs involved with particular propositions and theorems specified in the The-
oretical Contributions of this paper. Utilising the assumptions taken in Zhang et al. (2022b), Polson
& Ročková (2018) we consider the analysis for equal-width Bayesian Neural network.

Assumption 1: The widths of the neural network are equal width i.e. si = M .

Assumption 2: Each individual client i ∈ [N ] has equal coreset size of samples nk < n.

Assumption 3: Parameters s0, n (total client dataset size) nk ( coreset client dataset size), M , L
(number of DNN layers as per Section 3) are large enough such that the sequence σ2

n is bounded as
follows

σ2
n =

T

8n
A ≤ Ω2,

where τ = ΩM and

A = log−1 (3s0M) · (2τ)−2(L+1)[(
s0 + 1 +

1

τ − 1

)2

+
1

(2τ)2 − 1
+

2

(2τ − 1)2

]−1

.

Here T indicates the total number of parameters as defined in Section 3

Similarly, utilising the coreset regime, we have the following:

σ2
nk

=
T

8nk
A ≤ Ω2,

Since nk << n, hence σ2
nk

>> σ2
n

Assumption 4: We consider 1-Lipschitz continuous activation function σ(•)
We also define here a few terms as defined in (Zhang et al., 2022b) which would be useful for our
following proof proposals as well.

Definition 2. Preliminaries and Definitions required for theoretical proofs under PFEDBAYES

d2(Pi
θ,Pi) = EXi(1− e

−

[
fi
θ(Xi)−fi(Xi)

]2
8σ2

ϵ )

rn = ((L+ 1)T/n) logM + (T/n) log
(
s0
√
n/T

)
ξin = inf

θ∈Θ(L,S),∥θ∥∞≤Ω

∥∥f i
θ − f i

∥∥2
∞ ,

εn = n− 1
2

√
(L+ 1)T logM + T log

(
s0
√
n/T

)
logδ(n) =

√
rn log

δ(n),

where δ > 1
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Here rn indicates the variational error incurred due to the Bayesian approximation to the true pos-
terior distribution in Equation 1 and ξin indicates the approximation error incurred during regression
w.r.t the actual function to be learnt.

Similarly for the coreset size nk we define the following:
Definition 3. Preliminaries and Definitions required for theoretical proofs under
CORESET-PFEDBAYES

d2(Pi
θ,w,Pi) = EXi(1− e

−

[
fi
θ,w(Xi)−fi(Xi)

]2
8σ2

ϵ )

ξink
= inf

θ∈Θ(L,S),∥θ∥∞≤Ω

∥∥f i
θ,w − f i

∥∥2
∞

rnk
= ((L+ 1)T/nk) logM + (T/nk) log

(
s0
√
nk/T

)
εnk

= nk
− 1

2

√
(L+ 1)T logM + T log

(
s0
√
nk/T

)
logδ(nk) =

√
rnk

logδ(nk)

Lemma 1. The Hellinger Distance from Definition 1 is symmetrical in its arguments Pi
θ and Pi.

Proof. It is easy to show that,

d2(Pi
θ,Pi) = EXi(1− e

− [fi
θ(Xi)−fi(Xi)]2

8σ2
ϵ ) (10)

= EXi(1− e
− [fi(Xi)−fi

θ(Xi)]2

8σ2
ϵ ) (11)

= d2(Pi,Pi
θ) (12)

PROOF. OF THEOREM 1

Theorem 1. The difference in the upper bound incurred in the overall generalization error of
CORESET-PFEDBAYES as compared w.r.t that of PFEDBAYES is always upper bounded by a closed
form positive function that depends on the coreset weights and coreset size- ℑ(w, nk). generaliza-
tion error in the original full data setup[

1

N

N∑
i=1

∫
Θ

d2(Pi
θ,Pi)q̂i(θ)dθ

]
u.b.

−

[
1

N

N∑
i=1

∫
Θ

d2(Pi
θ,w,Pi)q̂i(θ;w)dθ

]
u.b.

≤ ℑ(w, nk)

Proof. Let us define log η(P i
θ, P

i) = ln(P
i
θ, P

i)/ζ + nd2(P i
θ, P

i).

Using Theorem 3.1 of Pati et al. (2018) with probability at most e−Cnkε
2
nk , where C is a constant,

with high probability for CORESET-PFEDBAYES we have∫
Θ

η(Pi
θ,w,Pi)z∗(θ)dθ ≤ eCnkε

2
nk (13)

Similarly with high probability at most e−Cnε2n for the vanilla PFEDBAYES∫
Θ

η(Pi
θ,Pi)z∗(θ)dθ ≤ eCnε2n (14)

Using Lemma A.1 from Zhang et al. (2022b) we know that for any probability measure µ and any
measurable function h with eh ∈ L1(µ),

log

∫
eh(η)µ(dη) = sup

ρ

[∫
h(η)ρ(dη)− DKL(ρ∥µ)

]
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Further, we let ln
(
P i, P i

θ

)
is the log-likelihood ratio of P i and P i

θ

ln
(
P i, P i

θ

)
= log

Pi
(
Di

)
Pi
θ

(
Di

) .

