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Figure 1: Given a diffusion based text-to-video (T2V) backbone, BroadWay can improve its syn-
thesis quality in a training-free and plug-and-play manner, enhancing both the temporal consistency
and the motion magnitude in the sampled results.

ABSTRACT

The text-to-video (T2V) generation models, offering convenient visual creation,
have recently garnered increasing attention. Despite their substantial potential, the
generated videos may present artifacts, including structural implausibility, tempo-
ral inconsistency, and a lack of motion, often resulting in near-static video. In this
work, we have identified a correlation between the disparity of temporal atten-
tion maps across different blocks and the occurrence of temporal inconsistencies.
Additionally, we have observed that the energy contained within the temporal at-
tention maps is directly related to the magnitude of motion amplitude in the gen-
erated videos. Based on these observations, we present BroadWay, a training-
free method to improve the quality of text-to-video generation without introduc-
ing additional parameters, augmenting memory or sampling time. Specifically,
BroadWay is composed of two principal components: 1) Temporal Self-Guidance
improves the structural plausibility and temporal consistency of generated videos
by reducing the disparity between the temporal attention maps across various de-
coder blocks. 2) Fourier-based Motion Enhancement enhances the magnitude and
richness of motion by amplifying the energy of the map. Extensive experiments
demonstrate that BroadWay significantly improves the quality of text-to-video
generation with negligible additional cost.
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1 INTRODUCTION

In recent years, the field has observed substantial progress in the evolution of diffusion-based mod-
els specifically dedicated to video generation tasks, notably in text-to-video synthesis (Khachatryan
et al., 2023; Blattmann et al., 2023b; Guo et al., 2023b; Chen et al., 2024). Despite these advance-
ments, the practical applicability of generated videos remains limited due to inadequate quality. This
suboptimal performance is characterized by two predominant issues: firstly, a portion of the gen-
erated videos exhibit structurally implausible and temporally inconsistent artifacts, and secondly,
another subset of the generated videos demonstrates markedly restricted motion, bordering on the
static nature of a still image. Prior methodologies have primarily concentrated on enhancing video
generation quality through advances in training mechanisms, such as improving the quality of train-
ing data (Blattmann et al., 2023a), scaling training data (Wang et al., 2024b), refining model archi-
tecture (Hong et al., 2022) and training strategies (Chen et al., 2024). However, these approaches
often entail substantial costs. This work endeavors to improve video generation quality in the in-
ference phase, specifically in the realm of text-to-video generation, without necessitating training,
introducing additional parameters, augmenting memory or sampling time.

Figure 2: Generated videos with richer motion typically
exhibit a higher energy.

In current video generation models,
an encoder-decoder architecture (Ron-
neberger et al., 2015) is typically uti-
lized, wherein the decoder is comprised
of multiple blocks. Each block inte-
grates several temporal attention mod-
ules (Guo et al., 2023b), facilitating the
modeling of motion within the gener-
ated videos. We have two observations
about the temporal attention module.
The first is a correlation between artifact
presence and the inter-block divergence
of temporal attention maps. Specifi-
cally, video generation processes exhibiting structurally implausible and temporally inconsistent
artifacts demonstrate greater disparity between the temporal attention maps of different decoder
blocks. Conversely, processes devoid of such evident artifacts exhibit reduced disparity among
these maps, as illustrated in Fig. 3(a). The second is a correlation between the amplitude of motion
in generated videos and the energy of the corresponding temporal attention maps, defined in the
method section. Specifically, videos that exhibit a higher degree of motion amplitude and a richer
variety of motion patterns are observed to possess greater energy within their temporal attention
maps, as illustrated in Fig. 2.

Based on the observations, we present BroadWay, a training-free approach with negligible addi-
tional cost to improve the generation quality of T2V diffusion models. BroadWay is composed of
two principal components: Temporal Self-Guidance and Fourier-based Motion Enhancement, both
meticulously engineered to refine the temporal attention module within T2V models. Temporal Self-
Guidance leverages the temporal attention map from the preceding block to inform and regulate that
of the current block. This approach effectively mitigates the disparity between the temporal attention
maps across various decoder blocks, thereby normalizing their disparity. As a result, videos that ini-
tially exhibit structural implausibility and temporal inconsistency, significantly reduce such artifacts
through the application of Temporal Self-Guidance, as shown in the first and second rows in Fig. 1.
Furthermore, Fourier-based Motion Enhancement modulates the high-frequency components of the
temporal attention map, thereby amplifying the energy of the map, as detailed in the methodology
section. This enhancement circumvents the generation of videos that closely resemble static image.
With the Fourier-based Motion Enhancement, videos that were previously characterized by minimal
motion exhibit an increased amplitude and a more diverse range of motion patterns, as illustrated in
the third and last rows in Fig. 1.

