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Abstract

In wearable human activity recognition (WHAR), models often falter on unseen1

users due to behavioral and sensor differences.Without target labels, unsupervised2

domain adaptation (UDA) can help improve cross-user generalization. However,3

many WHAR UDA methods either pool all source users together or perform4

one-to-one source–target alignment, ignoring individual differences and risking5

negative transfer. To address this critical limitation, we propose DuLPA—Dual-6

Level Prototype Alignment method for unsupervised cross-user domain adaptation.7

First, it aligns class prototypes between each source user and the target to capture8

individual variation; a convex reweighting further handles class imbalance. Second,9

a BLUP-based fusion forms robust global class prototypes by optimally weighting10

domain-specific ones using estimated within- and between-domain variances. On11

four public datasets, DuLPA outperforms several baselines, improving macro-F1 by12

5.34%. Our source code is available at https://anonymous.4open.science/13

r/DuLPA-5ACC.14

1 Introduction15

Human Activity Recognition (HAR) is widely applied in healthcare and manufacturing, powered16

by wearable devices with IMU sensors [1, 2]. Despite strong deep learning results [3, 4], cross-user17

wearable HAR (WHAR) remains difficult due to user-specific distribution shifts [5]. Supervised18

adaptation [6] requires costly labels, motivating Unsupervised Domain Adaptation (UDA). Existing19

WHAR UDA methods either pool sources into one domain [7] or use one-to-one alignment [8],20

ignoring user diversity and risking negative transfer. Multi-source approaches [9] and prototype-based21

methods [10] show promise but often average across domains and neglect reliability, which limits22

robustness under label imbalance [8]. Beyond WHAR, prior work explores explainability [11],23

fairness [12], and cross-modal transfer [13], but prototype-based UDA for WHAR remains underex-24

plored. In light of this, we propose DuLPA, a Dual-Level Prototype Alignment framework. At the25

base level, DuLPA aligns each source with the target using convex reweighting for label shift. At the26

upper level, a BLUP-inspired fusion builds global prototypes by weighting sources by reliability. A27

bidirectional prototype alignment loss further enforces semantic consistency. Our contributions are as28

follows, (1) Dual-level alignment capturing user-specific variations and fusing sources by reliability.29

(2) Adaptive convex reweighting to address class imbalance. (3) Bidirectional prototype alignment30

loss for robust transfer. (4) Comprehensive results on four HAR datasets, with up to 5.34% macro-F131

gain.32

2 Problem Setup33

We study cross-user HAR via unsupervised domain adaptation. Given M labeled source domains34

{S1, . . . , SM} with samples DSi
= {(xSi

j , ySi
j )} and an unlabeled target domain T with data35

DT = {xT
j }, all domains share the same label space {1, . . . , C} but differ in distributions and class36

frequencies (label shift). Let fθ : X → Rd be the feature extractor and gϕ : Rd → {1, . . . , C} the37

classifier (Figure 1). The goal is to learn fθ, gϕ that generalize to the unlabeled target T .38
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Figure 1: Framework of DuLPA. Given M labeled sources and an unlabeled target T , features are
extracted by fθ. Domain prototypes are fused via the BLUP-based GPE into global prototypes
µG, weighted by within- and between-domain variance, which then align bidirectionally with target
features.

3 Methodology39

Prototype-to-Prototype Alignment. For each activity class c in each source domain Si, we compute a40

class prototype µSi
c as the average feature representation of all samples from class c. Similarly, target41

pseudo-prototypes µT
c are constructed using pseudo-labels. We align source and target prototypes by42

minimizing their distances:43

Ldirect =

M∑
i=1

C∑
c=1

α(i)
c ∥µSi

c − µT
c ∥22. (1)

To account for label-shift between users, we adopt a BBSE-guided convex reweighting strateg[14].44