Hence,

nd2(P i
θ, P

i) = ln(P
i
θ, P

i)/ζ − log η(P i
θ, P

i)

= ln(P
i, P i

θ)/ζ − log η(P i, P i
θ) since d2(P i

θ, P
i) = d2(P i, P i

θ) from Lemma 1

This follows from 9

Similarly, for the weighted likelihood based Hellinger Distance,

nkd
2(P i

θ,w, P i) = ln(P
i
θ,w, P i)/ζ − log η(P i

θ,w, P i) (15)

By using Lemma A.1 with h(η) = log η
(
P i
θ, P

i
)
, µ = z⋆(θ) and ρ = q̂i(θ), we obtain

∫
Θ

d2
(
P i
θ, P

i
)
q̂i(θ)dθ ≤ 1

n

[
1

ζ

∫
Θ

ln
(
P i, P i

θ

)
q̂i(θ)dθ + DKL

(
q̂i(θ)∥z⋆(θ)

)
+ log

∫
Θ

η
(
P i
θ, P

i
)
z⋆(θ)dθ

]
≤ 1

n

[
1

ζ

∫
Θ

ln
(
P i, P i

θ

)
q̂i(θ)dθ + DKL

(
q̂i(θ)∥z⋆(θ)

)]
+ Cε2n

∫
Θ

d2(Pi
θ,w,Pi) ˆqi(θ,w)dθ ≤ 1

nk

[
1

ζ

∫
Θ

ln
(
P i, P i

θ,w

) ˆqi(θ;w)dθ + DKL

(
ˆqi(θ;w)∥z⋆(θ)

)]
+ Cε2nk

Utilising analysis under Supplementary in (Bai et al., 2020), there exists an upper bound for the term

∫
Θ

ln
(
P i, P i

θ

)
q̂i(θ)dθ ≤ C

′′
(nrn + nξin) (16)

Lemma 2 from (Zhang et al., 2022b) provides the upper bound for the KL divergence term

DKL

(
q̂i(θ)∥z⋆(θ)

)
≤ C

′
(nrn) (17)

16
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Therefore we can write the following expression that captures the weighted Hellinger distance dis-
placement given in our coreset framework CORESET-PFEDBAYES as compared to PFEDBAYES

1

N

N∑
i=1

∫
Θ

d2(Pi
θ,Pi) ˆqi(θ)dθ − 1

N

N∑
i=1

∫
Θ

d2(Pi
θ,w,Pi) ˆqi(θ,w)dθ

≤ 1

N

N∑
i=1

1

n

[
1

ζ

∫
Θ

ln
(
P i, P i

θ

)
q̂i(θ)dθ + DKL

(
q̂i(θ)∥z⋆(θ)

)]
+ Cε2n−

1

N

N∑
i=1

1

nk

[
1

ζ

∫
Θ

ln
(
P i, P i

θ,w

) ˆqi(θ;w)dθ + DKL

(
ˆqi(θ;w)∥z⋆(θ)

)]
− Cε2nk

Using Eq:(17) and Eq:(16)

≤ Cε2n − Cε2nk
+ n

(
C

′
ζrn +

C
′′

N

N∑
i=1

ξin

)
− nk

(
C

′
ζrnk

+
C

′′

N

N∑
i=1

ξink

)

≤ C(ε2n − ε2nk
) + ζC

′
(nrn − nkrnk

) +
C

′′

N

N∑
i=1

(nξin − nkξ
i
nk
)

= C (ε2n − ε2nk
)︸ ︷︷ ︸

Estimation error
Type I Drift

+ζC
′
(nrn − nkrnk

)︸ ︷︷ ︸
Estimation error

Type II Drift

+
C

′′

N

N∑
i=1

(nξin − nkξ
i
nk
)︸ ︷︷ ︸

Approximation Error Drift

= ℑ(w, nk)︸ ︷︷ ︸
≥0

Where ℑ(w, nk) = C(ε2n − ε2nk
) + ζC

′
(nrn − nkrnk

) + C
′′

N

∑N
i=1(nξ

i
n − nkξ

i
nk
) where each of

the coefficients of the closed form function are constants related to s0, β,Λ, L,M, ζ and nk

Using Lemma 2, 3 and with suitable assumptions on the Approximation drift error such that we see
that each of the individual error terms are positive, there by indicating ℑ(w, nk) ≥ 0

Lemma 2. The Estimation error Type II Drift is a positive quantity i.e. nrn > nkrnk
.

