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Abstract

Recent empirical studies have demonstrated that diffusion models can effectively1

learn the image distribution and generate new samples. Remarkably, these mod-2

els can achieve this even with a small number of training samples despite a large3

image dimension, circumventing the curse of dimensionality. In this work, we4

provide theoretical insights into this phenomenon by leveraging key empirical ob-5

servations: (i) the low intrinsic dimensionality of image data, (ii) a union of man-6

ifold structure of image data, and (iii) the low-rank property of the denoising au-7

toencoder in trained diffusion models. These observations motivate us to assume8

the underlying data distribution of image data as a mixture of low-rank Gaussians9

and to parameterize the denoising autoencoder as a low-rank model according to10

the score function of the assumed distribution. With these setups, we rigorously11

show that optimizing the training loss of diffusion models is equivalent to solving12

the canonical subspace clustering problem over the training samples. Based on13

this equivalence, we further show that the minimal number of samples required to14

learn the underlying distribution scales linearly with the intrinsic dimensions un-15

der the above data and model assumptions. This insight sheds light on why diffu-16

sion models can break the curse of dimensionality and exhibit the phase transition17

from failure to success in learning distributions. Moreover, we empirically estab-18

lish a correspondence between the subspaces and the semantic representations of19

image data, facilitating image editing. We validate these results with extensive20

experimental results on both simulated distributions and image datasets.21

1 Introduction22

Generative modeling is a fundamental task in deep learning, which aims to learn a data distribution23

from training data to generate new samples. Recently, diffusion models have emerged as a new fam-24

ily of generative models, demonstrating remarkable performance across diverse domains, including25

image generation [1, 2, 3], video content generation [4, 5], speech and audio synthesis [6, 7], and26

solving inverse problem [8, 9]. In general, diffusion models learn a data distribution from train-27

ing samples through a process that imitates the non-equilibrium thermodynamic diffusion process28

[2, 10, 11]. Specifically, the training and sampling of diffusion models involve two stages: (i) a29

forward diffusion process where Gaussian noise is incrementally added to training samples at each30

time step, and (ii) a backward sampling process where the noise is progressively removed through31

a neural network that is trained to approximate the score function at all time steps. As described in32

prior works [12, 11], the generative capability of diffusion models lies in their ability to learn the33

score function of the data distribution, i.e., the gradient of the logarithm of the probability density34

function (pdf ). We refer the reader to [13, 14, 15] for a more comprehensive introduction and survey35

on diffusion models.36
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(a) (b)
Figure 1: (a) Visualization of the union of manifold structure of image data. Here, different images
lie on different manifolds Mi ⊆ Rn of intrinsic dimension d with d ≪ n. (b) An illustration of
training samples that are generated according to the MoLRG model. This model is a local linearization
of a union of manifolds.

Despite the recent advances in understanding sampling convergence [16, 17, 18], distribution learn-37

ing [19, 20], memorization [21, 22, 23, 24], and generalization [25, 26, 27] of diffusion models, the38

fundamental working mechanisms remain poorly understood. One of the key questions is39

When and why can diffusion models learn the underlying data distribution without suffering from40

the curse of dimensionality?41

At first glance, the answer might seem quite straightforward. If a diffusion model can learn the em-42

pirical distribution of the training data that accurately approximates the underlying data distribution,43

then the puzzle is solved! However, it has been shown in [28] that the number of samples for an44

empirical distribution to approximate the underlying data distribution could grow exponentially with45

respect to (w.r.t.) the data dimension. Moreover, [20, 29] showed that to learn an ϵ-accurate score46

estimator measured by the ℓ2-norm via score matching or kernel-based approach, the required size47

of training samples grows at the rate of O(ϵ−n), where n is the data dimension. These theoretical48

findings indicate that learning the underlying distribution via diffusion models suffers from the curse49

of dimensionality. In contrast, recent studies [25, 27] showed that the number of training samples50

for a diffusion model to learn the underlying distribution is much smaller than the worst-case sce-51

nario, breaking the curse of dimensionality. Therefore, there is a significant gap between theory and52

practice.53

In this work, we aim to address the above question of learning the underlying distribution via dif-54

fusion models by leveraging low-dimensional models. Our key observations are as follows: (i) The55

intrinsic dimensionality of real image data is significantly lower than the ambient dimension, a fact56

well-supported by extensive empirical evidence in [30, 31, 32]; (ii) Image data lies on a disjoint57

union of manifolds of varying intrinsic dimensions, as empirically verified in [33, 34, 35] (see Fig-58

ure 1(a)); (iii) We empirically observe that the denoising autoencoder (DAE) [36, 37] of diffusion59

models trained on real-world image datasets exhibit low-rank structures (see Figure 2). Based on60

these observations, we conduct a theoretical investigation of distribution learning through diffusion61

models by assuming that (i) the underlying data distribution is a mixture of low-rank Gaussians (see62

Definition 1) and (ii) the denoising autoencoder is parameterized according to the score function of63

the MoLRG. Notably, these assumptions will be carefully discussed based on the existing literature64

and validated by our experiments on real image datasets.65

1.1 Our Contributions66

This work studies the DAE-based training loss of diffusion models under the above low-dimensional67

data model and network parameterization. Our contributions can be summarized as follows:68

• Equivalence between training diffusion models and subspace clustering. Under the above69

setup, we show that the training loss of diffusion models is equivalent to the unsupervised subspace70

clustering problem [38, 39, 40] (see Theorem 3). This equivalence implies that training diffusion71

models is essentially learning low-dimensional manifolds of the data distribution.72

• Understanding breaking the curse of dimensionality in learning distributions. By leveraging73

the above equivalence and the data model, we show that if the number of samples exceed the74

intrinsic dimension of the subspaces, the optimal solutions of the training loss can recover the75

underlying distribution. This explains why diffusion models can break the curse of dimensionality.76

Conversely, if the number of samples is insufficient, it may learn an incorrect distribution.77
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• Correspondence between semantic representations and the subspaces. Interestingly, we find78

that the discovered low-dimensional subspaces in a pre-trained diffusion model possess semantic79

meanings for natural images; see Figure 5. This motivates us to propose a training-free method to80

edit images on a frozen-trained diffusion model.81

2 Problem Setup82

In this work, we consider an image dataset consisting of samples {x(i)}Ni=1 ⊆ Rn, where each data83

point is i.i.d. sampled from an underlying data distribution pdata(x). Instead of learning this pdf84

directly, score-based diffusion models aim to learn the score function from the training samples.85

2.1 Preliminaries on Score-Based Diffusion Models86

Forward and reverse SDEs of diffusion models. In general, diffusion models consist of forward87

and reverse processes indexed by a continuous time variable t ∈ [0, 1]. Specifically, the forward88

process progressively injects noise into the data. This process can be described by the following89

stochastic differential equation (SDE):90

dxt = f(t)xtdt+ g(t)dwt, (1)

where x0 ∼ pdata, the scalar functions f(t), g(t) : R→ R respectively denote the drift and diffusion91

coefficients,1 and {wt}t∈[0,1] is the standard Wiener process. For ease of exposition, let pt(x) denote92

the pdf of xt and pt(xt|x0) the transition kernel from x0 to xt. According to Eq. (1), we have93

pt(xt|x0) = N (xt; stx0, s
2
tσ

2
t In), where st = exp

(∫ t

0

f(ξ)dξ

)
, σt =

√∫ t

0

g2(ξ)

s2(ξ)
dξ, (2)

where st := s(t) and σt := σ(t) for simplicity. The reverse process gradually removes the noise94

from x1 via the following reverse-time SDE:95

dxt =
(
f(t)xt − g2(t)∇ log pt(xt)

)
dt+ g(t)dw̄t, (3)

where {w̄t}t∈[0,1] is another standard Wiener process, independent of {wt}, running backward in96

time from t = 1 to t = 0. It is worth noting that if x1 and∇ log pt are provided, the reverse process97

has exactly the same distribution as the forward process at each time t ≥ 0 [42].98

Training loss of diffusion models. Unfortunately, the score function∇ log pt is usually unknown,99

as it depends on the underlying data distribution pdata. To enable data generation via the reverse100

SDE (3), a common approach is to estimate the score function ∇ log pt using the training samples101

{x(i)}Ni=1 based on the scoring matching [2, 11]. Because of the equivalence between the score102

function ∇ log pt(xt) and the posterior mean E [x0|xt], i.e.,103

stE [x0|xt] = xt + s2tσ
2
t∇ log pt(xt), (4)

according to Tweedie’s formula and (2), an alternative approach to estimate the score function104

∇ log pt is to estimate the posterior mean E [x0|xt]. Consequently, extensive works [43, 25, 41,105

37, 44] have considered training a time-dependent function xθ(·, t) : Rn × [0, 1] → Rn, known as106

denoising autoencoder (DAE), parameterized by a neural network with parameters θ to estimate the107

posterior mean E [x0|xt]. To determine the parameters θ, we can minimize the following empirical108

loss:109

min
θ

ℓ(θ) :=
1

N

N∑
i=1

∫ 1

0

λtEϵ∼N (0,In)

[∥∥∥xθ(stx
(i) + γtϵ, t)− x(i)

∥∥∥2] dt, (5)

where λt : [0, 1]→ R+ is a weighting function and γt := stσt. As shown in [37], training the DAE110

is equivalent to performing explicit or implicit score matching under mild conditions. We refer the111

reader to Appendix A.1 for the relationship between this loss and the score-matching loss.112

1In general, the functions f(t) and g(t) are chosen such that (i) xt for all t close to 0 approximately follows
the data distribution pdata and (ii) xt for all t close to 1 is nearly a standard Gaussian distribution; see, e.g., the
settings in [2, 41, 11].
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2.2 Low-Dimensional Data and Models113

Mixture of low-rank Gaussian data distribution. Although real-world image datasets are114

high dimensional in terms of pixel count and overall data volume, extensive empirical works115

[30, 34, 31, 32] suggest that their intrinsic dimensions are much lower. For instance, [31] indicated116

that even for complex datasets like ImageNet [45], the intrinsic dimensionality is approximately 40,117

which is significantly lower than its ambient dimension. Recently, [33, 34, 35] empirically validated118

the union of manifolds hypothesis, demonstrating that high-dimensional image data often lies on a119

disjoint union of manifolds instead of a single manifold. These observations motivate us to model120

the underlying data distribution as a mixture of low-rank Gaussians, where the data points are gen-121

erated from a mixture of several Gaussian distributions; see Figure 1(b). We formally define the122