We evaluate the performance of BroadWay on various popular T2V backbones, including those
with additional motion modules trained from frozen T2I models and those trained end-to-end di-
rectly for T2V tasks. Our experiments show promising results, demonstrating the effectiveness and
strong adaptability of BroadWay. Furthermore, additional experiments reveal that BroadWay also
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(a) MSE distance of vanilla T2V (b) MSE distance with BroadWay

Figure 3: MSE distance between temporal attention maps of different levels in UNet.

exhibits potential in the image-to-video (I2V) domain, further expanding the applicability of Broad-
Way across various video generation tasks.

Our contributions are summarized: (1) We conduct a deeper analysis of the temporal attention mod-
ule widely adopted in current T2V backbones, and observe two correlations between the generated
videos and corresponding temporal attention maps. (2) We propose BroadWay, which significantly
improves the quality of text-to-video generation without necessitating training, introducing addi-
tional parameters, augmenting memory or sampling time. (3) BroadWay can be seamlessly inte-
grated with various mainstream open-source T2V backbones like AnimateDiff and VideoCrafter2,
demonstrating strong applicability and extensibility.

2 RELATED WORK

2.1 TEXT-TO-VIDEO DIFFUSION MODELS

Given a textual prompt, text-to-video (T2V) diffusion models (Singer et al., 2022; Hong et al., 2022;
Wang et al., 2023b; Chen et al., 2023; Wang et al., 2023a; 2024a; Khachatryan et al., 2023) aim to
synthesize image sequences that maintain both temporal consistency and textual alignment. Unlike
text-to-image (Ding et al., 2021; Zeqiang et al., 2023; Saharia et al., 2022; Podell et al., 2023)
that emphasizes perfecting individual images, T2V poses a heightened challenge of maintaining
both visual aesthetics for each frame and the realistic motion between frames. To this end, most
approaches incorporate extra motion modeling modules into existing image diffusion architecture,
leveraging the underlying image priors. For instance, AnimateDiff (Guo et al., 2023b) introduced
trainable temporal attention layers to frozen text-to-image models to effectively capture the frame-
to-frame correlations Some works (Blattmann et al., 2023b; Chen et al., 2024) combined temporal
convolution modules and temporal attention layers for modeling short/long range dependencies. To
alleviate motion synthesis difficulty, Ge et al. (Ge et al., 2023) suggested employing temporally
related noise to enhance temporally consistent. Nevertheless, due to the scarcity of high-quality
video data and the intricacies of motion synthesis, the current available T2V models still struggle
to harmonize motion strength with motion consistency. This work identifies that the consistency
across temporal attention blocks indicates the continuity of synthesized video sequences while the
energy within the temporal attention maps dominates the magnitude of motion, and thus proposes a
training-free strategy to unlock the potential of exiting T2V models by encouraging uniform motion
modeling and enhanced frequency energy.

2.2 DIFFUSION FEATURE CONTROL

Controlling targeted diffusion features to manipulate specific attributes has been demonstrated to be
an effective strategy in the realm of image and video synthesis (Chefer et al., 2023; Kim et al., 2023;
Xiao et al., 2023; Liu et al., 2023; Qi et al., 2023),. Prompt2Prompt (Hertz et al., 2022) revealed
that the cross attention maps domain the image layout. DSG (Yang et al., 2024) proposed that spa-
tial means of diffusion features represent the appearance, which offers simple approach for image
property manipulation, such as size, shape, and location. FreeControl (Mo et al., 2023) suggested to
perform image structure guidance by aligning the PCA features with given reference image in spa-
tial self-attention block, providing a versatile counterpart of ControlNet (Zhang et al., 2023). DIFT
(Tang et al., 2023) observed that the semantic corresponding can be directly extracted by spatially
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measuring the difference between diffusion feature. MotionClone (Ling et al., 2024) demonstrates
the sparse control of temporal attention maps facilitates a training-free motion transfer, enabling
reference-based video generation. FreeU (Si et al., 2024) suggested re-weighting the contribution of
skip features and backbone features by using spectral modulation and structure-related scaling, pro-
moting the emphasis on backbone semantics. In this work, we propose Temporal Self-Guidance to
facilitates uniform motion modeling across blocks by narrowing the disparities between temporal at-
tention maps. This is work together with Fourier-based Motion Enhancement, which boosts motion
magnitude by amplifying frequency energy, thus elevating the quality of the generated videos