We estimate class-level reweighting coefficients α(i)∈RC via the following constrained least-squares45

problem:46

α(i) = argmin
α≥0
∥α⊤C(i) − p̂T ∥22, s.t. (α(i))⊤pSi

= 1.

where C(i) is the confusion matrix of a classifier trained on Si and p̂T is the empirical label distribution47

of the target.This allows us to emphasize classes that are more relevant to the target user and down-48

weight overrepresented source classes, yielding more robust prototype alignment.49

Prototype-to-Feature Alignment. Direct source–target alignment is necessary but insufficient:50

user-to-user variability in physiology, movement, and device placement injects domain-specific51

noise and inconsistent features, so equal weighting ignores that some users provide more reliable52

and relevant patterns than others. To overcome such limitations, we propose a BLUP (Best Linear53

Unbiased Prediction) based fusion approach [15, 16] that allocates more weight to source domains54

with more reliable (low-variance) class prototypes, as determined by both within- and between-55

domain variability.56

Global Prototype Estimation (GPE).We model each domain prototype zci as a noisy observation of a57

latent global prototype θc:58

zci = θc + bci + ϵci ,
where bci ∼ N (0, τ2c Id) captures between-domain and ϵci ∼ N (0, σ2

i,cId) captures within-domain59

variations. The variances are estimated as,60

σ2
i,c =

1

ni,c − 1

∑
x∈Dc

Si

∥fθ(x)− zci ∥2, τ2c = max

(
0,

1

kc − 1

∑
i∈Dc

∥zci − z̄c∥2
)
.

The global prototype is obtained via inverse-variance weighting:61

wi,c =
1

σ2
i,c + τ2c

, µG
c =

∑
i∈Dc

wi,cz
c
i∑

i∈Dc
wi,c

.
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For large τ2c , we interpolate with classifier weights ϕc:62

γc =
1

1 + τ2c
, µG

c ← γcµ
G
c + (1− γc)ϕc.

Bidirectional Prototype Alignment. Inspired form PCT [10], we align target features and global63

prototypes with bidirectional soft assignments: target→prototype and prototype→target. Let c(µ, f) =64

1− µ·f
∥µ∥ ∥f∥ be the cosine dissimilarity. Using class-prior weights p(µG

c ) and softmax assignments65

π(µG
c | fTj ) (over classes) and π(fTj |µG

c ) (over batch) as in PCT, the bidirectional transport loss is66

Lbp = E{fTj }

[ C∑
c=1

π(µG
c | fTj ) c(µG

c , f
T
j ) +

C∑
c=1

p(µG
c )

B∑
j=1

π(fTj |µG
c ) c(µ

G
c , f

T
j )
]
, (2)

which discourages collapse and promotes balanced class coverage. We estimate p(µG
c ) with a67

lightweight EM update from posteriors on the target batch:68

p(t+1)(µG
c ) = (1− β(t)) p(t)(µG

c ) + β(t)
( 1

B

B∑
j=1

π(t)(µG
c | fTj )

)
,

using a decaying β(t); for balanced targets we keep p(µG
c ) uniform. Combining with direct69

source–target prototype alignment (Eq. 1 & Eq. 2 ), our prototype objective is70

Lproto = Ldirect + Lbp. (3)

Adversarial Domain Adaptation. We further incorporate adversarial learning to promote domain-71

invariant features. A feature extractor f(·), classifier g(·), and domain discriminator D(·) are trained72

jointly: D distinguishes source vs. target, while f is optimized to confuse D. The supervised and73

adversarial losses are:74

Lsup = E(xs
i ,y

s
i )∼Ds

Lce(g(f(x
s
i )), y

s
i )

Ladv =

M∑
k=1

(
Exs

i∼Sk
log[D(f(xs

i ))] + Ext
i∼T log[1−D(f(xt

i))]
)
. (4)

We also adopt the Minimum Class Confusion (MCC) loss [17] to regularize unlabeled target predic-75

tions without relying on pseudo-labels:76

Lunsup = LMCC(Ŷt), Ŷt = g(f(Xt)). (5)