MoLRG distribution as follows:123

Definition 1 (Mixtures of Low-Rank Gaussians). We say that a random vector x ∈ Rn follows a124

mixture of K low-rank Gaussian distribution with parameters {πk}Kk=1 and {U⋆
k}Kk=1 if125

x ∼
K∑

k=1

πkN (0,U⋆
kU

⋆T
k ), (6)

where U⋆
k ∈ On×dk denotes the orthonormal base of the k-th component and πk ≥ 0 is the mixing126

proportion of the k-th mixture component satisfying
∑K

k=1 πk = 1.127

Before we proceed, we make some remarks on this data model. First, to study how diffusion mod-128

els learn the underlying data distribution, many recent works have studied a mixture of full-rank129

Gaussian distributions (see Eq. (20)); see, e.g., [46, 47, 48]. However, compared to this model,130

MoLRG is a more suitable model for capturing the low-dimensionality in image data distribution.131

Second, [33, 34] conducted extensive numerical experiments to validate that image datasets such132

as MNIST and ImageNet approximately lie on a union of low-dimensional manifolds. Because a133

nonlinear manifold can be well approximated by its tangent space (i.e., a linear subspace) in a local134

neighborhood, the MoLRG model, which represents data as a union of linear subspace, serves a good135

local approximation of a union of manifolds. Finally, assuming Gaussian distributions in each sub-136

space in the MoLRG model is to ensure theoretical tractability, making it a practical starting point for137

theoretical studies on real-world image datasets. Now, we compute the ground-truth posterior mean138

E [x0|xt] when x0 satisfies the MoLRG model as follows.139

Lemma 1. Suppose that x0 satisfies the MoLRG model. For each time t > 0, it holds that140

E [x0|xt] =
st

s2t + γ2
t

∑K
k=1 πk exp

(
ϕt∥U⋆T

k xt∥2
)
U⋆

kU
⋆T
k xt∑K

k=1 πk exp
(
ϕt∥U⋆T

k xt∥2
) , where ϕt :=

s2t
2γ2

t (s
2
t + γ2

t )
. (7)

We defer the proof of this lemma to Appendix A.2. Notably, this lemma provides guidance on the141

network parameterization of the DAE xθ(·, t) as discussed below.142

Low-rank network parameterization. When we train diffusion models with the U-Net architec-143

ture [49] on various image datasets, it is observed that the numerical rank of the Jacobian of the144

DAE, i.e., ∇xt
xθ(xt, t), is substantially lower than the ambient dimension in most time steps; see145

Figure 2(a). When training diffusion models with U-Net on the samples generated according to the146

MoLRG model, the Jacobian of the DAE also exhibits a similar low-rank pattern; see Figure 2(b). The147

above observations motivate us to consider a low-rank parameterization of the network. According148

to the ground-truth posterior mean of the MoLRG model in Lemma 1, a natural parameterization for149

the DAE is150

xθ(xt, t) =
st

s2t + γ2
t

K∑
k=1

wk(θ;xt)UkU
T
k xt, wk(θ;xt) =

πk exp
(
ϕt∥UT

k xt∥2
)∑K

l=1 πl exp
(
ϕt∥UT

l xt∥2
) , (8)

where the network parameters θ = {Uk}Kk=1 satisfy Uk ∈ On×dk . Although this approach may151

seem idealized, it offers several practical insights. First, if we consider a single low-rank Gaussian,152

the network parameterization takes the form x−st/(s2t +γ2
t )UUTx, which resembles the structure153

of a practical U-Net with a linear encoder, decoder, and skip connections. This provides theoretical154

insights into why U-Net is preferred for training diffusion models. Second, to learn the underlying155

distribution, the number of samples should be proportional to its intrinsic dimension. In practice,156
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(a) Real image datasets (b) Mixture of low-rank Gaussians
Figure 2: Low-rank property of the DAE of trained diffusion models. We plot the ratio of the
numerical rank of the Jacobian of the denoising autoencoder, i.e., ∇xt

xθ(xt, t), over the total di-
mension against the signal-to-noise ratio (SNR) 1/σt on trained diffusion models. (a) We train
diffusion models on image datasets CIFAR-10, CelebA, FFHQ, and AFHQ. The experimental de-
tails are provided in Appendix C.1. (b) We respectively train diffusion models with the low-rank
parameterization (8) and U-Net on a mixture of low-rank Gaussian distributions.

this informs us on how to use a minimal number of samples to train diffusion models to achieve157

generalization.158

Similar simplifications have been widely used for theoretical analysis in various ideal data distribu-159

tions; see, e.g., [19, 46, 47, 48]. Notably, under this specific network parameterization in Eq. (8),160

learning the score function ∇ log pt(xt) reduces to learning the network parameters θ in Eq. (8)161

according to Lemma 1 and Eq. (4).162

3 Main Results163

Based on the setups in Section 2.2, we are ready to conduct a theoretical analysis of distribution164

learning using diffusion models.165

3.1 A Warm-Up Study: A Single Low-rank Gaussian Case166

To begin, we start from a simple case that the underlying distribution pdata is a single low-rank167

Gaussian. Specifically, the training samples {x(i)}Ni=1 ⊆ Rn are generated according to168

x(i) = U⋆ai + ei, (9)

where U⋆ ∈ On×d denotes an orthonormal basis, ai
i.i.d.∼ N (0, Id) is coefficients for each i ∈ [N ],169

and ei ∈ Rn is noise for all i ∈ [N ].2 According to (8), we parameterize the DAE into170

xθ(xt, t) =
st

s2t + γ2
t

UUTxt, (10)

where θ = U ∈ On×d. Equipped with the above setup, we can show the following result.171

Theorem 1. Suppose that the DAE xθ(·, t) in Problem (5) is parameterized into (10) for each172

t ∈ [0, 1]. Then, Problem (5) is equivalent to the following PCA problem:173

max
U∈Rn×d

N∑
i=1

∥UTx(i)∥2 s.t. UTU = Id. (11)

We defer the proof to Appendix A.3. In the single low-rank Gaussian model, Theorem 1 shows174

that training diffusion models with a DAE of the form (10) to learn this distribution is equivalent to175

performing PCA on the training samples. Leveraging this equivalence, we can further characterize176

the number of samples required for learning underlying distribution under the data model (9).177

2Since real-world images inherently contain noise due to various factors, such as sensor limitation, environ-
ment conditions, and transition error, it is reasonable to add a noise term to this model.
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Theorem 2. Consider the setting of Theorem 1. Suppose that the training samples {x(i)}Ni=1 are178

generated according to the noisy single low-rank Gaussian model defined in (9). Let Û denote an179

optimal solution of Problem (5). The following statements hold:180

i) If N ≥ d, it holds with probability at least 1−1/2N−d+1−exp (−c2N) that any optimal solution181

Û satisfies182

∥∥∥ÛÛT −U⋆U⋆T
∥∥∥
F
≤

c1

√∑N
i=1 ∥ei∥2√

N −
√
d− 1

, (12)

where c1, c2 > 0 are constants that depend polynomially only on the Gaussian moment.183

ii) If N < d, there exists an optimal solution Û ∈ On×d such that with probability at least 1 −184

1/2d−N+1 − exp (−c′2d),185

∥∥∥ÛÛT −U⋆U⋆T
∥∥∥
F
≥
√
2min{d−N,n− d} −

c′1

√∑N
i=1 ∥ei∥2√

d−
√
N − 1

, (13)

where c′1, c
′
2 > 0 are constants that depend polynomially only on the Gaussian moment.186

Remark 1. We defer the proof to Appendix A.4. Building on the equivalence in Theorem 1 and the187

DAE parameterization (10), Theorem 2 clearly shows a phase transition from failure to success in188

learning the underlying distribution as the number of training samples increases. This phase transi-189

tion is further corroborated by our experiments in Figures 3(a) and 3(b). Note that our theory cannot190

explain why diffusion models memorize training data (i.e., learning the empirical distribution). This191

is because the parameterization (10) is not as sufficiently over-parameterized as architectures like192

U-Net. We plan to explore this over-parameterized setting in future work to better understand how193

diffusion models achieve memorization and to extend our theoretical insights accordingly.194

3.2 From Single Low-Rank Gaussian to Mixtures of Low-Rank Gaussians195

In this subsection, we extend the above study to the MoLRG distribution. In particular, we consider196

a noisy version of the MoLRG model as defined Definition 1. Specifically, the training samples are197

generated by198

x(i) = U⋆
kai + ei with probability πk, ∀i ∈ [N ], (14)

where U⋆
k ∈ On×dk denotes an orthonormal basis for each k ∈ [K], ai

i.i.d.∼ N (0, Idk
) is coeffi-199

cients, and ei ∈ Rn is noise for each i ∈ [N ]. As argued by [33], image data lies on a disjoint union200

of manifolds. This motivates us to assume that the basis matrices of subspaces satisfy U⋆T
k U⋆

l = 0201

for each k ̸= l. To simplify our analysis, we assume that d1 = · · · = dK = d and the mixing202

weights satisfy π1 = · · · = πK = 1/K. Moreover, we consider a hard-max counterpart of Eq. (8)203

for the DAE parameterization as follows:204

xθ(xt, t) =
st

s2t + γ2
t

K∑
k=1

ŵk(θ,x0)UkU
T
k xt, (15)

where θ = {Uk}Kk=1 and the weights {ŵk(θ;x0)}Kk=1 are set as205

ŵk(θ;x0) = 1, if k = k0, ŵk(θ;x0) = 0, otherwise, (16)

where k0 ∈ [K] is an index satisfying ∥UT
k0
x0∥ ≥ ∥UT

l x0∥ for all l ̸= k0 ∈ [K]. We should point206

out that we use two key approximations here. First, the soft-max weights {wk(θ,xt)} in Eq. (8)207

are approximated by the hard-max weights {ŵk(θ;x0)}Kk=1. Second, ∥UT
k xt∥ is approximated by208

its expectation, i.e., Eϵ[∥UT
k xt∥2] = Eϵ

[
∥UT

k (stx0 + γtϵ)∥2
]
= s2t∥UT

k x0∥2+γ2
t d. We refer the209

reader to Appendix B.1 for more details on these approximation. Now, we are ready to show the210

following theorem.211
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Theorem 3. Suppose that the DAE xθ(·, t) in Problem (5) is parameterized into (15) for each212

t ∈ [0, 1], where ŵk(θ,x0) is defined in (16) for each k ∈ [K]. Then, Problem (5) is equivalent to213

the following subspace clustering problem:214

max
θ

1

N

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2 s.t. [U1, . . . ,UK ] ∈ On×dK , (17)

where Ck(θ) :=
{
i ∈ [N ] : ∥UT

k x(i)∥ ≥ ∥UT
l x(i)∥, ∀l ̸= k

}
for each k ∈ [K].215

We defer the proof to Appendix B.2. When the DAE is parameterized into (15), Theorem 3 demon-216

strates that optimizing the training loss of diffusion models is equivalent to solving the subspace217

clustering problem [39, 40]. Moreover, the equivalence allows us to characterize the required mini-218

mum number of samples for learning the underlying MoLRG distribution.219

Theorem 4. Consider the setting of Theorem 3. Suppose that the training samples {x(i)}Ni=1 are220

generated by the MoLRG distribution in Definition 1. Suppose d ≳ logN and ∥ei∥ ≲
√
d/N for221

all i ∈ [N ]. Let {Ûk}Kk=1 denote an optimal solution of Problem (5) and Nk denote the number of222

samples from the k-th Gaussian component. Then, the following statements hold:223

