
Published as a conference paper at ICLR 2023

DEPTH SEPARATION WITH MULTILAYER MEAN-FIELD
NETWORKS

Yunwei Ren
Carnegie Mellon University
yunweir@andrew.cmu.edu

Mo Zhou
Duke University
mozhou@cs.duke.edu

Rong Ge
Duke University
rongge@cs.duke.edu

ABSTRACT

Depth separation—why a deeper network is more powerful than a shallower one—
has been a major problem in deep learning theory. Previous results often focus on
representation power. For example, Safran et al. (2019) constructed a function
that is easy to approximate using a 3-layer network but not approximable by any
2-layer network. In this paper, we show that this separation is in fact algorithmic:
one can learn the function constructed by Safran et al. (2019) using an overparam-
eterized network with polynomially many neurons efficiently. Our result relies
on a new way of extending the mean-field limit to multilayer networks, and a de-
composition of loss that factors out the error introduced by the discretization of
infinite-width mean-field networks.

1 INTRODUCTION

One of the mysteries in deep learning theory is why we need deeper networks. In the early attempts,
researchers showed that deeper networks can represent functions that are hard for shallow networks
to approximate(Eldan & Shamir, 2016; Telgarsky, 2016; Poole et al., 2016; Daniely, 2017; Yarotsky,
2017; Liang & Srikant, 2017; Safran & Shamir, 2017; Poggio et al., 2017; Safran et al., 2019;
Malach & Shalev-Shwartz, 2019; Vardi & Shamir, 2020; Venturi et al., 2022; Malach et al., 2021).
In particular, seminal works of Eldan & Shamir (2016); Safran et al. (2019) constructed a simple
function (f∗(x) = ReLU(1−∥x∥)) which can be computed by a 3-layer neural network but cannot
be approximated by a 2-layer network.

However, these results are only about the representation power of neural networks and do not
guarantee that training a deep neural network from reasonable initialization can indeed learn
such functions. In this paper, we prove that one can train a neural network that approximates
f∗(x) = ReLU(1 − ∥x∥) to any desired accuracy – this gives an algorithmic separation between
the power of 2-layer and 3-layer networks.

To analyze the training dynamics, we develop a new framework to generalize mean-field analysis of
neural networks (Chizat & Bach, 2018; Mei et al., 2018) to multiple layers. As a result, all the layer
weights can change significantly during the training process (unlike many previous works on neural
tangent kernel or fixing lower-layer representations). Our analysis also gives a decomposition of
loss that allows us to decouple the training of multiple layers.

In the remainder of the paper, we first introduce our new framework for multilayer mean-field anal-
ysis, then give our main result and techniques. We discuss several related works in the algorithmic
aspect for depth separation in Section 1.3. Similar to standard mean-field analysis, we first consider
the infinite-width dynamics in Section 3, then we discuss our new ideas in discretizing the result to
a polynomial-size network (see Section 4).

1.1 MULTI-LAYER MEAN-FIELD FRAMEWORK

We propose a new way to extend the mean-field analysis to multiple layers. For simplicity, we state
it for 3-layer networks here. See Appendix A for the general framework. In short, we break the
middle layer into two linear layers and restrict the size of the layer in between. More precisely, we

1

Published as a conference paper at ICLR 2023

Figure 1: Difference between previous Nguyen & Pham (2020) (Left) and our framework (Right).

define
f(x) =

1

m2
a⊤
2 σ(W2F (x)), F (x) =

1

m1
A1σ(W1x),

where W1 ∈ Rm1×d, A1 ∈ RD×m1 , W2 ∈ Rm2×D a2 ∈ Rm2 are the parameters, and F (x) ∈ RD

represents the hidden feature. See Figure 1 for an illustration. Later we will refer to the step of
x 7→ F (x) as the first layer and F (x) 7→ f(x) as the second layer, even though both of them
actually are two-layer networks.

In the infinite-width limit, we will fix hidden feature dimension D and let the number of neurons
m1,m2 go to infinity. Then, we get the infinite-width network

f(x) = E
(a2,w2)∼µ2

a2σ(w2 · F (x)), Fi(x) = E
(a1,w1)∼µ1,i

a1σ(w1 · x), ∀i ∈ [D],

where (µ1,i)i∈[D] are distributions over R1+d with a shared marginal distribution over w1, and µ2

is a distribution over R1+D. Note that, unlike the formulation in Nguyen & Pham (2020), here the
hidden layers are described using distributions of neurons, whence are automatically invariant under
permutation of neurons, which is one of the most important properties of mean-field networks. One
can choose µ1, µ2 to be empirical distributions over finitely many neurons to recover a finite-width
network. In fact, we will do so in most parts of the paper so that our results apply to finite-width
networks of polynomially many neurons. The network can be viewed as a 3-layer network with
intermediate layer W2A, which is low rank. This is reminiscent of the bottleneck structure used in
ResNet (He et al. (2016)) and has also been used in previous theoretical analyses such as Allen-Zhu
& Li (2020) for other purposes.

Learner network Now we are ready to introduce the specific network that we use to learn the
target function. We set D = 1 and couple a1 with w1.

F (x) = F (x;µ1) := E
w∼µ1

{∥w∥σ(w · x)} ,

f(x) = f(x;µ2, µ1) := E
(w2,b2)∼µ2

σ(w2F (x;µ1) + b2).
(1)

Here, σ is the ReLU activation, and µ1 ∈ P(Rd) and µ2 ∈ P(R2) are distributions encoding
the weights of the first and second hidden layers, respectively. We multiply each first layer neuron
by ∥w∥ to make F more regular. This 2-homogeneous parameterization is also used in Li et al.
(2020) and Wang et al. (2020). In most parts of the paper, µ1 and µ2 are empirical distributions over
polynomially many neurons. We use µ1, µ2 to unify the notations in discussions on infinite- and
finite-width networks.

Restricting the intermediate layer to have only one dimension (D = 1) is sufficient as one can
learn x 7→ α ∥x∥ for some α ∈ R with the first layer F (x) and α ∥x∥ 7→ σ(1 − ∥x∥) with the
second layer. For the network that computes F (x), we do not need a bias term as the intended
function is homogeneous in x. Though we restrict the first layer to be positive, it does not restrict
the representation power of the network as the second layer can be either positive or negative. For
the second layer, even though a single neuron is sufficient, we follow the framework and over-
parameterize the network.

2

Published as a conference paper at ICLR 2023

1.2 MAIN RESULT AND OUR TECHNIQUES

Our main result applies the framework in the previous section to the function constructed in Safran
et al. (2019) (see details in Section 2). Informally, we prove:1

Theorem 1.1 (Main result, Informal). Given the learner network defined in (1) with input dimension
d, for any ϵ > 0, we can choose layer widths as m1 = poly(d, 1/ϵ), m2 = Θ(1) so that, with
probability at least 1 − 1/poly(d, 1/ε) over random initialization, running a simple variant of
gradient flow2 reduces the loss L := Ex

{
(f∗(x)− f(x))2

}
/2 to ε within T = poly(d, 1/ϵ) time.

This result shows that one can train a multilayer neural network to learn the function ReLU(1−∥x∥)
that cannot be approximated by any 2-layer network. There are some technical details caused by the
choice of a heavy-tail input distribution in Safran et al. (2019) which we discuss in Section 2.

To prove such a result, we first characterize the infinite-width dynamics (see Section 3). In particular,
we show that in the infinite-width dynamics, the first layer will always compute a multiple of ∥x∥,
while the second layer will behave like a single neuron.

However, it is often difficult to discretize such an infinite-width analysis to a polynomial-width
network. The main difficulty is in the potential amplification of error in the network: if at the
beginning, the first layer is δ-close to computing a multiple of ∥x∥, this δ value can potentially
increase exponentially during the training process (Mei et al. (2018)). Given the large polynomial
training time for our dynamics, this exponential increase would not be acceptable.

To fix this issue, we partition the analysis into two phases, and for the time-consuming second phase,
we rely on a decomposition of the loss function:

L :=
1

2
E

x∼D

{
(f∗(x)− f(x))2

}
≈ 1

2
E
x

{
(f∗(x)− f̃(x))2

}
+

w̄2
2

2
E
x

{
(F̃ (x)− F (x))2

}
. (2)

Here F̃ (x) is a multiple of ∥x∥ that is close to the actual first-layer output F (x), f̃(x) is the output
of the network if the first layer is replaced by F̃ (x) – that is, if the first layer actually computes
a multiple of ∥x∥ (see (5) for precise definition). The first term therefore characterizes the loss
conditioned on a perfect first-layer; while the second term characterizes the difference between the
first-layer output and a multiple of ∥x∥. We show that the gradients of these two terms do not
affect each other, at least approximately. Therefore, we can view the training process as simultane-
ously doing two things: minimizing the loss given a good first-layer representation (reducing first
term), and making first-layer output closer to a multiple of ∥x∥ (reducing second term). We believe
such a decomposition highlights how the lower-layer in the neural network receives useful gradient
information to learn good representation for this particular objective.

1.3 RELATED WORKS

Algorithmic aspect of depth separation There have been other works that add algorithmic in-
sights into depth separation. Allen-Zhu & Li (2020) showed that multi-layer quadratic networks can
learn certain target functions in a hierarchical way, which cannot be learned by any kernel meth-
ods or shallow neural networks. Our work deals with more standard neural network architectures
and target functions. A concurrent work Safran & Lee (2021) considers a similar problem as ours,
where they show that GD with a certain three-layer network can learn the ball indicator which is not
approximable by any two-layer network. Conceptually the main difference between our results lies
in the training dynamics – the first layer of Safran & Lee (2021) is fixed while we train both layers.
This leads to very different training dynamics and proof techniques.

Overparametrized Neural Networks One line of works studied the optimization of overparame-
terized neural network which couples the training dynamics to kernel regression with neural tangent
kernel (NTK) (e.g., Jacot et al., 2018; Allen-Zhu et al., 2018b; Du et al., 2018). However, it is shown

1We say some quantity a is poly(d, 1/ε) if it is bounded by C(d/ε)C for some universal constant C > 0
that may change across lines.

2Though gradient flow, strictly speaking, is not a proper algorithm, it is common to use it as a surrogate for
gradient descent in theoretical analysis. See Appendix E for discussions on how to convert the argument to a
gradient descent one.

3

Published as a conference paper at ICLR 2023

that neural network behaves like kernel methods in NTK regime, and several lower bounds have been
developed (Yehudai & Shamir, 2019; Wei et al., 2019; Ghorbani et al., 2019; 2020). Our training
dynamics is not in the NTK regime as all the weights change significantly. Another line of works
studied the optimization of overparameterized neural network in the mean-field limit (Mei et al.,
2018; Chizat & Bach, 2018; Nitanda & Suzuki, 2017; Wei et al., 2019; Rotskoff & Vanden-Eijnden,
2018; Sirignano & Spiliopoulos, 2020). Chizat et al. (2019) showed that the parameters can move
away from its initialization in mean-field regime and learn useful features, which is different from
NTK regime. However, most of the existing works require exponential/infinite number of neurons
and do not provide a polynomial convergence rate. See more discussions in Appendix A.

Multi-layer mean-field Although mean-field analysis has been successful for the optimization of
two-layer overparameterized network, it is not easy to extend it to multiple-layer network since the
width of intermediate layer goes to infinity. Many works have tried to address this issue to generalize
mean-field analysis to deep networks. See e.g., Nguyen & Pham (2020); Pham & Nguyen (2021);
Araújo et al. (2019); Sirignano & Spiliopoulos (2021); Fang et al. (2021); Lu et al. (2020); Ding
et al. (2021) and references therein. Unlike most of the existing works, our multi-layer mean-field
framework still has finite hidden feature dimension while the number of neurons can go to infinity
to become a distribution of neurons. See Section 1.1 and Appendix A for more discussions.

Mildly overparameterized neural networks Recently there are many works that consider the
problem of learning certain target function with mildly overparameterized (polynomial size) net-
work (Allen-Zhu et al., 2018a; Allen-Zhu & Li, 2019; Bai & Lee, 2019; Dyer & Gur-Ari, 2019;
Woodworth et al., 2020; Bai et al., 2020; Huang & Yau, 2020; Chen et al., 2020; Li et al., 2020;
Wang et al., 2020; Zhou et al., 2021). In particular, these works are different from the typical mean-
field analysis where usually the infinite-width network are considered, or the typical NTK analysis
where neural network behaves like kernel method. Our work is in a similar direction, but we need
new insights to extend the discretization to our new multilayer framework.

2 PRELIMINARIES

In this section, we discuss the additional technical conditions for the input distributions in Safran
et al. (2019), and how we deal with this in the training process.

Notations For a vector x, we let ∥x∥ denote its Euclidean norm. We use a = b± c as a shorthand
for the condition a ∈ [b − |c|, b + |c|]. For a distribution µ, we write v ∈ µ for the condition v
is in the support of µ. Other notations we use are mostly standard. We usually use v1 and w1 to
denote a first layer neuron, and (v2, r2) and (w2, b2) to denote a second layer neuron. Keeping two
sets of notations for neurons is intentional. When we are taking expectations over neurons, we use
w1 and (w2, b2). When considering a single neuron, we use v1 and (v2, r2). For vectors, we write
v̄ := v/ ∥v∥. We will use Ex as a shorthand for Ex∼D when it is clear from the context. We also
use v ∈ µ as a shorthand for v ∈ supp(µ).

Target Function and Input Distribution The target function we consider is f∗(x) = σ(1−∥x∥),
where σ : R → R is the ReLU activation. To describe the input distribution, first, we define

φ(x) :=
(

Rd

∥x∥

)d/2
Jd/2(2πRd ∥x∥), where Rd = 1√

π
(Γ(d/2+1))1/d and Jν is the Bessel function

of the first kind of order ν. Let α, β > 0 be the universal constants from Safran et al. (2019) (cf. the
proof of Theorem 5). We assume the inputs x ∈ Rd are sampled from the distribution D whose
density is given by x 7→ (

√
dβα)dφ2(

√
dβαx). It has been verified in Eldan & Shamir (2016)

and Safran et al. (2019) that this is indeed a valid probability distribution. Also, note that D is a
spherically symmetric distribution. For more properties of D, see Appendix B.2. By Theorem 5 of
Safran et al. (2019), no two-layer networks of width poly(d, 1/ε) can approximate f∗ to accuracy ε
in L2(D).3 This distribution is heavy-tailed in the sense that Ex∼D[∥x∥2] is undefined. The choice
of such heavy-tailed distribution is mostly required for proving the lower bound. Our training result
holds for most reasonable spherically symmetric distributions.

3Strictly speaking, the result in Safran et al. (2019) requires ε = O(1/d6). Even in that regime, our algo-
rithm learns the function using poly(d) neurons, which is not achievable by any two-layer network, therefore it
is still a valid separation.

4

Published as a conference paper at ICLR 2023

Training Algorithm and Main Result We use gradient flow with clipping over MSE loss to train
a polynomial-size network. We write the loss as

L = L(µ1, µ2) =
1

2
E

x∼D

{
(f∗(x)− f(x))2

}
=: E

x
L(x), (3)

Define S(x) = (f∗(x)− f(x))Ew2,b2 {σ′(w2F (x) + b2)w2}. One can verify that the dynamics of
the neurons are given by

v̇1 = E
x∼D

{
ΠRv1

[S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)x)]
}
,

v̇2 = E
x∼D

{
ΠRv2

[(f∗(x)− f(x))σ′(v2F (x) + r2)F (x)]
}
,

ṙ2 = E
x∼D

{
ΠRr2

[(f∗(x)− f(x))σ′(v2F (x) + r2)]
}
,

(4)

where ΠR stands for the projection to the ball of radius R, and Rv1
= Θ(d), Rv2 = Θ(d3),

Rr2 = Θ(1) are the projection threshold. We add these additional gradient clipping because without
them the gradients are not well-defined due to the heavy-tailed property of the distribution D. Note
that gradient clipping is indeed widely used in practice to avoid exploding gradients (Pascanu et al.,
2013; Zhang et al., 2020). In fact, we believe our optimization result without using gradient clipping
would still be true for a general spherically symmetric distribution D as long as it is more regular.

To initialize the learner network, we use Unif(σ1Sd−1) to initialize the first layer weights w1,
N (0, σ2

2) for the second layer weights w2, and choose all second layer bias b2 to be σr, where
σ1, σ2, σr are some small positive real numbers. We initialize w1 on the sphere instead using a
Gaussian only for technical convenience. We initialize the bias term to be a small positive value so
that all second layer neurons are activated at initialization to avoid zero gradient.

Now we are ready to give our main result. It shows that gradient flow with a polynomial-sized
learner network (1) defined in our mean-field framework can learn f∗(x) = σ(1− ∥x∥) efficiently,
which is not approximable by any two-layer network (Safran et al., 2019).

Theorem 2.1 (Main result). Given the learner network defined in (1) with initialization described
above and suppose we run gradient flow, assuming it exists, on this finite-width network with clipping
(4) on loss (3). Then, for any ϵ > 0, we can choose m1 = polym1

(d, 1/ϵ), m2 = Θ(1), σ1 =

1/ polyσ1
(d, 1/ϵ), σ2 = 1/ polyσ2

(d, 1/ϵ), σr = Θ(1), Rv1
= Θ(d), Rv2 = Θ(d3) and Rr2 =

Θ(1) so that with probability at least 1 − 1/poly(d, 1/ε) over the random initialization, we have
loss L ≤ ε within T = poly(d, 1/ϵ) time.

3 THE INFINITE-WIDTH DYNAMICS

Our proof consists of analyzing the dynamics of the infinite-width mean-field network and con-
trolling the discretization error. In this section, we characterized the infinite-width dynamics. For
ease of presentation, we pretend there is no projection and the gradients are well-defined in this
subsection and defer the discussion on handling the projections to Section 4.

First, note that both the input distribution D and the infinite-width network are spherically symmet-
ric. That is, for any x,x′ ∈ Rd with ∥x∥ = ∥x′∥, the density/function value are the same. Any
spherically symmetric g : Rd → R can be characterized by a function h : [0,∞) → R which
satisfies h(∥x∥) = g(x). For convenience, we will abuse notation to also use g : R → R to denote
this function h.

Assuming that the distribution µ1 of the first layer neurons is spherically symmetric, which is true at
least at initialization, we can approximate the first layer with a simple function using the following
lemma. The proof of it can be found in Appendix B.3.

Lemma 3.1. Let µ be a spherically symmetric distribution. We have

E
w∼µ

∥w∥σ(w · x) = CΓ
Ew∼µ ∥w∥2√

d
∥x∥ where CΓ :=

Γ(d/2)
√
d

2
√
πΓ((d+ 1)/2)

.

Note that, as d → ∞, we have CΓ → 1/
√
2π, so CΓ is universally bounded for all d.

5

Published as a conference paper at ICLR 2023

This lemma implies that, in the infinite-width limit, we have F (x) = α ∥x∥ for some real α > 0, at
least at initialization. This suggests defining the infinite-width approximation as:

α :=
CΓ√
d

E
w1∼µ1

∥w1∥2 , F̃ (x) := α ∥x∥ , f̃(x) := E
(w2,b2)∼µ2

σ(w2F̃ (x) + r2). (5)

Note that (5) is well-defined no matter µ1 is infinite-width or not, though only in the infinite-width
case will one have F = F̃ . Later in Section 4 we will show that F ≈ F̃ throughout the entire
process in the discretization part of the proof.

For the infinite-width network, one can imagine that, thanks to the symmetry, as long as µ1 is
spherically symmetric at time t, then no first layer neuron will change its direction and the change in
norm is also uniform, i.e., it does not depend on the direction v̄1. (See Appendix B.4 for the proof.)
As a result, µ1 will remain spherically symmetric. Formally, one can show that, for any spherically
symmetric g : Rd → R, we have

E
x
{g(x)σ(v · x)} =

CΓ√
d
E
x
{g(x) ∥x∥} ∥v∥ and E

x
{g(x)σ′(v · x)x} =

CΓ√
d
E
x
{g(x) ∥x∥} v̄,

where v̄ = v/ ∥v∥. Again, the proof of these two identities can be found in Appendix B.3. Apply
these identities to v̇1 with g ≡ S and one can obtain

v̇1 =
2CΓ√

d
E
x
{S(x) ∥x∥}v1.

