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Abstract

In wearable human activity recognition (WHAR), models often falter on unseen
users due to behavioral and sensor differences.Without target labels, unsupervised
domain adaptation (UDA) can help improve cross-user generalization. However,
many WHAR UDA methods either pool all source users together or perform
one-to-one source—target alignment, ignoring individual differences and risking
negative transfer. To address this critical limitation, we propose DuLPA—Dual-
Level Prototype Alignment method for unsupervised cross-user domain adaptation.
First, it aligns class prototypes between each source user and the target to capture
individual variation; a convex reweighting further handles class imbalance. Second,
a BLUP-based fusion forms robust global class prototypes by optimally weighting
domain-specific ones using estimated within- and between-domain variances. On
four public datasets, DuLPA outperforms several baselines, improving macro-F1 by
5.34%. Our source code is available at

1 Introduction

Human Activity Recognition (HAR) is widely applied in healthcare and manufacturing, powered
by wearable devices with IMU sensors [1}2]. Despite strong deep learning results [3| 4], cross-user
wearable HAR (WHAR) remains difficult due to user-specific distribution shifts [5]. Supervised
adaptation [6] requires costly labels, motivating Unsupervised Domain Adaptation (UDA). Existing
WHAR UDA methods either pool sources into one domain [7] or use one-to-one alignment [8]],
ignoring user diversity and risking negative transfer. Multi-source approaches [9] and prototype-based
methods [[L0] show promise but often average across domains and neglect reliability, which limits
robustness under label imbalance [8]. Beyond WHAR, prior work explores explainability [L1]],
fairness [[12], and cross-modal transfer [13]], but prototype-based UDA for WHAR remains underex-
plored. In light of this, we propose DuLPA, a Dual-Level Prototype Alignment framework. At the
base level, DuLPA aligns each source with the target using convex reweighting for label shift. At the
upper level, a BLUP-inspired fusion builds global prototypes by weighting sources by reliability. A
bidirectional prototype alignment loss further enforces semantic consistency. Our contributions are as
follows, (1) Dual-level alignment capturing user-specific variations and fusing sources by reliability.
(2) Adaptive convex reweighting to address class imbalance. (3) Bidirectional prototype alignment
loss for robust transfer. (4) Comprehensive results on four HAR datasets, with up to 5.34% macro-F1
gain.

2 Problem Setup

We study cross-user HAR via unsupervised domain adaptation. Given M labeled source domains
{51,...,Sm} with samples Dg, = {(xf,yjs)} and an unlabeled target domain 7" with data
Dy = {7 }, all domains share the same label space {1, ..., C} but differ in distributions and class

frequencies (label shift). Let fy : X — R? be the feature extractor and g RY — {1,...,C} the
classifier (Figure . The goal is to learn fg, g4 that generalize to the unlabeled target 7.
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Figure 1: Framework of DuLPA. Given M labeled sources and an unlabeled target 7', features are
extracted by fy. Domain prototypes are fused via the BLUP-based GPE into global prototypes
u&, weighted by within- and between-domain variance, which then align bidirectionally with target
features.

3 Methodology

Prototype-to-Prototype Alignment. For each activity class ¢ in each source domain \S;, we compute a
class prototype ,uCS as the average feature representation of all samples from class c. Similarly, target
pseudo-prototypes p. are constructed using pseudo-labels. We align source and target prototypes by
minimizing their distances:

M C
Lgirect = Z Zag) ”/‘csl — pig |13 ()
i=1 c=1
To account for label-shift between users, we adopt a BBSE-guided convex reweighting strateg[/14]].

We estimate class-level reweighting coefficients (") € R via the following constrained least-squares
problem:

¥ = argm>i{)1 [aTCD —prl3, st (@) Tpg, =1.

where C'(¥) is the confusion matrix of a classifier trained on S; and - is the empirical label distribution
of the target.This allows us to emphasize classes that are more relevant to the target user and down-
weight overrepresented source classes, yielding more robust prototype alignment.