(i) If Nk ≥ d for each k ∈ [K], there exists a permutation Π : [K] → [K] such that with224

probability at least 1−2K2N−1−
∑K

k=1

(
1/2Nk−d+1 + exp (−c2Nk)

)
for each k ∈ [K],225

∥∥∥ÛΠ(k)Û
T
Π(k) −U⋆

kU
⋆T
k

∥∥∥
F
≤

c1

√∑N
i=1 ∥ei∥2√

Nk −
√
d− 1

, (18)

where c1, c2 > 0 are constants that depend polynomially only on the Gaussian moment.226

(ii) If Nk < d for some k ∈ [K], there exists a permutation Π : [K] → [K] and k ∈ [K] such227

that with probability at least 1− 2K2N−1 −
∑K

k=1

(
1/2d−Nk+1 + exp (−c′2Nk)

)
,228

∥∥∥ÛΠ(k)Û
T
Π(k) −U⋆

kU
⋆T
k

∥∥∥
F
≥
√
2min{d−Nk, n− d} −

c′1

√∑N
i=1 ∥ei∥2√

d−
√
Nk − 1

, (19)

where c′1, c
′
2 > 0 are constants that depend polynomially only on the Gaussian229

Remark 2. We defer the proof to Appendix B.3. We discuss the implications of our results below.230

• Phase transition in learning the underlying distribution. This theorem demonstrates that when231

the number of samples in each subspace exceeds the dimension of the subspace and the noise232

is bounded, the optimal solution of the training loss (5) under the parameterization (15) can re-233

cover the underlying subspaces up to the noise level. Conversely, when the number of samples is234

insufficient, there exists an optimal solution that may recover wrong subspaces; see Figures 3(c,d).235

• Connections to the phase transition from memorization to generalization. We should clarify the236

difference between the phase transition described in Theorems 2 & 4 and the phase transition from237

memorization to generalization. Our phase transition refers to the shift from failure to success of238

learning the underlying distribution as the number of training samples increase, whereas the latter239

concerns the shift from memorizing data to generalizing from it as the number of training samples240

increases. Nevertheless, our theory still sheds light on the minimal number of samples required241

for diffusion models to enter the generalized regime.242

4 Experiments & Practical Implications243

In this section, we first investigate phase transitions of diffusion models in learning distributions244

under both theoretical and practical settings in Section 4.1. Next, we demonstrate the practical245

implications of our work by exploring the correspondence between low-dimensional subspaces and246

semantic representations for controllable image editing in Section 4.2.247

4.1 Phase Transition in Learning Distributions248

In this subsection, we conduct experiments on both synthetic and real datasets to study the phase249

transition of diffusion models in learning distributions.250
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(a) PCA
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(b) Diffusion Model
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(c) Subspace Clustering
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(d) Diffusion Model
Figure 3: Phase transition of learning the MoLRG distribution. The x-axis is the number of train-
ing samples and y-axis is the dimension of subspaces. Darker pixels represent a lower empirical
probability of success. When K = 1, we apply SVD and train diffusion models to solve Problems
(11) and (5), visualizing the results in (a) and (b), respectively. When K = 2, we apply a subspace
clustering method and train diffusion models for solving Problems (17) and (5), visualizing the re-
sults in (c) and (d), respectively.

Learning the MoLRG distribution with the theoretical parameterizations. To begin, we opti-251

mize the training loss (5) with the theoretical parameterization (8), where the data samples are252

generated by the MoLRG distribution. First, we apply stochastic gradient descent (see Algorithm 1)253

to solve Problem (5) with the DAE parameterized as (8). For comparison, according to Theorem 1254

(resp., Theorem 3), we apply a singular value decomposition (resp., subspace clustering [40]) to255

solve Problem (11) (resp, Problem (17)). We conduct three sets of experiments, where the data256

samples are respectively generated according to the single low-rank Gaussian distribution (9) with257

K = 1 and a mixture of low-rank Gaussian distributions (14) with K = 2, 3. In each set, we set258

the total dimension n = 48 and let the subspace dimension d and the number of training samples259

N vary from 2 to 8 and 2 to 15 with increments of 1, respectively. For every pair of d and N , we260

generate 20 instances, run the above methods, and calculate the successful rate of recovering the261

underlying subspaces. The simulation results are visualized in Figure 3 and Figure 7. It is observed262

that all these methods exhibit a phase transition from failure to success in learning the subspaces as263

the number of training samples increases, which supports the results in Theorems 2 and 4.264

Learning the MoLRG distribution with U-Net. Next, we optimize the training loss (5) with pa-265

rameterizing the DAE xθ(·, t) using U-Net, detailed experiment settings are in Appendix D.2. We266

measure the generalization ability of U-Net via generalization (GL) score defined in Eq. (48). The267

trained diffusion model is in the memorization regime when the GL score is close to 0, while it is268

in the generalization regime when the GL score is close to 1. Detailed discussions about the metric269

are in Appendix D.2. In the experiments, we generate the data samples using the MoLRG distribution270

with K = 2, n = 48, and dk ∈ {3, 4, 5, 6}. Then, we plot the GL score against the Nk/dk for271

each dk in Figure 4(a). It is observed that for a fixed dk, the generalization performance of diffu-272

sion models improves as the number of training samples increases. Notably, for different values of273

dk, the plot of the GL score against the Nk/dk remains approximately consistent. This observation274

indicates that the phase transition curve for U-Net learning the MoLRG distribution depends on the275

ratio Nk/dk rather than on Nk and dk individually. When Nk/dk ≈ 60, GL score ≈ 1.0 suggesting276

that U-Net generalizes when Nk ≥ 60dk. This linear relationship for the phase transition differs277

from Nk ≥ dk in Theorem 4 due to training with U-Net instead of the optimal network parame-278

terization in Eq. (8). Nevertheless, Theorem 2 and Theorem 4 still provide valuable insights into279

learning distributions via diffusion models by demonstrating a similar phase transition phenomenon280

and confirming a linear relationship between Nk and dk.281

Learning real image data distributions with U-Net. Finally, we train diffusion models using U-282

Net on real image datasets AFHQ, CelebA, FFHQ, and CIFAR-10. The detailed experiment settings283

are deferred to Appendix D.3. we utilize the generalization (GL) score on the real-world image284

dataset according to [27]. The definition of the metric is in Eq. (49) and detailed discussions are285

in Appendix D.3. Intuitively, GL score measures the dissimilarity between the generated sample286

x and all N samples yi from the training dataset {yi}Ni=1. A higher GL score indicates stronger287

generalizability. For each data set, we train U-Net and plot the GL score against the number of288

training samples in Figure 4(b). The phase transition in the real dataset is illustrated in Figure 4(b).289

As observed, the order in which the samples need to generalize follows the relationship: AFHQ290

> CelebA > FFHQ ≈ CIFAR-10. Additionally, from our previous observations in Figure 2, the291

relationship of the intrinsic dimensions for these datasets is: AFHQ > FFHQ > CelebA ≈ CIFAR-292
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(a) MoLRG distribution (b) Real image data distribution
Figure 4: Phase transition of learning distributions via U-Net. In (a), the x-axis is the number of
training samples over the intrinsic dimension, while in (b), it is the total number of training samples.
The y-axis is the GL score. We train diffusion models with the U-Net architecture on (a) the data
samples generated by the MoLRG distribution with K = 2, n = 48 and dk varying from 3 to 6 and
(b) real image datasets CIFAR-10, CelebA, FFHQ and AFHQ. The GL score is low when U-Net
memorizes the training data and high when it learns the underlying distribution.

10. Both AFHQ and CelebA align well with our theoretical analysis, which indicates that more293

samples are required for the model to generalize as the intrinsic dimension increases.294

4.2 Semantic Meanings of Low-Dimensional Subspaces295

In this subsection, we conduct experiments to verify the correspondence between the low-296

dimensional subspaces of the data distribution and the semantics of images on real datasets. We297

denote the Jacobian of the DAE xθ(xt, t) by Jt := ∇xtxθ(xt, t) ∈ Rn×n and let Jt = UΣV T298

be an singular value decomposition (SVD) of Jt, where r = rank(Jt), U = [u1, · · · ,ur] ∈ On×r,299

V = [v1, · · · ,vr] ∈ On×r, and Σ = diag(σ1, . . . , σr) with σ1 ≥ · · · ≥ σr being the singular300

values. To validate the semantic meaning of the basis vectors vi, we vary the value of α from neg-301

ative to positive and visualize the resulting changes in the generated images. In the experiments,302

we use a pre-trained diffusion denoising probabilistic model (DDPM) [2] on the MetFaces dataset303

[50]. We randomly select an image x0 from this dataset and use the reverse process of the diffusion304

denoising implicit model (DDIM) [51] to generate xt at t = 0.7T , where T denote the total num-305

ber of time steps. We respectively choose the changed direction as the leading right singular vectors306

v1,v3,v4,v5,v6 and use x̃t = xt+αvi to generate new images with α ∈ [−4, 4] shown in Figure 8.307

It is observed that these singular vectors enable different semantic edits in terms of gender, hairstyle,308

and color of the image. For comparison, we generate a random unit vector s and move xt along309

the direction of s, where the editing strength α is the same as the semantic edits column-wise. The310

results are shown in the last column of Figure 5. Moving along random directions provides minimal311

semantic changes in the generated images, indicating that the low-dimensional subspace spanned312

by V is non-trivial and corresponds to semantic meaningful image attributes. More experimental313

results can be found in Figure 8, Figure 9 in Appendix D.3.314

5 Related Works315

Learning a mixture of Gaussians via diffusion models. Recent works have extensively stud-316

ied distribution learning and generalizability of diffusion models for learning a mixture of full-317

rank Gaussian (MoG) model [46, 52, 47, 48, 53]. Specifically, they assumed that there exist centers318

µ1, . . . ,µK ∈ Rn such that image data approximately follows from the following distribution:319

x ∼
K∑

k=1

πkN (µk, In), (20)

where πk ≥ 0 is the mixing proportion of the k-th mixture component satisfying
∑K

k=1 πk = 1.320

Notably, the MoLRG model is distinct from the above MoG model that is widely studied in the litera-321

ture. Specifically, the MoG model consists of multiple Gaussians with varying means and covariance322

spanning the full-dimensional space (see Eq. (20)), while a MoLRG comprises multiple Gaussians323

with zero mean and low-rank covariance (see Eq. (6)), lying in a union of low-dimensional sub-324

spaces. As such, the MoLRG model, inspired by the inherent low-dimensionality of image datasets325
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Figure 5: Correspondence between the singular vectors of the Jacobian of the DAE and se-
mantic image attributes. We use a pre-trained DDPM with U-Net on the MetFaces dataset [50].
We edit the original image x0 by changing xt into xt + αvi, where vi is a singular vector of the
Jacobian of the DAE xθ(xt, t). In the last column, the editing direction s is random.