3 PRELIMINARY

3.1 LATENT DIFFUSION MODEL

In the context of T2V generation, latent diffusion model (Rombach et al., 2022) is widely as back-
bone as its significant advancement in image synthesizing. Typically, based on a pre-trained au-
toencoder E(·) and D(·), video sequences are projected into the latent space, in which a denoising
network ϵθ is encouraged to learn the mapping from noised video latent zt to pure video latent z0.
Mathematically, the noised video latent zt obeys the following distribution:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (1)

where ᾱt is a pre-defined parameter representing noise schedule (Ho et al., 2020), ϵ ∼ N (0, 1) is
the added noise, and t ∼ U(1, T ) denotes time step. To restore z0 from zt, denoising network ϵθ is
forced to estimate the noise component in zt, which can be expressed as:

L(θ) = Ez0,ϵ,t

[
∥ϵt − ϵθ(zt, c, t)∥22

]
, (2)

where c represents the textual prompt of z0. During sampling, zt is initialized with Gaussian noise
and undergoes iterative denoising conditioned on c for prompt-aligned generation.

3.2 TEMPORAL ATTENTION MECHANISM

The biggest difference between video generation and image generation lies in the synthesis of mo-
tion, i.e., the modeling of correlation between video sequences. This is typically achieved by tem-
poral attention mechanism, which establishes feature interactions across frames via self-attention
operations in temporal dimension. For 5D video diffusion feature f ∈ RB×C×F×H×W , where
B and F represent batch axis and frame time axis, H and W denotes spatial resolution, temporal
attention performs self-attention in its 3D reshaped variant f ′ ∈ R(B×H×W )×C×F , in which the
generated attention map A ∈ R(B×H×W )×F×F reflects the temporal correlation between frames.

4 METHOD

4.1 TEMPORAL SELF-GUIDANCE

Temporal attention modules are extensively integrated at various hierarchical stages within the up-
sampling blocks of T2V architectures (Blattmann et al., 2023b; Guo et al., 2023b; Chen et al., 2023;
2024). These modules, derived from different tiers of the diffusion UNet, are employed to capture
inter-frame dependencies at multiple resolutions. Although the multi-level progressive refinement
approach in modeling frame-wise correlations offers advantages, our observations indicate that the
temporal attention maps across different hierarchical levels can exhibit considerable discrepancies,
potentially leading to structurally implausible or temporally inconsistent video outputs. To sub-
stantiate this hypothesis, we analyzed 100 structurally and motion-degraded videos alongside 100
well-generated videos. We computed the mean and standard deviation of the mean squared error
(MSE) distances between the temporal attention maps of up blocks.1 and subsequent blocks
as illustrated in Fig. 3 (a). Our findings reveal that significant disparities between temporal atten-
tion maps across different blocks are associated with the occurrence of implausible structures and
temporal inconsistencies in the generated videos.

To mitigate the excessive divergence between temporal attention maps across various upsampling
blocks, we introduce a straightforward yet potent temporal self-guidance mechanism. This mecha-
nism involves the infusion of the temporal attention map of up blocks.1 into subsequent blocks,
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Car runs in the forest. Two dogs are playing in the snow.

Figure 4: Temporal Self-Guidance. Temporal Self-Guidance contributes to the restoration of
collapsed structures and consistency of motion in the synthesized video.

modulated by a guidance ratio α. The adjustment is mathematically represented as:

Am = Am + α(Am
1 −Am), (3)

where Am denotes the temporal attention map of the m-th upsampling block (m = 2, 3), and Am
1

refers to the temporal attention map of up blocks.1, which is upsampled to match the spatial di-
mensions of Am. As depicted in Fig. 3 (b) and Fig. 4, the implementation of temporal self-guidance
effectively alleviates the excessive modeling disparity between different hierarchical levels of tem-
poral attention modules, thereby diminishing structurally implausible and temporally inconsistent
artifacts in the resultant video generation.

Beyond addressing the structural implausibility and temporal inconsistency issues resolved by Tem-
poral Self-Guidance, we have observed that some generated videos, including those corrected by
Temporal Self-Guidance, still suffer from a paucity of motion, often appearing nearly static. To
tackle this, we introduce a novel strategy aimed at amplifying the motion amplitude and diversity
within the generated videos by capitalizing on the energy inherent in the temporal attention maps.