Proof. By Definition,

rn = ((L+ 1)T/n) logM + (T/n) log
(
s0
√
n/T

)
and

rnk
= ((L+ 1)T/nk) logM + (T/nk) log

(
s0
√
nk/T

)
Hence

rn
rnk

=
nk

n
×

((L+ 1)T ) logM + (T ) log
(
s0
√

n/T
)

((L+ 1)T ) logM + (T ) log
(
s0
√

nk/T
)

rn
rnk

=
nk

n
×

(L+ 1) logM + log
(
s0/
√
T
)
+ log (

√
n)

(L+ 1) logM + log
(
s0/
√
T
)
+ log

(√
nk

)
Considering (L+ 1) logM + log

(
s0/
√
T
)

as a constant G we have

17
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rn
rnk

=
nk

n
× G+ log(

√
n)

G+ log(
√
nk)

Thus,

nrn
nkrnk

=
G+ log(

√
n)

G+ log(
√
nk)

It is clear since log(•) is an increasing function for n > nk we have nrn > nkrnk
.

Lemma 3. The Estimation error Type I Drift is a positive quantity i.e. ε2n > ε2nk
.

Proof. From the definition under Assumption 3

εnk
= nk

− 1
2

√
(L+ 1)T logM + T log

(
s0
√
nk/T

)
logδ(nk) =

√
rnk

logδ(nk)

Hence ε2nk
= rnk

log2δ(nk). Similarly, ε2n = rn log
2δ(n)

ε2n
ε2nk

=
rn log

2δ(n)

rnk
log2δ(nk)

=
nrn

log2δ(n)
n

nkrnk

log2δ(nk)
nk

From Lemma 2 we know that nrn > nkrnk
, hence

ε2n
ε2nk

>
log2δ(n)

n
log2δ(nk)

nk

> 1

This follows due to the increasing nature of the function.

PROOF. OF THEOREM 2

Theorem 2. The convergence rate of the generalization error under L2 norm of
CORESET-PFEDBAYES is minimax optimal up to a logarithmic term (in order nk) for bounded
functions (β-Hölder-smooth functions) {f i}Ni=1, {f i

θ}Ni=1 and {f i
θ,w}Ni=1 where C2, C3 and δ′ are

constants and Λ being the intrinsic dimension of each client’s data:

CF

N

N∑
i=1

∫
θ

∥∥f i
θ,w

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ;w)dθ ≤ C2n
− 2β

2β+Λ

k log2δ
′
(nk).

and

inf{
∥fi

θ,w∥∞≤F
}N

i=1
{∥fi∥∞≤F}N

i=1

CF

N

N∑
i=1

∫
θ

∥∥f i
θ,w

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ;w)dθ ≥ C3n
− 2β

2β+Λ

k

where nk denotes the coreset size per client dataset and n denotes the original per client dataset

size and
d2(P i

θ,w,P i)
∥fi

θ,w(Xi)−fi(Xi)∥2
L2

≥
1−exp

(
− 4F2

8σ2
ϵ

)
4F 2 ≜ CF .
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We present the choice of T for a typical class of functions. We already assumed that
{
f i
}

are β-
Hölder-smooth functions (Definition 4. (Nakada & Imaizumi, 2020)) and the intrinsic dimension of
data is Λ.

From our above theorem result from Theorem: 1 we say the following:

1

N

N∑
i=1

∫
Θ

d2(Pi
θ,w,Pi)q̂i(θ;w)dθ ≤ Cε2nk

+ C ′rnk
+

C
′′

Nζ

N∑
i=1

ξink
(18)

Utilising Corollary 6 in (Nakada & Imaizumi, 2020) , the approximation error is upper-bounded as
follows

∥∥f i
θ,w − f i

∥∥
∞ ≤ C0T

− β
Λ

where C0 > 0 is a constant related to s0, β and Λ

Thus from the above definitions 2 and 3, we have the following

ξin, ξ
i
nk
≤ C0T

− 2β
Λ , i = 1, . . . , N

Utilising the above upper bound in 18 and substituting T = C1n
Λ

2β+Λ , we get

1

N

N∑
i=1

∫
Θ

d2(Pi
θ,w,Pi)q̂i(θ;w)dθ ≤ Cε2nk

+ C ′rnk
+

C
′′

Nζ

N∑
i=1

C0T
− 2β

Λ

≤ Crnk
log2δ(nk) + C ′rnk

+
C

′′

Nζ

N∑
i=1

C0T
− 2β

Λ ∵ ε2nk
= rnk

log2δ(nk)

≤ C2n
− 2β

2β+Λ

k log2δ
′
(nk)

[
substituting T in rnk

]
where δ′ > δ > 1, and C1, C2 > 0 are constants related to s0, β,Λ, L,M, ζ and nk.