Prototype-to-Feature Alignment. Direct source—target alignment is necessary but insufficient:
user-to-user variability in physiology, movement, and device placement injects domain-specific
noise and inconsistent features, so equal weighting ignores that some users provide more reliable
and relevant patterns than others. To overcome such limitations, we propose a BLUP (Best Linear
Unbiased Prediction) based fusion approach [15} [16] that allocates more weight to source domains
with more reliable (low-variance) class prototypes, as determined by both within- and between-
domain variability.
Global Prototype Estimation (GPE).We model each domain prototype z{ as a noisy observation of a
latent global prototype 6°:

25 =0°+ b5 + €5,
where b¢ ~ N(0,721,) captures between-domain and €5 ~ N(0, Uicfd) captures within-domain
variations. The variances are estimated as,

1 1 _
0le=——— > lfolx) = 2| 72 =max|0,—— > |2f - |
Nje— 1 ke—1

zeDg, €D,
The global prototype is obtained via inverse-variance weighting:
o 1 G 2icp, Wic?;
Wi,c = 0'1'2@ +Tc2’ He = ZieDC Wie .
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For large 72, we interpolate with classifier weights ¢,:

1
1472’

[

1S = e + (1 = 7e)de.

Ve =

Bidirectional Prototype Alignment. Inspired form PCT [10]], we align target features and global
prototypes with bidirectional soft assignments: target—prototype and prototype—target. Let c(u, f) =

1- Wﬁfl\ be the cosine dissimilarity. Using class-prior weights p(u&) and softmax assignments
7(uS |£]") (over classes) and 7 (f] | u') (over batch) as in PCT, the bidirectional transport loss is

C B
L"bp :E{fJT}[ZTF He |fT /J/c 7fT) Z Zﬂ- fT|:uc :u’c 7fT):| (2)
c=1 c=1 Jj=1

which discourages collapse and promotes balanced class coverage. We estimate p(u$) with a
lightweight EM update from posteriors on the target batch:

P E) = (1 BO)pO (8 + 5 (5 Zw“ E1E0).

using a decaying $*); for balanced targets we keep p(pS) uniform. Combining with direct
source—target prototype alignment (Eq.[I] & Eq.[2]), our prototype objective is

£prolo = £direct + £bp~ 3

Adversarial Domain Adaptation. We further incorporate adversarial learning to promote domain-
invariant features. A feature extractor f(-), classifier g(-), and domain discriminator D(-) are trained
jointly: D distinguishes source vs. target, while f is optimized to confuse D. The supervised and
adversarial losses are:

ﬁsup = E(mb yS)~Ds Ece( (f(%;)), y;)

M
Luae =Y (Bazrs, 10g[D(F ()] + Bty logll = D(f(a))]) - @

k=1

We also adopt the Minimum Class Confusion (MCC) loss [17] to regularize unlabeled target predic-
tions without relying on pseudo-labels:

Lunsup = LMCC(}A/t)a ﬁ = g(f(Xt)) (5)

The Final Objective. At the end of the approach, let us integrate all of these losses together, i.e, the
prototype loss in Eq. [3] ' supervised classification loss Ls,,;, domain adversarial loss L4, described
in Eq. [f]and the unsupervised loss for the unlabeled target domain in Fq.[5] Finally, we can obtain
the final objective as follows:

ﬁtotal = )\1 £sup + >\2£adv + )\3‘Cunsup + >\4‘Cproto' (6)

Here, \’s are the loss scaling coefficients.

4 Experiments

Result Analysis. We conduct experiments on four widely-used public HAR datasets: Opportu-
nity [18],SBHAR [19],WISDM [20] and PAMAP?2 [21]. We compare DuLPA against recent domain
adaptation methods across four HAR datasets, with results summarized in Table Overall, DuLPA
consistently achieves the best performance, surpassing strong baselines such as prototype-based
PCT, domain alignment approaches like DWLR and pDAR, and multi-source adaptation methods
like CoDATs and SWL-Adapt. Notably, DuLPA delivers substantial improvements on challenging
smartphone-based datasets, outperforming the closest competitor by +5.34% on Opportunity and
+1.24% on WISDM. Figure 3| a) further illustrates that our approach yields well-separated activity
clusters and strong source—target feature alignmest.
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Model Opportunity SBHAR WISDM PAMAP2
CoDATs (KDD’20)[22] 61.79£2.87 78.82%1.15 61471597 88.20%3.15
PCT (NeurIPS’21) [10] 68.861+4.09  88.67+1.13  68.67£6.16  90.6741.94