4.2 FOURIER-BASED MOTION ENHANCEMENT

4.2.1 ENERGY REPRESENTATION OF MOTION MAGNITUDE

The temporal attention map encapsulates a rich set of motion-related information that is pivotal for
the generation of dynamic video content. We find that the energy encapsulated within the temporal
attention map is indicative of the motion amplitude present in the generated video. To elaborate,
consider a temporal attention map A ∈ R(B×H×W )×F×F , where B represents the batch size, H ×
W denotes the spatial resolution, and F is the number of frames. The energy E of this map can be
quantified by the following equation:

E =
1

F

F−1∑
i=0

F−1∑
j=0

||A...,i,j ||2, (4)

as illustrated in Fig. 5 (a). To substantiate the correlation between the energy of the temporal
attention map and the motion magnitude in the generated video, we employ the RAFT (Teed &
Deng, 2020) to extract the optical flow, using the average magnitude of this flow as a metric for
motion strength. Our findings reveal a positive correlation: videos with greater motion magnitudes
are associated with higher energies within their temporal attention maps. This insight motivates us
to manipulate the motion magnitude in the generated videos by modulating the energy intensity of
the temporal attention maps. By doing so, we aim to enhance the dynamism and variability of the
motion in the videos.

4.2.2 MOTION ENHANCEMENT BY FREQUENCY SPECTRUM RE-WEIGHTING

To enhance the motion amplitude in generated videos by amplifying the energy of the temporal atten-
tion map, we must overcome the challenge posed by the softmax normalization inherent in attention

5
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(a) Energy map of generated videos (b) Relationship between energy and motion magnitude

Figure 5: Visualization of energy in temporal attention map. (a) The energy map of the generated
video. (b) Videos with larger motion magnitude typically exhibit higher energy, where the motion
magnitude is calculated using the optical flow of the generated videos.

Va
ni
lla

O
nl
y
Lo
w

O
nl
y
H
ig
h

(a) Frequency decomposition results
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(b) Frequency components manipulation
Figure 6: Frequency decomposition and manipulation. (a) Results obtained by directly remov-
ing either the high-frequency or low-frequency components from the temporal attention map. The
motion in generated videos is primarily present in the high-frequency components of the temporal
attention map. (b) Results obtained by scaling the high-frequency components by a factor of β.

maps, which precludes straightforward numerical scaling. To address this, we employ a sequence-
to-sequence discrete frequency decomposition technique, specifically the Fast Fourier Transform
(FFT), to the temporal attention map. For a given temporal attention map A ∈ R(B×H×W )×F×F ,
we decompose it into its high-frequency and low-frequency components as follows:

A = F(A),

AH = A...,iH , iH ∈ [
F

2
− τ,

F

2
+ τ ],

AL = A...,iL , iL ∈ [0,
F

2
− τ) ∪ (

F

2
+ τ, F − 1],

(5)

where F denotes the FFT operation, A ∈ C(B×H×W )×F×F is the complex-valued matrix result-
ing from applying the FFT to A, and τ is a hyperparameter that determines the frequency range
for the high-pass and low-pass filters. As demonstrated in Fig. 6 (a), experiments involving the
selective removal of high-frequency or low-frequency components from the temporal attention map
during the denoising process have yielded insightful observations. Videos that retain only the low-
frequency components tend to exhibit a nearly static structure, closely mirroring the characteristics
of their unmodified counterparts. In contrast, videos that include solely high-frequency components
display abundant motion but are marred by inconsistency and persistent flickering. These findings
suggest that the essence of motion in generated videos is predominantly encapsulated within the
high-frequency components of their temporal attention maps.
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Figure 7: BroadWay Operations. (a) Temporal Self-Guidance. The temporal attention map from
up blocks.1 is injected into the corresponding modules of up blocks.2/3 with a guidance
ratio α, in order to enhance the structural plausibility and temporal consistency. (b) Fourier-based
Motion Enhancement. A scaling factor β is applied to the high-frequency components of the
temporal attention map, thereby amplifying the magnitude of the motion.

Motivated by these insights, we introduce a scaling factor β to modulate the high-frequency com-
ponents AH . The process of scaling and reconstructing the temporal attention map is formalized by
the following equation:

A
′
= F̃(βAH +AL), (6)

where F̃ represents the inverse Fast Fourier Transform (iFFT) operation, and A′
signifies the tempo-

ral attention map with the scaled high-frequency components. Based on aforementioned equations,
the following theorems can be proven. Please refer to Section A.1.1 for a comprehensive proof.

Theorem 1. For any β ≥ 0, A′
possesses the softmax property. Specifically,

∑
k A

′
=

∑
k A = I,

where k denotes the softmax dimension associated with A, and I is an all-ones matrix.

Therefore, A′
can replace A as the new temporal attention map in the decoder.

Theorem 2. If β > 1, then the energy of A′
, denoted as E

′

x, is greater than the energy of A, denoted
as Ex. Conversely, if 0 < β < 1, then E

′

x is less than Ex.

As illustrated in Fig. 6 (b), setting β = 1.5 amplifies the energy of the temporal attention maps,
leading to greater motion magnitude. Conversely, setting β = 0.5 results in reduced motion.