Similar to Theorem 1.1 from (Bai et al., 2020) and Theorem 1 from (Zhang et al., 2022b) norm, we
can write the following

CF

N

N∑
i=1

∫
Θ

∥∥f i
θ,w

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ,w)dθ

≤ 1

N

N∑
i=1

∫
Θ

d2
(
P i
θ,w, P i

)
q̂i(θ;w)dθ

≤ C2n
− 2β

2β+Λ

k log2δ
′
(nk).

Now, using the minimax lower bound under L2 norm in Theorem 8 of (Nakada & Imaizumi, 2020),
we see that for coreset regime the same formulation holds similar to our original setting as shown in
(Zhang et al., 2022b)

inf{
∥fi

θ,w∥∞≤F
}N

i=1
{∥fi∥∞≤F}N

i=1

CF

N

N∑
i=1

∫
θ

∥∥f i
θ,w

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ;w)dθ ≥ C3n
− 2β

2β+Λ

k

where C3 > 0 is a constant.

Combining the above two equations, the convergence rate of the generalization error of the coreset
weighted objective is minimax optimal upto a logarithmic term for bounded functions {f i

θ,w}Ni=1

and {f i
θ}Ni=1.
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PROOF. OF THEOREM 3

Theorem 3. The lower bound (l.b.) incurred for the deviation for the weighted coreset
CORESET-PFEDBAYES (5) generalization error is always higher than the lower bound of that for

the original PFEDBAYES objective (1) with a delta difference (Error I - Error II) as O(n− 2β
2β+Λ

k )[
N∑
i=1

∫
Θ

∥∥f i
θ,w

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ,w)dθ︸ ︷︷ ︸
Coreset weighted objective Generalization Error (Error I)

]
l.b.

>

[
N∑
i=1

∫
Θ

∥∥f i
θ

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂i(θ)dθ︸ ︷︷ ︸

Vanilla objective Generalization Error (Error II)

]
l.b.

Proof. As we know nk < n hence C3n
− 2β

2β+Λ

k > C3n
− 2β

2β+Λ (∵ C3 is a constant independent of n
or nk), which therefore means that inequality holds in the lower bound (l.b.) of the two expressions
(shown by the previous proposition 2).

[
N∑
i=1

∫
θ

∥∥f i
θ,w

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ,w)dθ

]
l.b.

>

[
N∑
i=1

∫
θ

∥∥f i
θ

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ)dθ

]
l.b.

Let us denote ∆l.b
deviation as follows

∆l.b
deviation =

[
N∑
i=1

∫
θ

∥∥f i
θ,w

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ,w)dθ

]
l.b.

−

[
N∑
i=1

∫
θ

∥∥f i
θ

(
Xi

)
− f i

(
Xi

)∥∥2
L2 q̂

i(θ)dθ

]
l.b.

And the ∆l.b.
deviation term is given by

(
C3n

− 2β
2β+Λ

k − C3n
− 2β

2β+Λ

)
≈ O(n− 2β

2β+Λ

k ).

PROOF. OF THEOREM 4

Theorem 4. The lower bound incurred in the overall generalization error across all N clients of
CORESET-PFEDBAYES is always higher compared to that of the generalization error in the original
full data setup[

1

N

N∑
i=1

∫
Θ

d2(Pi
θ,w,Pi)q̂i(θ;w)dθ

]
l.b.

≥

[
1

N

N∑
i=1

∫
Θ

d2(Pi
θ,Pi)q̂i(θ)dθ

]
l.b.

Proof. It is easy to show since from Theorem 3, we know the lower bounds for the individual terms
and also since n > nk holds, hence we can rewrite as follows:

1

N

N∑
i=1

∫
Θ

d2(Pi
θ,w,Pi) ˆqi(θ,w)dθ − 1

N

N∑
i=1

∫
Θ

d2(Pi
θ,Pi) ˆqi(θ)dθ

≥ C3n
− 2β

2β+Λ

k − C3n
− 2β

2β+Λ

≥ 0

The implication of this proof states that the overall error incurred due to coreset weighted deviation
is always more than that of the original deviation which can be measured approximately in order of
nk, the coreset sample size.

Proposition 1. The gradient of the first term in Equation 7 i.e.

∇wDKL(q̂i(θ;w)||q̂i(θ))

is given by the following expression
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∫
Θ

∇w q̂i(θ;w)

[
log q̂i(θ;w) + 1− log q̂i(θ)

]
dθ

where

∇w q̂i(θ;w) = q̂i(θ;w)
ϱi(θi,m;w)g

′

m(w) + gm(w)∇w

∏T
k ̸=m ϱi(θi,k;w) and qi(θ;w) =∏T

m=1 ϱ
i(θi,m;w)

Proof.