As a result, µ1 is always a uniform distribution over some sphere. Moreover, we have4

α̇ = E
w1

∂α

∂w1

dw1

dt
=

4C2
Γ

d
E
x
{S(x) ∥x∥} E

w1

∥w1∥2 =
4CΓ√

d
E
x
{S(x) ∥x∥}α.

This implies that the dynamics of the first layer can also be characterized by α alone. This reduces
the dynamics of the first layer to a single real number α. That is, the outputs of the first layer depend
only on α and x, and the dynamics of α also depend only on α instead of every single neuron w1.
In other words, we do not need to look at the actual dynamics of w1 in this infinite-width case.
We will later show that the spread of the second layer is always small, hence the second layer can
be approximated by α ∥x∥ 7→ σ(w̄2α ∥x∥ + b̄2) where (w̄2, b̄2) = E(w2, b2). Combining these
observations, one can characterize the dynamics of the entire network using three quantities: α, w̄2

and b̄2.

We close this section with another interpretation of F̃ , which is going to be handy in Section 4.2.
Since we know that, in the idealized case, F should be spherically symmetric. Hence, it makes sense
to define the “idealized” F to be the average over the sphere, that is, F̃ (x) = Ex′∈∥x∥Sd−1 F (x′).
Note that in Lemma 3.1, the expectation is taken over the neurons while here it is over the inputs.
However, similar to the proof of Lemma 3.1, one can still show that

E
x′∈∥x∥Sd−1

F (x′) = E
w∼µ1

E
x′∈∥x∥Sd−1

∥w∥2 σ(w̄ · x) = CΓ Ew∼µ1
∥w∥2√

d
∥x∥ = α ∥x∥ .

In other words, these two derivations are equivalent. In some sense, this means that the infinite-width
network can be interpreted as a symmetrization of the actual finite-width network.

4 DISCRETIZING THE DYNAMICS WITH POLYNOMIAL-SIZE NETWORK

In this section, we show how to discretize the infinite-width dynamics to get our main results. See
Fig. 2 for simulation results. As we can see, even though the network has a finite width, at any time
step, the function f(x) is close to a function of the form x 7→ σ(b̄2 − w̄2α∥x∥), and throughout the
training the second layer weights are well-concentrated.

Let δ2 := max(v2,r2),(v′
2,r

′
2)
∥(v2, r2)− (v′2, r

′
2)∥ be the spread of the second layer, we will split the

training procedure into two stages. Recall that (w̄2, b̄2) := E(w2,b2)∼µ2
(w2, b2). In Stage 1, w̄2 will

decrease to −poly(d)δ2. We show that after this condition is true, the projection operators in (4)
can be ignored (that is, the corresponding terms never exceed the thresholds, see Lemma 4.1). In
Stage 2, we show that the network can fit the target function in polynomial time.

4As in the standard mean-field arguments, we rescale the gradients by m so that it does not go to 0 as
m → ∞. In most cases regarding gradient calculation, this is equivalent to using the formal rule ∂v Ew g(w) =
∂vg(v).

6

Published as a conference paper at ICLR 2023

Figure 2: Simulation results. The left figure shows the loss during training. Each vertical dashed
line corresponds to a time point plotted in the other two figures. The center figure depicts the shape
of f at certain steps. The right figure shows the values of the second-layer neurons at certain steps.
One can observe that f ≈ f̃ indeed holds, and the second layer neurons are concentrated around
(w̄2, b̄2), which matches our theoretical analysis. Simulation is performed on a finite-width network
with widths m1 = 512, m2 = 128 and input dimension d = 100.

4.1 STAGE 1: REMOVING THE PROJECTIONS

Our first step shows that after a short amount of time in training, it is OK to ignore the projection
operators in (4). To see why the projections can be ignored in certain circumstances, first note that
if f ≈ f̃ , second layer neurons concentrate around their mean, b̄2 = Θ(1) and w̄2 < 0, then
f ≈ σ(w̄2α ∥x∥+ b̄2) vanishes outside {∥x∥ ≤ Θ(1/|w̄2α|)}, whence the gradients also vanish for
those large x. Meanwhile, by upper bounding the norm of the gradients, one can show that in order
for the projections to be triggered, it is necessary for ∥x∥ to be large. As a result, when f decreases
sufficiently fast, f(x) will reach 0 before ∥x∥ becomes too large. Formally, we have the following
lemma, whose proof can be found in Appendix C.
Lemma 4.1. Choose the projection threshold Rv1 = Θ(d), Rv2 = Θ(d3) and Rr2 = Θ(1) in (4).
Suppose that α = Θ(1/

√
d). Then, the projection operators in ṙ2, v̇1 and v̇2 will no longer be

activated if all second layer weights are nonpositive, −w̄2 > Θ(1)δ2 for some large constant, and
−w̄2 ≥ Θ(1)/Rv2 for some large constant, respectively.

Based on this lemma, we further split Stage 1 into three substages. We define T1.1 to be the first
time all second layer weights become negative, and T1.2 and T1.3 the first time |w̄2| becomes Θ(d)δ2
and Θ(1/Rv2), respectively. They represent the end time of Stage 1.1, 1.2, and 1.3, respectively.
We require |w̄2| to be Θ(d)δ2 instead of Θ(1)δ2 at the end of Stage 1.2 so that the starting state of
Stage 1.3 is more regular. By definition and Lemma 4.1, after each substage, one more projection
can be ignored, and all of them can be ignored after Stage 1.

The main lemma of Stage 1 is as follows. Recall that Rv1
, Rv2 , Rr2 are the clipping thresholds.

Lemma 4.2 (Stage 1, informal). Define the end time of Stage 1 as T1 := inf{t ≥ 0 : −w̄2(t) =
C1/Rv2} for some large constant C1. Under the assumptions of Theorem 2.1, we have T1 ≤
poly(d, 1/ε) and the following conditions hold throughout Stage 1.

(a) Approximation error of the first layer. For each v1 ∈ µ1, both the tangent movement
and the radial spread can be controlled as ∥v̄1(t)− v̄1(0)∥ ≤ δ

(1)
1,T (t) and ∥v1∥2 = (1 ±

δ
(1)
1,R(t))E ∥w1∥2, where δ

(1)
1,T and δ

(1)
1,R are two processes which are always small.

(b) Spread of the second layer. For any (v2, r2), (v′2, r
′
2) ∈ µ2, ∥(v2, r2)− (v′2, r

′
2)∥ is small.

(c) Regularity conditions. r2 = Θ(1) for all (v2, r2) ∈ µ2, |w̄2| = O(1/Rv2) = O(1/d3)

and α = Θ(
√
d/Rv1

) = Θ(1/d1.5).

The first two conditions mean the approximation f(x) ≈ σ(w̄2α ∥x∥ + b̄2) is valid throughout
Stage 1 and the third condition describes the shape of f in Stage 1. To maintain these conditions, we
use the so-called continuity argument, which can be viewed as a continuous version of mathematical
induction. See Appendix B.1 for explanations of this technique.

7

Published as a conference paper at ICLR 2023

With the approximation F (x) ≈ α ∥x∥ and the fact f(x)σ′(v2F (x) + r2) = f(x) for most x, we
can rewrite the dynamics of v2 as

v̇2 ≈ E
x

{
ΠRv1

[(f∗(x)− f(x))α ∥x∥]
}
.

Since f is much flatter than f∗, f is still Ω(1) when f∗ vanishes because of ∥x∥ ≥ 1. As a result,
the RHS is always negative. In fact, we show that it is −Θ(α log d). Recall that T1.2 is the time
|w̄2| reaches Θ(dδ2). If δ2 roughly remains constant, the time needed for Stage 1.1 and Stage 1.2
is proportional to the initial δ2. Then, we can make the initial δ2 small by selecting a small enough
σ2. This also helps control the movement of v1 and r2 in Stage 1.1 and Stage 1.2 as their dynamics
depend on |w2|.
One also needs to show that δ2 cannot increase too much during Stages 1.1 and 1.2 to maintain the
approximation f(x) ≈ σ(w̄2F (x) + b̄2). Intuitively, this is because for inputs with small ∥x∥, the
gradient ∇v2L(x) does not depend on (v2, r2) itself; for the inputs with a large norm, they cannot
contribute too much to the gradient due to gradient clipping. As a result, the dynamics of v2 are
approximately uniform in Stage 1.1 and Stage 1.2, whence the distance between different (v2, r2),
(v′2, r

′
2) stays small.

The same method does not work in Stage 1.3 as now the target value of w̄2 no longer depends on δ2,
and we need a finer analysis for the first layer. Recall that, after Stage 1.2, the projection in v̇1 can
be ignored. Therefore, we can decompose v̇1 along the radial and tangent direction as

v̇1 = Rad(v̇1) + Tan(v̇1) = ⟨v̇1, v̄1⟩ v̄1 + (I − v̄1v̄
⊤
1)v̇1

= 2E
x
{S(x)σ(v1 · x)}+ ∥v1∥E

x

{
S(x)σ′(v1 · x)(I − v̄1v̄

⊤
1)x

}
.

Then, we write S(x) ≈ (f∗(x) − f(x))w̄2 = (f∗(x) − f̃(x))w̄2 + (f̃(x) − f(x))w̄2. The terms
related to f∗ − f̃ is essentially what one should expect to have in the infinite-width dynamics.
For those terms, the radial movement is uniform and tangent movement is 0. Then, we bound
terms related to f̃ − f using the radial spread and tangent movement of the first layer to obtain
d
dt

(
δ
(1)
1,R + δ

(1)
1,T

)
⪅ O(1)

d2.5

(
δ
(1)
1,R + δ

(1)
1,T

)
(cf. Lemma C.16). Though, with this bound, the error can

grow exponentially fast (exp(t/d2.5)), this is sufficient since Stage 1.3 only takes O(d1.5) time.

4.2 STAGE 2: FITTING THE TARGET FUNCTION

The goal of Stage 2 is for the gradient flow to converge to a point with loss at most ε in polynomial
time. The main difficulty in this stage is that we need to bound the approximation error of the first
layer more carefully, as Stage 2 is potentially long and the brute-force estimations used in Stage 1
is too loose towards the end of training. We write F̄ := F/α and measure the approximation error
using

∥∥F̄ |Sd−1 − 1
∥∥ and

∥∥F̄ − ∥·∥2
∥∥
L2 . Strictly speaking, for the L2 error, we only consider those

x with ∥x∥ ≤ Θ(1/|w̄α|) = poly(d) since otherwise it can be ill-defined. This is valid because,
as we have discussed earlier, f vanishes for large x. In Stage 2, Ex always means E∥x∥≤Θ(1/|w̄2α|)
and, for the simplicity of presentation, we usually do not explicitly state this. The main result of
Stage 2 is as follows.
Lemma 4.3 (Stage 2, informal). Define the end time of Stage 2 as T2 := inf{t ≥ T1 : L =
ε}. Under the assumptions of Theorem 2.1, we have T2 − T1 ≤ poly(d, 1/ε) and the following
conditions hold throughout Stage 2:

(a) Approximation error of the first layer. Both
∥∥F̄ − ∥·∥

∥∥
L2 and

∥∥F̄ |Sd−1 − 1
∥∥
L∞ are

small.

(b) Spread of the second layer. max(v2,r2),(v′
2,r

′
2)
∥(v2, r2)− (v′2, r

′
2)∥ does not grow.

(c) Regularity conditions. The shape of f is similar to the one shown in Figure 2.

As we mentioned, the main technical challenge is to bound the approximation error of the first layer.
The overall strategy is to first show that, in Stage 2, the L2 error barely grows and then show that,
as long as the L2 error is small, the L∞ error can also be controlled. Unlike Stage 1, |w̄2α| is
fairly large in Stage 2 and, as a result, the first layer can receive some signal from the loss function.

8

Published as a conference paper at ICLR 2023

Intuitively, this signal should push the first layer to become closer to a multiple of ∥x∥ as that is
what the global optimal solution would do. Formally, we first show the following approximation:

L ≈ 1

2
E
x

{
(f∗(x)− f̃(x))2

}
+

w̄2
2

2
E
x

{
(F̃ (x)− F (x))2

}
, (6)

in the sense that the gradients ∇v1
of both sides are approximately the same, where f̃(x) is defined as

E(w2,b2)∼µ2
σ(w2F̃ (x)+b2). The first term of (6) measures the distance between the target function

and the infinite-width network and the second term measures the approximation error of the first
layer. In some sense, one can view this formula as a bias-variance decomposition for discretizing
mean-field networks.

With this approximation in hand, we then show that, thanks to the 2-homogeneity of F , the first term,
after certain normalization, does not affect the approximation error of the first layer. Meanwhile,
since we are following the gradient flow, the second term can only decrease the approximation error.

To establish (6), we first decompose the loss function as

L =
1

2
E
x

{
(f∗(x)− f̃(x))2

}
+

1

2
E
x

{
(f̃(x)− f(x))2

}
+ E

x

{
(f∗(x)− f̃(x))(f̃(x)− f(x))

}
=: L1 + L2 + L3.

We claim that L2 is approximately the second term of (6) and the third term is approximately 05.
Let X1 be the largest spherically symmetric set on which v2F (x) + r2 > 0 for all (v2, r2) ∈ µ2.
We show that those x outside X1 contribute a little. Therefore, we can rewrite L2 as

L2 ≈ 1

2
E
X1

{(
E

w2,b2
(w2F̃ (x) + b2)− E

w2,b2
(w2F (x) + b2)

)2
}

=
w̄2

2

2
E
X1

{
(F̃ (x)− F (x))2

}
≈ w̄2

2

2
E
x

{
(F̃ (x)− F (x))2

}
.

Similarly, we can rewrite L3 as L3 ≈ w̄2 Ex

{
(f∗(x)− f̃(x))(F̃ (x)− F (x))

}
. Recall from

Section 3 that F̃ (x) = Ex′∈∥x∥Sd−1 F (x). With this in mind, one can easily verify that, for

any spherically symmetric function g : Rd → R, Ex {g(x)F (x)} = Ex

{
g(x)F̃ (x)

}
. Setting

g = f∗(x)− f̃(x) gives L3 ≈ 0. Combine these two estimations together and we obtain (6).

Provided that the L2 error is always small, we show that, up to some higher order terms,∣∣∣∣ ddt F̄ (x̄)

∣∣∣∣ ≲ O(d3)
∥∥F̄ − ∥·∥2

∥∥
L2 , ∀x̄ ∈ Sd−1.

In words, the change of d
dt F̄ (x) can be bounded by the L2 error. Hence,

∥∥F̄ |Sd−1 − 1
∥∥
L∞ is always

small as long as we choose a sufficiently large m1 so that F̄ (x)|x∈Sd−1 is close to 1 at initialization.
This should not be a surprise since, after all, in the infinite-width dynamics F̄ (x)|x∈Sd−1 = 1. The
formal proof of the above argument can be found in Section D.2.

Given that the approximation error can be controlled, one can then derive a convergence rate using
the infinite-width dynamics. See Section D.3 for details.

5 CONCLUSION

In this paper we give a new framework for extending mean-field limit to multilayer networks, and
use this framework to show that three-layer networks can learn a function that is not approximable
by two-layer networks. There are still many open problems: for the current objective the loss is
spherically symmetric so the first-layer neurons don’t move much tangentially, what if the function
is instead σ(1− ∥PSx∥) where PS is projection to some unknown subspace? How about functions
that require an intermediate layer of size more than 1? Can one generalize the saddle point analysis
to deeper networks? We hope this work will be a starting point for understanding how deep neural
networks can learn useful features.

5For the ease of presentation, here we are talking about the function values instead of the gradients. Strictly
speaking, this is incorrect as the function value being small does not necessarily imply the gradient is small.
The ideas, however, are essentially the same. See Section D.2 for the actual proof.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

This work is supported by NSF Award DMS-2031849, CCF-1845171 (CAREER), CCF-1934964
(Tripods) and a Sloan Research Fellowship.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels? arXiv
preprint arXiv:1905.10337, 2019.

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep
learning. arXiv preprint arXiv:2001.04413, 2020.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameter-
ized neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918, 2018a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962, 2018b.

Dyego Araújo, Roberto I Oliveira, and Daniel Yukimura. A mean-field limit for certain deep neural
networks. arXiv preprint arXiv:1906.00193, 2019.

Yu Bai and Jason D Lee. Beyond linearization: On quadratic and higher-order approximation of
wide neural networks. arXiv preprint arXiv:1910.01619, 2019.

Yu Bai, Ben Krause, Huan Wang, Caiming Xiong, and Richard Socher. Taylorized training: Towards
better approximation of neural network training at finite width. arXiv preprint arXiv:2002.04010,
2020.

Minshuo Chen, Yu Bai, Jason D Lee, Tuo Zhao, Huan Wang, Caiming Xiong, and Richard Socher.
Towards understanding hierarchical learning: Benefits of neural representations. arXiv preprint
arXiv:2006.13436, 2020.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Advances in neural information processing
systems, pp. 3036–3046, 2018.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In Advances in Neural Information Processing Systems, pp. 2933–2943, 2019.

Amit Daniely. Depth separation for neural networks. In Conference on Learning Theory, pp. 690–
696. PMLR, 2017.

Zhiyan Ding, Shi Chen, Qin Li, and Stephen Wright. Overparameterization of deep resnet: zero
loss and mean-field analysis. arXiv preprint arXiv:2105.14417, 2021.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman diagrams. arXiv
preprint arXiv:1909.11304, 2019.

Ronen Eldan and Ohad Shamir. The Power of Depth for Feedforward Neural Networks. In Vi-
taly Feldman, Alexander Rakhlin, and Ohad Shamir (eds.), 29th Annual Conference on Learning
Theory, volume 49 of Proceedings of Machine Learning Research, pp. 907–940, Columbia Uni-
versity, New York, New York, USA, June 2016. PMLR. URL http://proceedings.mlr.
press/v49/eldan16.html.

Cong Fang, Jason Lee, Pengkun Yang, and Tong Zhang. Modeling from features: a mean-field
framework for over-parameterized deep neural networks. In Conference on learning theory, pp.
1887–1936. PMLR, 2021.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Limitations of lazy
training of two-layers neural network. In NeurIPS, 2019.

10

http://proceedings.mlr.press/v49/eldan16.html
http://proceedings.mlr.press/v49/eldan16.html

Published as a conference paper at ICLR 2023

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
networks outperform kernel methods? arXiv preprint arXiv:2006.13409, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hier-
archy. In International Conference on Machine Learning, pp. 4542–4551. PMLR, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571–
8580, 2018.

I. Krasikov. Uniform bounds for bessel functions. Journal of Applied Analysis, 12(1):83–91, 2006.
doi: doi:10.1515/JAA.2006.83. URL https://doi.org/10.1515/JAA.2006.83.

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer neural
networks beyond ntk. In Conference on Learning Theory, pp. 2613–2682. PMLR, 2020.

Shiyu Liang and R Srikant. Why deep neural networks for function approximation? In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, 2017.

Yiping Lu, Chao Ma, Yulong Lu, Jianfeng Lu, and Lexing Ying. A mean field analysis of deep
resnet and beyond: Towards provably optimization via overparameterization from depth. In In-
ternational Conference on Machine Learning, pp. 6426–6436. PMLR, 2020.

Eran Malach and Shai Shalev-Shwartz. Is deeper better only when shallow is good? Advances in
Neural Information Processing Systems, 32, 2019.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. The connection between
approximation, depth separation and learnability in neural networks. In Conference on Learning
Theory, pp. 3265–3295. PMLR, 2021.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

Phan-Minh Nguyen and Huy Tuan Pham. A rigorous framework for the mean field limit of multi-
layer neural networks. arXiv preprint arXiv:2001.11443, 2020.

Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite ensembles. arXiv
preprint arXiv:1712.05438, 2017.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, pp. III–1310–III–1318. JMLR.org, 2013.

Huy Tuan Pham and Phan-Minh Nguyen. Global Convergence of Three-layer Neural Networks in
the Mean Field Regime. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=KvyxFqZS_D.

Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Why
and when can deep-but not shallow-networks avoid the curse of dimensionality: a review. Inter-
national Journal of Automation and Computing, 14(5):503–519, 2017.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Grant M Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of neural networks: An
interacting particle system approach. arXiv preprint arXiv:1805.00915, 2018.

Itay Safran and Jason D Lee. Optimization-based separations for neural networks. arXiv preprint
arXiv:2112.02393, 2021.

11

https://doi.org/10.1515/JAA.2006.83
https://openreview.net/forum?id=KvyxFqZS_D

Published as a conference paper at ICLR 2023

Itay Safran and Ohad Shamir. Depth-Width Tradeoffs in Approximating Natural Functions with
Neural Networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Re-
search, pp. 2979–2987. PMLR, August 2017. URL https://proceedings.mlr.press/
v70/safran17a.html.

Itay Safran, Ronen Eldan, and Ohad Shamir. Depth Separations in Neural Networks: What is
Actually Being Separated? In Alina Beygelzimer and Daniel Hsu (eds.), Proceedings of the
Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning
Research, pp. 2664–2666, Phoenix, USA, June 2019. PMLR. URL http://proceedings.
mlr.press/v99/safran19a.html.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A central
limit theorem. Stochastic Processes and their Applications, 130(3):1820–1852, 2020.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of deep neural networks. Math-
ematics of Operations Research, 2021.

Terence Tao. Nonlinear dispersive equations: local and global analysis. Number no. 106 in Confer-
ence Board of the Mathematical Sciences regional conference series in mathematics. American
Mathematical Society, 2006. ISBN 978-0-8218-4143-3. OCLC: ocm65165502.

Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning theory, pp.
1517–1539. PMLR, 2016.

Gal Vardi and Ohad Shamir. Neural networks with small weights and depth-separation barriers.
Advances in neural information processing systems, 33:19433–19442, 2020.

Luca Venturi, Samy Jelassi, Tristan Ozuch, and Joan Bruna. Depth separation beyond radial func-
tions. Journal of Machine Learning Research, 23(122):1–56, 2022.

Xiang Wang, Chenwei Wu, Jason D Lee, Tengyu Ma, and Rong Ge. Beyond lazy training for
over-parameterized tensor decomposition. arXiv preprint arXiv:2010.11356, 2020.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. In Advances in Neural Information Processing
Systems, pp. 9712–9724, 2019.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for understanding
neural networks. arXiv preprint arXiv:1904.00687, 2019.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.net/forum?id=BJgnXpVYwS.

Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-
layer neural network. In Conference on Learning Theory, pp. 4577–4632. PMLR, 2021.

12

https://proceedings.mlr.press/v70/safran17a.html
https://proceedings.mlr.press/v70/safran17a.html
http://proceedings.mlr.press/v99/safran19a.html
http://proceedings.mlr.press/v99/safran19a.html
https://openreview.net/forum?id=BJgnXpVYwS

Published as a conference paper at ICLR 2023

A MULTI-LAYER MEAN-FIELD NETWORKS

In this section, we first briefly review existing theories of two-layer mean-field networks, and then
introduce our framework for multi-layer mean-field networks.

A.1 TWO-LAYER NETWORKS AND PERMUTATION INVARIANCE

A two-layer network f of width m can usually be represented by6

f(x;W ,a) =
1

m
a⊤σ(Wx) =

1

m

m∑
i=1

aiσ(wi · x). (7)

where W ∈ Rm×d is the weight matrix of the hidden layer and a ∈ Rm the output weights. Let µ
be the empirical distribution of {(ai,wi)}mi=1 ⊂ Rd+1. Then, we can write

f(x;µ) = E
(a,w)∼µ

{aσ(w · x)} . (8)

By allowing µ to be an arbitrary sufficiently regular distribution over Rd, we obtain a neural network,
represented by (8), that can contain infinitely many neurons.

To describe the gradient flow of this infinite-width network, it suffices to assign a vector field to
Rd+1 that describes how each neuron (a,w) ∈ Rd+1 should move at time t. One simple heuristic
way to do so is to first compute the gradient in the finite-width case and then replace all summations
with expectations as in (8) and treat the gradient as a vector field. We now illustrate the idea under
realizable setting and with the MSE loss

L =
1

2
E
x

{
(f∗(x)− f(x))2

}
.

The theory can be generalized to much more general settings and can be formally justified using
the theory of Wasserstein gradient flow. Readers can refer to, for example, Chizat & Bach (2018)
and Mei et al. (2018) for details. For a finite-width network (7), the gradient of L w.r.t. a neuron
(ak,wk) is

−m∇ak
L = E

x
{(f∗(x)− f(x;W ,a))σ(wk · x)} ,

−m∇wk
L = E

x
{(f∗(x)− f(x;W ,a))akσ

′(wk · x)x} .

Replace f(x;W ,a) with f(x;µ), treat (ak,wk) as a generic neuron, and we obtain a vector field
∇̃ : Rd+1 → Rd+1

−∇̃(a,w) := E
x

{
(f∗(x)− f(x;µ))

[
σ(w · x)

aσ′(w · x)x

]}
.

At each time t, we update the neurons in µ according to −∇̃.

One of the most important properties of this mean-field formulation is that it factors out the permu-
tation invariance of neurons. That is, we can permute (a1,w1), . . . , (am,wm) without changing
the output of the network. However, when we treat training as an optimization problem over the
space of (a,W), i.e., Rm × Rm×d, permuting (ai,wi) entirely changes (a,W). On the other
hand, if we describe the network using a distribution µ over Rd+1, then it is automatically permu-
tation invariant. Note that this is not restricted to infinite-width networks. When we choose µ to
be an empirical distribution over finitely many neurons, we recover a finite-width network without
breaking the permutation invariance.

6Here, wi ∈ Rd means the i-th row of W . Later we will notations vi, ai to denote i-th row or column
of the corresponding matrix. Whether it is a row or column can be easily inferred from the dimension. The
general rule is that if V ∈ RD×m where m represents the number of neurons, then vi ∈ RD is i-th column,
and if W ∈ Rm×D , then wi ∈ RD is the i-th row.

13

Published as a conference paper at ICLR 2023

A.2 MULTI-LAYER MEAN-FIELD NETWORKS

Unfortunately, the above strategy cannot be directly generalized to multi-layer networks. Consider
the three-layer network

f(x;a,W2,W1) =
1

m2
a⊤σ (W2h(x;W1)) , h(x;W1) =

1

m1
σ(W1x),

where a ∈ Rm2 , W2 ∈ Rm2×m1 , W1 ∈ Rm1×d. One can still write

f(x;a,W2,W1) =
1

m2

m2∑
i=1

aiσ(w2,i · h(x;W1)) = E
(ai,w2)∼µ2

{aσ(w2 · h(x;W1))} .

However, now µ2 is a distribution over Rm1 , and if m1 → ∞, it will become a distribution over
R∞, which is not readily defined. One way to resolve this issue is to view W2 as a function from
[m2]× [m1] to R and then generalize it to handle the infinite-width case by replacing the index sets
[m2], [m1] by two general index sets I2, I1 that can potentially be uncountable. For example, we
can choose I1 = I2 = R. This is the strategy employed by Nguyen & Pham (2020). (See Pham
& Nguyen (2021) for a more accessible version of this paper.) The drawback of this formulation
is that, with the introduction of index sets, the permutation invariance is no longer factored out.
Though with this formulation, it is still possible to obtain global convergence results for infinite-
width networks, it become less useful when we want to analyze a finite-width network as it becomes
essentially the same as the usual matrix formulation.

We now present a formulation that does factor out the permutation invariance of neurons, and it is
built upon composing a sequence of vector-valued two-layer networks. As a first step, we consider
a two-layer network with D-dimensional outputs:

f(x;A,W) =
1

m
Aσ(Wx), (9)

where A ∈ RD×m and W ∈ Rm×d. For each index i ∈ [D], we still have

fi(x;A,W) =
1

m

m∑
j=1

ai,jσ(wj · x) = E
(a,w)∼µi

{aσ(w · x)} ,

where µi is the empirical distribution of {(ai,j ,wj)}j∈[m] ⊂ Rd+1. Range over i and we obtain
the output vector of this network. For two-layer networks with scalar outputs, in order to obtain
its mean-field counterpart, it suffices to allow µ to take a general distribution over R × Rd. This,
however, is not the case for networks with vector outputs as the W parts of µi are coupled. Hence,
we need to additionally impose the constraint that all (µi)i∈[D] share the same second margin, that
is, π2#µi = µW for some distribution µW over Rd and all ∈ [D], where π2 : R× Rd → Rd is the
projection that takes (a,w) to w. Intuitively, this condition says that they share the same first layer
weights W . We formalize this idea in the following definition.

Definition A.1. Let (µi)i∈[D] be D sufficiently regular7 distributions over R×Rd. We call (µi)
D
i=1

an admissible configuration of dimension (D, d) if there exists a measure µW over Rd such that
π2#µi = µW holds for all i ∈ [D].

Remark. Note that here, by a neuron, we mean a (D + d)-dimensional vector (a1, . . . , aD,w). In
the finite-width network (9), this corresponds to a row in W and the corresponding column in A.
This point of view is important when deriving the infinite-width gradient flow since, as in the two-
layer case, the vector field at the position of a certain neuron can only depend on the other neurons
as a whole. ♣

To complement the discussion, here we consider the problem that, given an admissible infinite-width
configuration (µi)i∈[D], how to obtain a finite-width network with m neurons. For a scalar-valued

7Our focus is on factoring out the permutation invariance and, in this paper, essentially all distributions are
empirical distributions over finitely many neurons, with respect to which the integral is just summation and is
always well-defined. We leave the work of figuring out specific regularity conditions to future works.

14

Published as a conference paper at ICLR 2023

mean-field network characterized by µ, it suffices to generate m samples from µ. For a vector-
valued network, the procedure is slightly different. We first sample a weight vector w from the
shared margin µW . Then, for each i ∈ [D], we generate a real number ai conditioning on w. This
gives us a neuron (a1, . . . , aD,w) ∈ RD × Rd. Repeat this procedure m times and we obtain a
finite-width network with m neurons.

We formally define two-layer vector-valued mean-field networks as follows.
Definition A.2. Given an admissible (µi)i∈[D], the two-layer vector-valued network it defines is

F (x;µ1, . . . , µD) = (F1(x;µ1), . . . , FD(x;µD)), (10)

where
Fi(x;µi) = E

(a,w)∼µi

{aσ(w · x)} , ∀i ∈ [D].

Now, we are ready to define a multi-layer mean-field network. Basically, a multi-layer mean-field
network is a composition of a sequence of two-layer vector-valued networks (10).

Definition A.3. Let L ≥ 1 be an integer. Let D(1), . . . , D(L) be a sequence of positive in-
tegers and put D(0) = d. For each l ∈ [L], let (µ

(l)
i)i∈[Dl] be an admissible configuration

of dimension (D(l), D(l−1)). The L-layer mean-field network f defined by the configuration
Θ := ((µ

(l)
i)i∈[Dl])l∈[L] is defined recursively as

f(x; Θ) = F (L)(x; Θ),

F (l)(x; Θ) := F
(
F (l−1)(x; Θ);µ

(l)
1 , . . . , µ

(l)
Dl

)
, ∀l ≥ 1,

F (0)(x; Θ) := x,

(11)

where F is the two-layer mean-field network given by (10).

Example As an example, we consider the case L = 3 here. In this case, the finite-width network
corresponding to (11) is

f(x;A2,W2,A1,W1) =
1

m2
A2σ

(
W2

1

m1
A1σ(W1x)

)
,

which is exactly the usual multi-layer network used in practice except the normalizing terms 1/m2,
1/m1 and an additional matrix A1 ∈ RD1×m1 . This matrix compresses an m1 dimensional feature
vector to a D1 dimensional one, where D1 is an integer that does not go to ∞. It is a reminiscent of
the bottleneck structure used in ResNet (He et al. (2016)).

Remark. Note that this formulation is indeed invariant under permutation of each layer’s neurons.
However, it does not factor out all permutation invariance of a deep network. For example, one can
permute the columns of W1 and adjusting A1, W2, A2 accordingly without changing the output of
the network. In some sense, this corresponds to permuting the entires of the hidden feature F (1). We
believe it is not necessary or useful to factor out this symmetry since, after all, even in the two-layer
case, we do not permute the entries of the inputs x. ♣

Finally, we consider the problem of formulating mean-field gradient flow so that it matches the
usual gradient flow. The idea is simple: We compute the gradient in the finite-width setting and then
replace summations with integrals. For the ease of presentation, we consider a three-layer network
and the MSE loss. Again, this framework can be easily generalized to deeper networks and other
loss functions. We write

f(x) = f(x;a,W2,V1,W1) =
1

m2
a⊤σ (W2F (x;V1,W1)) ,

F (x) = F (x;V1,W1) =
1

m1
V1σ(W1x),

L = L(a,W2,V ,W1) =
1

2
E
x

{
(f∗(x)− f(x;a,W2,V ,W1))

2
}
,

15

Published as a conference paper at ICLR 2023

where a ∈ Rm2 , W2 ∈ Rm2×D, V1 ∈ RD×m1 , W1 ∈ Rm1×d. We have

−m2∇aiL = E
x
{(f∗(x)− f(x))σ(w2,i · F (x))} , ∀i ∈ [m2],

−m2∇w2,i
L = E

x
{(f∗(x)− f(x))aiσ

′(w2,i · F (x))F (x)} , ∀i ∈ [m2],

−m1∇v1,i
L = E

x

(f∗(x)− f(x))
1

m2

m2∑
j=1

ajσ
′(w2,j · F (x))w2,jσ(w1,i · x)

 , ∀i ∈ [m1],

−m1∇w1,i
L = E

x

(f∗(x)− f(x))
1

m2

m2∑
j=1

ajσ
′(w2,j · F (x)) ⟨w2,j ,v1,i⟩σ′(w1,i · x)x

 , ∀i ∈ [m1].

Replace summations with integrals and we obtain

−∇̃(a,w2) = E
x

{
(f∗(x)− f(x))

[
σ(w2 · F (x))

aσ′(w2 · F (x))F (x)

]}
,

−∇̃(v1,w1) = E
x

{
(f∗(x)− f(x)) E

(a,w2)∼µ2

{
aσ′(w2 · F (x))

[
σ(w1 · x)w2

⟨w2,v1⟩σ′(w1 · x)x

]}}
. (12)

Namely, at each step t, we update the second layer neurons (a,w2) with −∇̃(a,w2), and first layer
neurons (v1,w1) with −∇̃(v1,w1). Note that, unlike many other multi-layer mean-field frameworks,
we do not introduce any notion of paths. The dynamics of each first layer neuron depends on the
second layer as a whole as we take expectation over µ2 in (12). The same is also true for second
layer neurons. In some sense, the additional matrix V1 decouples the dynamics of the first and
second layer neurons.

B PRELIMINARIES

B.1 INDUCTION HYPOTHESIS AND CONTINUITY ARGUMENT

We extensively use the continuos-time version of mathematical induction in our proof, which is also
called the continuity argument. We briefly discuss this technique in this subsection and explain some
conventions we employ in the writing of the proof. One may refer to, for example, Chapter 1.3 of
Tao (2006) for details.

Similar to the discrete-time induction argument, the goal is to maintain a collection of conditions,
which we call the Induction Hypothesis, throughout a period of time (cf. Induction Hypothesis C.2
and Induction Hypothesis D.1). There are mainly two types of conditions.

The first type has the form “certain process At is bounded by another process Bt”. In the proof,
At is usually the error we want to control and Bt an non-decreasing process representing the cor-
responding upper bound. To maintain this type of condition, it suffices to show that At ≤ Bt at
initialization and Ȧt ≤ Ḃt as long as the Induction Hypothesis is true.

For this type of condition, usually we also have an upper bound for Bt, say, Bt ≤ B∞. The
most rigorous way to maintain these bounds is to argue by contradiction. Let T be the minimum
between the time T1 the process ends and the time T2 this bound first get violated. By definition,
the Induction Hypothesis holds for any t ≤ T . Using the Induction Hypothesis, one can then derive
an upper bound T ′ on T1, which then leads to an upper bound on T . Then, all we need to show is
that BT ′ is smaller than B∞ so that T is attained by T1 instead of T2. For the ease of presentation,
for this type of conditions, instead of arguing by contradiction explicitly, we will simply show that,
provided that the Induction Hypothesis is true over [0, T1], then BT1

≤ B∞ holds.

The second type has the form “certain process Ct is bounded some value D”. Here, Ct is usually
some quantity related to the shape of the learner function such as w̄2 and α. In order to maintain,
say, Ct ≤ D, we show that when Ct ∈ [D − ε,D], we have Ċt < 0. This implies that, as long as
Ct is continuous, this implies Ct can never reach D.

16

Published as a conference paper at ICLR 2023

B.2 PROPERTIES OF THE INPUT DISTRIBUTION

In this subsection, we derive some basic properties of the input distribution that will be useful in
later analysis.

The following lemma gives the distribution of ∥x∥ and its tail bound.
Lemma B.1. Let x ∼ D and let ∥D∥ denote the distribution of ∥x∥. We have

∥D∥ (r) = d

r
J2
d/2(2πRdβα

√
dr) = O

(
1

r2

)
, ∀r > 0.

As a result, we have the tail bound: for all R > 0, P[∥x∥ ≥ R] ≤ O (1/R).

We now give some regularity conditions on the input distribution that will be used in our proof.
Roughly speaking, it shows that the distribution is heavy-tailed and still has large enough mass for
∥x∥ ∈ [0, 1]

Lemma B.2 (Regularity conditions on input distribution). For the input distribution D, we have

(a) E∥x∥≤0.99 ∥x∥ = Θ(1).

(b) Ex∼D f∗(x) = Ω(1).

(c) E∥x∥≤Ω(d) ∥x∥ ≥ Θ(log d) and E∥x∥≤poly(d) ∥x∥ ≤ Θ(log(d)).

Proof of Lemma B.1. Recall that the input distribution of x is(
βα

√
d
)d

φ2(βα
√
dx),

where α, β > 0 are the universal constants from Safran et al. (2019) (cf. the proof of Theorem 5),

φ(x) =

(
Rd

∥x∥

)d/2

Jd/2(2πRd ∥x∥), x ∈ Rd,

Rd = 1√
π
(Γ(d/2 + 1))1/d = Θ(

√
d) (Lemma 5 in Eldan & Shamir (2016)) and Jν is the Bessel

function of the first kind of order. Note that since φ only depends on ∥x∥, we can abuse the notation
to use φ(r) to denote φ(x) with ∥x∥ = r.

For any test function g : R 7→ R, we have

E
x∼D

[g(∥x∥)] =
∫
Rd

g(∥x∥)
(
βα

√
d
)d

φ2(βα
√
dx)dx

=
(
βα

√
d
)d

Sd−1

∫ ∞

0

g(r)φ2(βα
√
dr)rd−1dr,

where Sd−1 = 2πd/2/Γ(d/2) is the surface of unit ball Sd−1. Therefore, we have the density of
∥x∥ with ∥x∥ = r is

(
βα

√
d
)d

Sd−1φ
2(βα

√
dr)rd−1 =

2πd/2
(
βα

√
d
)d

Γ(d/2)

Rd
d(

βα
√
dr
)d J2

d/2(2πRdβα
√
dr)rd−1

=
d

r
J2
d/2(2πRdβα

√
dr)

=O

(
1

r2

)
,

where we use the fact that Jν(z) = O(1/
√
z) (Krasikov (2006)). Then, it is easy to see that

P(∥x∥ ≥ R) = O(1/R).

17

Published as a conference paper at ICLR 2023

Proof of Lemma B.2.

(a) It is easy to see the upper bound

E
∥x∥≤0.99

∥x∥ ≤ 0.99.

For lower bound, note that E∥x∥≤0.99 ∥x∥ ≥ 0.1P(0.1 ≤ ∥x∥ ≤ 0.99). Hence, it suffices
to lower bound P(0.1 ≤ ∥x∥ ≤ 0.99). We have

P(0.1 ≤ ∥x∥ ≤ 0.99) =

∫ 0.99

0.1

d

r
J2
d/2(2πRdβα

√
dr)dr

≥Ω(1)

∫ 1.98πRdβα
√
d

0.2πRdβα
√
d

J2
d/2(r)dr

=Ω(1),

where in the last line we use Lemma 23 in Eldan & Shamir (2016). This implies that
E∥x∥≤0.99 ∥x∥ = Ω(1). Together with the upper bound, we have E∥x∥≤0.99 ∥x∥ = Θ(1).