4.3 BROADWAY

Leveraging Temporal Self-Guidance and Fourier-based Motion Enhancement, we introduce Broad-
Way, a parameter-free method that enhances the quality of text-to-video generation without increas-
ing memory requirements or sampling time. As illustrated in Fig. 7, BroadWay initially applies
Temporal Self-Guidance to improve the structural coherence and temporal consistency of the video.
Subsequently, Fourier-based Motion Enhancement is employed to amplify motion dynamics. To
ensure that the motion magnitude of generated videos processed by BroadWay exceeds that of the
original, unenhanced videos, the energy of the temporal attention map after Fourier-based Motion
Enhancement, denoted as E3, must be greater than the energy of the original temporal attention map,
denoted as E1. To achieve this, the scaling factor β is defined as a function of the energies before
and after Temporal Self-Guidance, E1 and E2, respectively:

β(E1, E2) = max{β0,

√
E1 − EL

2

EH
2

}, (7)

where β0 is user-given value of β to control the motion magnitude. EH
2 and EL

2 denoting the
energies of the high-frequency and low-frequency of the attention map after applying Temporal
Self-Guidance, respectively. Please refer to Section A.1.2 for a detailed proof for Eq. 7.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

Setting up. We mainly conduct our experiments on two mainstream diffusion based T2V backbones
with superior visual quality: AnimateDiff (512×512) (Guo et al., 2023b) and VideoCrafter2 (320×
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A green wool doll is displayed on the wooden table, ...

A jeep driving on the grass near a forest ...

Figure 8: Samples synthesized by AnimateDiff with or without BroadWay. The samples utiliz-
ing the BroadWay exhibit enhanced structural plausibility, temporal consistency, and an increased
richness in motion dynamics.

512) (Chen et al., 2024). Results synthesized by vanilla T2V backbones are used as a benchmark.
The BroadWay parameters are set to α = 0.6, β = 1.5 in default for AnimateDiff, α = 0.1, β = 10
in default for VideoCrafter2. BroadWay operations are only applied during the first 20% steps of the
denoising process. DDIM sampler (Song et al., 2020) with classifier-free guidance (Ho & Salimans,
2022) is adopted in the inference phase.

Evaluation metrics. We report three metrics for quantitative evaluation. First, we conduct a user
study with 30 participants to assess Video Quality, considering both structure coherence and motion
magnitude. Secondly, we compare the Optical Flow values of 1000 videos generated by Vanilla
T2V backbones and BroadWay-enhanced backbones. Additionally, we employ a multimodal large
language model, GPT-4o (Achiam et al., 2023), for a comprehensive Multimodal-Large-Language-
Model (MLLM) Assessment on hundreds of generated videos. Refer to Section A.3 for details.

5.2 QUALITATIVE COMPARISON

As presented in Fig. 8 and Fig. 9, with the integration of BroadWay, various T2V backbones
demonstrates a notable performance improvement compared to their vanilla synthesis results. For
instance, giving AnimateDiff the prompt “a green wool doll is displayed on the wooden table.”,
BroadWay enhances the structural consistency of the synthesized video, preventing the collapse
of the doll’s head and tail. Moreover, in the “A jeep driving on the grass near a forest.” case,
BroadWay amplifies the dynamic effects of the scene, making the jeep exhibit more pronounced
motion. For VideoCrafter2, when provided with the prompt “A horse jumping over a fence during a
race, crowd cheering.”, BroadWay reconstructs the structure of the rider and horse, addressing the
issue of structural anomalies in the horse’s legs while enhancing the overall motion to appear more
synchronized and aesthetically pleasing. In cases like “A penguin sliding on ice, snowy landscape
in the background.”, BroadWay preserves the original structural integrity while introducing richer,
more dynamic motion to the scene.

In summary, BroadWay effectively improves the structural consistency of synthesized videos while
amplifying their motion dynamics, resulting in a significant enhancement in the overall synthesis
quality of the T2V backbones.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Va
ni
lla

B
ro
ad
W
ay

A horse jumping over a fence during a race, crowd cheering, ...

Va
ni
lla

B
ro
ad
W
ay

A penguin sliding on ice, snowy landscape in the background, ...

Figure 9: Samples synthesized by VideoCrafter2 with or without BroadWay. The samples uti-
lizing the BroadWay exhibit enhanced structural plausibility, temporal consistency, and an increased
richness in motion dynamics.

