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1 Introduction and background
As an answer to recent contributions about the conjectured
impossibility of learning meaning from surface form alone,
and the dangers of large language models, we argue in this
paper that an explicit distinction should be made between (i)
perception, (ii) (explicit) memory, and (iii) inference. We en-
vision a triad of interacting subsystems with corresponding
responsibilities (see Figure 1). Perception provides the inter-
face between the system and its environment by learning and
recognising patterns, which is typically realised in the form
of a language model. Explicit memory is a structure of con-
cepts and relations between the concepts, in other words, a
knowledge base of facts. Inference, finally, corresponds to
mathematical or rule-based reasoning and provides, for ex-
ample, classical logic and arithmetic. We note here that such
axiomatic systems cannot be deduced from data, only con-
jectured and tried against data. Our position is that natu-
ral language systems should thus combine continuously up-
dated language and other perception models (e.g., computer
vision) with one or more symbolic knowledge bases that re-
lieve the models from learning concepts and their relations,
and finally one or more inference engines to provide formal
reasoning. In a multimodal natural language context, deep
learning is a powerful and versatile tool for processing text
and images as far as perception goes. Bender and Koller con-
jecture that one cannot learn the relation between the surface
form of language and its communicative intent from the for-
mer alone [Bender and Koller, 2020], and Bender et al. [Ben-
der et al., 2021] argue that the race for bigger and bigger
datasets and language models should be seriously questioned
as it carries considerable environmental, social, and scien-
tific risks. Training these models consumes huge amounts
of energy, big datasets are skewed against minorities and the
underprivileged, and the focus on size hampers progress to-
wards more intelligent solutions. We think that these are valid
points, but would like to qualify the by two comments:

First, learning from large datasets is not inherently prob-
lematic. A human who is given access to the type of datasets
used for knowledge extraction can, over time, be expected to
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learn useful facts and be wiser for the experience. For ex-
ample, a reader who has been taught how the shape of the
earth can be derived from physical observations will not soon
adopt the flat earth theory from reading about it in online me-
dia. Human rationality makes us more robust than neural net-
works with respect to how new data points affect us. Our be-
liefs, values, and reasoning abilities are the “knowledge base”
that makes us, if not immune, then much less susceptible to
integrating misleading information. In contrast, current deep
learning does not have the capability to discard a data point
as false and choose not to learn from it, but must take every-
thing encountered at face value and adjust the network param-
eters accordingly. What makes large datasets problematic are
therefore the specific conditions of the learning process that
characterise deep learning. We believe that the addition of
symbolic knowledge would make overly large models unnec-
essary: having access to a multiplication algorithm is more
space efficient than memorising a huge multiplication table,
which can in any case never be complete.

Second, learning surface form is a challenging research
problem and the improvement of existing techniques can cre-
ate substantial value if, as argued earlier, language models are
not viewed as complete world models, but rather as models of
form that may be compatible with any number of worlds. In
their work, Bender and Koller do not address the downstream
systems that make use of pretrained language models. How-
ever, we would like to suggest that it is precisely at the point
of application that the language model can be said to infer
meaning, namely by bridging the gap between the perceived
world and the system’s internal representation of the world.

2 Position statement
Let us stop and reflect on how humans learn. Comparing hu-
mankind to other species, our success is largely due to col-
lective learning: we systematically codify knowledge so that
we can store and transfer it in a compact form, relieving in-
dividuals from having to learn everything from scratch. If we
look farther than our predecessors, it is because we are stand-
ing on their shoulders. We teach pupils simple algorithms to
multiply numbers rather than expecting them to figure it out
themselves, or to memorise each product of two numbers as
a separate fact. We also teach them how to read, in order to
update themselves with new facts from newspapers or the In-
ternet. To mimic this to a certain degree, and thus overcome
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Figure 1: The triad of capabilities and components advocated.

deficiencies such as those listed in [Bender and Koller, 2020;
Bender et al., 2021], we propose that machine learning sys-
tems in general and language learning systems in particular
should be equipped with similar abilities. In support of this
proposal, we would like to point out:

1. Merely using more data seems to us an, if not outright
impossible, then at least an inefficient, means of produc-
ing systems with human-like faculties of reasoning.