(b) We have

E
x∼D

f∗(x) = E
∥x∥≤1

[1− ∥x∥] ≥ E
∥x∥≤0.99

[1− ∥x∥]

≥ 0.01P(∥x∥ ≤ 0.99) ≥ 0.01P(0.1 ≤ ∥x∥ ≤ 0.99) = Ω(1),

where the last inequality we use the calculation in (a).

(c) The upper bound follows directly from the tail bound ∥D∥ (r) ≤ O(1/r2). For the lower
bound, recall the density of ∥x∥ when ∥x∥ = r is d

rJ
2
d/2(2πRdβα

√
dr). For notational

simplicity, put RD = Θ(d). We have

E
∥x∥≤RD

∥x∥ =

∫ RD

0

dJ2
d/2(2πRdβα

√
dr)dr

=
d

2πRdβα
√
d

∫ 2πRdRDβα
√
d

0

J2
d/2(r)dr

≥Ω(1)

∫ cd2

cd

J2
d/2(r)dr,

where c is a large enough constant.

To lower bound E ∥x∥, it suffices to lower bound
∫ cd2

cd
J2
d/2(r)dr. In the following, we will

lower bound it by following a similar calculation in Lemma 23 in Eldan & Shamir (2016).
From the proof of Lemma 23 in Eldan & Shamir (2016), we have for x ≥ d ≥ 2

J2
d/2(x) ≥

2

πx
cos2

(
− (d+ 1)π

4
+ fd,xx

)
− 3x−2,

where fd,x is a quantity that depends on d and x, and satisfies 1.3 ≥ fd,x ≥ 0.85.

Then, we have∫ cd2

cd

J2
d/2(x)dx ≥

∫ cd2

cd

2

πx
cos2

(
− (d+ 1)π

4
+ fd,xx

)
dx−

∫ cd2

cd

3x−2dx

=
2

π

∫ cd2

cd

1

x
cos2

(
− (d+ 1)π

4
+ fd,xx

)
dx− 3(d− 1)

cd2

Note that in the proof of Lemma 23 in Eldan & Shamir (2016), it is shown that

∂

∂x
(fd,xx) =

√
1− d2 − 1

4x2
≤ 1.

18

Published as a conference paper at ICLR 2023

Then, since 1.3 ≥ fd,x ≥ 0.85 we have

2

π

∫ cd2

cd

1

x
cos2

(
− (d+ 1)π

4
+ fd,xx

)
dx

≥ 2

π

∫ cd2

cd

0.85

fd,xx
cos2

(
− (d+ 1)π

4
+ fd,xx

)
∂

∂x
(fd,xx)dx

=
2

π

∫ fd,cd2cd
2

fd,cdcd

0.85

z
cos2

(
− (d+ 1)π

4
+ z

)
dz

≥1.7

π

∫ 0.85cd2

1.3cd

1

z
cos2

(
− (d+ 1)π

4
+ z

)
dz.

Then, using integration by parts and the fact that cos2(z−(d+1)π/4) = ∂
∂z (z/2+sin(2z−

(d+ 1)π/2)/4), we have∫ 0.85cd2

1.3cd

1

z
cos2

(
− (d+ 1)π

4
+ z

)
dz

=
(z2 + 1

4 sin(2z −
(d+1)π

2))

z

∣∣∣∣0.85cd2

1.3cd

+

∫ 0.85cd2

1.3cd

(z2 + 1
4 sin(2z −

(d+1)π
2))

z2
dz

≥− 1

4

(
1

0.85cd2
+

1

1.3cd

)
+

∫ 0.85cd2

1.3cd

1

4z
dz

=− 1

4

(
1

0.85cd2
+

1

1.3cd

)
+

1

4
ln

0.85cd2

1.3cd
= Ω(log d).

Therefore, we have ∫ cd2

cd

J2
d/2(x)dx = Ω(log d),

which implies E∥x∥≤Θ(d) ∥x∥ = Ω(log d).

B.3 PROPERTIES OF SPHERICALLY SYMMETRIC FUNCTIONS AND DISTRIBUTIONS

In this subsection, we give some useful proprieties of spherically symmetric functions and distribu-
tions. These will be useful tools in our later analysis. Basically, these lemmas allow us to disentangle
input x and neuron v when considering integration against spherically symmetric function.
Lemma 3.1. Let µ be a spherically symmetric distribution. We have

E
w∼µ

∥w∥σ(w · x) = CΓ
Ew∼µ ∥w∥2√

d
∥x∥ where CΓ :=

Γ(d/2)
√
d

2
√
πΓ((d+ 1)/2)

.

Note that, as d → ∞, we have CΓ → 1/
√
2π, so CΓ is universally bounded for all d.

Lemma B.3. For any spherically symmetric g : Rd → R and v ∈ Rd, we have

E
x
{g(x)σ(v · x)} =

CΓ√
d
E
x
{g(x) ∥x∥} ∥v∥ .

Corollary B.4. Let g : Rd → R be a spherically symmetric function. We have

E
x
{g(x)F (x)} = αE

x
{g(x) ∥x∥} .

Lemma B.5. Let g : Rd → R be a spherically symmetric function. Then, for any v ∈ Rd, we have

E
x∼D

{g(x)σ′(v · x)x} = E
x∼D

{g(x) ∥x∥} CΓ√
d
v̄.

19

Published as a conference paper at ICLR 2023

Proof of Lemma 3.1. For simplicity, put g(x) = Ew∼µ ∥w∥σ(w · x). Since σ is 1-homogenous
and µ is spherically symmetric, we have

g(x) =

∫
Rd

∥w∥2 σ(w̄ · x)µ(w) dw

=

∫ ∞

0

∫
Sd−1

r2σ(w̄ · x)µ(rw̄)rd−1 dσd−1(w̄)dr

=

∫ ∞

0

rd+1µ(r) dr

∫
Sd−1

σ(w̄ · x) dσd−1(w̄).

For the first term, note that8∫
Rd

∥w∥2 µ(w) dw =

∫ ∞

0

∫
Sd−1

r2µ(rw̄) dσd−1(w̄)dr =
2πd/2

Γ(d/2)

∫ ∞

0

rd+1µ(r) dr.

Hence, ∫ ∞

0

rd+1µ(r) dr =
Γ(d/2)

2πd/2

∫
Rd

∥w∥2 µ(w) dw =
Γ(d/2)

2πd/2
E

w∼µ
∥w∥2 .

Then we compute the second term as follows. Since it is also spherically symmetric, we have∫
Sd−1

σ(w̄ · x) dσd−1(w̄) = ∥x∥
∫
Sd−1

σ(w̄1) dσ
d−1(w̄) =

∥x∥
2

∫
Sd−1

|w̄1|dσd−1(w̄).

Define I =
∫
Rd |w1|e−∥w∥2

dw. We have

I =

∫
Rd

|w1|
d∏

i=1

e−w2
i dw =

(∫ ∞

−∞
|w1|e−w2

1 dw1

) d∏
i=2

∫ ∞

−∞
e−w2

i dwi = π(d−1)/2.

We also have

I =

∫
Sd−1

∫ ∞

0

r|w̄1|e−r2rd−1 drdσd−1(w̄) =

∫ ∞

0

e−r2rd dr

∫
Sd−1

|w̄1|dσd−1(w̄)

=
Γ((d+ 1)/2)

2

∫
Sd−1

|w̄1|dσd−1(w̄).

Therefore,∫
Sd−1

σ(w̄ · x) dσd−1(w̄) =
∥x∥
2

∫
Sd−1

|w̄1|dσd−1(w̄) =
π(d−1)/2

Γ((d+ 1)/2)
∥x∥ . (13)

Thus,

g(x) =
Γ(d/2)

2πd/2
E

w∼µ
∥w∥2 π(d−1)/2

Γ((d+ 1)/2)
∥x∥ = CΓ

Ew∼µ ∥w∥2√
d

∥x∥ .

Proof of Lemma B.3. We compute

E
x∼D

{g(x)σ(v · x)} =

∫
Rd

g(x)σ(v · x)D(x) dx

=

∫ ∞

0

∫
Sd−1

g(rx̄)σ(v · (rx̄))D(rx̄)rd−1 dσd−1(x̄)dr

=

∫ ∞

0

∫
Sd−1

g(r)σ(v · x̄)D(r)rd dσd−1(x̄)dr

=

∫ ∞

0

g(r)D(r)rd dr

∫
Sd−1

σ(v · x̄) dσd−1(x̄)

=

∫ ∞

0

g(r)D(r)rd dr
π(d−1)/2

Γ((d+ 1)/2)
∥v∥ ,

8Recall the surface area of the d-dimensional unit sphere is
∫
dσd−1 = 2πd/2

Γ(d/2)
.

20

Published as a conference paper at ICLR 2023

where the last line comes from (13). (Note the integral is taken w.r.t. x̄ instead of w̄ here.) For the
first term, note that

E
x∼D

{g(x) ∥x∥} =

∫
Rd

g(x) ∥x∥D(x) dx

=

∫ ∞

0

∫
Sd−1

g(r)D(x)rd dσd−1(x̄)dr

=

∫ ∞

0

∫
Sd−1

g(r)D(x)rd dσd−1(x̄)dr

=
2πd/2

Γ(d/2)

∫ ∞

0

g(r)D(x)rd dr.

Thus,

E
x∼D

{g(x)σ(v · x)} = E
x∼D

{g(x) ∥x∥}
(

2πd/2

Γ(d/2)

)−1
π(d−1)/2

Γ((d+ 1)/2)
∥w∥

= E
x∼D

{g(x) ∥x∥} CΓ√
d
∥v∥ .

Proof of Corollary B.4. By the previous Lemma, we have

E
x
{g(x)F (x)} = E

x

{
g(x) E

w∼µ1

{∥w∥σ(w · x)}
}

= E
w∼µ1

{
∥w∥E

x
{g(x)σ(w · x)}

}
= E

w∼µ1

{
∥w∥2 CΓ√

d
E
x
{g(x) ∥x∥}

}
= αE

x
{g(x) ∥x∥} .

Proof of Lemma B.5. Define R = v̄v̄⊤ − (Id − v̄v̄⊤) = 2v̄v̄⊤ − Id. That is, R is the reflection
matrix associated with v̄. Since D is spherically symmetric, we have R#D = D. For the same
reason, g ◦R = g. Moreover, by construction, Rv = v. Hence,

E
x∼D

{g(x)σ′(v · x)x} =
1

2

(
E

x∼D
{g(x)σ′(v · x)x}+ E

x∼R#D
{g(x)σ′(v · x)x}

)
=

1

2

(
E

x∼D
{g(x)σ′(v · x)x+ g(Rx)σ′(v ·Rx)Rx}

)
=

1

2

(
E

x∼D
{g(x)σ′(v · x)x+ g(Rx)σ′(Rv · x)Rx}

)
=

1

2

(
E

x∼D
{g(x)σ′(v · x) (x+Rx)}

)
.

Note that x+Rx = 2v̄v̄⊤x = 2 ⟨v̄,x⟩ v̄. Hence,

E
x∼D

{g(x)σ′(v · x)x} = E
x∼D

{g(x)σ(v̄ · x)} v̄ = E
x∼D

{g(x) ∥x∥} CΓ√
d
v̄,

where the second identity comes from Lemma B.3.

B.4 THE INFINITE-WIDTH NETWORK REMAINS SPHERICALLY SYMMETRIC

In this subsection, we show that the infinite-width network remains spherically symmetric through-
out the whole process. Clear that µ1 is spherically symmetric at initialization. Now, assume that it
is spherically symmetric at time t. We claim that v1 does not move tangentially, and its radial speed
does not depend on its direction v̄1. That is, v̇1 = h(∥v1∥)v̄1 for some function h.

21

Published as a conference paper at ICLR 2023

By our induction hypothesis, S is also spherically symmetric at time t. Let T := 2v̄1v̄
⊤
1 −Id be the

reflection w.r.t. v1. Clear that Tv1 = v1. Moreover, it does not change the norm and, as a result,
S(Tx) = S(x), T#D = D and Π ◦T = T ◦Π. Hence, we have

v̇1 = E
x∼D

{
ΠRv1

[S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)x)]
}

=
1

2
E

x∼D

{
ΠRv1

[S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)x)]
}

+
1

2
E

x∼T#D

{
ΠRv1

[S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)x)]
}
.

For the second term, we have

E
x∼T#D

{
ΠRv1

[S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)x)]
}

= E
x∼D

{
ΠRv1

[S(x) (v̄1σ(v1 · Tx) + ∥v1∥σ′(v1 · Tx)Tx)]
}

= E
x∼D

{
ΠRv1

[S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)Tx)]
}

= E
x∼D

{
ΠRv1

[S(x)T (σ(v1 · x)v̄1 + ∥v1∥σ′(v1 · x)x)]
}

= E
x∼D

{
T ΠRv1

[S(x) (σ(v1 · x)v̄1 + ∥v1∥σ′(v1 · x)x)]
}
.

Thus,

v̇1 =
1

2
(I + T) E

x∼D

{
ΠRv1

[S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)x)]
}

= 2
〈
v̄1, E

x∼D

{
ΠRv1

[S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)x)]
}〉

v̄1.

Namely, v̇1 = h(v1)v̄1 where

h(v1) = 2
〈
v̄1, E

x∼D

{
ΠRv1

[S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)x)]
}〉

.

Now, we show that h is spherically symmetric to complete the proof. Let R be an arbitrary rotation
matrix. We have

h(Rv1) = 2
〈
Rv̄1, E

x∼D

{
ΠRv1

[S(x) (Rv̄1σ(Rv1 · x) + ∥v1∥σ′(Rv1 · x)x)]
}〉

= 2
〈
Rv̄1, E

x∼D

{
ΠRv1

[
S(x)

(
Rv̄1σ(v1 ·R⊤x) + ∥v1∥σ′(v1 ·R⊤x)RR⊤x

)]}〉
= 2

〈
Rv̄1, E

x∼R⊤#D

{
ΠRv1

[S(x) (Rv̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)Rx)]
}〉

= 2
〈
Rv̄1,R E

x∼D

{
ΠRv1

[S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)x)]
}〉

= 2
〈
v̄1, E

x∼D

{
ΠRv1

[S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)x)]
}〉

= h(v1).

Thus, h is spherically symmetric.

C STAGE 1

The goal of Stage 1 is for all v2 to decrease to −Θ(1/Rv2) so that we can ignore all projection
operators in ṙ2, v̇1 and v̇2. We split Stage 1 into three substages, in which v2 decreases to 0,
−poly(d)δ2 and −Θ(1/Rv2), respectively. By Lemma C.3, at the end of each substage, one more
projection operator can be ignored. We also show that, in Stage 1, the approximation error of the
first layer and the spread of second layer cannot grow too much.

First, for the initialization, by some standard concentration argument, we have the following lemma.

22

Published as a conference paper at ICLR 2023

Lemma C.1 (Initialization). We choose m1 = poly(d, 1/ε), m2 = Θ(1), σ1 = 1/
√
d, σ2 =

1/ poly(d, 1/ε), and σr to be a small constant. We initialize w1 ∼ Unif(σ1Sd−1) for µ1, and
w2 ∼ N (0, σ2

2) and b2 = σr for µ2.

Given δ1,I = 1/ poly1(d, 1/ε), we choose a sufficiently large m1 so that, at initialization, with
probability at least 1 − 1/ poly(d),

∥∥F̄ |Sd−1 − 1
∥∥
L∞ ≤ δ1,I . We also choose σ2 = δ1,I/d

7. With
probability at least 1− 1/ poly(d), we have maxw2

|w2| ≤ O(log d)σ2.

Then, we formally state the Induction Hypothesis we are going to maintain for Stage 1.

Induction Hypothesis C.2 (Stage 1). We define T1 := inf {t ≥ 0 : −w̄2(t) = Θ(1)/Rv2
} for some

large constant. Define δ
(1)
1,T , δ

(1)
1,R, δ

(1)
2 as9

δ
(1)
1,T = max

{
δ
(1)
1,T (0). max

v1∈µ1

∥v̄1(t)− v̄1(0)∥
}
,

δ
(1)
1,R = max

{
δ
(1)
1,R(0), max

v1∈µ1

∣∣∣∣∣∥v1∥2 − Ew1
∥w1∥2

Ew1
∥w1∥2

∣∣∣∣∣
}
,

δ
(1)
2 = max

{
δ
(1)
2 (0), max

(v2,r2),(v′
2,r

′
2)
∥(v2, r2)− (v′2, r

′
2)∥
}
,

in Stage 1.1 and Stage 1.2,

and 

d

dt
δ
(1)
1,T = ReLU

(
d

dt
max
v1∈µ1

∥v̄1(t)− v̄1(0)∥
)
,

d

dt
δ
(1)
1,R = ReLU

(
d

dt
max
v1∈µ1

∣∣∣∣∣∥v1∥2 − Ew1
∥w1∥2

Ew1
∥w1∥2

∣∣∣∣∣
)
,

d

dt
δ
(1)
2 = ReLU

(
d

dt
max

(v2,r2),(v′
2,r

′
2)
∥(v2, r2)− (v′2, r

′
2)∥
)
,

in Stage 1.3,

with initial value δ
(1)
1,T (0) = δ

(1)
1,R(0) = 0 and δ

(1)
2 (0) = Θ(σ2 log d).

We say that this Induction Hypothesis is true at time t ∈ [0, T1] if the following hold.10

(a) Approximation error of the first layer. For each v1 ∈ µ1, ∥v̄1(t)− v̄1(0)∥ ≤ δ
(1)
1,T and

∥v1∥2 =
(
1± δ

(2)
1,R

)
Ew1∼µ1

∥w1∥2.

(b) Spread of the second layer. For any (v2, r2), (v
′
2, r

′
2) ∈ µ2, ∥(v2, r2)− (v′2, r

′
2)∥ ≤ δ

(1)
2 .

(c) The bias term. For any (v2, r2) ∈ µ2, r2 = Θ(1).

(d) Size of f . |w̄2| = O(1/Rv2) = O(1/d3) and α = Θ(
√
d/Rv1

) = Θ(1/d1.5).

(e) Bounds for the errors. δ(1)2 ≤ O(d1.5(log d)σ2) and δ
(1)
1,R+δ

(1)
1,T ≤ O(d7(log d)σ2+δ1,I)

The next lemma describes when the projection operators can be ignored. Roughly speaking, we
first bound the gradients to show that in order for a projection operator to be triggered, ∥x∥ must be
larger than a certain quantity. Meanwhile, note that f , whence the gradients, vanishes for those x
with ∥x∥ ≥ Θ(1/|w̄2α|). Hence, as long as Θ(1/|w̄2α|) is smaller than that quantity, we can ignore
the projection.

9Note that we define these δ’s to be upper bounds of the corresponding values instead the values themselves.
The only reason we define these δ’s in such a twisted way is to make the proof easier to write rigorously. See
the footnote in Induction Hypothesis D.1, where this type of definitions plays more technically important role,
for further discussions.

10The first two conditions actually follow directly from the definition of the δ’s. We put repeat them here
only for easier reference. The actual result we need to prove for these δ’s is condition (e), which says that these
δ’s are always small.

23

Published as a conference paper at ICLR 2023

Lemma C.3. Suppose that Induction Hypothesis C.2 is true. The projection operators in ṙ2, v̇1 and
v̇2 will no longer be activated if all second layer weights are nonpositive, −w̄2 > Θ(1)δ

(1)
2 for some

large constant, and −w̄2 ≥ Θ(1)/Rv2 for some large constant, respectively.

Remark. Though we only need −w̄2 to be Θ(1)δ
(1)
2 to ignore the projection operator in v̇1, we will

actually define the end of Stage 1.2 to be the time −w̄2 becomes poly(d)δ(1)2 to get a more regular
start for Stage 1.3. ♣

Now, we present the main lemma of Stage 1. One can see that, by properly choosing the parameters,
the errors can be made arbitrarily small without affecting the final value of α and w̄2. To prove the
main lemma, it suffices to combine Lemma C.6, Lemma C.9 and Lemma C.10 together.