∇wDKL(q̂i(θ;w)||q̂i(θ))

= ∇wEq̂i(θ;w)

[
log q̂i(θ;w)− log q̂i(θ)

]
= ∇w

[∫
Θ

q̂i(θ;w) log q̂i(θ;w)dθ −
∫
Θ

q̂i(θ;w) log q̂i(θ)dθ

]
=

[∫
Θ

∇w

(
q̂i(θ;w) log q̂i(θ;w)

)
dθ −

∫
Θ

∇w

(
q̂i(θ;w) log q̂i(θ)

)
dθ

]
=

[∫
Θ

(
log ˆqi(θ;w)∇w q̂i(θ;w) +∇w q̂i(θ;w)

)
dθ −

∫
Θ

log q̂i(θ)∇w q̂i(θ;w)dθ

]
=

∫
Θ

∇w q̂i(θ;w)

[
log q̂i(θ;w) + 1− log q̂i(θ)

]
dθ

(19)

In order to compute the gradient∇w q̂i(θ;w), the following objective can be utilized.

Let z∗(θ) be the optimal variable solution to Equation (5).

∇qi(θ)F
w
i (z∗)

∣∣∣∣
ˆqi(θ;w)

= 0

=⇒ ∇qi(θ)

∫
Θ

− logPθ,w(Di)qi(θ)dθ︸ ︷︷ ︸
First Part

∣∣∣∣
ˆqi(θ;w)

+ ζ∇qi(θ)DKL(q
i(θ)||z∗(θ))︸ ︷︷ ︸

Second Part

∣∣∣∣
ˆqi(θ;w)

= 0

For the first part,

∇qi(θ)

∫
Θ

− logPθ,w(Di)qi(θ)dθ

∣∣∣∣
ˆqi(θ;w)

=

∫
Θ

∇qi(θ)

[
− logPθ,w(Di)qi(θ)

]
dθ

∣∣∣∣
ˆqi(θ;w)

=

∫
Θ

[
−qi(θ)∇qi(θ) logPθ,w(Di) + logPθ,w(Di)

]
dθ︸ ︷︷ ︸

Modified First part

∣∣∣∣
ˆqi(θ;w)

(20)

By the assumption that the distribution qi(θ) satisfies mean-field decomposition i.e.

qi(θ) =

T∏
m=1

N (θi,m, σ2
n)

=

T∏
m=1

ϱi(θi,m)

(21)
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Let us denoteMw = Pθ,w(Di).

Therefore, we extract out the following portion from (20): ∇qi(θ) logPθ,w(Di)

∇qi(θ) logPθ,w(Di) = ∇qi(θ) logMw (22)

We now consider the individual partial differentials here

∂

∂ϱi(θi,m)
logMw =

1

Mw

∂Mw

∂w

∂w

∂ϱi(θi,m)
(23)

Thus, we can rewrite (20) from the perspective of individual components of qi(θ) as follows:

∫
Θ

[
−qi(θ) 1

Mw

∂Mw

∂w

∂w

∂ϱi(θi,m)
+ logPθ,w(Di)

]
dθ

∣∣∣∣
ˆqi(θ;w)

=

∫
Θ

[
−qi(θ) 1

Pθ,w(Di)

∂Pθ,w(Di)

∂w

∂w

∂ϱi(θi,m)
+ logPθ,w(Di)

]
dθ︸ ︷︷ ︸

Modified First part

∣∣∣∣
ˆqi(θ;w)

(24)

Now, we can rewrite the second part as follows:

ζ∇qi(θ)DKL(q
i(θ)||z∗(θ))

∣∣∣∣
ˆqi(θ;w)

= ζ∇qi(θ)

[∫
Θ

qi(θ) log qi(θ)− qi(θ) log(z∗(θ))dθ

]∣∣∣∣
ˆqi(θ;w)

= ζ

∫
Θ

∇qi(θ)

[
qi(θ) log qi(θ)− qi(θ) log(z∗(θ))

]
dθ

∣∣∣∣
ˆqi(θ;w)

= ζ

∫
Θ

(
log qi(θ) + 1− log(z∗(θ))

)
dθ︸ ︷︷ ︸

Modified Second Part

∣∣∣∣
ˆqi(θ;w)

(25)

Combining both the first and second part we get

∫
Θ

[
− ˆqi(θ;w)

1

Pθ,w(Di)

∂Pθ,w(Di)

∂w

∂w

∂ϱi(θi,m)
+ logPθ,w(Di)