[30, 31, 32], offers a deeper insight into how diffusion models can learn underlying distributions in326

practice without suffering from the curse of dimensionality.327

Memorization and generalization in diffusion models. Recently, extensive studies [25, 26, 27]328

empirically revealed that diffusion models learn the score function across two distinct regimes —329

memorization (i.e., learning the empirical distribution) and generalization (i.e., learning the underly-330

ing distribution) — depending on the training dataset size vs. the model capacity. For a model with331

a fixed number of parameters, there is a phase transition from memorization to generalization as the332

number of training samples increases [25, 27]. Notably, most existing studies on the memorization333

and generalization of diffusion models are empirical. In contrast, our work provides rigorous theo-334

retical explanations for these intriguing experimental observations based on the MoLRG model. We335

demonstrate that diffusion models learn the underlying data distribution with the number of training336

samples scaling linearly with the intrinsic dimension.337

6 Conclusion & Discussion338

In this work, we studied the training loss of diffusion models to investigate when and why diffusion339

models can learn the underlying distribution without suffering from the curse of dimensionality.340

Motivated by extensive empirical observations, we assumed that the underlying data distribution is a341

mixture of low-rank Gaussians. Specifically, we showed that minimizing the training loss is equiv-342

alent to solving the subspace clustering problem under proper network parameterization. Based on343

this equivalence, we further showed that the optimal solutions to the training loss can recover the344

underlying subspaces when the number of samples scales linearly with the intrinsic dimensionality345

of the data distribution. Moreover, we established the correspondence between the subspaces and se-346

mantic representations of image data. Since our studied network parameterization is not sufficiently347

over-parameterized, a future direction is to extend our analysis to an over-parameterized case to fully348

explain the transition from memorization to generalization.349
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[39] René Vidal. Subspace clustering. IEEE Signal Processing Magazine, 28(2):52–68, 2011.462

[40] Peng Wang, Huikang Liu, Anthony Man-Cho So, and Laura Balzano. Convergence and recov-463

ery guarantees of the k-subspaces method for subspace clustering. In International Conference464

on Machine Learning, pages 22884–22918. PMLR, 2022.465

[41] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space466

of diffusion-based generative models. Advances in Neural Information Processing Systems,467

35:26565–26577, 2022.468

[42] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their469

Applications, 12(3):313–326, 1982.470

[43] Xinlei Chen, Zhuang Liu, Saining Xie, and Kaiming He. Deconstructing denoising diffusion471

models for self-supervised learning. arXiv preprint arXiv:2401.14404, 2024.472

[44] Weilai Xiang, Hongyu Yang, Di Huang, and Yunhong Wang. Denoising diffusion autoencoders473

are unified self-supervised learners. In Proceedings of the IEEE/CVF International Conference474

on Computer Vision, pages 15802–15812, 2023.475

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng476

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual477

recognition challenge. International journal of computer vision, 115:211–252, 2015.478

[46] Sitan Chen, Vasilis Kontonis, and Kulin Shah. Learning general gaussian mixtures with effi-479

cient score matching. arXiv preprint arXiv:2404.18893, 2024.480

[47] Khashayar Gatmiry, Jonathan Kelner, and Holden Lee. Learning mixtures of gaussians using481

diffusion models. arXiv preprint arXiv:2404.18869, 2024.482

[48] Kulin Shah, Sitan Chen, and Adam Klivans. Learning mixtures of gaussians using the DDPM483

objective. Advances in Neural Information Processing Systems, 36:19636–19649, 2023.484

[49] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks485

for biomedical image segmentation. In Medical image computing and computer-assisted486

intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,487

2015, proceedings, part III 18, pages 234–241. Springer, 2015.488

[50] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.489

Training generative adversarial networks with limited data. In Proceedings of the 34th Inter-490

national Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY,491

USA, 2020. Curran Associates Inc.492

[51] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In493

International Conference on Learning Representations, 2020.494

13



[52] Frank Cole and Yulong Lu. Score-based generative models break the curse of dimensionality495

in learning a family of sub-gaussian distributions. In The Twelfth International Conference on496

Learning Representations, 2024.497

[53] Yuchen Wu, Minshuo Chen, Zihao Li, Mengdi Wang, and Yuting Wei. Theoretical insights498

for diffusion guidance: A case study for gaussian mixture models. In Forty-first International499

Conference on Machine Learning, 2024.500
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Supplementary Material526
527

In the appendix, the organization is as follows. We first provide proof details for Section 2 and528

Section 3 in Appendix A and Appendix B, respectively. Then, we present our experimental setups529

for Figure 2 in Appendix C and for Section 4 in Appendix D. Finally, some auxiliary results for530

proving the main theorems are provided in Appendix E.531

To simplify our development, we introduce some further notation. We denote by N (µ,Σ) a multi-532

variate Gaussian distribution with mean µ ∈ Rn and covariance Σ ⪰ 0. Given a Gaussian random533

vector x ∼ N (µ,Σ), if Σ ≻ 0, with abuse of notation, we write its pdf as534

N (x;µ,Σ) :=
1

(2π)n/2 det1/2(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (21)

If a random vector x ∈ Rn satisfies x ∼ N (µ,UUT ) for some µ ∈ Rn and U ∈ On×d, we have535

x = µ+Ua, (22)
where a ∼ N (0, Id). Therefore, a mixture of low-rank Gaussians in Definition 1 can be expressed536

as537

P (x = U⋆
kak) = πk, where ak ∼ N (0, Idk

), ∀k ∈ [K]. (23)

A Proofs in Section 2538

A.1 Relation between Score Matching Loss and Denoiser Autoencoder Loss539

To estimate∇ log pt(x), one can train a time-dependent score-based model sθ(x, t) via minimizing540

the following objective [11]:541

min
θ

∫ 1

0

ξtEx0∼pdata
Ext|x0

[
∥sθ(xt, t)−∇ log pt(xt|x0)∥2

]
dt, (24)

where ξt : [0, 1] → R+ is a positive weighting function. Let xθ(·, t) : Rd × [0, 1] → Rd de-542

note a neural network parameterized by parameters θ to approximate E[x0|xt]. According to the543

Tweedie’s formula (4), sθ(xt, t) = (stxθ(xt, t)− xt) /γ
2
t can be used to estimate score functions.544

Substituting this and∇ log pt(xt|x0) = (stx0 − xt) /γ
2
t due to (2) yields545

min
θ

∫ 1

0

ξtEx0∼pdata
Ext|x0

[∥∥∥∥ 1

γ2
t

(stxθ(xt, t)− xt)−
1

γ2
t

(stx0 − xt)

∥∥∥∥2
]
dt

=

∫ 1

0

ξt
s2tσ

4
t

Ex0∼pdata
Eϵ∼N (0,In)

[
∥xθ(stx0 + γtϵ, t)− x0∥2

]
dt,

where the equality follows from xt = stx0 + γtϵ due to (2). Then, we obtain546

min
θ

∫ 1

0

λtEx0∼pdata
Eϵ∼N (0,In)

[
∥xθ(stx0 + γtϵ, t)− x0∥2

]
dt, (25)

where λt = ξt/(s
2
tσ

4
t ). However, only data points {x(i)}Ni=1 sampled from the underlying data547

distribution pdata are available in practice. Therefore, we study the following empirical counterpart548

of Problem (25) over the training samples, i.e., Problem (5). We refer the reader to [25, Section 2.1]549

for more discussions on the denoising error of this problem.550

A.2 Proof of in Lemma 1551

Assuming that the underlying data distribution follows a mixture of low-rank Gaussians as defined552

in Definition 1, we first compute the ground-truth score function as follows.553

Proposition 1. Suppose that the underlying data distribution pdata follows a mixture of low-rank554

Gaussian distributions in Definition 1. In the forward process of diffusion models, the pdf of xt for555

each t > 0 is556

pt(x) =

K∑
k=1

πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2

t In), (26)
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where γt = stσt. Moreover, the score function of pt(x) is557

∇ log pt(x) = −
1

γ2
t

(
x− s2t

s2t + γ2
t

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2

t In)U
⋆
kU

⋆T
k x∑K

k=1 πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2

t In)

)
. (27)

Proof. Let Y ∈ {1, . . . ,K} be a discrete random variable that denotes the value of components of558

the mixture model. Note that γt = stσt. It follows from Definition 1 that P(Y = k) = πk for each559

k ∈ [K]. We first compute560

pt(x|Y = k) =

∫
pt (x|Y = k,ak)N (ak;0, Idk

) dak =

∫
pt(x|x0 = U⋆

kak)N (ak;0, Idk
) dak

=

∫
N (x; stU

⋆
kak, γ

2
t In)N (ak;0, Idk

) dak

=
1

(2π)n/2(2π)dk/2γn
t

∫
exp

(
− 1

2γ2
t

∥x− stU
⋆
kak∥2

)
exp

(
−1

2
∥ak∥2

)
dak

=
1

(2π)n/2γn
t

(
s2t + γ2

t

γ2
t

)−d/2

exp

(
− 1

2γ2
t

xT

(
In −

s2t
s2t + γ2

t

U⋆
kU

⋆T
k

)
x

)
∫

1

(2π)dk/2

(
γ2
t

s2t + γ2
t

)−d/2

exp

(
−s2t + γ2

t

2γ2
t

∥∥∥∥ak −
st

s2t + γ2
t

U⋆T
k x

∥∥∥∥2
)
dak

=
1

(2π)n/2
1(

(s2t + γ2
t )

dγ
2(n−d)
t

)1/2 exp

(
− 1

2γ2
t

xT

(
In −

s2t
s2t + γ2

t

U⋆U⋆T

)
x

)