2. In contrast to, e.g., recent works that attempt to use word
embeddings as knowledge bases [Petroni et al., 2019;
Bouraoui et al., 2020], we believe it is more effective to
realise the faculties of perception, reasoning, and mem-
ory as separate computational unities. In practice, this
means integrating neural networks with external knowl-
edge bases and inference engines.

3. The ability to assess new data points in the light of ac-
cepted knowledge and, if appropriate, disregard them
rather than incorporating them into the model, can make
systems more robust against the imperfections of train-
ing data, and make the learned model more coherent.

3 Related work
There is a rapidly growing body of literature on hybrid
machine-learning systems (see e.g. [Wang et al., 2019; Hohe-
necker and Lukasiewicz, 2020a; van Bekkum et al., 2021]).
We discern two main lines of work. The first combines per-
ception and inference, in other words, deep learning and rule-
based or neuro-symbolical reasoning. A good example is
AlphaGo [Silver et al., 2017] which augments Monte Carlo
search trees with deep neural networks. An example from
computer vision is DeepProbLog [Manhaeve et al., 2018]
which separates perception from inference. More precisely,
it employs a simple convolutional neural network to iden-
tify digits from MNIST, supported by probabilistic logic pro-
gramming for modelling and reasoning.

A survey of perception-inference hybrid systems is given
by [Raedt et al., 2020] which address neuro-symbolical and
statistical relational approaches to integrating learning and
reasoning. The authors provide examples that leverage the
strength of both methods, such as [Ellis et al., 2018]. They
also identify open challenges, e.g., leveraging the effective-
ness of deep learning for symbolical representation learning.

The second line of work combines perception and ex-
plicit memory, that is, deep learning and knowledge bases.
Lecue investigates the role knowledge graphs have in ex-
plainable AI [Lecue, 2019] and explains how knowledge
graphs can be integrated with deep neural networks to aid
explainability, to bootstrap natural language models, and to
disambiguate between word senses when uncertainty arises.
Knowledge graphs are also studied in the context of neural
network architectures, see for example the recent review of
graph neural networks [Zhou et al., 2020]. Reasoning over
knowledge bases is explored in e.g. [Minervini et al., 2020;
Hohenecker and Lukasiewicz, 2020b; Qu et al., 2021], and is
reviewed in [Chen et al., 2020].

Another set of writings treat knowledge bases in a multi-
modal framework. Multimodality generally means that infor-
mation is drawn from a heterogenous source of data, the most
studied combination being language and visual data. Here,
knowledge bases help connect the modalities [Pezeshkpour
et al., 2018; Krishna et al., 2016; Zhu et al., 2015; Kannan
et al., 2020]. For purely visual data, it is known that knowl-
edge graphs can aid machine vision tasks [Marino et al.,
2017], and also that unimodal language models stand to bene-
fit from the addition of knowledge bases [Petroni et al., 2019].
How other modalities and how the construction of data sets
limits what a model can learn is outlined in [Bisk et al., 2020].

Covariate shift [Sugiyama and Kawanabe, 2012; Sugiyama
et al., 2007] and concept drift [Gama et al., 2014; Lu et al.,
2018] are related to the problem of disregarding data points
using existing knowledge. A difference between training
and test distributions is a covariate shift, and [Schneider
et al., 2020] improves model robustness using covariate shift
adaptation. Shifting over, e.g., time is called concept drift,
and [Webb et al., 2016] characterises such drifts.

4 Key challenges
Although a more diverse set of tools can be expected to have
advantages as opposed to a total reliance on deep learning or
neuro-symbolic methods, it also leads to new challenges:

• Which overall system architecture is needed to enable a
seamless integration of perception, memory, and infer-
ence subsystems as indicated in Figure 1?

• Can we design learning strategies that validate new facts
using the knowledge base and inference system, and in-
tegrate new data into the model only if it is consistent
with accepted knowledge and values?

• Can the language model and the knowledge base evolve
over time, and how do we keep them aligned as language
changes and the meaning of words start to drift?

• Can we integrate the inference engine and the language
model to enable heuristic search and inference that make
use of the capabilities of the language model?

Given the richness and diversity of solutions that can be at-
tained by fusing perception, explicit memory, and inference,
we believe that the fields of machine learning and neuro-
symbolic inference can draw on the strengths of each other
to gain a truer understanding of meaning.
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