The Final Objective. At the end of the approach, let us integrate all of these losses together, i.e, the77

prototype loss in Eq. 3, supervised classification loss Lsup, domain adversarial loss Ladv described78

in Eq. 4 and the unsupervised loss for the unlabeled target domain in Eq. 5. Finally, we can obtain79

the final objective as follows:80

Ltotal = λ1 Lsup + λ2Ladv + λ3Lunsup + λ4Lproto. (6)

Here, λ’s are the loss scaling coefficients.81

4 Experiments82

Result Analysis. We conduct experiments on four widely-used public HAR datasets: Opportu-83

nity [18],SBHAR [19],WISDM [20] and PAMAP2 [21]. We compare DuLPA against recent domain84

adaptation methods across four HAR datasets, with results summarized in Table 1. Overall, DuLPA85

consistently achieves the best performance, surpassing strong baselines such as prototype-based86

PCT, domain alignment approaches like DWLR and µDAR, and multi-source adaptation methods87

like CoDATs and SWL-Adapt. Notably, DuLPA delivers substantial improvements on challenging88

smartphone-based datasets, outperforming the closest competitor by +5.34% on Opportunity and89

+1.24% on WISDM. Figure 3(a) further illustrates that our approach yields well-separated activity90

clusters and strong source–target feature alignment.91 3



Model Opportunity SBHAR WISDM PAMAP2
CoDATs (KDD’20)[22] 61.79±2.87 78.82±1.15 61.47±5.97 88.20±3.15
PCT (NeurIPS’21) [10] 68.86±4.09 88.67±1.13 68.67±6.16 90.67±1.94
DWLR (IJCAI’24)[8] 69.16 87.33 71.15 93.17

SWL-Adapt (AAAI’23)[7] 70.31 ± 2.66 85.62±0.97 72.98±4.82 96.98±2.82
µDAR (ICDM’24) [23] 66.25 82.97 77.98 95.14

DuLPA (ours) 75.65 ± 2.48 90.91± 0.81 79.74 ± 4.58 98.41± 1.78

Table 1: Overall performance (macro-F1, in %) of DuLPA and baselines. The top value is highlighted
in bold blue and the second best in green with underline. Standard deviations (±std in %) indicate
result consistency.
Handling Class Imbalance with Convex
Weighting. We assess the effectiveness of our
convex weighting strategy in navigating class im-
balance, as shown in Figure 3(b). Gini coeffi-
cients (0.31, 0.30, 0.42, 0.34 for Users 1–4) high-
light varying imbalance levels, with User 3 being
the most skewed. Jensen-Shannon Divergence
(JSD) results confirm our method’s robustness,
achieving reductions of 64.3%, 68.5%, and 44.6%
when adapting Users 1, 2, and 4 to User 3, respec-
tively. The largest improvement (68.5%) occurs
when bridging from the most balanced (User 2) to
the most imbalanced (User 3), demonstrating dy-
namic calibration of source importance. Overall,
convex weighting effectively addresses cross-user
label imbalance in UDA.
4.1 Ablation Study. To assess DuLPA’s core
components, we analyze the impact of convex
weighting and BLUP-based fusion (Table 2). The
baseline encoder shows moderate performance,
while convex weighting yields substantial gains
(e.g., +8.58% on Opportunity) by mitigating la-
bel shifts. BLUP-based fusion also improves re-
sults, particularly on WISDM (+5.00%). Com-
bining both delivers the best performance across
all datasets; for instance, on SBHAR, their inte-
gration boosts macro-F1 by 6.24% over convex
weighting alone, confirming their complementary
benefits.
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Figure 3: Experimental results analysis.