=
1

(2π)n/2 det1/2(s2tU
⋆
kU

⋆T
k + γ2

t In)
exp

(
−1

2
xT
(
s2tU

⋆
kU

⋆T
k + γ2

t In
)−1

x

)
= N (x;0, s2tU

⋆
kU

⋆T
k + γ2

t In),

where the second equality follows from (2), the third equality uses (21), the fourth equality is due561

to the fact that ⟨x,U⋆
ka⟩ is an odd function, and the second to last equality uses det(s2tU

⋆
kU

⋆T
k +562

γ2
t In) = (s2t + γ2

t )
dγ

2(n−d)
t and (s2tU

⋆
kU

⋆T
k + γ2

t In)
−1 =

(
In − s2t/(s

2
t + γ2

t )U
⋆
kU

⋆T
k

)
/γ2

t due563

to the matrix inversion lemma and U⋆T
k U⋆

k = Idk
. This, together with P(Y = k) = πk for each564

k ∈ [K], yields565

pt(x) =

K∑
k=1

pt(x|Y = k)P(Y = k) =

K∑
k=1

πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2

t In).

Next, we directly compute566

∇ log pt(x) =
∇pt(x)
pt(x)

=

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2

t In)
(
− 1

γ2
t
x+

s2t
γ2
t (s

2
t+γ2

t )
U⋆

kU
⋆T
k x

)
∑K

k=1 πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2

t In)

= − 1

γ2
t

(
x− s2t

s2t + γ2
t

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2

t In)U
⋆
kU

⋆T
k x)∑K

k=1 πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2

t In)

)
.

⊔⊓567
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Proof of Lemma 1. According to (4) and Proposition 1, we compute568

E [x0|xt] =
xt + γ2

t∇ log pt(xt)

st
=

st
s2t + γ2

t

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2

t In)U
⋆
kU

⋆T
k xt∑K

k=1 πkN (xt;0, s2tU
⋆
kU

⋆T
k + γ2

t In)

=
st

s2t + γ2
t

∑K
k=1 πk exp

(
− 1

2γ2
t

(
∥xt∥2 − s2t

s2t+γ2
t
∥U⋆T

k xt∥2
))

U⋆
kU

⋆T
k xt∑K

k=1 πk exp

(
− 1

2γ2
t

(
∥xt∥2 − s2t

s2t+γ2
t
∥U⋆T

k xt∥2
))

=
st

s2t + γ2
t

∑K
k=1 πk exp

(
1

2γ2
t

s2t
s2t + γ2

t

∥U⋆T
k xt∥2

)
U⋆

kU
⋆T
k xt∑K

k=1 πk exp

(
1

2γ2
t

s2t
s2t + γ2

t

∥U⋆T
k xt∥2

) ,

where the third equality uses (21) and
(
s2tU

⋆
kU

⋆T
k + γ2

t In
)−1

=
(
In − s2t/(s

2
t + γ2

t )U
⋆
kU

⋆T
k

)
/γ2

t569

due to the matrix inversion lemma. ⊔⊓570

A.3 Proof of Theorem 1571

Proof of Theorem 1. Plugging (10) into the integrand of (5) yields572

Eϵ

[∥∥∥∥ st
s2t + γ2

t

UUT
(
stx

(i) + γtϵ
)
− x(i)

∥∥∥∥2
]

=

∥∥∥∥ s2t
s2t + γ2

t

UUTx(i) − x(i)

∥∥∥∥2 + (stγt)
2

(s2t + γt)2
Eϵ

[
∥UUT ϵ∥2

]
=

∥∥∥∥ s2t
s2t + γ2

t

UUTx(i) − x(i)

∥∥∥∥2 + (stγt)
2d

(s2t + γt)2
,

where the first equality follows from Eϵ[⟨x, ϵ⟩] = 0 for any given x ∈ Rn due to ϵ ∼ N (0, In),573

and the second equality uses Eϵ

[
∥UUT ϵ∥2

]
= Eϵ

[
∥UT ϵ∥2

]
=
∑d

i=1 Eϵ

[
∥uT

i ϵ∥2
]
= d due to574

U ∈ On×d and ϵ ∼ N (0, In). This, together with γt = stσt and (5), yields575

ℓ(U) =
1

N

N∑
i=1

∫ 1

0

λt

(
∥x(i)∥2 − 1 + 2σ2

t

(1 + σ2
t )

2
∥UTx(i)∥2 + σ2

t d

(1 + σ2
t )

2

)
dt,

Obviously, minimizing the above function in terms of U amounts to576

min
UTU=Id

−
∫ 1

0

(1 + 2σ2
t )λt

(1 + σ2
t )

2
dt

1

N

N∑
i=1

∥UTx(i)∥2,

which is equivalent to Problem (11). ⊔⊓577

A.4 Proof of Theorem 2578

Proof of Theorem 2. For ease of exposition, let579

X =
[
x(1) . . . x(N)

]
∈ Rn×N , A = [a1 . . . aN ] ∈ Rd×N , E = [e1 . . . eN ] ∈ Rn×N .

Using this and (9), we obtain580

X = U⋆A+E. (28)

Let rA := rank(A) ≤ min{d,N} and A = UAΣAV
T
A be an singular value decomposition (SVD)581

of A, where UA ∈ Od×rA , VA ∈ ON×rA , and ΣA ∈ RrA×rA . It follows from Theorem 1 that582

Problem (5) with the parameterization (10) is equivalent to Problem (11).583
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(i) Suppose that N ≥ d. Applying Lemma 3 with ε = 1/(2c1) to A ∈ Rd×N , it holds with584

probability at least 1− 1/2N−d+1 − exp (−c2N) that585

σmin(A) = σd(A) ≥
√
N −

√
d− 1

2c1
, (29)

where c1, c2 > 0 are constants depending polynomially only on the Gaussian moment. This implies586

rA = d and UA ∈ Od. Since Problem (11) is a PCA problem, the columns of any optimal solution587

Û ∈ On×d consist of left singular vectors associated with the top d singular values of X . This,588

together with Wedin’s Theorem [54] and (28), yields589 ∥∥∥ÛÛT −U⋆U⋆T
∥∥∥
F
=
∥∥∥ÛÛT − (U⋆UA)(U

⋆UA)
T
∥∥∥
F
≤ 2∥E∥F

σmin(A)
=

4c1∥E∥F√
N −

√
d− 1

.

This, together with absorbing 4 into c1, yields (12).590

(ii) Suppose that N < d. According to Lemma 3 with ε = 1/(2c1), it holds with probability at least591

1− 1/2d−N+1 − exp (−c2d) that592

σmin(A) = σN (A) ≥
√
d−
√
N − 1

2c1
, (30)

where c1, c2 > 0 are constants depending polynomially only on the Gaussian moment. This implies593

rA = N and UA ∈ Od×N . This, together with the fact that A = UAΣAV
T
A is an SVD of A, yields594

that U⋆A = (U⋆UA)ΣAV
T
A is an SVD of U⋆A with U⋆UA ∈ On×N . Note that rank(X) ≤ N .595

Let X = UXΣXV T
X be an SVD of X , where UX ∈ On×N , VX ∈ ON , and ΣX ∈ RN×N . This,596

together with Wedin’s Theorem [54] and (30), yields597 ∥∥UXUT
X −U⋆UAU

T
AU⋆T

∥∥
F
≤ 2∥E∥F

σmin(A)
=

4c1∥E∥F√
d−
√
N − 1

. (31)

Note that Problem (11) has infinite optimal solutions when N < d, which take the form of598

Û =
[
UX ŪX

]
∈ On×d.

Now, we consider that ŪX ∈ On×(d−N) is an optimal solution of the following problem:599

min
V ∈On×(d−N),UT

XV =0
∥V TU⋆(I −UAU

T
A )∥2F . (32)

Then, one can verify that the rank of the following matrix is at most d:600

B :=
[
UX U⋆(I −UAU

T
A )
]

Then, if n ≥ 2d −N , it is easy to see that the optimal value of Problem (32) is 0. If n < 2d −N ,601

the optima value is achieved at V ⋆ = [V ⋆
1 V ⋆

2 ] with V ⋆
1 ∈ Rn×(n−d) and V ⋆

2 ∈ Rn×(2d−N−n)602

satisfying V ⋆T
1 B = 0, which implies603

∥V ⋆TU⋆(I −UAU
T
A )∥2F = ∥V ⋆T

2 U⋆(I −UAU
T
A )∥2F ≤ 2d−N − n.

Consequently, the optimal value of Problem (32) is less than604

max {0, 2d− (n+N)} (33)

Then, we obtain that605 ∥∥∥ÛÛT −U⋆U⋆T
∥∥∥
F
=
∥∥UXUT

X + ŪXŪT
X −U⋆UAU

T
AU⋆T −U⋆(I −UAU

T
A )U⋆T

∥∥
≥ ∥ŪXŪT

X −U⋆(I −UAU
T
A )U⋆T ∥F −

∥∥UXUT
X −U⋆UAU

T
AU⋆T

∥∥
F

≥
√
2(d−N)− 2max {0, 2d− (n+N)} − 4c1∥E∥F√

d−
√
N − 1

≥
√
2min{d−N,n− d} − 4c1∥E∥F√

d−
√
N − 1

,

where the second inequality follows from ŪX = V ⋆ and (33). Then, we complete the proof.606

⊔⊓607

18



B Proofs in Section 3.2608

B.1 Theoretical Justification of the DAE (15)609

Since xt = stx0 + γtϵ, we compute610

Eϵ

[
∥UT

k (stx0 + γtϵ)∥2
]
= s2t∥UT

k x0∥2 + γ2
t Eϵ[∥UT

k ϵ∥2] = s2t∥UT
k x0∥2 + γ2

t d,

where the first equality is due to ϵ ∼ N (0, In) and Eϵ[⟨UT
k x0,U

T
k ϵ⟩] = 0 for each k ∈ [K]. This611

implies that when n is sufficiently large, we can approximate wk(θ;xt) in (8) well by612

wk(θ;xt) ≈
exp

(
ϕt

(
s2t∥UT

k x0∥2 + γ2
t d
))∑K

l=1 exp
(
ϕt

(
s2t∥UT

l x0∥2 + γ2
t d
)) .