]
dθ

+ζ

∫
Θ

(
log ˆqi(θ;w) + 1− log(z∗(θ))

)
dθ = 0

=⇒ ζ

∫
Θ

(
log ˆqi(θ;w) + 1− log(z∗(θ)) + logPθ,w(Di)

)
dθ

=

∫
Θ

(
ˆqi(θ;w)

1

Pθ,w(Di)

∂Pθ,w(Di)

∂w

∂w

∂ϱi(θi,m)

)
dθ

(26)

Let us assume without loss of generality that each of the individual components of the optimal
coreset weighted client distribution ˆqi(θ;w) can be denoted as some function g(w). More, specifi-
cally,
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ϱi(θi,j ;w) = gj(w)

∇wϱ
i(θi,j ;w) = g

′

j(w)
(27)

Thus we can reuse the above expression to simplify (26)

g
′

m(w) =

∫
Θ

(
ˆqi(θ;w) 1

Pθ,w(Di)

∂Pθ,w(Di)
∂w

)
dθ

ζ
∫
Θ

(
log ˆqi(θ;w) + 1− log(z∗(θ)) + logPθ,w(Di)

)
dθ

(28)

We now go back to utilizing the above derived expression in our main Eq. (19) to replace
∇w

ˆqi(θ;w)

∇w
ˆqi(θ;w)

= ∇w

T∏
k=1

ϱi(θi,k;w)

= ∇w

T∏
k=1

gk(w)

=

T∏
k ̸=m

gk(w)∇wgm(w) + gm(w)∇w

T∏
k ̸=m

gk(w)

=

T∏
k ̸=m

gk(w)g
′

m(w) + gm(w)∇w

T∏
k ̸=m

gk(w)

=
ˆqi(θ;w)

ϱi(θi,m;w)
g

′

m(w) + gm(w)∇w

T∏
k ̸=m

ϱi(θi,k;w)

(29)

Thus, we now have a closed form solution to computing the gradient of the KL divergence
D( ˆqi(θ;w)|| ˆqi(θ)) w.r.t the coreset weight parameters w.
Proposition 2. The gradient of the second term in Equation 8 w.r.t w i.e.

∇w||Pθ(Di)− Pθ,w(Di)||2π̂,2

is given by the following expression

−2PT
Φ

(
P − PΦw

)
where P =

∑n
j=1 ĝj and PΦ = [ĝ1, ĝ2, . . . , ĝn]

Proof. First, we reformulate the given expression in terms

∥∥Pθ(Di)− Pθ,w(Di)
∥∥2
π̂,2

= Eθ∼π̂[(Pθ(Di)− Pθ,w(Di))2]
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We define gj = Pθ(Di
j)− Eθ∼π̂Pθ(Di

j)

As a result the equivalent optimization problem becomes minimizing
∥∥∥∑n

j=1 gj −
∑n

j=1 wjgj

∥∥∥2
π̂,2

Further, using Monte Carlo approximation, given S samples {θj}Sj=1, θj ∼ π̂, the L2(π̂)-norm can
be approximated as follows ∥∥∥∥∥∥

n∑
j=1

ĝj −
n∑

j=1

wj ĝj

∥∥∥∥∥∥
2

2

where

ĝj = 1√
S

[
Pθ1(D

i
j) −

¯P(Di
j),Pθ2(D

i
j) −

¯P(Di
j), . . . ,PθS (D

i
j) −

¯P(Di
j)
]

and ¯P(Di
j) =

1
S

∑S
k=1 Pθk(D

i
j)

We can write the above problem in matrix notation as follows

f(w) := ∥P − PΦw∥22

where P =
∑n

j=1 ĝj and PΦ = [ĝ1, ĝ2, . . . , ĝn]

Thus we have the gradient w.r.t w as follows:

∇wf(w) = −2PT
Φ

(
P − PΦw

)
(30)

10 EXPERIMENTS

All the experiments have been done using the following configuration: Nvidia RTX A4000(16GB)
and Apple M2 Pro 10 cores and 16GB memory.

10.1 PROPOSAL FOR A MODIFIED OBJECTIVE IN EQUATION 8

{wi
∗} ≜ argmin

w
DKL(q̂i(θ,w)||q̂i(θ)) +

∥∥Pθ(Di)− Pθ,wi(Di)
∥∥2
π̂,2

||wi||0 ≤ k (31)

We discuss here the utility of our proposed modified client side objective function via an ablation
study where we want to gauge the inclusion of the first term in our objective function as just inlcud-
ing the coreset loss.

Through experimental analysis, we find that just including the coreset loss optimization results in
early saturation, possibly hinting towards getting stuck in local minima, but however inclusion the
KL Divergence loss and forcing the coreset weighted local distribution of the client and the normal
local distribution of the client to be similar leads to better stability in the training loss and better
convergence.