Encoder
Only

Convex
Weighting

BLUP
Fusion

Opportunity
macro-F1

WISDM
macro-F1

SBHAR
macro-F1

PAMAP2
macro-F1√

X X 62.54 71.67 84.86 90.17√ √
X 71.12 78.29 88.67 95.19√

X
√

65.67 76.67 83.67 91.28√ √ √
75.65 79.74 90.91 97.14

92

Table 2: Component Analysis of DuLPA.
5 Conclusion93

We proposed DuLPA, an unsupervised domain adaptation framework with dual-level prototype94

learning for wearable based human activity recognition. At the base level, we align sources to the95

target using convex reweighting to handle class-prior shift, adaptively modulating each source’s96

contribution. At the upper level, a BLUP-inspired fusion builds global prototypes by weighting97

sources via within- and between-domain variability, strengthening transfer. Extensive experiments98

on four benchmark datasets demonstrate DuLPA’s superior performance and its effectiveness in99

cross-user adaptation for wearable human activity recognition. Our findings suggest that DuLPA100

offers a promising solution for personalized activity recognition in scenarios with unlabeled data for101

new users. Supplementary material is attached after the reference.102

4



References103

[1] Sozo Inoue, Paula Lago, Tahera Hossain, Tittaya Mairittha, and Nattaya Mairittha. Integrating104

activity recognition and nursing care records: The system, deployment, and a verification105

study. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,106

3(3):1–24, 2019.107

[2] Kaixuan Chen, Dalin Zhang, Lina Yao, Bin Guo, Zhiwen Yu, and Yunhao Liu. Deep learning108

for sensor-based human activity recognition: Overview, challenges, and opportunities. ACM109

Computing Surveys (CSUR), 54(4):1–40, 2021.110

[3] Hangwei Qian, Sinno Jialin Pan, Bingshui Da, and Chunyan Miao. A novel distribution-111

embedded neural network for sensor-based activity recognition. 2019.112

[4] Xiyuan Zhang, Diyan Teng, Ranak Roy Chowdhury, Shuheng Li, Dezhi Hong, Rajesh Gupta,113

and Jingbo Shang. Unimts: Unified pre-training for motion time series. Advances in Neural114

Information Processing Systems, 37:107469–107493, 2024.115

[5] Ling Chen, Yi Zhang, and Liangying Peng. Metier: a deep multi-task learning based activity116

and user recognition model using wearable sensors. Proceedings of the ACM on Interactive,117

Mobile, Wearable and Ubiquitous Technologies, 4(1):1–18, 2020.118

[6] Seyed Ali Rokni, Marjan Nourollahi, and Hassan Ghasemzadeh. Personalized human activity119

recognition using convolutional neural networks. In Proceedings of the AAAI conference on120

artificial intelligence, volume 32, 2018.121

[7] Rong Hu, Ling Chen, Shenghuan Miao, and Xing Tang. Swl-adapt: An unsupervised domain122

adaptation model with sample weight learning for cross-user wearable human activity recog-123

nition. In Proceedings of the AAAI Conference on artificial intelligence, volume 37, pages124

6012–6020, 2023.125

[8] Juren Li, Yang Yang, Youmin Chen, Jianfeng Zhang, Zeyu Lai, and Lujia Pan. Dwlr: domain126

adaptation under label shift for wearable sensor. In Proceedings of the Thirty-Third International127

Joint Conference on Artificial Intelligence, pages 4425–4433, 2024.128

[9] Chuan-Xian Ren, Yong-Hui Liu, Xi-Wen Zhang, and Ke-Kun Huang. Multi-source unsupervised129

domain adaptation via pseudo target domain. IEEE Transactions on Image Processing, 31:2122–130

2135, 2022.131

[10] Korawat Tanwisuth, Xinjie Fan, Huangjie Zheng, Shujian Zhang, Hao Zhang, Bo Chen, and132

Mingyuan Zhou. A prototype-oriented framework for unsupervised domain adaptation. Ad-133

vances in Neural Information Processing Systems, 34:17194–17208, 2021.134

[11] Jeya Vikranth Jeyakumar, Ankur Sarker, Luis Antonio Garcia, and Mani Srivastava. X-char: A135

concept-based explainable complex human activity recognition model. Proceedings of the ACM136

on interactive, mobile, wearable and ubiquitous technologies, 7(1):1–28, 2023.137