Lemma C.4 (Main lemma of Stage 1). Induction Hypothesis C.2 is true throughout Stage 1. Stage 1
takes at most O(d4σ2 + 1/d1.5) amount of time. At the end of Stage 1, we have α = Θ(1/d1.5) and
−w̄2 = Θ(1/d3). For the errors, we have δ

(2)
2 ≤ O(d1.5 log dσ2) and δ

(1)
1,R + δ

(1)
1,T ≤ O(δ1,I).

Proof of Lemma C.3. First, note that when all v2 are nonpositive, we have f = O(1). Since we
choose Rr2 to be a large constant, this implies the projection operator in ṙ2 will not be activated.
When −w̄2 > Θ(1)δ

(1)
2 , we have f(x) ≤ σ(cw̄2α ∥x∥ + O(1)) for some small constant c > 0.

As a result, f vanishes on {∥x∥ ≥ (−cw̄2α)
−1}. Then, for those x with ∥x∥ ≤ (−cw̄2α)

−1, the
gradient w.r.t. v1 can be bounded as

∥∇v1
L(x)∥ ≤ O(1)|w̄2| ∥x∥ ∥v1∥ ≤ O(1)|w̄2| ∥v1∥

1

|w̄2|α
≤ O(d).

Since we choose Rv1
= Θ(d) with a large constant, this implies the projection operator in v̇1 will

not be triggered. Finally, for v̇2, for those x with ∥x∥ ≤ (−cw̄2α)
−1, we have

|∇v2L(x)| ≤ O(1)α ∥x∥ ≤ O(1)

|w̄2|
.

By assumption, |w̄2| = Θ(1)/Rv2 for some large constant. Hence, this inequality implies the
projection operator in v̇2 will not be triggered.

C.1 STAGE 1.1

The goal of Stage 1.1 is to make sure that all second layer weights v2 become non-positive, that is,

T1.1 := inf{t ≥ 0 : ∀(v2, r2) ∈ µ2, v2 ≤ 0}.

As a result, at the end of Stage 1.1, f is O(1) and, by Lemma C.3, the projection operator in ṙ2 can
be ignored. Since this stage only takes a very small amount of time, we shall control the first layer
error by directly bounding the movement of v1. For the second layer, we bound the movement of
the bias term in the same brute-force way. For second layer weights, we show that those positive
v2’s decrease faster than the negative v2’s, so the spread will not increase.

Lemma C.5. Suppose that Induction Hypothesis C.2 is true at time t and t ≤ T1.1. Then the
following hold.

(a) ∥v̇1∥ ≤ Rv1
and |ṙ2| ≤ Rr2 .

(b) maxw2 w2 −minw2 w2 is non-increasing.

(c) For any positive second layer weight v2, we have v̇2 ≤ −Θ(log d/d1.5).

Remark. In fact, (c) holds whenever α = Ω(1/d1.5) and v2F (x)+r2 ≥ Θ(1) for any (v2, r2) ∈ µ2

and x ∈ {∥x∥ ≤ d1.5}, which is always true throughout Stage 1. This estimation will also be used
in Stage 1.2 and Stage 1.3. ♣

24

Published as a conference paper at ICLR 2023

Lemma C.6 (Main lemma of Stage 1.1). Stage 1.1 takes at most O(d1.5δ
(1)
2 (0)) amount of time.

At the end of Stage 1.1, all second layer weights v2 are non-positive. Hence, f = O(1) and, by
Lemma C.3, the projection operator in ṙ2 can no longer be activated.

For the errors, we have δ
(1)
2 (T1.1) ≤ O(d1.5δ

(1)
2 (0)), and both δ

(1)
1,R(T1.1) and δ

(1)
1,T (T1.1) can be

bounded by O(d3δ
(1)
2 (0)).

Proof of Lemma C.5.

(a) This is obvious.

(b) First, we decompose v2 as

v̇2 = E
∥x∥≤1

{(f∗(x)− f(x))F (x)} − E
∥x∥≥1

{
ΠRv2

[f(x)σ′(v2F (x) + r2)F (x)]
}
.

Note that the first term does not depend on v2, and, for the second term, σ′(v2F (x)+r2) =
1 whenever v2 ≥ 0. As a result, the speed of positive v2 is uniform and more negative than
those v2 < 0. Thus, maxw2

w2 −minw2
w2 is non-increasing.

(c) Clear that E∥x∥≤1 {(f∗(x)− f(x))F (x)} = O(α). For the second term, first note that for
any x with ∥x∥ ≤ d1.5, we have

f(x)F (x) ≤ O

(
1 + max

w2

w2α ∥x∥
)
α ∥x∥ ≤ Rv2 and f(x) ≥ Θ(1)−max

w2

|w2|α ∥x∥ = Θ(1).

As a result,

E
∥x∥≥1

{
ΠRv2

[f(x)σ′(v2F (x) + r2)F (x)]
}
≥ Θ(α) E

1≤∥x∥≤d1.5
∥x∥ = Θ((log d)α) .

Thus, v̇2 ≤ −Θ(log d/d1.5).

Proof of Lemma C.6. By Lemma C.5, it takes at most O(d1.5δ
(1)
2 (0)) amount of time for all v2 to

become nonpositive. Within this amount of time, r2 at most changes O(d1.5δ
(1)
2 (0)). Since the

spread of w2 does not increase, this implies δ(1)2 (T1.1) ≤ O(d1.5δ
(1)
2 (0)). Finally, the change of v1

can be bounded by O(d2.5δ
(1)
2 (0)). As a result, both δ

(1)
1,R(T1.1) and δ

(1)
1,T (T1.1) can be bounded by

O(d3δ
(1)
2 (0)).

C.2 STAGE 1.2

The goal of Stage 1.2 is to make sure −w̄2 ≥ dδ
(1)
2 (T1.1). Namely,

T1.2 := inf
{
t ≥ T1.1 : −w̄2 = dδ

(1)
2 (T1.1)

}
.

We will also show that δ(1)2 (T1.2) = O(δ
(1)
2 (T1.1)) so δ

(1)
2 (T1.2)/|w̄2| = O(1/d) at the end of

Stage 1.2. Moreover, by Lemma C.3, at the end of Stage 1.2, the projection operator in v̇1 will no
longer be activated. We also show that r2 remains Θ(1) throughout Stage 1 in this subsection.

The first layer error is again controlled in a brute-force way. For the second layer spread, we show
that since |v2| is small, σ′(v2F (x) + r2) = 1 for most of x and, as a result, the change of (v2, r2) is
approximately uniform.

Lemma C.7. Suppose that Induction Hypothesis C.2 is true at time t. Then, for any (v2, r2) ∈ µ2,
ṙ2 > 0 when r ≤ E f∗/2 and ṙ2 < 0 when r ≥ 2E f∗. As a result, r2 = Θ(1) throughout Stage 1.

25

Published as a conference paper at ICLR 2023

Lemma C.8 (Spread of the second layer). Suppose that Induction Hypothesis C.2 is true at time t
and t ≤ T1.2. Then, for any (v2, r2), (v

′
2, r

′
2) ∈ µ2, we have

d

dt
∥(v2, r2)− (v′2, r

′
2)∥

2 ≤ O(d2.5)
(
δ
(1)
2

)2
.

Though, by this Lemma, the error δ(1)2 can grow exponentially fast and the growth rate is quite large,
it will not blow up as v̇2 ≤ −Θ(log d/d1.5), so the time needed for Stage 1.2 is much shorter than
1/d2.5.

Lemma C.9 (Main lemma of Stage 1.2). Stage 1.2 takes at most O(d2.5δ
(1)
2 (T1.1)) amount of time.

At the end of Stage 1.2, we have, for any (v2, r2) ∈ µ2, −v2 ≥ Θ(d)δ
(1)
2 (T1.1).

For the errors, the spread of the second layer is (1 + o(1))δ
(1)
2 (T1.1), and both δ

(1)
1,R(T1.2) and

δ
(1)
1,T (T1.2) can be bounded by O(d4δ

(1)
2 (T1.1)).

Proof of Lemma C.7. We write

ṙ2 = E
x
{(f∗(x)− f(x))σ′(v2F (x) + r2)} = E

x
f∗(x)− E

x
{f(x)σ′(v2F (x) + r2)}

Since the spread of b2 is o(1), when r2 ≤ Ex f∗(x)/2 = Θ(1), the RHS is a positive con-
stant. In other word, r2 will keep grow. Meanwhile, since the second term can be bounded as
Ex {f(x)σ′(v2F (x) + r2)} ≥ E∥x∥≤d2 {f(x)} ≥ (1 − o(1))b̄2, when r2 ≥ 2E f∗(x), ṙ2 will
become a negative constant and r2 will decrease. Combine this two cases together, and we complete
the proof.

Proof of Lemma C.8. Since |v2| ≤ dδ
(1)
2 (T1.1), F (x) = Θ(α) ∥x∥ and r2 = Θ(1), v2F (x) + r2 >

0 for all x with ∥x∥ ≤ Θ(
√
d/δ

(1)
2 (T1.1)). Hence, we can rewrite v̇2 as

v̇2 = E
∥x∥≤Θ(

√
d/δ

(1)
2 (T1.1))

{
ΠRv2

[(f∗(x)− f(x))F (x)]
}

− E
∥x∥≥Θ(

√
d/δ

(1)
2 (T1.1))

{
ΠRv2

[f(x)σ′(v2F (x) + r2)F (x)]
}
.

The first term does not depend on v2 and, by the tail bound, the second term can be bounded by
O(Rv2δ

(1)
2 (T1.1)/

√
d). Similarly, for ṙ2, we have

ṙ2 = E
∥x∥≤Θ(

√
d/δ

(1)
2 (T1.1))

{f∗(x)− f(x)} ±O
(
δ
(1)
2 (T1.1)/

√
d
)
.

Hence, for any (v2, r2), (v
′
2, r

′
2) ∈ µ2, we have

d

dt
∥(v2, r2)− (v′2, r

′
2)∥

2 ≤ (v2−v′2)O

(
Rv2δ

(1)
2 (T1.1)√
d

)
+(r2−r′2)O

(
δ
(1)
2 (T1.1)√

d

)
≤ O(d2.5)

(
δ
(1)
2

)2
.

Proof of Lemma C.9. Recall from Lemma C.5 that v̇2 = −Θ(log d/d1.5), whence Stage 1.2 takes
at most O(d2.5δ

(1)
2 (T1.1)) amount of time. By Lemma C.8, we have(

δ
(1)
2 (T1.2)

)2
≤
(
δ
(1)
2 (T1.1)

)2
exp

(
O(d5)δ

(1)
2 (T1.1)

)
≤ (1 + o(1))

(
δ
(1)
2 (T1.1)

)2
.

For v1, similar to the proof of Lemma C.6, both δ
(1)
1,R(T1.2) and δ

(1)
1,T (T1.2) can be bounded by

O(d4δ
(1)
2 (T1.1)).

26

Published as a conference paper at ICLR 2023

C.3 STAGE 1.3

The goal of Stage 1.3 is to make sure −w̄2 = Θ(1/Rv2) for some large constant, so that, by
Lemma C.3, the projection operator in v̇2 can be ignored. That is, we define

T1.3 := inf {t ≥ T1.2 : −w̄2(t) = Θ(1/Rv2)} .
The time needed for this stage is longer than the time needed for previous stages, so we need less
brute-force ways to control the errors. For the first layer, we show that the tangent movement is
almost zero and the radial movement is approximately uniform. For the second layer, we show that
the spread δ

(1)
2 cannot grow too fast.

Lemma C.10 (Main lemma of Stage 1.3). Stage 1.3 takes at most O(1/d1.5) amount of time. At the
end of Stage 1.3, we have −w̄2 = Θ(1/Rv2) and α = Θ(

√
d/Rv1

).

For the errors, the spread of the second layer is O
(
δ
(1)
2 (T1.2)

)
and the first layer errors are

O
(
δ
(1)
1,R(T1.2) + δ

(1)
1,T (T1.2) + δ1,I + log(d)δ

(1)
2 (T1.2)

)
.

Proof. Since v̇2 = −Ω(log d/d1.5) and Rv2 = Θ(d3), Stage 1.3 takes at most O(1/d1.5) amount of
time. Within this amount of time, by Lemma C.18, we have

(δ
(1)
2 (T1.3))

2 ≤ (δ
(1)
2 (T1.2))

2 exp

(
O(1)

d2.5
1

d1.5

)
= (1 + o(1))(δ

(1)
2 (T1.2))

2.

For the first layer, by Lemma C.16, we have

δ
(1)
1,R(T1.3) + δ

(1)
1,T (T1.3) ≤

(
δ
(1)
1,R(T1.2) + δ

(1)
1,T (T1.2) +

O(1)

d3
δ1,I +O

(
log(d)δ

(1)
2

))
exp

(
O(1)

d2.5
1

d1.5

)
= O

(
δ
(1)
1,R(T1.2) + δ

(1)
1,T (T1.2) +

δ1,I
d3

+ log(d)δ
(1)
2 (T1.2)

)
.

Finally, by Lemma C.17, we have α(T1.3) = (1 + o(1))α(T1.2).

C.3.1 ESTIMATIONS RELATED TO σ′(v2F (x) + r2)

First, we need some helper results to handle σ′(v2F (x) + r2). The conditions for them to hold are
mild and are always true throughout the entire training procedure, and we will use these results in
later stages, too.

First, we show that when the value of σ′(v2F (x) + r2) can change across different (v2, r2), the
function value must be small. Note that the error here depends on the ratio δ2/|w̄2| and this is why
we need |w̄2| to be Θ(d)δ2 instead of merely Θ(1)δ2 at the end of Stage 1.2.
Lemma C.11. Suppose that r2 = Θ(1), −v2 ≥ Ω(δ2) for any (v2, r2) ∈ µ2, where δ2 is the
spread of the second layer. If v2F (x) + r2 = 0 for some (v2, r2) ∈ µ2, then v′2F (x) + r′2 ≤
O((|w̄2|−1 + 1)δ2) for all (v′2, r

′
2) ∈ µ2.

Remark. It is not necessary that there really exists a (v2, r2) ∈ µ2 with v2F (x) + r2 = 0. As long
as v′2F (x) + r′2 ≤ 0 and v′′2F (x) + r′′2 ≥ 0 for some (v′2, r

′
2), (v

′′
2 , r

′′
2) ∈ µ2, by the continuity,

there always exists some point (v2, r2) between (v′2, r
′
2) and (v′′2 , r

′′
2) such that v2F (x) + r2 = 0.

Moreover, this point is within the spread of the second layer, so this lemma still applies. ♣

Then, we show that we can absorb σ′ into f∗ and f .
Lemma C.12. Suppose that the hypothesis of Lemma C.11 is true, and all second layer neurons are
activated on {∥x∥ ≤ 1}. Then, for any (v2, r2) ∈ µ2 and x ∈ Rd, we have

f∗(x)σ
′(v2F (x) + r2) = f∗(x) and f(x)σ′(v2F (x) + r2) = f(x)±O

(
(|w̄2|−1 + 1)δ2

)
.

As a corollary, we have

f(x) = σ(v2F (x) + r2)±O
(
(|w̄2|−1 + 1)δ2

)
,

f(x) = σ(w̄2F (x) + b̄2)±O
(
(|w̄2|−1 + 1)δ2

)
.

27

Published as a conference paper at ICLR 2023

As a corollary of Lemma C.11, the measure on which σ′(v2F (x) + r2) can differ for different
(v2, r2) is also small. Here we also use the fact that those x are around Θ(1/|w̄2α|) the tail bound
∥D∥ (r) ≤ O(1/r2).
Lemma C.13. Suppose that Induction Hypothesis C.2 is true at time t. For any (v2, r2), (v

′
2, r

′
2) ∈

µ2, we have
E
x
{|σ′(v2F (x) + r2)− σ′(v′2F (x) + r′2)|} ≤ O

(
αδ

(1)
2

)
.

Proof of Lemma C.11. For any (v′2, r
′
2) ∈ µ2, we can write

v′2F (x) + r′2 = v2F (x) + r2︸ ︷︷ ︸
= 0

+(v′2 − v2)F (x) + (r′2 − r2)

=
v′2 − v2

v2
(v2F (x) + r2︸ ︷︷ ︸

= 0

−r2) + (r′2 − r2) = r2
v2 − v′2

v2
+ (r′2 − r2).

The last term can be bounded as O((|w̄2|−1 + 1)δ2).

Proof of Lemma C.12. Since all second layer neurons are activated on {∥x∥ ≤ 1}, we always have
f∗(x)σ

′(v2F (x) + r2) = f∗(x). Now we consider f(x)σ′(v2F (x) + r2). If v2F (x) + r2 > 0,
then we are done. If v′2F (x) + r′2 < 0 for all (v′2, r

′
2) ∈ µ2, then both f(x)σ′(v2F (x) + r2) and

f(x) are 0. Therefore, it suffices to consider the case where v2F (x) + r2 ≤ 0 while f(x) > 0. By
Lemma D.6, in this case, we have f(x) ≤ O

(
(|w̄2|−1 + 1)δ2

)
.

Proof of Lemma C.13. Since the norm and direction of x are independent, it suffices to fix a direc-
tion x̄ and consider

E
r∼∥D∥

{|σ′(v2rF (x̄) + r2)− σ′(v′2rF (x̄) + r′2)|} .

For notational simplicity, define h(v2, r2, r) = v2rF (x̄)+ r2. The integrand is nonzero iff the signs
of h(v2, r2, r) and h(v′2, r

′
2, r) are different. To bound the length of the interval on which the signs

can differ, we write
h(v2, r2, r) = w̄2rF (x̄) + b̄2 + (v2 − w̄2)rF (x̄) + (r2 − b̄2)

=
(
w̄2 ±O

(
δ
(1)
2

))
rF (x̄) + b̄2 ±O

(
δ
(1)
2

)
.

Therefore, the length of this interval can be bounded by O(δ
(1)
2 /(w̄2

2α)). Moreover, note that this
interval is at Θ(1/|w̄2α|), whence the density on it is O(w̄2

2α
2). Thus, the measure of this interval

is O(αδ
(1)
2).

C.3.2 ESTIMATIONS FOR THE FIRST LAYER

Before we control the error growth, we need a lemma that relates the approximation error with the
tangent movement and radial spread of the first layer.
Lemma C.14. Suppose that the tangent movement and radial spread of the first layer neurons can
be bounded as ∥v̄1(t)− v̄1(0)∥ ≤ δ1,T and ∥v1∥2 = (1± δ1,R)Ew1 ∥w1∥2. Then

F (x;µ1) =
(
1 + δ1,I +

√
dδ1,R +

√
dδ1,T

)
α ∥x∥ .

As a simple corollary, we have the following.
Corollary C.15. Suppose that Induction Hypothesis C.2 is true at time t. Then, we have

|f(x)− f̃(x)| =
(
δ1,I +

√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2α ∥x∥ .

As a result, we have

E
x

{
(f(x)− f̃(x)) ∥x∥

}
≤
(
δ1,I +

√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2αE ∥x∥2

≤ δ1,I +
√
dδ

(1)
1,R +

√
dδ

(1)
1,R.

28

Published as a conference paper at ICLR 2023

Now, we are ready the control the error of the first layer.
Lemma C.16. Suppose that Induction Hypothesis C.2 is true at time t and t ∈ [T1.2, T1.3]. Then we
have

d

dt

(
δ
(1)
1,R + δ

(1)
1,T

)
≤ O

((
δ1,I +

√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2

)
+O

(
log(d)δ

(1)
2

)
≤ O(1)

d2.5

(
δ
(1)
1,R + δ

(1)
1,T

)
+

O(1)

d3
δ1,I +O

(
log(d)δ

(1)
2

)
.

Finally, we estimate the radial speed of v1 to provide an estimation for the magnitude of α at the
end of Stage 1.
Lemma C.17. Suppose that Induction Hypothesis C.2 is true at time t and t ∈ [T1.2, T1.3]. Then we
have

d

dt
∥v1∥2 = Θ

(
log d√

d

)
w̄2 ∥v1∥2 .