DWLR (IJCAT"24)[8] 69.16 87.33 71.15 93.17
SWL-Adapt (AAAI23)[7] 7031 +2.66  85.624£0.97  72.98+4.82  96.9842.82

1DAR (ICDM’24) [23] 66.25 82.97 77.98 95.14
DuLPA (ours) 75.65 £ 248 9091+ 0.81 79.74 +4.58 98.41+ 1.78

Table 1: Overall performance (macro-F1, in %) of DuLPA and baselines. The top value is highlighted
in bold blue and the second best in green with underline. Standard deviations (xstd in %) indicate
result consistency.

Handling Class Imbalance with Convex Target Domain 1 Target Domain 2
Weighting. We assess the effectiveness of our
convex weighting strategy in navigating class im-
balance, as shown in Figure Ekh). Gini coeffi-
cients (0.31, 0.30, 0.42, 0.34 for Users 1-4) high-
light varying imbalance levels, with User 3 being
the most skewed. Jensen-Shannon Divergence T T T T
(JSD) results confirm our method’s robustness, :

s : -]

Class View
[ 4

achieving reductions of 64.3%, 68.5%, and 44.6% E ' R Y AR 4
when adapting Users 1, 2, and 4 to User 3, respec- | A& N & - g
tively. The largest improvement (68.5%) occurs ike e L TR ¥
when bridging from the most balanced (User 2) to 8 A B v
the most imbalanced (User 3), demonstrating dy- = -

namic calibration of source importance. Overall, ° Source = Target

convex weighting effectively addresses cross-user (a) SBHAR feature visualization
label imbalance in UDA.

4.1 Ablation Study. To assess DuLPA’s core User 1 User 3 S0 mprove by 64.3%) - _User 2 > Uer 3 50

components, we analyze the impact of convex
weighting and BLUP-based fusion (Table [J). The
baseline encoder shows moderate performance,
while convex weighting yields substantial gains
(e.g., +8.58% on Opportunity) by mitigating la- User -5 User3 (S0 mproved by 4469 G ConidetsofUsrs (rom lss dsiution
bel shifts. BLUP-based fusion also improves re- - -

sults, particularly on WISDM (+5.00%). Com-
bining both delivers the best performance across
all datasets; for instance, on SBHAR, their inte-

/,’_c’/'?'\\\v. .

” "I/ \

gration boosts macro-F1 by 6.24% over convex T sy Uy Userd
weighting alone, confirming their complementary (b) Opportunity distribution alignment
benefits.

Figure 3: Experimental results analysis.

Encoder Convex BLUP Opportunity WISDM SBHAR PAMAP2
Only Weighting Fusion macro-F1 macro-F1 macro-F1 macro-F1

v X X 6254 7167 8486  90.17
v i X 7112 7829 8867  95.19
v X V6567 7667 8367  91.28
v v v 7565 7974 9091  97.14

Table 2: Component Analysis of DuLPA.
S Conclusion

We proposed DuLPA, an unsupervised domain adaptation framework with dual-level prototype
learning for wearable based human activity recognition. At the base level, we align sources to the
target using convex reweighting to handle class-prior shift, adaptively modulating each source’s
contribution. At the upper level, a BLUP-inspired fusion builds global prototypes by weighting
sources via within- and between-domain variability, strengthening transfer. Extensive experiments
on four benchmark datasets demonstrate DuLPA’s superior performance and its effectiveness in
cross-user adaptation for wearable human activity recognition. Our findings suggest that DuLPA
offers a promising solution for personalized activity recognition in scenarios with unlabeled data for
new users. Supplementary material is attached after the reference.
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Figure 4: (a) Traditional UDA approach treats source domains as a homogeneous domain, ignoring
individual variations among source users and label distribution shifts, (b) DuLPA: explicitly models
inter-user variability based on each source domain’s reliability with tackled label shifts, resulting in
more effective knowledge transfer.