5.3 QUANTITATIVE EVALUATION

User Study. As shown in Table 1 (a), we present the voting results, expressed as percentages, for
vanilla T2V backbones and BroadWay-enhanced backbones. Our analysis shows that BroadWay
receives the majority of votes, demonstrating that BroadWay provides a substantial improvement
to the T2V diffusion model in terms of overall video quality, taking into account both structure
coherence and motion magnitude.

Motion Magnitude. To objectively evaluate the motion magnitude, RAFT (Teed & Deng, 2020)
is introduced to estimate the forward optical flow between consecutive frames, and the average
intensity value of estimated optical flow is used to quantify the motion magnitude within the video.
As presented in Table 1 (b) BroadWay shows substantial improvements in mean motion intensity,
indicates its efficacy in producing large-magnitude motion.

MLLM Assessment. In light of the impressive strides made by Multimodal-Large-Language-
Models (MLLM) recently in image/video understanding, the state-of-the-art MLLM, i.e., GPT-
4o (Achiam et al., 2023), is employed for video quality assessment, covering structural rationality
and motion consistency. As can be observed in Table 1 (c)-(d), BroadWay exhibits notable gains in
both metrics, validating its role in substantially improving overall video quality.

Table 1: Quantitative results with or without BroadWay.
Method (a) Video Quality (b) Optical Flow (c) Structural Rationality (d) Motion Consistency

AnimateDiff 25.42% 1.5743 41.94% 34.62%
+ BroadWay 74.58% 2.4673 58.06% 65.38%

VideoCrafter2 30.54% 1.5555 18.48% 39.60%
+ BroadWay 69.46% 3.6204 81.52% 60.40%

5.4 ABLATION STUDY

Effects of Temporal Self-Guidance (TSG). Temporal Self-Guidance plays a critical role in rein-
forcing structural integrity, thus effectively mitigating structural breakdowns and preventing motion
artifacts, as can be observed in Fig. 10 (a). However, it cannot enhance the magnitude of motion,
showing limited improvement in scenarios with little motion, as shown in Fig. 10 (b).

Effects of Fourier-based Motion Enhancement (FME). Fourier-based Motion Enhancement is
responsible for amplifying the motion dynamics in generated videos. In scenarios where the motion
is insufficient, this technique effectively increases the dynamic content, as shown in Fig. 10 (b).
However, motion enhancement alone does not guarantee appealing video quality when structural
breakdown occurs, as illustrated in Fig. 10 (a).
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Vanilla Only TSG Only FME Ours Vanilla Only TSG Only FME Ours

(a) Race car speeding on the track. (b) Kid with curly hair plays in the park.

Figure 10: Ablation study on BroadWay components. The left panel illustrates an instance
of inconsistency artifacts present in the original video, whereas the right panel exhibits a scenario
where the original video lacks sufficient motion.

Effects of BroadWay. By integrating Temporal Self-Guidance with Fourier-based Motion Enhance-
ment, BroadWay achieves simultaneous enhancement of both the structural integrity and motion
dynamics in generated videos (Fig. 10 (a)-(b) Ours vs. Vanilla).

5.5 IMAGE-TO-VIDEO

V
an
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a
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dW
ay

Re
fe
re
nc
e
Im
ag
e masterpiece, best quality, highly

detailed, ultra detailed, sunset, orange 
sky, warm lighting, fishing boats, ocean 
waves, seagulls, rippling water, wharf, 

silhouette, serene atmosphere, dusk, 
evening glow, golden hour, coastal 

landscape, seaside scenery

Figure 11: Generated results by SparseCtrl with
or without BroadWay.

Similar to text-to-video (T2V) tasks, image-to-
video (I2V) is also a significant research area
within video diffusion models. Here we em-
ploy SparseCtrl (Guo et al., 2023a), a strong
and flexible structure control method, as the
I2V backbone to preliminarily validate the po-
tential of BroadWay in image-to-video tasks.
As illustrated in Fig. 11, the infusion of Broad-
Way into SparseCtrl serves to enhance the dy-
namic effects of the synthesized video while
preserving the structural integrity of the ref-
erence image. Specifically, we observe that
the video synthesized with BroadWay exhibits
more vivid wave motions, and the reflections
of the setting sun display enhanced dynamic
aesthetics. These experimental results demon-
strate that BroadWay effectively enhances the
quality of both T2V and I2V video generation
tasks, positioning it as a versatile and powerful
booster for video diffusion models.