This soft-max function can be further approximated by the hard-max function. Therefore, we di-613

rectly obtain (16).614

B.2 Proof of Theorem 3615

Equipped with the above setup, we are ready to prove Theorem 3.616

Proof of Theorem 3. Plugging (15) into the integrand of (5) yields617

Eϵ

∥∥∥∥∥ st
s2t + γ2

t

K∑
k=1

ŵk(θ;x
(i))UkU

T
k (stx

(i) + γtϵ)− x(i)

∥∥∥∥∥
2


=

∥∥∥∥∥ s2t
s2t + γ2

t

K∑
k=1

ŵk(θ;x
(i))UkU

T
k x(i) − x(i)

∥∥∥∥∥
2

+
(stγt)

2

(s2t + γ2
t )

2
Eϵ

∥∥∥∥∥
K∑

k=1

ŵk(θ;x
(i))UkU

T
k ϵ

∥∥∥∥∥
2


=
s2t

s2t + γ2
t

K∑
k=1

(
s2t

s2t + γ2
t

ŵ2
k(θ;x

(i))− 2ŵk(θ;x
(i))

)
∥UT

k x(i)∥2 + ∥x(i)∥2 + (stγt)
2d

(s2t + γ2
t )

2

K∑
k=1

ŵk(θ;x
(i)),

where the first equality follows from Eϵ[⟨x, ϵ⟩] = 0 for any fixed x ∈ Rn due to ϵ ∼ N (0, In),618

and the last equality uses Uk ∈ On×d and UT
k Ul = 0 for all k ̸= l. This, together with (5) and619

γt = stσt, yields620

ℓ(θ) =
1

N

N∑
i=1

K∑
k=1

∫ 1

0

λt

1 + σ2
t

(
1

1 + σ2
t

ŵ2
k(θ;x

(i))− 2ŵk(θ;x
(i))

)
dt∥UT

k x(i)∥2+

1

N

∫ 1

0

λtdt

N∑
i=1

∥x(i)∥2 +
(∫ 1

0

σ2
t λt

(1 + σ2
t )

2
dt

)
d

N

N∑
i=1

K∑
k=1

ŵ2
k(θ;x

(i)).

According to (15), we can partition [N ] into {Ck(θ)}Kk=1, where Ck(θ) for each k ∈ [K] is defined621

as follows:622

Ck(θ) :=
{
i ∈ [N ] : ∥UT

k x(i)∥ ≥ ∥UT
l x(i)∥, ∀l ̸= k

}
,∀k ∈ [K]. (34)

Then, we obtain623

N∑
i=1

K∑
k=1

ŵ2
k(θ;x

(i)) =

K∑
k=1

∑
i∈Ck(θ)

1 = N.

This, together with plugging (34) into the above loss function, yields minimizing ℓ(θ) is equivalent624

to minimizing625

1

N

N∑
i=1

K∑
k=1

∫ 1

0

λt

1 + σ2
t

(
1

1 + σ2
t

ŵ2
k(θ;x

(i))− 2ŵk(θ;x
(i))

)
dt∥UT

k x(i)∥2

=

(∫ 1

0

λt

1 + σ2
t

(
1

1 + σ2
t

− 2

)
dt

)
1

N

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2.
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Since λt

1+σ2
t

(
1

1+σ2
t
− 2
)
< 0 for all t ∈ [0, 1], minimizing the above function is equivalent to626

max
θ

1

N

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2 s.t. [U1 . . . UK ] ∈ On×dK .

Then, we complete the proof. ⊔⊓627

B.3 Proof of Theorem 4628

Proof of Theorem 4. For ease of exposition, let δ := max{∥ei∥ : i ∈ [N ]},629

f(θ) :=

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2,

and for each k ∈ [K],630

C⋆
k :=

{
i ∈ [N ] : x(i) = U⋆

kai + ei

}
.

Suppose that (51) and (52) hold with V = Ûk for all i ∈ [N ] and k ̸= l ∈ [K], which happens with631

probability 1− 2K2N−1 according to Lemma 5. This implies that for all i ∈ [N ] and k ̸= l ∈ [K],632

√
d− (2

√
logN + 2) ≤ ∥ai∥ ≤

√
d+ (2

√
logN + 2), (35)

∥ÛT
k U⋆

l ∥F − (2
√

logN + 2) ≤ ∥ÛT
k U⋆

l ai∥ ≤ ∥ÛT
k U⋆

l ∥F + (2
√

logN + 2). (36)

Recall that the underlying basis matrices are denoted by θ⋆ = {U⋆
k}Kk=1 and the optimal basis633

matrices are denoted by θ̂ = {Ûk}Kk=1.634

First, we claim that Ck(θ
⋆) = C⋆

k for each k ∈ [K]. Indeed, for each i ∈ C⋆
k , we compute635

∥U⋆T
k x(i)∥ = ∥U⋆T

k (U⋆
kai + ei)∥ = ∥ai +U⋆T

k ei∥ ≥ ∥ai∥ − ∥ei∥, (37)

∥U⋆T
l x(i)∥ = ∥U⋆T

l (U⋆
kai + ei)∥ = ∥U⋆T

l ei∥ ≤ ∥ei∥, ∀l ̸= k. (38)

This, together with (35) and ∥ei∥ < (
√
d− 2

√
logN)/2, implies ∥U⋆T

k xi∥ ≥ ∥U⋆T
l xi∥ for all l ̸=636

k. Therefore, we have i ∈ Ck(θ
⋆) due to (34). Therefore, we have C⋆

k ⊆ Ck(θ
⋆) for each k ∈ [K].637

This, together with the fact that they respectively denote a partition of [N ], yields Ck(θ
⋆) = C⋆

k for638

each k ∈ [K]. Now, we compute639

f(θ⋆) =

K∑
k=1

∑
i∈C⋆

k

∥U⋆T
k x(i)∥2 =

K∑
k=1

∑
i∈C⋆

k

∥ai +U⋆T
k ei∥2

=

N∑
i=1

∥ai∥2 + 2

K∑
k=1

∑
i∈C⋆

k

⟨ai,U
⋆T
k ei⟩+

K∑
k=1

∑
i∈C⋆

k

∥U⋆T
k ei∥2. (39)

Next, we compute640

f(θ̂) =

K∑
k=1

∑
i∈Ck(θ̂)

∥ÛT
k x(i)∥2 =

K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

∥ÛT
k (U⋆

l ai + ei))∥2

=

K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

(
∥ÛT

k U⋆
l ai∥2 + 2⟨ai,U

⋆T
l ÛkÛ

T
k ei⟩

)
+

K∑
k=1

∑
i∈Ck(θ̂)

∥ÛT
k ei∥2.
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This, together with f(θ̂) ≥ f(θ⋆) and (39), yields641

N∑
i=1

∥ai∥2−
K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

∥ÛT
k U⋆

l ai∥2 ≤
K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

2⟨ai,U
⋆T
l ÛkÛ

T
k ei⟩+

K∑
k=1

∑
i∈Ck(θ̂)

∥ÛT
k ei∥2 − 2

K∑
k=1

∑
i∈C⋆

k

⟨ai,U
⋆T
k ei⟩ −

K∑
k=1

∑
i∈C⋆

k

∥U⋆T
k ei∥2

≤ 4δ

N∑
i=1

∥ai∥+Nδ2 ≤ 6δN
√
d+Nδ2, (40)

where the second inequality follows from ∥ei∥ ≤ δ for all i ∈ [N ] and U⋆
k , Ûk ∈ On×d for all642

k ∈ [K], and the last inequality uses (35).643

For ease of exposition, let Nkl := |Ck(θ̂)∩C⋆
l |. According to the pigeonhole principle, there exists644

a permutation π : [K] → [K] such that there exists k ∈ [K] such that Nπ(k)k ≥ N/K2. This,645

together with (40), yields646

6δN
√
d+Nδ2 ≥

∑
i∈Cπ(k)(θ̂)∩C⋆

k

(
∥ai∥2 − ∥ÛT

π(k)U
⋆
kai∥2

)
= ⟨I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k ,

∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i ⟩. (41)

According to Lemma 6 and Nπ(k)k ≥ N/K2, it holds with probability at least 1− 2K4N−2 that647 ∥∥∥∥∥∥ 1

Nπ(k)k

∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i − I

∥∥∥∥∥∥ ≤ 9(
√
d+

√
log(Nπ(k)k)√

Nπ(k)k

.

This, together with the Weyl’s inequality, yields648

λmin

 ∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i

 ≥ Nπ(k)k − 9
√

Nπ(k)k

(√
d+

√
log(Nπ(k)k)

)

≥ N

K2
− 9
√
N

K

(√
d+

√
logN

)
≥ N

2K2
,

where the second inequality follows from N/K2 ≤ Nπ(k)k ≤ N and the last inequality is due to649 √
N ≥ 18K(

√
d+
√
logN). Using this and Lemma 7, we obtain650

⟨I −U⋆T
k Ûπ(k)Û

T
π(k)U

⋆
k ,

∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i ⟩

≥ λmin

 ∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i

Tr
(
I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k

)
≥ N

2K2
Tr
(
I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k

)
.

This, together with (41), implies651

Tr
(
I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k

)
≤ 2K2

(
6δ
√
d+ δ2

)
.