Supplementary Material for DulLPA

Dataset Description. We conduct extensive experiments on four widely-used public HAR datasets:
Opportunity [18]: Contains recordings from 4 users performing 5 daily activities in naturalistic
settings. Each user performed activities for 15-25 minutes without activity-specific instructions,
resulting in highly personalized movement patterns. SBHAR [19]]: Includes data from 30 users
performing 6 primary activities and 6 transitional activities (e.g., sit-to-stand). The dataset comprises
approximately 5 hours of recording, capturing diverse activity execution styles across participants.
WISDM [20]]: Features 36 users performing 6 common activities (walking, jogging, sitting, standing,
climbing up, and climbing down) for approximately 3 minutes each, collected at a sampling rate of
20Hz from smartphone accelerometers. PAMAP2 [21]: Consists of data from 9 subjects performing
12 activities while wearing 3 inertial measurement units (IMUs), offering a multi-sensor perspective
on activity recognition challenges.

Experimental Settings. Following the preprocessing protocol established in [7]], we removed
invalid values and addressed missing data through linear interpolation. All sensor channels were
normalized to the range [-1, 1], and data segmentation was performed using a sliding window
approach with the majority class assigned as the window label. For evaluation, we employed leave-
one-subject-out cross-validation for the Opportunity dataset due to its limited number of participants.
For SBHAR, WISDM, and PAMAP2, we divided subjects into 2, 4, and 3 groups respectively,
conducting leave-one-group-out cross-validation to evaluate cross-user generalization more robustly.
Results reported represent the average performance across all validation groups as suggested in [7].

Implementation Details. We implement our method using the Pytorch Lightning framework.
For feature extraction, we use a ResNet backbone [24] tailored for time series data. The classifier
component consists of two feed-forward linear layers. We use Adam optimizer for training with a
weight decay of 0.01 and an initial learning rate of 0.001. A cosine learning rate scheduler is adopted
to adjust the learning rate during training dynamically. In the direct prototype alignment stage, the
domain-specific prototype, denoted as 157, is computed within each batch iteration. On the other
hand, the global prototype, ;& is updated at the end of each epoch to promote training stability.
We choose a ramp up strategy for loss weights A3 = \y = (He,% — 1) where e is the current
epoch and F is the total epochs. Hyperparameter optimization was performed for A\; and A\, using
a Bayesian optimization strategy. The ramp-up for A3, A4 stabilizes pseudo-label-dependent losses
early in training, while Bayesian-optimized A1, A2 adapt to dataset-specific needs.
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Figure 5: UMAP visualization of the target domain features. The stars are the global prototypes
learned from source domains.

Advantages of BLUP-based Fusion  Figure[J|reveals how our BLUP-based fusion method evolves
prototype representations across training epochs. By examining prototype positions (marked as stars)
relative to their class clusters, we observe that DuLPA’s BLUP-based fusion consistently generates
more centrally positioned prototypes that better capture class centroids. In contrast, both PCT [[10]]
and traditional averaging (where prototypes are calculated just by averaging corresponding class
features) approaches often generate prototypes that are influenced by domain-specific noise rather
than representing the genuine activity characteristics. This evidence confirms that our approach
effectively leverages statistically estimated within- and between-domain variance components to
synthesize more representative global prototypes, leading to improved adaptation performance.

Hyperparameter Sensitivity. Figure[f]demonstrates the impact of loss weight parameters (A3 for
unsupervised loss, A; for supervised loss) across all datasets. The model shows stable performance
when A\; > 0.3 (F1 scores >85% for SBHAR and PAMAP?), indicating robustness to supervised
loss weighting. For unsupervised loss, optimal performance occurs at A3 € [0.4,0.7], with WISDM
being most sensitive to variations. Notably, OPPORTUNITY maintains >80% F1 across all A3 values,
demonstrating the method’s adaptability to different weighting schemes.
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Figure 6: Loss weights Vs. Model performance.

Prototype quality comparison via silhouette scores (higher is better) across activity classes.
Dul PA (ours) consistently outperforms baselines, with particularly strong gains for complex mo-
tions: +37% for Downstairs and +30% for Upstairs versus traditional averaging, and +19% for
Jogging against PCT. The uniform improvements (+11-37%) demonstrate our method’s robustness
in capturing diverse activity patterns.
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Figure 7: Silhouette scores comparison across activity classes. Silhouette measures how well
prototypes belong to their clusters.