10.2 COMMUNICATION COMPLEXITY ANALYSIS FOR DIFFERENT CORESET SIZES

Here we showcase an analysis for different coreset sample size for different datasets and how it af-
fects on the final accuracy and the total number of communication rounds in the Federated Learning
setting. This showcases cost-effectiveness of our approach where by using only a small number of
communication rounds our proposed approach is able to attain near-optimal performance as per the
table below. In addition Fig: 5 substantiates the cost-effectiveness of our approach.
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Figure 4: Ablation Study on using KL divergence between two local distribution w.r.t just using
coreset weights

Table 3: Comparative results of test accuracies across different coreset sample complexity

Method (Percentage = sampling fraction) MNIST FashionMNIST CIFAR
Test Accuracy Communication Rounds Test Accuracy Communication Rounds Test Accuracy Communication Rounds

PFEDBAYES (Full) 98.79 194 93.01 215 83.46 266
RANDOMSUBSET (50%) 80.2 135 87.12 172 48.31 183

CORESET-PFEDBAYES (k = 50%) 92.48 98 89.55 93 69.66 112
CORESET-PFEDBAYES (k = 30%) 90.17 84 88.16 72 59.12 70
CORESET-PFEDBAYES (k = 15%) 88.75 62 85.15 38 55.66 32
CORESET-PFEDBAYES (k = 10%) 85.43 32 82.64 24 48.25 16

(a) We report test accuracies across different sample complexity for datasets like MNIST, CIFAR, Fashion-
MNIST. Full indicates training on full dataset and 50% is on using half the data size after randomly
sampling 50% of the training set.

Figure 5: Communication Rounds across Different Sample Size - Convergence analysis

10.3 COMPUTING LIKELIHOOD OBJECTIVE USING AIHT

Here, we showcase how we utilised the Accelerated Iterative Hard Thresholding algorithm (A-IHT)
for computing the likelihood.

10.4 MEDICAL DATASET EXPERIMENT DETAILS

Owing to the rise of Federated Learning based approaches in the medical setting due to privacy-
preserving features, we chose to perform our experiments on 3 medical datasets in addition to our
main experiments.

For our Federated Learning setup, we considered the setting where we have only 2 clients and one
global server.

For each of the 3 datasets in the medical dataset setting, we consider each client has X-ray images
of symptomatic type A/ type B and Normal images . We perform a classification task at each client.

10.5 BASLINE COMPARISONS: DIVERSITY BASED SUBMODULAR OPTIMIZATION
FUNCTIONS

For our second set of experiments, we chose different diversity based submodular optimization
functions, specifically the following functions whose definition have been provided here
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Definition 4. Log-determinant Function is a diversity-based submodular function. It is non-
monotone in nature. Let L denote a positive semidefinite kernel matrix and LS denote the subset of
rows and columns indexed by set S. Log-determinant function f is specified as:

f(S) = logdet(LS) (32)

The log-det function models diversity and is closely related to a determinantal point process.

Definition 5. Disparity Sum Function characterizes diversity by considering the sum of distances
between every pair of points in a subset S. For any two points i, j ∈ S, let dij denote the distance
between them.

f(S) =
∑
i,j∈S

dij (33)

The aim is to select a subset S such that f(S) is maximized. Disparity sum is not a submodular
function.

Definition 6. Disparity Min Function characterizes diversity by considering the minimum distance
between any two non-similar points in a subset S.

f(S) = min
i,j∈S,i̸=j

dij (34)

The aim is to select a subset S such that f(S) is maximized. Disparity min is not a submodular
function.

For the above experiments we utilise the Submodlib library 3 for our implementation Kaushal et al.
(2022).

10.6 EXPERIMENT CONFIGURATION

10.6.1 MNIST EXPERIMENT CONFIGURATION

For both CORESET-PFEDBAYES and corresponding baseline PFEDBAYES, we use a fully con-
nected DNN model with 3 layers [784,100,10] on MNIST dataset.

Learning rate hyperparameters: As per Zhang et al. (2022b)’s proposal i.e. PFEDBAYES the
learning rates for personalized (client model) and global model (η1, η2) are set to 0.001 since these
choices result in the best setting for PFEDBAYES. To compare against the stable best hyperparame-
ters of PFEDBAYES, we also fix the same for our proposal CORESET-PFEDBAYES.

Personalization Hyperparameter: The ζ parameter adjusts the degree of personalization in the
case of clients. Again for a fair comparison against our baseline PFEDBAYES, we fix the ζ parameter
for our proposal CORESET-PFEDBAYES to the best setting given by the baseline. In Zhang et al.
(2022b) the authors tune ζ ∈ {0.5, 1, 5, 10, 20} and find that ζ = 10 results in the best setting. We,
therefore, fix the personalization parameter ζ = 10.