[12] Youpeng Li, Xuyu Wang, and Lingling An. Hierarchical clustering-based personalized federated138

learning for robust and fair human activity recognition. Proceedings of the ACM on interactive,139

mobile, wearable and ubiquitous technologies, 7(1):1–38, 2023.140

[13] Sejal Bhalla, Mayank Goel, and Rushil Khurana. Imu2doppler: Cross-modal domain adaptation141

for doppler-based activity recognition using imu data. Proceedings of the ACM on Interactive,142

Mobile, Wearable and Ubiquitous Technologies, 5(4):1–20, 2021.143

[14] Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for label shift144

with black box predictors. In International conference on machine learning, pages 3122–3130.145

PMLR, 2018.146

[15] Charles R Henderson. Best linear unbiased estimation and prediction under a selection model.147

Biometrics, pages 423–447, 1975.148

[16] Arthur S Goldberger. Best linear unbiased prediction in the generalized linear regression model.149

Journal of the American Statistical Association, 57(298):369–375, 1962.150

5



[17] Ying Jin, Ximei Wang, Mingsheng Long, and Jianmin Wang. Minimum class confusion for151

versatile domain adaptation. In Computer Vision–ECCV 2020: 16th European Conference,152

Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16, pages 464–480. Springer, 2020.153

[18] Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Förster, Gerhard154

Tröster, Paul Lukowicz, David Bannach, Gerald Pirkl, Alois Ferscha, et al. Collecting complex155

activity datasets in highly rich networked sensor environments. In 2010 Seventh international156

conference on networked sensing systems (INSS), pages 233–240. IEEE, 2010.157

[19] Jorge-L Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita. Transition-158

aware human activity recognition using smartphones. Neurocomputing, 171:754–767, 2016.159

[20] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using cell160

phone accelerometers. ACM SigKDD Explorations Newsletter, 12(2):74–82, 2011.161

[21] Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for activity monitoring.162

In 2012 16th international symposium on wearable computers, pages 108–109. IEEE, 2012.163

[22] Garrett Wilson, Janardhan Rao Doppa, and Diane J Cook. Multi-source deep domain adaptation164

with weak supervision for time-series sensor data. In Proceedings of the 26th ACM SIGKDD165

international conference on knowledge discovery & data mining, pages 1768–1778, 2020.166

[23] Indrajeet Ghosh, Garvit Chugh, Abu Zaher Md Faridee, and Nirmalya Roy. Unsupervised167

domain adaptation for action recognition via self-ensembling and conditional embedding168

alignment. arXiv preprint arXiv:2410.17489, 2024.169

[24] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier, Daniel F Schmidt,170

Jonathan Weber, Geoffrey I Webb, Lhassane Idoumghar, Pierre-Alain Muller, and François171

Petitjean. Inceptiontime: Finding alexnet for time series classification. Data Mining and172

Knowledge Discovery, 34(6):1936–1962, 2020.173

6



Source Domains (Users) 

User 1 

User 2

User 3

Weighted Source Domains

Target domain

Convex Weighted 

Class Distribution 

Homogeneous  Class 
Distribution 

Homogeneous 

Source Domain

(a)

(b)

Target domain
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inter-user variability based on each source domain’s reliability with tackled label shifts, resulting in
more effective knowledge transfer.