Proof of Lemma C.14. Define N2 = Ew1 ∥w1∥2. Let µ′
1 be the distribution obtained by setting the

norm of neurons in µ1 to N . We have

F (x;µ1) = E
w1∼µ1

{
(1± δ1,R)N

2σ(w̄1 · x)
}
= F (x;µ′

1)±O(δ1,RN
2 ∥x∥).

Let µ′′
1 be the distribution obtained by moving v̄1(t) to v̄1(0) in µ′

1. Then, we have

F (x;µ′
1) = N2 E

w1∼µ1(0)
{σ(w̄1 · x)} ±O

(
δ1,TN

2 ∥x∥
)
= F (x;µ′′

1)±O
(
δ1,TN

2 ∥x∥
)
.

Finally, note that

F (x;µ′′
1) =

N2
t

N2
0

F (x;µ1(0)) =
N2

t

N2
0

(1± δ1,I)α0 ∥x∥ = (1± δ1,I)αt ∥x∥ .

Combine these together and we complete the proof.

Proof of Lemma C.16. First, we decompose v̇1 along the tangent and radial directions as follows:

Rad(v̇1) := ⟨v̇1, v̄1⟩ v̄1 = 2E
x
{S(x)σ(v1 · x)} v̄1,

Tan(v̇1) := (I − v̄1v̄
⊤
1)v̇1 = ∥v1∥E

x

{
S(x)σ′(v1 · x)(I − v̄1v̄

⊤
1)x

}
.

Note that v̇1 = Rad(v̇1) + Tan(v̇1). By Lemma C.12, we have

Rad(v̇1) = 2w̄2 E
x
{(f∗(x)− f(x))σ(v1 · x)} v̄1 ±O

(
log(d)δ

(1)
2 ∥v1∥

)
,

Tan(v̇1) = ∥v1∥ w̄2 E
x

{
(f∗(x)− f(x))σ′(v1 · x)(I − v̄1v̄

⊤
1)x

}
±O

(
log(d)δ

(1)
2 ∥v1∥

)
.

For the radial term, by Lemma B.3 and Lemma C.15, we have

Rad(v̇1) = 2w̄2 E
x

{
(f∗(x)− f̃(x))σ(v1 · x)

}
v̄1 + 2w̄2 E

x

{
(f̃(x)− f(x))σ(v1 · x)

}
v̄1 ±O

(
log(d)δ

(1)
2 ∥v1∥

)
=

2CΓw̄2√
d

E
x

{
(f∗(x)− f̃(x)) ∥x∥

}
v1

±O
((

δ1,I +
√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2 ∥v1∥

)
±O

(
log(d)δ

(1)
2 ∥v1∥

)
.

Therefore,
d

dt
∥v1∥2 = 2 ⟨v1,Rad(v̇1)⟩

=
4CΓw̄2√

d
E
x

{
(f∗(x)− f̃(x)) ∥x∥

}
∥v1∥2

±O
((

δ1,I +
√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2 ∥v1∥2

)
±O

(
log(d)δ

(1)
2 ∥v1∥2

)
.

29

Published as a conference paper at ICLR 2023

For any v1,v
′
1 ∈ µ1 with ∥v1∥ ≥ ∥v′

1∥, we have

d

dt

∥v1∥2 − ∥v′
1∥

2

∥v′
1∥

2 =

d
dt

(
∥v1∥2 − ∥v′

1∥
2
)

∥v′
1∥

2 − ∥v1∥2 − ∥v′
1∥

2

∥v′
1∥

2

d
dt ∥v

′
1∥

2

∥v′
1∥

2

=
4CΓw̄2√

d
E
x

{
(f∗(x)− f̃(x)) ∥x∥

} ∥v1∥2 − ∥v′
1∥

2

∥v′
1∥

2

±O
((

δ1,I +
√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2

)
±O

(
log(d)δ

(1)
2

)
− ∥v1∥2 − ∥v′

1∥
2

∥v′
1∥

2

4CΓw̄2√
d

E
x

{
(f∗(x)− f̃(x)) ∥x∥

}
± ∥v1∥2 − ∥v′

1∥
2

∥v′
1∥

2 O
((

δ1,I +
√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2

)
± ∥v1∥2 − ∥v′

1∥
2

∥v′
1∥

2 O
(
log(d)δ

(1)
2

)
= ±O

((
δ1,I +

√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2

)
±O

(
log(d)δ

(1)
2

)
.

Now we consider the tangent movement. By Lemma B.5 and Lemma C.15, we have

Tan(v̇1) = ∥v1∥ w̄2 E
x

{
(f∗(x)− f̃(x))σ′(v1 · x)(I − v̄1v̄

⊤
1)x

}
+ ∥v1∥ w̄2 E

x

{
(f̃(x)− f(x))σ′(v1 · x)(I − v̄1v̄

⊤
1)x

}
±O

(
log(d)δ

(1)
2 ∥v1∥

)
= ±O

((
δ1,I +

√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2 ∥v1∥

)
±O

(
log(d)δ

(1)
2 ∥v1∥

)
.

As a result,

d

dt
v̄1 =

Tan(v̇1)

∥v1∥
= ±O

((
δ1,I +

√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2

)
±O

(
log(d)δ

(1)
2

)
.

Combine these two bounds together and we complete the proof.

Proof of Lemma C.17. By the proof of Lemma C.16, we have

Rad(v̇1) =
2CΓw̄2√

d
E
x

{
(f∗(x)− f̃(x)) ∥x∥

}
v1

±O
((

δ1,I +
√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2 ∥v1∥

)
±O

(
log(d)δ

(1)
2 ∥v1∥

)
= Θ

(
log d√

d

)
w̄2v1 ±O

((
δ1,I +

√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2 ∥v1∥

)
±O

(
log(d)δ

(1)
2 ∥v1∥

)
.

Recall that δ(1)2 ≤ |w̄2|/d. Hence,

d

dt
∥v1∥2 = Θ

(
log d√

d

)
w̄2 ∥v1∥2 ±O

((
δ1,I +

√
dδ

(1)
1,R +

√
dδ

(1)
1,R

)
w̄2 ∥v1∥2

)
±O

(
log(d)δ

(1)
2 ∥v1∥2

)
= Θ

(
log d√

d

)
w̄2 ∥v1∥2 ,

C.3.3 ESTIMATIONS FOR THE SECOND LAYER

Now, we bound the growth of the spread of the second layer. Readers may first check the proof of
Lemma D.14, which is essentially a simpler case of this result where we do not need to deal with
the projections. In Lemma D.14, we show that the spread will never grow. Here, the error comes
from the projection.
Lemma C.18. Suppose that Induction Hypothesis C.2 is true at time t. Then we have

d

dt
(δ

(1)
2)2 ≤ O(1)

d2.5
(δ

(1)
2)2.

30

Published as a conference paper at ICLR 2023

Proof. Let (v2, r2), (v′2, r
′
2) ∈ µ2 and define h2(x) = v2F (x) + r2 and h′

2(x) = v′2F (x) + r′2. We
write

v̇2 = E
∥x∥≤1

{(f∗(x)− f(x))F (x)} − E
∥x∥≥1

{
ΠRv2

[f(x)σ′(h2(x))F (x)]
}
=: T1(v̇2) + T2(v̇2).

T1 does not depend on v2. For T2, note that

ΠRv2
[f(x)σ′(h2(x))F (x)] = ΠRv2

/F (x) [f(x)]σ
′(h2(x))F (x).

Similarly, for ṙ2, we have

d

dt
(r2 − r′2)

2 = −2 E
∥x∥≥1

{f(x)(σ′(h2(x))− σ′(h′
2(x)))(r2 − r′2)}

= −2 E
∥x∥≥1

{
ΠRv2

/F (x)[f(x)](σ
′(h2(x))− σ′(h′

2(x)))(r2 − r′2)
}

− 2 E
∥x∥≥1

{(
f(x)−ΠRv2

/F (x)[f(x)]
)
(σ′(h2(x))− σ′(h′

2(x)))(r2 − r′2)
}
.

Combine these two equations together and we obtain

d

dt

(
(v2 − v′2)

2 + (r2 − r′2)
2
)

= − 2 E
∥x∥≥1

{
ΠRv2/F (x) [f(x)] (σ

′(h2(x))− σ′(h′
2(x))) (h2(x)− h′

2(x))
}

− 2 E
∥x∥≥1

{(
f(x)−ΠRv2

/F (x)[f(x)]
)
(σ′(h2(x))− σ′(h′

2(x)))(r2 − r′2)
}
.

Since σ′ is non-decreasing, the first term is nonpositive. For the second term, by Lemma C.11 and
Lemma C.13, it can be bounded as

max
x:sgn(h2(x)) ̸=sgn(h′

2(x))
f(x)× E

∥x∥
{|σ′(h2(x))− σ′(h′

2(x))|}×|r2−r′2| ≤ O

(
α(δ

(1)
2)3

|w̄2|

)
≤ O(1)

d2.5
(δ

(1)
2)2.

D STAGE 2

The goal of Stage 2 is for gradient flow to converge to a point with loss ε. Similar to Stage 1, we
maintain a set of induction hypotheses.

Induction Hypothesis D.1. Define T2 := inf{t ≥ T1 : L = ε}. Define δ
(2)
1,L2 , δ1,L∞ , δ

(2)
2 as

d

dt
δ
(2)
1,L2 = ReLU

(
d

dt

∥∥F̄ − ∥·∥
∥∥
L2

)
,

d

dt
δ
(2)
1,L∞ = ReLU

(
d

dt

∥∥F̄ |Sd−1 − 1
∥∥
L∞

)
,

d

dt
δ
(2)
2 = 0,

with initial value satisfying11

Θ

(
d17

ε
(δ

(2)
1,L∞)2

)
≤ δ

(2)
1,L2 ≤ Θ

(ε

d6
δ
(2)
1,L∞

)
,

δ
(2)
1,L2 ≤ O

(
ε2

d7

)
, δ

(2)
1,L∞(T1) ≤ O

(ε

d14

)
, δ

(2)
2 ≤ O

(
ε2

d10

)
.

For any t ∈ [T1, T2], we say that this Induction Hypothesis is true if the following hold.

11As we have mentioned in the footnote in Induction Hypothesis C.2, these δ’s are defined as upper
bounds for the corresponding errors. This gives certain degree of freedom in choosing their initial value.
By Lemma C.4, we can choose the parameters so that the errors at the beginning of Stage 2 is arbitrarily small
and these conditions can indeed be satisfied. The first condition, which requires the L2 error to be left and right
controlled by the L∞ error, may seem strange at the first sight. The only reason we need it is to merge some
second order error terms into first order ones.

31

Published as a conference paper at ICLR 2023

(a) Error of the first layer.
∥∥F̄ − ∥·∥

∥∥
L2 ≤ δ

(2)
1,L2 and

∥∥F̄ |Sd−1 − 1
∥∥
L∞ ≤ δ

(2)
1,L∞ .

(b) Spread of the second layer. ∥(v2, r2)− (v′2, r
′
2)∥ ≤ δ

(2)
2 for all (v2, r2), (v′2, r

′
2) ∈ µ2.

(c) Regularity conditions. b̄2 ≤ 1−Θ(
√
ε). w̄2α ≥ −1+Θ(

√
ε). |w̄2| ≤ d. |w̄2| ≥ Θ(1/d3).

α ≥ Θ(1/d1.5).

(d) Bounds for the errors. δ(2)1,L∞ = O(δ
(2)
1,L∞(T1)) and δ

(2)
1,L2 = O(δ

(2)
1,L2(T1)).

The main lemma for Stage 2 is as follows.
Lemma D.2 (Stage 2). Induction Hypothesis D.1 is true throughout Stage 2 and Stage 2 takes at
most O(d3/ε) amount of time.

The rest of this section is organized as follows. In Section D.1, we collect some auxiliary results that
will be used later. In Section D.2, we show that Induction Hypothesis D.1 is always true throughout
Stage 2. (Also see Section B.1 for discussion on the techniques used and some conventions.) Then,
we derive a lower bound on the convergence rate in Section D.3. Finally, we prove Lemma D.2 in
Section D.4.

D.1 AUXILIARY LEMMAS

D.1.1 THE DYNAMICS OF F , f AND L

Recall that, in Stage 2, we can ignore the projection operators, whence the dynamics of the neurons
is given by

v̇1 = E
x
{S(x) (v̄1σ(v1 · x) + ∥v1∥σ′(v1 · x)x)} ,

v̇2 = E
x
{(f∗(x)− f(x))σ′(v2F (x) + r2)F (x)} ,

ṙ2 = E
x
{(f∗(x)− f(x))σ′(v2F (x) + r2)} .

Now, we derive the equations which describes the dynamics of α, F , and the loss L.
Lemma D.3 (Dynamics of α). In Stage 2, we have

α̇ =
4CΓ√

d
E
x′
{S(x′)F (x′)} .

Lemma D.4 (Dynamics of F). In Stage 2, for each fixed x, we have

d

dt
F (x) = 4 E

x′

{
S(x′) E

w1

{σ(w1 · x′)σ(w1 · x)}
}

+ E
x′

{
S(x′) E

w1

{
∥w1∥2 σ′(v1 · x′)σ′(v1 · x)

〈
(I − v̄1v̄

⊤
1)x

′,x
〉}}

.

Note that in the above lemma, we decompose d
dtF (x) into two terms where the first term corre-

sponds to the radial movement of v1 and the second term the tangent movement.
Lemma D.5 (Dynamics of L). Define W̄2(x) = Ew2,b2 {σ′(w2F (x) + b2)w2}. In Stage 2, we
have

d

dt
L = − E

w2,b2,w1

∥∇w2,b2,w1∥
2
,

where

∇w2,b2,w1
:= E

x

(f∗(x)− f(x))

 σ′(w2F (x) + b2)F (x)
σ′(w2F (x) + b2)
2W̄2(x)σ(w1 · x)

∥w1∥ W̄2(x)σ
′(w1 · x)(I − w̄1w̄

⊤
1)x


 .

The entries of ∇w2,b2,w1
correspond to the movements of v2, r2, radial movement of v1 and tangent

movement of v1, respectively.

The proofs of these three lemmas are as follows.

32

Published as a conference paper at ICLR 2023

Proof of Lemma D.3. Recall that α := CΓ√
d
Ew1

∥w1∥2. Hence, α̇ = 2CΓ√
d
Ew1

⟨w1, ẇ1⟩. We com-
pute
⟨v̇1,v1⟩ = E

x
{S(x) (σ(v1 · x) ⟨v̄1,v1⟩+ ∥v1∥σ′(v1 · x) ⟨x,v1⟩)} = 2E

x
{S(x) ∥v1∥σ(v1 · x)} .

Hence,

α̇ =
4CΓ√

d
E
w1

{
E
x
{S(x) ∥w1∥σ(w1 · x)}

}
=

4CΓ√
d

E
x

{
S(x) E

w1

{∥w1∥σ(w1 · x)}
}

=
4CΓ√

d
E
x
{S(x)F (x)} .

Proof of Lemma D.4. First, we write
d

dt
F (x) =

d

dt
E
w1

{
∥w1∥2 σ(w̄1 · x)

}
= E

w1

{(
d

dt
∥w1∥2

)
σ(w̄1 · x)

}
+E

w1

{
∥w1∥2

d

dt
σ(w̄1 · x)

}
.

By the proof of Lemma D.3, the first term is 4Ex′ {S(x′)Ew1 {σ(w1 · x′)σ(w1 · x)}} . For the
second term, we compute

d

dt
σ(v̄1 · x) = σ′(v1 · x)

〈
(I − v̄1v̄

⊤
1)

v̇1

∥v1∥
,x

〉
= σ′(v1 · x)

〈
E
x′

{
S(x′)σ′(v1 · x′)(I − v̄1v̄

⊤
1)x

′} ,x〉
= E

x′

{
S(x′)σ′(v1 · x′)σ′(v1 · x)

〈
(I − v̄1v̄

⊤
1)x

′,x
〉}

.

Hence, the second term is

E
w1

{
∥w1∥2

d

dt
σ(w̄1 · x)

}
= E

x′

{
S(x′) E

w1

{
∥w1∥2 σ′(v1 · x′)σ′(v1 · x)

〈
(I − v̄1v̄

⊤
1)x

′,x
〉}}

.

Combine these together and we complete the proof.

Proof of Lemma D.5. First, we write
d

dt
f(x) = E

w2,b2
{σ′(w2F (x) + b2)ẇ2F (x)}+ E

w2,b2

{
σ′(w2F (x) + b2)ḃ2

}
+ W̄2(x)

d

dt
F (x)

=: T1

(
d

dt
f(x)

)
+ T2

(
d

dt
f(x)

)
+ T3

(
d

dt
f(x)

)
.

Note that d
dtL = −

∑3
i=1 Ex

{
(f∗(x)− f(x))Ti

(
d
dtf(x)

)}
. Now we compute each of these three

terms separately. We have

E
x

{
(f∗(x)− f(x))T1

(
d

dt
f(x)

)}
= E

w2,b2

{
E
x
{(f∗(x)− f(x))σ′(w2F (x) + b2)F (x)} ẇ2

}
= E

w2,b2

{(
E
x
{(f∗(x)− f(x))σ′(w2F (x) + b2)F (x)}

)2}
,

E
x

{
(f∗(x)− f(x))T2

(
d

dt
f(x)

)}
= E

w2,b2

{
E
x
{(f∗(x)− f(x))σ′(w2F (x) + b2)} ḃ2

}
= E

w2,b2

{(
E
x
{(f∗(x)− f(x))σ′(w2F (x) + b2)}

)2}
.

Meanwhile, for T3, by Lemma D.4, we have

E
x

{
(f∗(x)− f(x))T3

(
d

dt
f(x)

)}
= E

x

{
(f∗(x)− f(x))W̄2(x)

d

dt
F (x)

}
= 4E

x

{
(f∗(x)− f(x))W̄2(x) E

x′

{
S(x′) E

w1

{σ(w1 · x′)σ(w1 · x)}
}}

+ E
x

{
(f∗(x)− f(x))W̄2(x) E

x′

{
S(x′) E

w1

{
∥w1∥2 σ′(w1 · x′)σ′(w1 · x)

〈
(I − w̄1w̄

⊤
1)x

′,x
〉}}}

= 4 E
w1

{(
E
x
{S(x)σ(w1 · x)}

)2}
+ E

w1

{∥∥∥E
x

{
S(x) ∥w1∥σ′(w1 · x)(I − w̄1w̄

⊤
1)x

}∥∥∥2} .

33

Published as a conference paper at ICLR 2023

Combine these together and we complete the proof.

D.1.2 ERROR-RELATED ESTIMATIONS

We collect some error-related estimations here. Most of them have been proved in Stage 1 except
that here we have used |w̄2| ≥ Θ(1/d3) to replace (|w̄2|−1+1) with O(d3). We repeat the statement
here for easier reference.
Lemma D.6. Suppose that Induction Hypothesis D.1 is true at time t. If v2F (x) + r2 = 0 for some

(v2, r2) ∈ µ2, then v′2F (x) + r′2 ≤ O
(
d3δ

(2)
2

)
for all (v′2, r

′
2) ∈ µ2.

Proof. See Lemma C.11.

Lemma D.7. Suppose that Induction Hypothesis D.1 is true at time t. Then, for any (v2, r2) ∈ µ2

and x ∈ Rd, we have

f∗(x)σ
′(v2F (x) + r2) = f∗(x) and f(x)σ′(v2F (x) + r2) = f(x)±O

(
d3δ

(2)
2

)
.

As a corollary, we have

f(x) = σ(v2F (x) + r2)±O
(
d3δ

(2)
2

)
,

f(x) = σ(w̄2F (x) + b̄2)±O
(
d3δ

(2)
2

)
.

Proof. See Lemma C.12.

Lemma D.8. Suppose that Induction Hypothesis D.1 is true at time t. Then we have
∥∥∥f − f̃

∥∥∥
L2

≤

O
(
|w̄2α|δ(2)1,L2

)
.

Proof. Since σ is 1-Lipschitz, we have

|f(x)− f̃(x)| =
∣∣∣∣ E
w2,b2

{
σ(w2F (x) + b2)− σ(w2F̃ (x) + b2)

}∣∣∣∣ ≤ O
(
|w̄2||F (x)− F̃ (x)|

)
.