6 CONCLUSION

In this study, we present BroadWay, a training-free method to improve the quality of text-to-
video generation without introducing additional parameters, augmenting memory or sampling time.
BroadWay is composed of Temporal Self-Guidance and Fourier-based Motion Enhancement. The
former improves the structural plausibility and temporal consistency by reducing the disparity be-
tween the temporal attention maps across various decoder blocks. The later enhances the magnitude
and richness of motion by scaling the high frequency of the temporal attention maps. The pro-
posed method can be easily integrated with other T2V models in a plug-and-play manner, offering a
general and effective solution to enhance video generation quality during inference phase.
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A APPENDIX

In the appendix, we present the proof of Fourier-based Motion Enhancement (Section A.1), addi-
tional qualitative results (Section A.2), details of our quantitative evaluation (Section A.3), as well
as the limitations of our method(Section A.4), as a supplement to the main paper.

A.1 PROOF OF FOURIER-BASED MOTION ENHANCEMENT

In this section, we provide a detailed proof of how Fourier-based Motion Enhancement alters the
energy of the temporal attention map in the denoising process.

A.1.1 FREQUENCY MANIPULATION

Given a temporal attention map A ∈ R(B×H×W )×F×F with batch size B, spatial resolution H×W
and frame number F , since we treat it as a batch of attention sequences, we will next discuss the
operations performed on a single softmax sequence x[n] of length F .

Mathematically, the operation of mapping the sequence x[n] to the frequency domain is performed
by the Discrete Fourier Transform (DFT):

X[k] =

F−1∑
n=0

x[n] · e−j 2π
N kn, k = 0, 1, . . . , F − 1, (8)

Parseval’s theorem states that the energy of a sequence is preserved under frequency domain trans-
formation, meaning that the energy Ex of sequence x[n] is the same in both the time and frequency
domains. This theorem can be expressed as follows:

Ex =

F−1∑
n=0

x[n]2 =
1

F

F−1∑
k=0

X[k]2, (9)

As mentioned in Section 4.2.2, Fourier-based Motion Enhancement uses a threshold index τ to sepa-
rate the high-frequency and low-frequency components of the sequence, scaling the high-frequency
components by a factor of β. This operation can be expressed as:

X
′
[k] =

{
β ·X[k] k ∈ [F2 − τ, F

2 + τ ],
X[k] otherwise, (10)

After applying this manipulation, the energy E
′

x of current attention sequence x
′
[n] is given by:

E
′

x =
1

F
[

∑
k/∈[F2 −τ,F2 +τ ]

X2[k] + β2
∑

k∈[F2 −τ,F2 +τ ]

X2[k]], (11)

Thus the energy change amount ∆E caused by Fourier-based Motion Enhancement can be com-
puted as:

∆E = E
′

x − Ex

=
(β2 − 1)

F

∑
k∈[F2 −τ,F2 +τ ]

X2[k],

Clearly, in the scenario where β > 1, Fourier-based Motion Enhancement will lead to an increase
in the energy of the attention sequence (∆E > 0), while the opposite will result in a decrease in
energy (∆E < 0), which elucidates the mechanism by which Fourier-based Motion Enhancement
effectively enhances motion magnitude in synthesized videos.

Furthermore, it can be demonstrated that the attention sequence processed by Fourier-based Motion
Enhancement remains a softmax sequence. This property is preserved because the DC compo-
nent X[0] of the attention sequence, which determines the sum of the sequence, is not modified
throughout the operation. By plugging k = 0 into Eq. 8, we can ascertain this property:

X[0] =

F−1∑
n=0

x[n] =

F−1∑
n=0

x
′
[n] = 1, (12)
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A.1.2 ADAPTIVE β

As depicted in Fig. 7, let E1 denote the the energy of the temporal attention map before applying
BroadWay operations, E2 the energy after Temporal Self-Guidance, and E3 the energy after Fourier-
based Motion Enhancement. Here, we demonstrate that using the adaptive β as defined in Eq. 7
ensures that E3 ≥ E1.

Based on the separation of high-frequency and low-frequency components in the sequence as de-
scribed in Section A.1.1, we can compute the energy of the high-frequency and low-frequency parts
of the sequence x[n], denoted as EH

x and EL
x , respectively:

EH
x =

1

F

∑
k∈[F2 −τ,F2 +τ ]

X2[k],

EH
x =

1

F

∑
k/∈[F2 −τ,F2 +τ ]

X2[k],

(13)

According to Eq. 9 and Eq. 13, it is evident that the following relationship holds:

Ex = EH
x + EL

x , (14)

Furthermore, we can concisely express the energy manipulation performed by Fourier-based Motion
Enhancement described in Section A.1.1, as follows:

E
′

x = β2EH
x + EL

x , (15)

which indicates:
E3 = β2EH

2 + EL
2 , (16)

Therefore, to ensure E3 ≥ E1, it is necessary to ensure that β adheres to the following condition:

β2EH
2 + EL

2 ≥ E1, (17)

The critical value of β, denoted as βc, that satisfies this condition is:

βc =

√
E1 − EL

2

EH
2

, (18)

In BroadWay operations, the user-specified β, denoted as β0, will be compared with the critical
value βc, and the larger of the two will be selected as the actual β value in Fourier-based Motion
Enhancement:

β =

{
β0 β0 ≥ βc,
βc β0 < βc,

(19)

By adopting such a adaptive β value, it can be theoretically guaranteed that the energy of the tempo-
ral attention map is increased during BroadWay operations, thereby enhancing the motion magnitude
in synthesized videos.