Supplementary Material for DuLPA174

Dataset Description. We conduct extensive experiments on four widely-used public HAR datasets:175

Opportunity [18]: Contains recordings from 4 users performing 5 daily activities in naturalistic176

settings. Each user performed activities for 15-25 minutes without activity-specific instructions,177

resulting in highly personalized movement patterns. SBHAR [19]: Includes data from 30 users178

performing 6 primary activities and 6 transitional activities (e.g., sit-to-stand). The dataset comprises179

approximately 5 hours of recording, capturing diverse activity execution styles across participants.180

WISDM [20]: Features 36 users performing 6 common activities (walking, jogging, sitting, standing,181

climbing up, and climbing down) for approximately 3 minutes each, collected at a sampling rate of182

20Hz from smartphone accelerometers. PAMAP2 [21]: Consists of data from 9 subjects performing183

12 activities while wearing 3 inertial measurement units (IMUs), offering a multi-sensor perspective184

on activity recognition challenges.185

186

Experimental Settings. Following the preprocessing protocol established in [7], we removed187

invalid values and addressed missing data through linear interpolation. All sensor channels were188

normalized to the range [-1, 1], and data segmentation was performed using a sliding window189

approach with the majority class assigned as the window label. For evaluation, we employed leave-190

one-subject-out cross-validation for the Opportunity dataset due to its limited number of participants.191

For SBHAR, WISDM, and PAMAP2, we divided subjects into 2, 4, and 3 groups respectively,192

conducting leave-one-group-out cross-validation to evaluate cross-user generalization more robustly.193

Results reported represent the average performance across all validation groups as suggested in [7].194

195

Implementation Details. We implement our method using the Pytorch Lightning framework.196

For feature extraction, we use a ResNet backbone [24] tailored for time series data. The classifier197

component consists of two feed-forward linear layers. We use Adam optimizer for training with a198

weight decay of 0.01 and an initial learning rate of 0.001. A cosine learning rate scheduler is adopted199

to adjust the learning rate during training dynamically. In the direct prototype alignment stage, the200

domain-specific prototype, denoted as µSi
c , is computed within each batch iteration. On the other201

hand, the global prototype, µG
c , is updated at the end of each epoch to promote training stability.202

We choose a ramp up strategy for loss weights λ3 = λ4 = ( 2
1+e−10e/E − 1) where e is the current203

epoch and E is the total epochs. Hyperparameter optimization was performed for λ1 and λ2 using204

a Bayesian optimization strategy. The ramp-up for λ3, λ4 stabilizes pseudo-label-dependent losses205

early in training, while Bayesian-optimized λ1, λ2 adapt to dataset-specific needs.206
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Figure 5: UMAP visualization of the target domain features. The stars are the global prototypes
learned from source domains.

Advantages of BLUP-based Fusion Figure 5 reveals how our BLUP-based fusion method evolves207

prototype representations across training epochs. By examining prototype positions (marked as stars)208

relative to their class clusters, we observe that DuLPA’s BLUP-based fusion consistently generates209

more centrally positioned prototypes that better capture class centroids. In contrast, both PCT [10]210

and traditional averaging (where prototypes are calculated just by averaging corresponding class211

features) approaches often generate prototypes that are influenced by domain-specific noise rather212

than representing the genuine activity characteristics. This evidence confirms that our approach213

effectively leverages statistically estimated within- and between-domain variance components to214

synthesize more representative global prototypes, leading to improved adaptation performance.215

Hyperparameter Sensitivity. Figure 6 demonstrates the impact of loss weight parameters (λ3 for216

unsupervised loss, λ1 for supervised loss) across all datasets. The model shows stable performance217

when λ1 > 0.3 (F1 scores >85% for SBHAR and PAMAP2), indicating robustness to supervised218

loss weighting. For unsupervised loss, optimal performance occurs at λ3 ∈ [0.4, 0.7], with WISDM219

being most sensitive to variations. Notably, OPPORTUNITY maintains >80% F1 across all λ3 values,220

demonstrating the method’s adaptability to different weighting schemes.221
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Figure 6: Loss weights Vs. Model performance.