Thus, ∥∥∥f − f̃
∥∥∥2
L2

≤ O
(
w̄2

2α
2
∥∥F̄ − ∥·∥

∥∥2
L2

)
≤ O

(
w̄2

2α
2(δ

(2)
1,L2)

2
)
.

D.2 MAINTAINING THE INDUCTION HYPOTHESIS

In this section, we show that Induction Hypothesis D.1 is true throughout Stage 2. See Section B.1
for discussion and conventions on the techniques used here.

D.2.1 ERROR OF THE FIRST LAYER

Recall that we can decompose the loss as

L =
1

2
E
x

{
(f∗(x)− f̃(x))2

}
+

1

2
E
x

{
(f̃(x)− f(x))2

}
+ E

x

{
(f∗(x)− f̃(x))(f̃(x)− f(x))

}
=: L1 + L2 + L3.

As we have discussed in the main text, the goal is to show that L2 ≈ w̄2
2

2 E
{
(F̃ (x)− F (x))2

}
and

L3 ≈ 0, so that L can be decomposed into two terms where the first term captures the difference
between the target function f∗ and the infinite-width network f , and the second term measures the
approximation error between F and F̃ . We will show in Lemma D.11 that, as one may expect, L1

does not affect F̄ . Estimating the gradients of L2 and L3 is slightly more complicated. First we
need to introduce the following partition on the input space.

34

Published as a conference paper at ICLR 2023

Lemma D.9. Define

R1 :=
{
R > 0 : ∀(v2, r2) ∈ µ2, x ∈ RSd−1, v2F (x) + r2 > 0

}
,

R2 :=
{
R > 0 : ∃(v2, r2) ∈ µ2, x ∈ RSd−1, v2F (x) + r2 > 0

}
.

Then, we partition the input space into

X1 := {∥x∥ ≤ R1}, X2 := {R1 ≤ ∥x∥ ≤ R2}, X3 := {R2 ≤ ∥x∥}.

In words, X1 is the largest spherically symmetric set on which all second layer neurons are ac-
tivated, and X1 ∪ X2 is the largest spherically symmetric set on which at least one second layer
neuron is activated. Suppose that Induction Hypothesis D.1 is true at time t. Then the following
hold.

(a) f∗ vanishes on X2 ∪X3, i.e., R1 ≥ 1, f vanishes on X3, and R3 ≤ O(1/|w̄2|/α).

(b) R2 −R1 ≤ O
(
δ
(2)
1,L∞ + dδ

(2)
2

)
1

|w̄2|α =: δ
(2)
X2

. As a corollary, we have P[X2] ≤ O
(
δ
(2)
X2

)
.

(c) f ≤ O
(
δ
(2)
X2

)
on X2.

The above lemma implies that L2 ≈ 1
2 EX1

{
(f̃(x)− f(x))2

}
=

w̄2
2

2 EX1

{
(F̃ (x)− F (x))2

}
and

L3 ≈ EX1

{
(f∗(x)− f̃(x))(f̃(x)− f(x))

}
= w̄2 EX1

{
(f∗(x)− f̃(x))(F̃ (x)− F (x))

}
= 0.

We formally establish this approximation in the following lemma.

Lemma D.10 (Gradient of L2 and L3). Suppose that Induction Hypothesis D.1 is true at time t.
Then, for each v1 ∈ µ1, we have

∇v1
L2 = ∇v1

(
w̄2

2

2
E
X1

{
(F̃ (x)− F (x))2

})
±O

((
δ
(2)
X2

)2 1

α

)
∥v1∥ ,

∇v1L3 = ±O

((
δ
(2)
X2

)2 1

α

)
∥v1∥ .

Now, we are ready to derive the equation that governs the dynamics of F̄ . Note that this Lemma
implies that, at least approximately, the dynamics of F̄ depends only on L2.

Lemma D.11 (Dynamics of F̄). Suppose that Induction Hypothesis D.1 is true at time t. Then, for
each fixed x, we have

d

dt
F̄ (x) = − w̄2

2

2
E
w1

{〈
∇w1

F̄ (x),∇w1
E

x′∈X1

{
(F̃ (x′)− F (x′))2

}〉}
±O

(√
d
(
δ
(2)
X2

)2 1

α

)
∥x∥ .

Then, we show that the signal term in d
dt F̄ (x) can only decrease the L2 error, which is intuitively

true as, after all, L2 is the (rescaled) L2 error. As a result, the L2 error barely grows.

Lemma D.12 (L2 approximation error). Suppose that Induction Hypothesis D.1 is true at time t.
Then we have

d

dt

∥∥F̄ − ∥·∥
∥∥2
L2 ≤ O

(
d5δ

(2)
1,L2

(
δ
(2)
X2

)2)
.

Finally, we show that the change F̄ |Sd−1 depends on the L2 error. As a result, as long as the L2 error
is small, the L∞ error cannot grow too fast.

Lemma D.13 (L∞ approximation error). Suppose that Induction Hypothesis D.1 is true at time t.
Then, for any x̄ ∈ Sd−1, we have∣∣∣∣ ddt F̄ (x̄)

∣∣∣∣ ≤ O

(
d3δ

(2)
1,L2 + d2

(
δ
(2)
X2

)2)
.

The proofs of these lemmas are as follows.

35

Published as a conference paper at ICLR 2023

Proof of Lemma D.9.

(a) This one follows directly from the construction of the partition and Induction Hypothe-
sis D.1.

(b) First, we write

F (x) = α ∥x∥+ α ∥x∥ (F̄ (x̄)− 1) = α ∥x∥ ± α ∥x∥ δ(2)1,L∞ = α ∥x∥ ±O

(
δ
(2)
1,L∞

|w̄2|

)
,

where the last equality comes from the fact f vanishes on {∥x∥ ≥ Ω(−b̄2/(α|w̄2|))}.
Similarly, for any (v2, r2) ∈ µ2, we have

v2F (x) + r2 =

〈[
v2
r2

]
,

[
F (x)
1

]〉
=

〈[
w̄2

b̄2

]
,

[
F (x)
1

]〉
+

〈[
v2
r2

]
−
[
w̄2

b̄2

]
,

[
F (x)
1

]〉
= w̄2F (x) + b̄2 ±O

(
δ
(2)
2

√
α2 ∥x∥2 + 1

)
= w̄2F (x) + b̄2 ±O

(
d3δ

(2)
2

)
.

Hence, for any R > 0 and x ∈ RSd−1, we have

v2F (x) + r2 = w̄2α ∥x∥+ b̄2 ±O
(
δ
(2)
1,L∞

)
±O

(
d3δ

(2)
2

)
︸ ︷︷ ︸

=: δTmp

.

Therefore,

v2F (x) + r2 > 0, if ∥x∥ <
b̄2 − δTmp
−w̄2α

= R̃− δTmp
−w̄2α

,

v2F (x) + r2 < 0, if ∥x∥ >
b̄2 + δTmp
−w̄2α

= R̃+
δTmp
−w̄2α

.

In other words, R1 ≥ R̃− δTmp
−w̄2α

and R2 ≤ R̃+ δTmp
−w̄2α

. Thus,

R2 −R1 ≤ δTmp
−w̄2α

≤ O
(
δ
(2)
1,L∞ +O

(
d3δ

(2)
2

))
d4.5 = δX2

.

To complete the proof, it suffices to invoke Lemma B.1.

(c) Note that by the definition of R2, for any x0 ∈ R2Sd−1, we have f(x0) = 0. Hence, for
any x ∈ X2, there exists some x0 with f(x0) = 0 and ∥x− x0∥ ≤ R2 − R1 = δ

(2)
X2

.

Since f is O(1)-Lipschitz, we have, for any x ∈ X2, f(x) = f(x)− f(x0) ≤ O(δ
(2)
X2

).

Proof of Lemma D.10. Since both f∗ and f vanishes on X3, it suffices to consider X1 and X2.
Recall that that all second layer neurons are activated on X1. Hence,

L2

∣∣∣∣
X1

:=
1

2
E
X1

{
(f̃(x)− f(x))2

}
=

w̄2
2

2
E
X1

{
(F̃ (x)− F (x))2

}
,

L3

∣∣∣∣
X1

:= E
X1

{
(f∗(x)− f̃(x))(f̃(x)− f(x))

}
= w̄2 E

X1

{
(f∗(x)− f̃(x))(F̃ (x)− F (x))

}
= 0,

where the last equality comes from Corollary B.4. Now, we bound the influence of X2. Note
that both ∇v1

f(x) and ∇v1
f̃(x) are bounded by O(|w̄2| ∥v1∥ ∥x∥). Recall from Lemma D.9 that

f ≤ O(δ
(2)
X2

) on X2 and P[X2] ≤ O(δ
(2)
X2

). Therefore,∥∥∥∥∥∇v1L2

∣∣∣∣
X2

∥∥∥∥∥ ≤ O(δ
(2)
X2

)×O
(
δ
(2)
X2

)
×O

(
|w̄2| ∥v1∥

1

|w̄2|α

)
≤ O

((
δ
(2)
X2

)2 1

α

)
∥v1∥ .

The proof for ∇v1L3|X2 is the same.

36

Published as a conference paper at ICLR 2023

Proof of Lemma D.11. For fixed x ∈ Rd, we write

d

dt
F̄ (x) =

d
dtF (x)

α
− F̄ (x)

α̇

α
= − 1

α
E
w1

⟨∇w1F (x),∇w1L⟩+ F̄ (x)
1

α
E
w1

⟨∇w1α,∇w1L⟩ .

First, we consider L1. For each v1 ∈ µ1, we have

∇v1
L1 = −E

x

{
(f∗(x)− f̃(x))∇v1

f̃(x)
}

= −2CΓ√
d

E
x

{
(f∗(x)− f̃(x)) E

w2,b2
{σ(w2α ∥x∥+ b2)w2}

}
v1 =: CTmp,1v1.

Meanwhile, note that

⟨∇v1
F (x),v1⟩ =

〈
∇v1

(∥v1∥2 σ(v̄1 · x)),v1

〉
=
〈
∇v1

(∥v1∥2)σ(v̄1 · x),v1

〉
= 2 ∥v1∥2 σ(v̄1 · x),

⟨∇v1
α,v1⟩ =

CΓ√
d

〈
∇v1 ∥v1∥2 ,v1

〉
=

2CΓ√
d

∥v1∥2 .

Hence,
d

dt
F̄ (x)

∣∣∣∣
L1

:= − 1

α
E
w1

⟨∇w1F (x),∇w1L1⟩+ F̄ (x)
1

α
E
w1

⟨∇w1α,∇w1L1⟩

= −CTmp,1
2

α
E
w1

{
∥w1∥2 σ(w̄1 · x)

}
+ CTmp,1F̄ (x)

1

α

2CΓ√
d

E
w1

∥w1∥2

= −CTmp,1
2

α
F (x) + 2CTmp,1F̄ (x)

= 0.

Namely, L1 does not affect F̄ . Now we consider L2. By Lemma D.10, we have
d

dt
F̄ (x)

∣∣∣∣
L2

:= − 1

α
E
w1

⟨∇w1
F (x),∇w1

L2⟩+ F̄ (x)
1

α
E
w1

⟨∇w1
α,∇w1

L2⟩

= − 1

α

w̄2
2

2
E
w1

{〈
∇w1

F (x),∇w1
E

x′∈X1

{
(F̃ (x′)− F (x′))2

}〉}
+

1

α

w̄2
2

2
F̄ (x) E

w1

{〈
∇w1

α, E
x′∈X1

{
(F̃ (x′)− F (x′))2

}〉}
±O

(√
d
(
δ
(2)
X2

)2 1

α

)
∥x∥ .

Note that we can rewrite the ∇w1F (x) in the first term as (∇w1α)F̄ (x) + α∇w1 F̄ (x) so that part
of it cancel with the second term. Then, we get

d

dt
F̄ (x)

∣∣∣∣
L2

= − w̄2
2

2
E
w1

{〈
∇w1 F̄ (x),∇w1 E

x′∈X1

{
(F̃ (x′)− F (x′))2

}〉}
±O

(√
d
(
δ
(2)
X2

)2 1

α

)
∥x∥ .

For L3, we can simply merge it into the error term of d
dt F̄ (x)|L2 .

Proof of Lemma D.12. By Lemma D.11, we have
d

dt

∥∥F̄ − ∥·∥
∥∥2
L2 = E

x

{
(F̄ (x)− ∥x∥) d

dt
F (x)

}
= − w̄2

2

2
E
x

{
(F̄ (x)− ∥x∥) E

w1

{〈
∇w1 F̄ (x),∇w1 E

x′∈X1

{
(F̃ (x′)− F (x′))2

}〉}}
± E

x

{
(F̄ (x)− ∥x∥)O

(√
d
(
δ
(2)
X2

)2 1

α

)
∥x∥

}
.

The second term can be bounded by O

(
δ
(2)
1,L2

(
δ
(2)
X2

)2
d5
)
. The first term is equal to

Tmp := − w̄2
2

4
E
w1

{〈
∇w1

E
x

{
(F̄ (x)− ∥x∥)2

}
,∇w1

E
x′∈X1

{
(α ∥x′∥ − F (x′))2

}〉}
.

37

Published as a conference paper at ICLR 2023

To complete the proof, it suffices to show that this is negative. For each w1, we have

∇w1 E
x′∈X1

{
(α ∥x′∥ − F (x′))2

}
= E

x′∈X1

{
(F̄ (x′)− ∥x′∥)2

}
∇w1α

2 + α2 E
x′∈X1

{
∇w1(F̄ (x′)− ∥x′∥)2

}
.

Since the distribution of x is spherically symmetric, Ex′∈X1

{
∇w1

(F̄ (x′)− ∥x′∥)2
}

and
Ex

{
∇w1(F̄ (x)− ∥x∥)2

}
have the same direction. Hence,

Tmp ≤ − w̄2
2

4
E
w1

{〈
∇w1 E

x

{
(F̄ (x)− ∥x∥)2

}
,∇w1α

2
〉}

E
x′∈X1

{
(F̄ (x′)− ∥x′∥)2

}
= −CΓ√

d
w̄2

2α E
x′∈X1

{
(F̄ (x′)− ∥x′∥)2

}
E
x

{
E
w1

{〈
∇w1

(F̄ (x)− ∥x∥)2,w1

〉}}
.

Then, we compute〈
∇w1

(F̄ (x)− ∥x∥)2,w1

〉
= 2(F̄ (x)− ∥x∥)

〈
∇w1

F (x)

α
− F̄ (x)

∇w1
α

α
,w1

〉
= 2(F̄ (x)− ∥x∥)

(
2 ∥w1∥2 σ(w̄1 · x)

α
− F̄ (x)

1

α

2CΓ√
d

∥w1∥2
)
.

Take expectation over w1 and one can see that this is 0. Thus, Tmp ≤ 0.

Proof of Lemma D.13. Recall from Lemma D.11 that

d

dt
F̄ (x) = − w̄2

2

2
E
w1

{〈
∇w1

F̄ (x),∇w1
E

x′∈X1

{
(F̃ (x′)− F (x′))2

}〉}
±O

(√
d
(
δ
(2)
X2

)2 1

α

)
∥x∥ .

For the first term, we have∥∥∇w1
F̄ (x)

∥∥ ≤
∥∥∥∥∇w1

F (x)

α

∥∥∥∥+ ∥∥∥∥F̄ (x)
α̇

α

∥∥∥∥ ≤ O

(
∥w1∥ ∥x∥

α

)
,∥∥∥∥∇w1 E

x′∈X1

{(
F̃ (x′)− F (x′)

)2}∥∥∥∥ ≤ E
x′∈X1

{∣∣∣F̃ (x′)− F (x′)
∣∣∣ (∥∥∥∇w1 F̃ (x′)

∥∥∥+ ∥∇w1
F (x′)∥

)}
≤ O(1) E

x′∈X1

{∣∣∣F̃ (x′)− F (x′)
∣∣∣ ∥x′∥

}
∥w1∥

≤ O

(
δ
(2)
1,L2

1√
α|w̄2|

∥w1∥

)
.

Thus,∣∣∣∣ ddt F̄ (x)

∣∣∣∣ ≤ O

(
w̄2

2 E
w1

{
∥w1∥ ∥x∥

α
δ
(2)
1,L2

1√
α|w̄2|

∥w1∥

})
+O

(√
d
(
δ
(2)
X2

)2 1

α

)
∥x∥

≤ O

(√
d|w̄2|1.5√

α
δ
(2)
1,L2

)
∥x∥+O

(√
d
(
δ
(2)
X2

)2 1

α

)
∥x∥

≤ O

(
d3δ

(2)
1,L2 + d2

(
δ
(2)
X2

)2)
∥x∥ .

D.2.2 SPREAD OF THE SECOND LAYER

Lemma D.14. Suppose that Induction Hypothesis D.1 is true at time t. Then for any
(v2, r2), (v

′
2, r

′
2) ∈ µ2, d

dt ∥(v2, r2)− (v′2, r
′
2)∥

2 ≤ 0. In words, the spread of the second layer
never grows.

38

Published as a conference paper at ICLR 2023

Proof. Let (v2, r2), (v′2, r
′
2) ∈ µ2 be two second layer neurons. For notational convenience, we

define h2(x) = v2F (x) + r2 and h′
2(x) = v′2F (x) + r′2. We have

1

2

d

dt

(
(v2 − v′2)

2 + (r2 − r′2)
2
)

= (v2 − v′2)E
x
{(f∗(x)− f(x))F (x) (σ′(h2(x))− σ′(h′

2(x)))}

+ (r2 − r′2)E
x
{(f∗(x)− f(x)) (σ′(h2(x))− σ′(h′

2(x)))}

= E
x
{(f∗(x)− f(x)) (h2(x)− h′

2(x)) (σ
′(h2(x))− σ′(h′

2(x)))} .

By Lemma D.9, σ′(h2(x))− σ′(h′
2(x)) = 0 for all x with ∥x∥ ≤ 1. Hence,

1

2

d

dt

(
(v2 − v′2)

2 + (r2 − r′2)
2
)

= E
x:∥x∥>1

{(f∗(x)− f(x)) (h2(x)− h′
2(x)) (σ

′(h2(x))− σ′(h′
2(x)))}

= − E
x:∥x∥>1

{f(x) (h2(x)− h′
2(x)) (σ

′(h2(x))− σ′(h′
2(x)))} .

Note that f ≥ 0 and, since σ′ is non-decreasing, (h2(x)− h′
2(x)) (σ

′(h2(x))− σ′(h′
2(x))) ≥ 0.

Thus, 1
2

d
dt

(
(v2 − v′2)

2 + (r2 − r′2)
2
)
≤ 0.

D.2.3 REGULARITY CONDITIONS

As we have mentioned earlier, we will mainly use the continuity argument to maintain the regularity
conditions, so the problem can be reduced into estimating the derivative on the boundary. As an
example, suppose that b̄2 = 1−δ for some small δ > 0. Then by Lemma D.15, which upper bounds
the loss using 1− b̄2 and −1− w̄2α, we know | − 1− w̄2α| must be large, otherwise we would have
L < ε. Then, we can use the fact that | − 1− w̄2α| is large to estimate the derivative. The proof for
the other regularity conditions is similar except the proof for |w̄2|, which is in the same spirit with
the ones for first layer errors.
Lemma D.15. Suppose that Induction Hypothesis D.1 is true at time t. Then we have

L ≤ O

(
(1− b̄2)

2 +
(−1− w̄2α)

2

w̄2
2α

2
+
(
δ
(2)
1,L∞ + d3δ

(2)
2

)2)
.

Lemma D.16. Suppose that Induction Hypothesis D.1 is true at time t and b̄2 = 1−Θ(
√
ε). Then,

d
dt b̄2 < 0.

Lemma D.17. Suppose that Induction Hypothesis D.1 is true at time t and w̄2α = −1 + Θ(
√
ε).

Then we have d
dt (w̄2α) > 0.

Lemma D.18. Suppose that Induction Hypothesis D.1 is true throughout Stage 2. Then |w̄2| ≤ d.

Lemma D.19. Suppose that Induction Hypothesis D.1 is true throughout Stage 2. Then |w̄2| ≥
Θ(1/d3) and α ≥ Θ(1/d1.5).