10.6.2 MEDICAL DATASETS EXPERIMENT CONFIGURATION

We discuss here the detailed configuration and models used for our further experiments.

Here we specifically consider the setting where we only have 2 clients and a single global server.
Each of the 2 clients are assigned with data from only 2 classes along with a shared class for classi-
fication purpose.

For example, client 1 has class A and Normal (shared class) images while client 2 has class B and
the remaining Normal images.

COVID-19 Radiography Database: Client 1 has COVID-19 x-ray images while client 2 has lung
opacity x-ray images. Normal X-ray images are shared across both clients. Fig. 6 depicts the dataset
distribution. For random subset selection, we randomly choose λ = 0.1 fraction of samples on the
client side. For diversity-based subset selection, we first convert each of the 299×299 images into
a [512×1] vector embeddings using a ResNet architecture. Diversity functions are then applied to

3 Submodlib decile library
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Figure 6: Data distribution for Medical Datasets

these embeddings to retrieve a final subset of diverse and representative embeddings. Eventually,
we decode back to the original space using the chosen representative indices.

APTOS 2019 Blindness Detection: Unlike the COVID-19 radiography dataset, the APTOS dataset
has 3 RGB channels and a higher resolution. We rescale the dimension of images to 299x299 for
maintaining uniformity across all datasets. The same model configuration is followed as in the
COVID-19 radiography dataset.

OCTMNIST: The OCTMnist dataset is a large dataset with single-channel images of a higher res-
olution. We have resized the images to 299×299 resolution for our experiments. The Normal class
has above 50,000 train images itself, with the other two classes having close to 10,000 train images.
Due to this class imbalance, we have randomly selected 8,000 images from each class for our exper-
iments. Post which we again use a ResNet architecture to reduce the feature dimensions, which we
then feed into the CORESET-PFEDBAYES pipeline.

Baseline : Independent Learning In this scenario, each of the 2 clients solve the classification
problem independently without any involvement of a server as opposed to federated learning. Thus
there is no sharing of model weights to a common server as compared to the federated setting.

Baseline : Independent Learning on other client’s test data In this scenario, similar to the inde-
pendent learning setup, we report the metrics for a particular client not only on its own test data but
also on the other client’s test data by training on the individual client’s own training data.

For all the experiments for the medical dataset analysis across all the baselines, we report the class-
wise accuracy in Table 2.

Definition 7. Submodular Functions are set functions which exhibit diminishing returns. Let V
denote the ground-set of n data points {x1, x2, . . . xn} where xi ∈ Rd. More formally, V =
{xi}ni=1. Let A ⊆ B where A,B ⊂ V and v ∈ V. A submodular function f : 2V 7→ R satisfies
the diminishing returns property as follows:

f(A ∪ v)− f(A) ≥ f(B ∪ v)− f(B) (35)

10.7 ALGORITHM FOR ACCELERATED IHT

We first present the accelerated IHT algorithm as proposed in Zhang et al. (2021) in Algorithm 10.7.
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Algorithm 2 Accelerated IHT (A-IHT) for Bayesian Coreset Optimization
Input Objective f(w) = ∥y − Φw∥22; sparsity k
1: t = 0, z0 = 0, w0 = 0
2: repeat
3: Z = supp (zt)
4: S = supp

(
ΠNk\Z (∇f (zt))

)
∪ Z where |S| ≤ 3k

5: ∇̃t = ∇f (zt)|S
6: µt = argminµ f

(
zt − µ∇̃t

)
=
∥∇̃t∥2

2

2∥Φ∇̃t∥2
2

7: wt+1 = ΠCk∩Rn
+
(zt − µt∇f (zt))

8: τt+1 = argminτ f (wt+1 + τ (wt+1 − wt))

= ⟨y−Φwt+1,Φ(wt+1−wt)⟩
2∥Φ(wt+1−wt)∥2

2

9: zt+1 = wt+1 + τt+1 (wt+1 − wt)
10: t = t+ 1
11: until Stop criteria met
12: return wt

The algorithm Accelerated IHT above is proposed by Zhang et al. (2021). We share a high level
view of the algorithm include some of the important features.

Step Size Selection The authors propose that given the quadratic objective of the coreset optimiza-

tion, they perform exact line search to obtain the best step size per iteration.
∥∇̃t∥2

2

2∥Φ∇̃t∥2
2

Momentum The authors propose adaptive momentum acceleration as is evident from line 8 of the
pseudocode. At the end during the next update, Nesterov Accelerated Gradient is applied as shown
in line 9.

11 CODE

We share our code on GitHub at Link
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