A.2 ADDITIONAL QUALITATIVE RESULTS

In this section, we provide additional qualitative comparison results of BroadWay on AnimateDiff
(Fig. 12, Fig. 13, Fig. 17 and Fig. 14) and VideoCrafter2 (Fig. 15, Fig. 16, Fig. 18).

A.3 MATERIALS USED IN QUANTITATIVE EXPERIMENTS

User Study Details. In our user study, each participant receives 50 videos synthesized by Vanilla
T2V backbones and 50 videos synthesized by BroadWay-enhanced backbones. These videos are
sampled from the same random seeds to ensure fair comparison. For each video pair from Vanilla
and Vanilla+BroadWay, participants are required to select the video they perceive as superior based
on overall Video Quality, considering both structure coherence and motion magnitude, and cast their
vote accordingly. The videos were presented in a randomized order to reduce potential bias, and
participants were allowed ample time to review each pair before making their selections.

MLLM Prompt. Here, we present the prompt used in the MLLM assessment.
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query = """
You are provided with two sets of video frames, each containing
4 representative frames, along with a shared textual prompt that
was used to generate both videos.
Your task is to perform a comparative evaluation of the two videos,
focusing on their structure rationality / motion consistency.

""".strip()

prefix_1 = """
Here is the frame data of video_1:

"""

prefix_2 = """
Here is the frame data of video_2:

"""

suffix = """
Based on your evaluation of motion consistency, choose the video
set you find to be superior.
If you determine that the first set of frames (Video_1) is better,
respond with "A". If the second set (Video_2) is superior, respond
with "B". Return only "A" or "B" based on your assessment.
"""

A.4 LIMITATIONS

Parameter Sensitivity. The default values of BroadWay parameters α and β are relatively robust
within a specific T2V backbone but may not be universally optimal for different backbones. Users
seeking enhanced visual quality are encouraged to manually adjust these parameters. Increasing α
can lead to stronger motion dynamics, while a higher value of β enhances structural consistency.

Performance Upper Bound. Although BroadWay demonstrates the capability to unlock the synthe-
sis potential of various T2V backbones, the synthesized videos remain confined within the sampling
distribution of the original T2V backbone. Therefore, the upper performance bound of our proposed
method is still constrained by the original T2V backbone.
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A spokesperson is answering questions from the media.

A fashionable woman is walking down the street.
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A panda plays in a snow covered forest.

A bird perched on a tree branch.

Figure 12: More results on AnimateDiff (Object Motion Enhancement). Please refer to the
supplementary materials for best view.
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A military truck is driving down the street.

Kayakers paddling down a river.

An excavator is digging at a construction site.

A polar bear walks on the ice surface.

Figure 13: More results on AnimateDiff (Object Motion Enhancement). Please refer to the
supplementary materials for best view.
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Woman in hat talks to a man in suit.

A woman riding a horse in the woods, in oil painting style.

A blue bird sitting on a branch in a field.

A black pickup truck driving through a forest.

Figure 14: More results on AnimateDiff (Corrupted Case Repair). Please refer to the supple-
mentary materials for best view.
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A herd of buffalo stampeding across a grassy plain, dust clouds rising.
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A leopard sprinting across rocky terrain, claws digging in.

A wolf howling on a mountaintop, wind blowing through its fur.
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Swans gliding on a still lake.

Figure 15: More results on VideoCrafter2 (Object Motion Enhancement). Please refer to the
supplementary materials for best view.

A camel caravan crossing a vast desert at sunset, ...
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A sports car racing through a city at night, neon lights flashing, ...

Figure 16: More results on VideoCrafter2 (Corrupted Case Repair). Please refer to the sup-
plementary materials for best view.
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A person standing above a vast valley.

Figure 17: More results on AnimateDiff (Camera Motion Enhancement). Please refer to the
supplementary materials for best view.
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A castle perched on a cliff overlooking the ocean.
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A tropical island with palm trees and clear turquoise water.
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A field of wildflowers under a blue sky with fluffy clouds.

Figure 18: More results on VideoCrafter2 (Camera Motion Enhancement). Please refer to the
supplementary materials for best view.
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