The proofs of this subsubsection are gathered bellow.

Proof of Lemma D.15. For any x ∈ Rd, by Lemma D.7 and the Lipschitzness of σ, we have, for
any x ∈ X1 ∪X2,

f(x) = σ(w̄2αF̄ (x) + b̄2)±O
(
d3δ

(2)
2

)
= σ(1− ∥x∥)± |1− b̄2| ±

∣∣−∥x∥ − w̄2αF̄ (x)
∣∣±O

(
d3δ

(2)
2

)
.

By Induction Hypothesis D.1, for any x ∈ X1 ∪X2, we have∣∣−∥x∥ − w̄2αF̄ (x)
∣∣ = ∣∣−1− w̄2αF̄ (x̄)

∣∣ ∥x∥
≤ |−1− w̄2α| ∥x∥+

∣∣1− F̄ (x̄)
∣∣ |w̄2|α ∥x∥ ≤ O

(
| − 1− w̄2α|

|w̄2α|

)
+O

(
δ
(2)
1,L∞

)
.

39

Published as a conference paper at ICLR 2023

Therefore,

f(x) = f∗(x)± |1− b̄2| ±O

(
| − 1− w̄2α|

|w̄2α|

)
±O

(
δ
(2)
1,L∞ + d3δ

(2)
2

)
.

Thus,

L =
1

2
E
x

{
(f∗(x)− f(x))2

}
≤ 1

2

(
|1− b̄2|+O

(
| − 1− w̄2α|

|w̄2α|

)
+O

(
δ
(2)
1,L∞ + d3δ

(2)
2

))2

≤ O

(
(1− b̄2)

2 +
(−1− w̄2α)

2

w̄2
2α

2
+
(
δ
(2)
1,L∞ + d3δ

(2)
2

)2)
.

Proof of Lemma D.16. By Lemma D.7, for any (v2, r2) ∈ µ2, we have

ṙ2 = E
x

{
f∗(x)− σ(w̄2F (x) + b̄2)

}
±O

(
d3δ

(2)
2

)
.

Then, by Induction Hypothesis D.1 and the Lipschitzness of σ, we have

σ(w̄2F (x) + b̄2) = σ(w̄2α ∥x∥ F̄ (x̄) + b̄2) = σ(w̄2α ∥x∥+ b̄2)±O
(
δ
(2)
1,L∞

)
.

Therefore,
˙̄b2 = E

x

{
f∗(x)− σ(w̄2α ∥x∥+ b̄2)

}
±O

(
δ
(2)
1,L∞ + d3δ

(2)
2

)
.

Since L ≥ ε, by Lemma D.15, we have

(−1− w̄2α)
2

w̄2
2α

2
≥ Ω(ε)−O(δ2)−O

(
δ
(2)
1,L∞ + d3δ

(2)
2

)2
≥ Ω(ε).

Since w̄2α ≥ −1, this implies w̄2α ≥ −1+Ω (|w̄2|α
√
ε) . In fact, this implies w̄2α ≥ −1+Ω(

√
ε)

even when |w̄2|α is o(1), as, in that case, w̄2α ≥ −1 + Ω(
√
ε) directly holds. Hence,

σ(w̄2α ∥x∥+ b̄2) ≥ σ
((
−1 + Ω

(√
ε
))

∥x∥+ 1− δ
)
= σ

(
1− ∥x∥+Ω

(√
ε ∥x∥

)
− δ
)
.

Thus,

˙̄b2 = E
x

{
f∗(x)− σ

(
1− ∥x∥+Ω

(√
ε ∥x∥

)
− δ
)}

±O
(
δ
(2)
1,L∞ + d3δ

(2)
2

)
≤ E

∥x∥≤

{
1− ∥x∥ −

(
1− ∥x∥+Ω

(√
ε ∥x∥

)
− δ
)}

+O
(
δ
(2)
1,L∞ + d3δ

(2)
2

)
= −Ω

(√
ε
)
+ δ +O

(
δ
(2)
1,L∞ + d3δ

(2)
2

)
.

As long as the constant in δ = Θ(
√
ε) is sufficiently small, this implies ˙̄b2 < 0 when b̄2 = 1−δ.

Proof of Lemma D.17. By Lemma D.3 and Lemma D.7, we have

d

dt
(w̄2α) = E

x

{(
f∗(x)− σ(w̄2α ∥x∥ F̄ (x̄) + b̄2)

)
F (x)

}(
α+

4CΓw̄
2
2√

d

)
±O

(
d3 log(d)δ

(2)
2

)
α

(
α+

4CΓw̄
2
2√

d

)
.

Now we estimate the coefficient of the first term. Suppose that w̄2α = −1+ δ for some δ ≤ Θ(
√
ε)

with a sufficiently small constant. Then, by Lemma D.15, we have (1 − b̄2)
2 ≥ Ω(ε) − O(δ2) =

Ω(ε). Hence, b̄2 ≤ 1 − Θ(
√
ε). Also note that w̄2α = Θ(1) implies that it suffices to consider x

with ∥x∥ = Θ(1). As a result, we have

σ(w̄2α ∥x∥ F̄ (x̄) + b̄2) = σ(w̄2α ∥x∥+ b̄2)±O
(
δ
(2)
1,L∞

)
≤ σ

(
1− ∥x∥ −Θ(

√
ε)
)
+O

(
δ
(2)
1,L∞

)
.

40

Published as a conference paper at ICLR 2023

Then, we decompose the coefficient as

E
x

{(
f∗(x)− σ(w̄2α ∥x∥ F̄ (x̄) + b̄2)

)
F (x)

}
= E

{(
f∗(x)− σ(w̄2α ∥x∥ F̄ (x̄) + b̄2)

)
F (x)

}
≥ E

∥x∥≤1

{(
Θ(

√
ε)−O

(
δ
(2)
1,L∞

))
F (x)

}
≥ Ω

(
α
√
ε
)
.

Thus,
d

dt
(w̄2α) ≥

(
Ω(

√
ε)−O

(
d3δ

(2)
2

)
log(d)

)
α

(
α+

4CΓw̄
2
2√

d

)
> 0.

Proof of Lemma D.18. By Lemma D.3 and Lemma D.7, we have

˙̄w2 = E
x
{(f∗(x)− f(x))F (x)} ±

(
d3 log dδ

(2)
2

)
α̇ =

4CΓ√
d

E
x
{(f∗(x)− f(x))F (x)} w̄2 ±O

(
d2.5(log d)δ

(2)
2

)
As a result, ∣∣∣∣ ddt

(
α− 2CΓ√

d
w̄2

2

)∣∣∣∣ ≤ O
(
d4δ

(2)
2

)
.

Also recall that w̄2
2 ≪ α at T1. Thus, throughout Stage 2, we always have

∣∣∣α− 2CΓ√
d
w̄2

2

∣∣∣ ≪ 1/d.

Since |w̄2α| ≤ 1, this implies |w̄2| ≤ O(d1/6) ≤ d.

Proof of Lemma D.19. Recall from the proof of Lemma D.18 that |α − 2CΓ√
d
w̄2

2| ≪ 1/d. Hence,
when α = Θ(1/d1.5), we have |w̄2| ≤ O(1/d). The estimations in Stage 1, mutatis mutandis, show
that both α and |w̄2| will grow in this case.

D.3 CONVERGENCE RATE

Recall from Lemma D.5 that d
dtL = −Ew2,b2,w1

∥∇w2,b2,w1
∥2 , where

∇w2,b2,w1
:= E

x

(f∗(x)− f(x))

 σ′(w2F (x) + b2)F (x)
σ′(w2F (x) + b2)
2W̄2(x)σ(w1 · x)

∥w1∥ W̄2(x)σ
′(w1 · x)(I − w̄1w̄

⊤
1)x


 .

Lemma D.20. Suppose that Induction Hypothesis D.1 is true at time t. Then we have

d

dt
L ≤ −

∥∥∥∇̃∥∥∥2 +O
((

δ
(2)
1,L2 + d3δ

(2)
2

)
d4
)
,

where

∇̃ := E
x

{
(f∗(x)− f(x))

[
∥x∥

√
α2 + 4CΓ√

d
w̄2

2α

1

]}
.

Lemma D.21. Suppose that Induction Hypothesis D.1 is true at time t. Then we have∥∥∥∇̃∥∥∥ ≥ Ω(αL)−O
(
δ
(2)
1,L2 + d3δ

(2)
2

)
.

Lemma D.22 (Stage 2). Suppose that Induction Hypothesis D.1 is true throughout Stage 2. Then
T2 − T1 ≤ O(d3/ε).

Proof of Lemma D.20. Since it is the norm of ∇w2,b2,w1
, we can safely ignore the last entry and

only consider the first three entries. By Lemma D.7, we have

[∇w2,b2,w1
]1:3 = E

x

{
(f∗(x)− f(x))

[
F (x)
1

2w̄2σ(w1 · x)

]}
±O

(
d3δ

(2)
2

[
α log(d)

1
w̄2 ∥w1∥ log(d)

])
.

41

Published as a conference paper at ICLR 2023

Furthermore, we have

E
x
{(f∗(x)− f(x))F (x)} = E

x
{(f∗(x)− f(x))α ∥x∥}+ E

x

{
(f∗(x)− f(x))α(F̄ (x)− ∥x∥)

}
= E

x
{(f∗(x)− f(x))α ∥x∥}+O

(
αδ

(2)
1,L2

)
.

Meanwhile, for [∇w2,b2,w1
]3, by Lemma B.3 and Lemma D.8, we have

2w̄2 E
x
{(f∗(x)− f(x))σ(w1 · x)}

= 2w̄2 E
x

{
(f∗(x)− f̃(x))σ(w1 · x)

}
+ 2w̄2 E

x

{
(f̃(x)− f(x))σ(w1 · x)

}
=

2CΓw̄2√
d

E
x

{
(f∗(x)− f̃(x)) ∥x∥

}
∥w1∥ ± 2w̄2 ∥w1∥

∥∥∥f − f̃
∥∥∥
L2

√
E

x∈X2

∥x∥2

=
2CΓw̄2√

d
E
x

{
(f∗(x)− f̃(x)) ∥x∥

}
∥w1∥ ±O

(
|w̄2|1.5α0.5 ∥w1∥ δ(2)1,L2

)
.

Repeat the above procedure and we can replace the f̃ in the first term with f . Therefore,

[∇w2,b2,w1
]1:3 = E

x

(f∗(x)− f(x))

 α ∥x∥
1

2CΓw̄2√
d

∥x∥ ∥w1∥


±O

δ
(2)
1,L2

 α
0

|w̄2|1.5α0.5 ∥w1∥

±O

(
d3δ

(2)
2

[
α log(d)

1
w̄2 ∥w1∥ log(d)

])

= E
x

(f∗(x)− f(x))

 α ∥x∥
1

2CΓw̄2√
d

∥x∥ ∥w1∥


±O

((
δ
(2)
1,L2 + d3δ

(2)
2

)[α log(d)
1

|w̄2| ∥w1∥ log(d)

])
.

Now, we estimate the the expected norm of [∇w2,b2,w1]1:3. First, we have

[∇w2,b2,w1
]21 =

(
E
x
{(f∗(x)− f(x)) ∥x∥}

)2
α2 ±O

((
δ
(2)
1,L2 + d3δ

(2)
2

)
α2 log(d)

)
,

[∇w2,b2,w1
]22 =

(
E
x
{f∗(x)− f(x)}

)2
±O

(
δ
(2)
1,L2 + d3δ

(2)
2

)
.

For [∇w2,b2,w1]3, we have

E
w1

[∇w2,b2,w1
]32 =

4C2
Γw̄

2
2

d

(
E
x
{(f∗(x)− f(x)) ∥x∥}

)2
E
w1

∥w1∥2

±O

((
δ
(2)
1,L2 + d3δ

(2)
2

)
w̄2

2

E ∥w∥21√
d

log(d)

)

=
(
E
x
{(f∗(x)− f(x)) ∥x∥}

)2 4CΓw̄
2
2√

d
α

±O
((

δ
(2)
1,L2 + d3δ

(2)
2

)
w̄2

2α log(d)
)
.

Thus,

∥[∇w2,b2,w1]1:3∥
2
=
(
E
x
{(f∗(x)− f(x)) ∥x∥}

)2(
α2 +

4CΓw̄
2
2√

d
α

)
+
(
E
x
{f∗(x)− f(x)}

)2
±O

((
δ
(2)
1,L2 + d3δ

(2)
2

)
d4
)

=
∥∥∥∇̃∥∥∥2 ±O

((
δ
(2)
1,L2 + d3δ

(2)
2

)
d4
)
.

42

Published as a conference paper at ICLR 2023

Proof of Lemma D.21. For notational simplicity, put A :=
√
α2 + 4CΓ√

d
w̄2

2α. Then we can write

∇̃ = E
x

{
(f∗(x)− f(x))

[
A ∥x∥

1

]}
.

Define

∇̂ =

[
−1− αw̄2

A(1− b̄2)

]
.

By Induction Hypothesis D.1,
∥∥∥∇̂∥∥∥ ≤ O(1). Hence, in order to lower bound

∥∥∥∇̃∥∥∥, it suffices to

lower bound
〈
∇̃, ∇̂

〉
. We have〈

∇̃, ∇̂
〉
= AE

x

{
(f∗(x)− f(x))

(
−∥x∥+ 1− (αw̄2 ∥x∥+ b̄2)

)}
.

First, for those x ∈ {∥x∥ ≤ 1}, we have f∗(x) = −∥x∥+ 1 and

f(x) = w̄2F (x) + b̄2 = w̄2α ∥x∥+ b̄2 + w̄2α(F̄ (x)− ∥x∥).
Hence, we have

E
∥x∥≤1

{
(f∗(x)− f(x))

(
−∥x∥+ 1− (αw̄2 ∥x∥+ b̄2)

)}
= E

∥x∥≤1

{
(f∗(x)− f(x))2

}
+ E

∥x∥≤1

{
(f∗(x)− f(x))w̄2α(F̄ (x)− ∥x∥)

}
= E

∥x∥≤1

{
(f∗(x)− f(x))2

}
±O

(
|w̄2α|δ(2)1,L2

)
.

Then, for x ∈ {∥x∥ ≥ 1}, note that −∥x∥+ 1 ≤ 0 and f∗(x) = 0. Therefore, we have

E
∥x∥≥1

{
(f∗(x)− f(x))

(
−∥x∥+ 1− (αw̄2 ∥x∥+ b̄2)

)}
= − E

∥x∥≥1

{
f(x)

(
−∥x∥+ 1− (αw̄2 ∥x∥+ b̄2)

)}
≥ E

∥x∥≥1

{
f(x)(αw̄2 ∥x∥+ b̄2)

}
.

Then, we compute

E
∥x∥≥1

{
f(x)(αw̄2 ∥x∥+ b̄2)

}
= E

∥x∥≥1

{
f(x)(w̄2F (x) + b̄2)

}
+ E

∥x∥≥1

{
f(x)(αw̄2(∥x∥ − F̄ (x)))

}
= E

∥x∥≥1

{
f2(x)

}
±O

(
d3δ

(2)
2

)
±O

(
αw̄2δ

(2)
1,L2

)
.

where the second equality comes from Lemma D.7 and Induction Hypothesis D.1. Combine these
two cases together and we obtain〈

∇̃, ∇̂
〉
≥ AE

x

{
(f∗(x)− f(x))2

}
−O

(
|w̄2α|δ(2)1,L2

)
−O

(
d3δ

(2)
2

)
.

Finally, note that A ≥ α. Thus,∥∥∥∇̃∥∥∥ ≥ Ω(αL)−O
(
δ
(2)
1,L2 + d3δ

(2)
2

)
.

Proof of Lemma D.22. By Lemma D.20 and Lemma D.21,

d

dt
L ≤ −Ω(α2L2) +O

((
δ
(2)
1,L2 + d3δ

(2)
2

)
d4
)
≤ −Ω

(
L2

d3

)
Thus, for any T ∈ [T1, T2],

L(T) ≤
(
Ω
(
d−3

)
(T − T1) +

1

L(T1)

)−1

≤ O

(
d3

T − T1

)
.

Thus, it takes at most O(d3/ε) amount of time for L to reach ε.

43

Published as a conference paper at ICLR 2023

D.4 PROOF OF THE MAIN LEMMA

Proof of Lemma D.2. The Induction Hypothesis is maintained in Section D.2 and by Lemma D.22,
we have T2 − T1 ≤ O(d3/ε). Now we consider the first layer errors. Recall that

d

dt
(δ

(2)
1,L2)

2 = O

(
d5δ

(2)
1,L2

(
δ
(2)
X2

)2)
,

d

dt
δ
(2)
1,L∞ = O

(
d3δ

(2)
1,L2 + d2

(
δ
(2)
X2

)2)
.

Recall that δX2
:= O(1)d4.5(δ

(2)
1,L∞ + d3δ

(2)
2). For simplicity, we choose δ

(2)
1,L∞ ≥ d3δ

(2)
2 so that

δX2 = O(d4.5δ
(2)
1,L∞). Then, we have

d

dt
(δ

(2)
1,L2)

2 = O
(
d14δ

(2)
1,L2(δ

(2)
1,L∞)2

)
,

d

dt
δ
(2)
1,L∞ = O

(
d3δ

(2)
1,L2 + d11(δ

(2)
1,L∞)2

)
.

We choose δ
(2)
1,L2(T1) and δ

(2)
1,L∞(T1) such that

Θ

(
d17

ε
(δ

(2)
1,L∞)2

)
≤ δ

(2)
1,L2 ≤ Θ

(ε

d6
δ
(2)
1,L∞

)
and δ

(2)
1,L∞(T1) ≤ Θ

(ε

d14

)
. (14)

Note that this is possible because δ
(2)
1,L2(T1) and δ

(2)
1,L∞(T1) can be chosen to be arbitrarily polyno-

mially small. When this is true, we have

d

dt
(δ

(2)
1,L2)

2 ≤ O
(ε

d3
(δ

(2)
1,L2)

2
)

and
d

dt
δ
(2)
1,L∞ = O

(ε

d3
δ
(2)
1,L∞

)
.

Thus, by induction, within O(d3/ε) amount of time, these two errors can at most O(δ
(2)
1,L2(T1)) and

O(δ
(2)
1,L∞(T1)), respectively.

E FROM GRADIENT FLOW TO GRADIENT DESCENT

Converting the above gradient flow argument to a gradient descent one can be done in a standard
one, provided that we can generate fresh samples at each iteration. First, by choosing a sufficiently
small step size, one can make sure within each step, the difference between gradient descent and
gradient flow is inverse polynomially small. Note that our argument is built upon the induction
hypotheses. Hence, we do not need to worry about the accumulation of errors. Moreover, our
estimations can tolerate an inverse polynomially large error. Then, at each step of gradient descent,
we generate sufficiently (but still polynomially) many samples to ensure that with high probability,
the difference between the population gradient and the finite-sample gradient is sufficiently small.
Since it only takes polynomial iterations to finish the process, the total amount of samples needed is
polynomial.

44

	Introduction
	Multi-layer Mean-field Framework
	Main Result and Our Techniques
	Related Works

	Preliminaries
	The Infinite-Width Dynamics
	Discretizing the Dynamics with Polynomial-size Network
	Stage 1: Removing the Projections
	Stage 2: Fitting the Target Function

	Conclusion
	Multi-layer Mean-Field Networks
	Two-layer networks and permutation invariance
	Multi-layer mean-field networks

	Preliminaries
	Induction Hypothesis and Continuity Argument
	Properties of the Input Distribution
	Properties of Spherically Symmetric Functions and Distributions
	The infinite-width network remains spherically symmetric

	Stage 1
	Stage 1.1
	Stage 1.2
	Stage 1.3
	Estimations related to '(v2 F(x) + r2)
	Estimations for the first layer
	Estimations for the second layer

	Stage 2
	Auxiliary Lemmas
	The dynamics of F, f and L
	Error-related estimations

	Maintaining the Induction Hypothesis
	Error of the first layer
	Spread of the second layer
	Regularity conditions

	Convergence rate
	Proof of the Main Lemma

	From gradient flow to gradient descent