Using this and [U⋆
1 , . . . ,U

⋆
k ] ∈ On×dK , we obtain652 ∑

l ̸=k

∥ÛT
π(k)U

⋆
l ∥2F = Tr

∑
l ̸=k

ÛT
π(k)U

⋆
l U

⋆T
l Ûπ(k)

 ≤ Tr
(
I − ÛT

π(k)U
⋆
kU

⋆T
k Ûπ(k)

)
≤ 2K2

(
6δ
√
d+ δ2

)
≤ 3d

4
, (42)
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where the last inequality follows δ ≤
√
d/(24K2). According to (40), we have653

6δN
√
d+Nδ2 ≥

K∑
l ̸=k

∑
i∈Cπ(k)(θ̂)∩C⋆

l

(
∥ai∥2 − ∥ÛT

π(k)U
⋆
l ai∥2

)

≥
K∑
l ̸=k

Nπ(k)l

(
(
√
d− α)2 −

(
∥ÛT

π(k)U
⋆
l ∥F + α

)2)
≥ d

8

K∑
l ̸=k

Nπ(k)l,

where the second inequality uses (35) and (36), and the last inequality follows from d ≳ logN .654

Therefore, we have for each k ∈ [K],655

K∑
l ̸=k

Nπ(k)l ≤
48δN

√
d+ 8δ2N

d
< 1,

where the last inequality uses δ ≲
√
d/N . This implies Nπ(l)k = 0 for all l ̸= k, and thus656

Cπ(k)(θ̂) ⊆ C⋆
k . Using the same argument, we can show that Cπ(l)(θ̂) ⊆ C⋆

l for each l ̸= k.657

Therefore, we have Cπ(k)(θ̂) = C⋆
k for each k ∈ [K]. In particular, using the union bound yields658

event holds with probability at least 1− 2K2N−1. Based on the above optimal assignment, we can659

further show:660

(i) Suppose that Nk ≥ d for each k ∈ [K]. This, together with (i) in Theorem 2 and Nk ≥ d, yields661

(18).662

(ii) Suppose that there exists k ∈ [K] such that Nk < d. This, together with (ii) in Theorem 2 and663

Nk ≥ d, yields (19).664

Finally, applying the union bound yields the probability of these events. ⊔⊓665

C Experimental Setups in Section 2.2666

In this section, we provide detailed setups for the experiments in Section 2.2. These experiments667

aim to validate the assumptions that real-world image data satisfies a mixture of low-rank Gaussians668

and that the DAE is parameterized according to (8). To begin, we show that ∇xtE[x0|xt] is of low669

rank when pdata follows a mixture of low-rank Gaussians and
∑K

k=1 dk ≤ n, where n is the ambient670

dimension of training samples.671

C.1 Verification of Mixture of Low-Rank Gaussian Data Distribution672

In this subsection, we demonstrate that a mixture of low-rank Gaussians is a reasonable and in-673

sightful model for approximating real-world image data distribution. To begin, we show that674

∇xt
E[x0|xt] is of low rank when pdata follows a mixture of low-rank Gaussians with

∑K
k=1 dk ≤ n,675

where n is the dimension of training samples.676

Lemma 2. Suppose that the data distribution pdata follows a mixture of low-rank Gaussian distri-677

butions as defined in Definition 1. For all t ∈ [0, 1], it holds that678

min
k∈[K]

dk ≤ rank (∇xt
E[x0|xt]) ≤

K∑
k=1

dk. (43)

Proof. For ease of exposition, let679

hk(xt) := exp
(
ϕt∥U⋆T

k xt∥2
)
, ∀k ∈ [K].

Obviously, we have680

∇hk(xt) := 2ϕt exp
(
ϕt∥U⋆T

k xt∥2
)
U⋆

kU
⋆T
k xt = 2ϕthk(xt)U

⋆
kU

⋆T
k xt. (44)

According to Lemma 1, we have681

E[x0|xt] =
st

s2t + γ2
t

f(xt), where f(xt) :=

∑K
k=1 πkhk(xt)U

⋆
kU

⋆T
k xt∑K

k=1 πkhk(xt)
.
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Then, we compute682

∇xt
f(xt) =

1∑K
k=1 πkhk(xt)

(
2ϕt

K∑
k=1

πkhk(xt)U
⋆
kU

⋆T
k xtx

T
t U

⋆
kU

⋆T
k +

K∑
k=1

πkhk(xt)U
⋆
kU

⋆T
k

)

− 2ϕt(∑K
k=1 πkhk(xt)

)2
(

K∑
k=1

πkhk(xt)U
⋆
kU

⋆T
k xt

)(
K∑

k=1

πkhk(xt)U
⋆
kU

⋆T
k xt

)T

=
1∑K

k=1 πkhk(xt)

K∑
k=1

πkhk(xt)
(
2ϕtU

⋆
kU

⋆T
k xtx

T
t + I

)
U⋆

kU
⋆T
k −

2ϕt(∑K
k=1 πkhk(xt)

)2
(

K∑
k=1

πkhk(xt)U
⋆
kU

⋆T
k

)
xtx

T
t

(
K∑

k=1

πkhk(xt)U
⋆
kU

⋆T
k

)
.

This directly yields (43) for all t ∈ [0, 1]. ⊔⊓683

Now, we conduct experiments to illustrate that diffusion models trained on real-world image datasets684

exhibit similar low-rank properties to those described in the above proposition. Provided that the685

DAE xθ(xt, t) is applied to estimate E[x0|xt], we estimate the rank of the Jacobian of the DAE,686

i.e., ∇xt
xθ(xt, t), on the real-world data distribution, where θ denotes the parameters of U-Net687

architecture trained on the real dataset. Also, this estimation is based on the findings in [55, 27] that688

under the training loss in Equation (5), the DAE xθ(xt, t) converge to E[x0|xt] as the number of689

training samples increases on the real data. We evaluate the numerical rank of the Jacobian of the690

DAE on four different datasets: CIFAR-10 [56], CelebA [57], FFHQ [58] and AFHQ [59], where691

the ambient dimension n = 3072 for all datasets.692

Given a random initial noise x1 ∼ N (0, In), diffusion models generate a sequence of images {xt}693

according to the reverse SDE in Eq. (3). Along the sampling trajectory {xt}, we calculate the694

Jacobian ∇xt
xθ(xt, t) and compute its numerical rank via695

rank (∇xt
xθ(xt, t)) := argmin

{
r ∈ [1, n] :

∑r
i=1 σ

2
i (∇xt

xθ(xt, t))∑n
i=1 σ

2
i (∇xt

xθ(xt, t))
> η2

}
. (45)

In our experiments, we set η = 0.99. In the implementation, we utilize the Elucidating Diffusion696

Model (EDM) with the EDM noise scheduler [41] and DDPM++ architecture [51]. Moreover, we697

employ an 18-step Heun’s solver for sampling and present the results for 12 of these steps. For each698

dataset, we random sample 15 initial noise x1, calculate the mean of rank(∇xt
xθ(xt, t)) along699

the trajectory {xt}, and plot ratio of the numerical rank over the ambient dimension against the700

signal-noise-ratio (SNR) 1/σt in Figure 2, where σt is defined in Eq. (2).701

C.2 Verification of Low-Rank Network Parameterization702

In this subsection, we empirically investigate the properties of U-Net architectures in diffusion mod-703

els and validate the simplification of the network architecture to Eq. (8). Based on the results in704

Appendix C.1, we use a mixture of low-rank Gaussian distributions for experiments. Here, we set705

K = 2, n = 48, d1 = d2 = 6, π1 = π2 = 0.5, and N = 1000 for the data model Definition 1.706

Moreover, We use the EDM noise scheduler and 18-step Heun’s solver for both the U-Net and our707

proposed parameterization (8). To adapt the structure of the U-Net, we reshape each training sample708

into a 3D tensor with dimensions 4 × 4 × 3, treating it as an image. Here, we use DDPM++ based709

diffusion models with a U-Net architecture. In each iteration, we randomly sampled a batch of im-710

age {x(j)}bs
j=1 ⊆ {x(i)}Ni=1, along with a timestep t(j) and a noise ϵ(j) for each image in the batch711

to optimize the training loss ℓ(θ). We define712

kimgs = bs× training iterations
1000

(46)

to represent the total samples used for training. Here, we pick up the specific model trained under713

500 kimgs, 1000 kimgs, 2000 kimgs, and 6000 kimgs for evaluation, as shown in Figure 6(a).714
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(a) Numerical rank (b) Norm of gradient

Figure 6: (a) Numerical rank of ∇xtxθ(xt, t) at all time of diffusion models. Problem (5) is
trained with the DAE xθ(·, t) parameterized according to (8) and U-Net on the training samples
generated by the mixture of low-rank Gaussian distribution. The x-axis is the SNR and the y-axis
is the numerical rank of ∇xt

xθ(xt, t) over the ambient dimension n, i.e., rank(∇xt
xθ(xt, t))/n.

Here, kimgs denotes the number of samples used for training, which equals to training iterations
times batch size of training samples. (b) Convergence of gradient norm of the training loss: The
x-axis is kimgs (see Eq. (46)), and the y-axis is the gradient norm of the training loss.

Algorithm 1 SGD for optimizing the training loss (5)

Input: Training samples {x(i)}Ni=1
for j = 0, 1, 2, . . . , J do

Randomly select {(im, tm)}Mm=1, where im ∈ [N ] and tm ∈ (0, 1) and a noise ϵ ∼ N (0, I)
Take a gradient step

θj+1 ← θj − η

M

∑
m∈[M ]

∇θ

∥∥∥xθj (stmx(im) + γtmϵ, tm)− x(im)
∥∥∥2

end for

We plot the numerical ranks of ∇xt
xθ(xt, t) for both our proposed parameterization in (8)715

and for the U-Net architecture in Figure 2(b). According to Lemma 2, it holds that 6 ≤716

rank(∇xtxθ(xt, t)) ≤ 12. This corresponds to the blue curve in Figure 2(b). To supplement717

our result in Figure 2(b), we further plot the numerical rank against SNR at different training itera-718

tions in Figure 6(a) and gradient norm of the objective against training iterations in Figure 6(b). We719

observe that with the training kimgs increases, the gradient for the U-Net ||∇θℓ||F decrease smaller720

than 10−1 and the rank ratio of∇xt
xθ(xt, t) trained from U-Net gradually be close to the rank ratio721

from the low-rank model in the middle of the SNR ([0.91, 10.0]).722

D Experimental Setups in Section 4723

We use a CPU to optimize Problem (5) for the setting in Appendix D.1. For the settings in Ap-724

pendix D.2 and Appendix D.3, we employ a single A40 GPU with 48 GB memory to optimize725

Problem (5).726

D.1 Learning the MoLRG distribution with the theoretical parameterzation727

Here, we present the stochastic gradient descent (SGD) algorithm for solving Problem (5) as follows:728

729
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Now, we specify how to choose the parameters of the SGD in our implementation. We divide the730

time interval [0, 1] into 64 time steps. When K = 1, we set the learning rate η = 10−4, batch731

size M = 128Nk, and number of iterations J = 104. When K = 2, we set the learning rate732

η = 2× 10−5, batch size M = 1024, number of iterations J = 105. In particular, when K = 2, we733

use the following tailor-designed initialization θ0 = {U0
k} to improve the convergence of the SGD:734