Class distribution across domains visualized via radar plots, with Gini coefficients quantifying
imbalance severity (higher values indicate greater skew). Domain 3 shows the most skewed distri-
bution (Gini=0.42), while Domain 2 is the most balanced (Gini=0.30). The plots reveal significant
variations in activity class proportions (e.g., Class 2 dominance in Domain 3 vs. uniform spread in
Domain 2), highlighting the need for adaptive weighting across users.

Domain 1 (Gini Coef: 0.31)

Domain 2 (Gini Coef: 0.30)

Class 2 Class 2
Class 3 Class 3
Class 1 Class 1
Class 4 Class 4
Class 5 Class 5
Domain 3 (Gini Coef: 0.42) Domain 4 (Gini Coef: 0.34)
Class 2 Class 2
Class 3 Class 3
Class 1 = Class 1
Class 4 Class 4
Class 5 Class 5

Figure 8: Class distributions across 4 different domains (users) in the Opportunity dataset.
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Table 3: Major symbols and definitions.

Symbols Definitions

S, T The i-th source domain (user) and the target
domain (user).

M, C Total number of source domains and total num-
ber of activity classes.

x5 2T Input sensor data sample from source domain S;

and target domain 7'. (x € R"1*"2, where v; is
window size, v is time steps).

fo(+)y g6 (*) Feature extractor and classifier networks, respec-
tively.
d Dimension of the feature space produced by fy.

w2t ,ucT, z5, /Lf € Source, target (pseudo), noisy and global proto-

R? types for class c.

Y. € R,¢. € Reliability score (v.) and classifier weight vector
d

R (¢) used for global prototype interpolation.
I; € R4 is the identity matrix.
agl) eR Convex reweighting coefficient for source do-

main S; and class c to address label shift in di-
rect alignment.

w(-|-) Conditional probabilities replace hard assign-
ments.

6 Proof of BLUP Optimality

Because the coordinates of z¢ € R are independent and identically distributed under the isotropic
variance assumption, it suffices to prove the result for a single coordinate. We omit the superscript ¢
and coordinate index for clarity.

Setup. Let p1; € R denote the scalar observation from domain ¢, following the model
pi =0+mn;, Elu] =46, Var(u) =,

where v; = 02 + 72 > ( is the sum of the within-domain variance and the between-domain variance
component.

‘We consider linear unbiased estimators of 6 of the form

M M
00 = Z a;lt;, subject to Z a; = 1.
i=1 i=1

-~

The unbiasedness constraint follows since E[00] = . a;E[w;] =0, a;.

Variance of the estimator. Because the y; are uncorrelated,

M
Var(&g) = Za?vi.
i=1

-~

Our goal is to choose {a;} to minimize Var(66) subjectto ), a; = 1.

Lagrange multiplier solution. We solve the constrained minimization using a Lagrange multiplier A:

M M
Lay,...,ap, \) = Za?vi - (Zai - 1) )
i=1 i=1

Setting partial derivatives with respect to a; to zero yields

oL A
= = 2a;v; — A = i = T
94, av; —A=0 = a 50,

Applying the constraint Zf\il a; =1 gives

1=1 M.

geeey

M

A 2
22”:1 = A== 71
i=1 Vi 2j=1Y
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247

248
249

Therefore,
-1
v, .
a;, = ——+——, 1=1,...

M -1 ’
Zj:lv‘ !

Resulting estimator. The minimum-variance unbiased estimator is thus

M.

b

M M 1
~ E i—1 Vi M
Z —1
i=1 D im1 Vi

where v; = 02 + 72. This coincides with the diagonal generalized least squares (GLS) solution and
is the best linear unbiased predictor (BLUP) for € in the scalar case.

Noisy Prototype BLUP-based
3“ 0o, *1 Fusion Global Prototype

° *‘/—} G
L RThs 2 e
Source Domain 1 ‘ .u‘ —’*d
° %
x i

Source Domain 2

Alignment

c
€0 ¢ 23

Aor—— I

Source Domain3  Reweighting Coeffecient of?
where ie{1,2,3}

Target Domain

Figure 9: Global Prototype Estimation Process
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