Prototype quality comparison via silhouette scores (higher is better) across activity classes.222

DuLPA (ours) consistently outperforms baselines, with particularly strong gains for complex mo-223

tions: +37% for Downstairs and +30% for Upstairs versus traditional averaging, and +19% for224

Jogging against PCT. The uniform improvements (+11–37%) demonstrate our method’s robustness225

in capturing diverse activity patterns.226
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Figure 7: Silhouette scores comparison across activity classes. Silhouette measures how well
prototypes belong to their clusters.

Class distribution across domains visualized via radar plots, with Gini coefficients quantifying227

imbalance severity (higher values indicate greater skew). Domain 3 shows the most skewed distri-228

bution (Gini=0.42), while Domain 2 is the most balanced (Gini=0.30). The plots reveal significant229

variations in activity class proportions (e.g., Class 2 dominance in Domain 3 vs. uniform spread in230

Domain 2), highlighting the need for adaptive weighting across users.231
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Table 3: Major symbols and definitions.
Symbols Definitions
Si, T The i-th source domain (user) and the target

domain (user).
M,C Total number of source domains and total num-

ber of activity classes.
xSi , xT Input sensor data sample from source domain Si

and target domain T . (x ∈ Rv1×v2 , where v1 is
window size, v2 is time steps).

fθ(·), gϕ(·) Feature extractor and classifier networks, respec-
tively.

d Dimension of the feature space produced by fθ .
µSi
c , µT

c , z
c
i , µ

G
c ∈

Rd
Source, target (pseudo), noisy and global proto-
types for class c.

γc ∈ R, ϕc ∈
Rd

Reliability score (γc) and classifier weight vector
(ϕc) used for global prototype interpolation.

Id ∈ Rd×d is the identity matrix.
α
(i)
c ∈ R Convex reweighting coefficient for source do-

main Si and class c to address label shift in di-
rect alignment.

π(· | ·) Conditional probabilities replace hard assign-
ments.

6 Proof of BLUP Optimality232

Because the coordinates of zci ∈ Rd are independent and identically distributed under the isotropic233

variance assumption, it suffices to prove the result for a single coordinate. We omit the superscript c234

and coordinate index for clarity.235

Setup. Let µi ∈ R denote the scalar observation from domain i, following the model236

µi = θ + ηi, E[µi] = θ, Var(µi) = vi,

where vi = σ2
i + τ2 > 0 is the sum of the within-domain variance and the between-domain variance237

component.238

We consider linear unbiased estimators of θ of the form239

θθ̂ =

M∑
i=1

aiµi, subject to
M∑
i=1

ai = 1.

The unbiasedness constraint follows since E[θθ̂] =
∑

i aiE[µi] = θ
∑

i ai.240

Variance of the estimator. Because the µi are uncorrelated,241

Var(θθ̂) =

M∑
i=1

a2i vi.

Our goal is to choose {ai} to minimize Var(θθ̂) subject to
∑

i ai = 1.242

Lagrange multiplier solution. We solve the constrained minimization using a Lagrange multiplier λ:243

L(a1, . . . , aM , λ) =

M∑
i=1

a2i vi − λ

(
M∑
i=1

ai − 1

)
.

Setting partial derivatives with respect to ai to zero yields244

∂L
∂ai

= 2aivi − λ = 0 ⇒ ai =
λ

2vi
, i = 1, . . . ,M.

Applying the constraint
∑M

i=1 ai = 1 gives245

M∑
i=1

λ

2vi
= 1 ⇒ λ =

2∑M
j=1 v

−1
j

.
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Therefore,246

ai =
v−1
i∑M

j=1 v
−1
j

, i = 1, . . . ,M.

Resulting estimator. The minimum-variance unbiased estimator is thus247

θθ̂ =

M∑
i=1

aiµi =

∑M
i=1 v

−1
i µi∑M

i=1 v
−1
i

,

where vi = σ2
i + τ2. This coincides with the diagonal generalized least squares (GLS) solution and248

is the best linear unbiased predictor (BLUP) for θ in the scalar case.249

Source Domain 1


Source Domain 3
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where
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Figure 9: Global Prototype Estimation Process
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