U0
k = U⋆

k + 0.2∆, k ∈ {1, 2}, (47)

where ∆ ∼ N (0, In). We calculate the success rate as follows. If the returned subspace basis735

matrices {Uk}Kk=1 satisfy736

1

K

∑K

k=1
||UΠ(k)U

T
Π(k) −U⋆

kU
⋆T
k || ≤ 0.5

for some permutation Π : [K]→ [K], it is considered successful.737

D.2 Learning the MoLRG distribution with U-Net738

we measure the generalization ability of U-Net via generalization (GL) score defined in Equa-739

tion (48).740

GL score =
D(x(i)

gen)

D(x(i)
MoLRG)

, D(x(i)) :=

N∑
j=1

min
j ̸=i
||x(i) − x(j)||, (48)

where {x(i)
MoLRG}Ni=1 are samples generated from the MoLRG distribution and {x(i)

gen}Ni=1 are new sam-741

ples generated by the trained U-Net. Intuitively, D(x(i)
gen) reflects the uniformity of samples in the742

space: its value is small when the generated samples cluster around the training data, while the value743

is large when generated samples disperse in the entire space. Therefore, the trained diffsion model744

is in memorization regime when D(x
(i)
gen)≪ D(x(i)

MoLRG) and the GL score is close to 0, while it is in745

generalization regime when D(x
(i)
gen) ≈ D(x(i)

MoLRG) and the GL score is close to 1.746

In our implementation, we set the total dimension of MoLRG as n = 48 and the number of training747

samples Neval = 1000. To train the U-Net, we use the stochastic gradient descent in Algorithm 1.748

We use DDPM++ architecture [11] for the U-Net and EDM [41] noise scheduler. We set the learning749

rate 10−3, batch size 64, and number of iterations J = 104.750

D.3 Learning real-world image data distributions with U-Net751

According to [27], we define the generalization (GL) score on real-world image dataset as follows:752

GL score := 1− P
(
max
i∈[N ]

[MSSCD(x,yi)] > 0.6

)
. (49)

Here, the SSCD similarity is first introduced in [60] to measure the replication between image pair753

(x1,x2), which is defined as follows:754

MSSCD(x1,x2) =
SSCD(x1) · SSCD(x2)

||SSCD(x1)||2 · ||SSCD(x2)||2
where SSCD(·) represents a neural descriptor for copy detection of images. We empirically sam-755

ple 10K initial noises to estimate the probability. Intuitively, GL score measures the dissimilarity756

between the generated sample x and all N samples yi from the training dataset {yi}Ni=1.757

To train diffusion models for real-world image datasets, we use the DDPM++ architecture [11] for758

the U-Net and variance preserving (VP) [11] noise scheduler. The U-Net is trained using the Adam759

optimizer [61], a variant of SGD in Algorithm 1. We set the learning rate η = 10−3, batch size760

M = 512, and the total number of iterations 105.761

D.4 Correspondence between low-dimensional subspaces and image semantics762

We denote the Jacobian of the DAE xθ(xt, t) by Jt := ∇xt
xθ(xt, t) ∈ Rn×n and let Jt = UΣV T763

be an singular value decomposition (SVD) of Jt, where r = rank(Jt), U = [u1, · · · ,ur] ∈ On×r,764
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(a) PCA (b) Diffusion model

Figure 7: Phase transition of learning the MoLRG distribution when K = 3. The x-axis is
the number of training samples and y-axis is the dimension of subspaces. We apply a subspace
clustering method and train diffusion models for solving Problems (17) and (5), visualizing the
results in (a) and (b), respectively.

V = [v1, · · · ,vr] ∈ On×r, and Σ = diag(σ1, . . . , σr) with σ1 ≥ · · · ≥ σr being the singular765

values. According to the results in Figure 2, it is observed that Jt is low rank, i.e., r ≪ n. Now, we766

compute the first-order approximation of xθ(xt, t) along the direction of vi ∈ Rn, where vi is the767

i-th right singular vector of Jt:768

xθ(xt + αvi, t) ≈ xθ(xt, t) + αJtvi = xθ(xt, t) + ασiui,

where the last equality follows from Jtvi = UΣV Tvi = ασiui. To validate the semantic meaning769

of the basis vi, we vary the value of α from negative to positive and visualize the resulting changes770

in the generated images. Figures 5, 8 and 9(a, c) illustrate some real examples.771

In the experiments, we use a pre-trained diffusion denoising probabilistic model (DDPM) [2] on the772

MetFaces dataset [50]. We randomly select an image x0 from this dataset and use the reverse process773

of the diffusion denoising implicit model (DDIM) [51] to generate xt at t = 0.7T (ablation studies774

for t = 0.1T and 0.9T are shown in Figure 9(b)), where T denote the total number of time steps.775

We respectively choose the changed direction as the leading right singular vectors v1,v3,v4,v5,v6776

and use x̃t = xt + αvi to generate new images with α ∈ [−6, 6] shown in Figures 5, 8 and 9(a, c).777

E Auxiliary Results778

First, we present a probabilistic result to prove Theorem 2, which provides an optimal estimate of779

the small singular values of a matrix with i.i.d. Gaussian entries. This lemma is proved in [62,780

Theorem 1.1].781

Lemma 3. Let A be an m × n random matrix, where m ≥ n, whose elements are independent782

copies of a subgaussian random variable with mean zero and unit variance. It holds for every ε > 0783

that784

P
(
σmin(A) ≥ ε(

√
m−

√
n− 1)

)
≥ 1− (c1ε)

m−n+1 − exp (−c2m) ,

where c1, c2 > 0 are constants depending polynomially only on the subgaussian moment.785

Next, we present a probabilistic bound on the deviation of the norm of weighted sum of squared786

Gaussian random variables from its mean. This is a direct extension of [63, Theorem 5.2.2].787

Lemma 4. Let x ∼ N (0, Id) be a Gaussian random vector and λ1, . . . , λd > 0 be constants. It788

holds for any t > 0 that789

P

∣∣∣∣∣∣
√√√√ d∑

i=1

λ2
ix

2
i −

√√√√ d∑
i=1

λ2
i

∣∣∣∣∣∣ ≥ t+ 2λmax

 ≤ 2 exp

(
− t2

2λ2
max

)
, (50)

where λmax = max{λi : i ∈ [d]}.790

Based on the above lemma, we can further show the following concentration inequalities to estimate791

the norm of the standard norm Gaussian random vector.792
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Figure 8: Correspondence between the singular vectors of the Jacobian of the DAE and seman-
tic image attributes.
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(a) (b)

(c)

Figure 9: Correspondence between the singular vectors of the Jacobian of the DAE and se-
mantic image attributes. (a,c) Additional examples when t = 0.7T . (b) Ablation studies when
t = 0.1T and 0.9T .
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Lemma 5. Suppose that ai
i.i.d.∼ N (0, Id) is a Gaussian random vector for each i ∈ [N ]. The793

following statements hold:794

(i) It holds for all i ∈ [N ] with probability at least 1−N−1 that795 ∣∣∣∥ai∥ −
√
d
∣∣∣ ≤ 2

√
logN + 2. (51)

(ii) Let V ∈ On×d be given. For all i ∈ C⋆
k and all k ∈ [K], it holds with probability at least796

1− 2N−1 that797 ∣∣∥V TU⋆
kai∥ − ∥V TU⋆

k∥F
∣∣ ≤ 2

√
logN + 2. (52)

Proof. (i) Applying Lemma 4 to ai ∼ N (0, Id), together with setting t = 2
√
logN and λj = 1 for798

all j ∈ [d], yields799

P
(∣∣∣∥ai∥ −

√
d
∣∣∣ ≥ 2

√
logN + 2

)
≤ 2N−2.

This, together with the union bound, yields that (51) holds with probability 1−N−1.800

(ii) Let V TU⋆
k = PΣQT be a singular value decomposition of V TU⋆

k , where Σ ∈ Rd×d with the801

diagonal elements 0 ≤ σd ≤ . . . σ1 ≤ 1 being the singular values of V TU⋆
k and P ,Q ∈ Od. This,802

together with the orthogonal invariance of the Gaussian distribution, yields803

∥V TU⋆
kai∥ = ∥ΣQTai∥

d
= ∥Σai∥ =

√√√√ d∑
j=1

σ2
ja

2
ij . (53)

Using Lemma 4 with setting t = 2σ1

√
logN and λj = σj ≤ 1 for all j yields804

P
(∣∣∥V TU⋆

kai∥ − ∥V TU⋆
k∥F

∣∣ ≥ σ1α
)
= P

∣∣∣∣∣∣
√√√√ d∑

j=1

σ2
ja

2
ij −

√√√√ d∑
j=1

σ2
j

∣∣∣∣∣∣ ≥ σ1α

 ≤ 2N−2.

This, together with σ1 ≤ 1 and the union bound, yields (52). ⊔⊓805

Next, We present a spectral bound on the covariance estimation for the random vectors generated by806

the normal distribution.807

Lemma 6. Suppose that a1, . . . ,aN ∈ Rd are i.i.d. standard normal random vectors, i.e., ai
i.i.d.∼808

N (0, Id) for all i ∈ [N ]. Then, it holds with probability at least 1− 2N−2 that809 ∥∥∥∥∥ 1

N

N∑
i=1

aia
T
i − Id

∥∥∥∥∥ ≤ 9(
√
d+
√
logN)√

N
, (54)

Proof. According to [63, Theorem 4.7.1], it holds that810

P

(∥∥∥∥∥ 1

N

N∑
i=1

aia
T
i − Id

∥∥∥∥∥ ≥ 9(
√
d+ η)√
N

)
≤ 2 exp

(
−2η2

)
,

where η > 0. Plugging η =
√
logN into the above inequality yields811

P

(∥∥∥∥∥ 1

N

N∑
i=1

aia
T
i − Id

∥∥∥∥∥ ≥ 9(
√
d+
√
logN)√

N

)
≤ 2N−2.

This directly implies (54). ⊔⊓812

Lemma 7. Let A,B ∈ Rn×n be positive semi-definite matrices. Then, it holds that813

⟨A,B⟩ ≥ λmin(A)Tr(B). (55)

Proof. Let UΛUT = A be an eigenvalue decompositon of A, where U ∈ On and Σ =814

diag(λ1, . . . , λn) is a diagonal matrix with diagonal entries λ1 ≥ · · · ≥ λn ≥ 0 being the eigenval-815

ues. Then, we compute816

⟨A,B⟩ = ⟨UΛUT ,B⟩ = ⟨Λ,UBUT ⟩ ≥ λmin(A)Tr(UBUT ) = λmin(A)Tr(B),

where the inequality follows from λi ≥ 0 for all i ∈ [N ] and B is a positive semidefinite matrix. ⊔⊓817
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