
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SPEAR: A Structure-Preserving Manipulation Method for Graph
Backdoor Attacks

Anonymous Author(s)

Abstract
Graph Neural Networks (GNNs) are vulnerable to backdoor attacks,
where adversaries implant malicious triggers to manipulate model
predictions. Existing graph backdoor attacks are susceptible to
defense mechanisms or robust classifiers because they rely on sub-
graph injection or structural perturbations, e.g., creating additional
edges to attach backdoor triggers to the original graph. To enhance
the stealthiness of graph backdoors, we propose SPEAR, a novel
structure-preserving graph backdoor attack that avoids modifying
the graph’s topology. SPEAR operates within a limited attack budget
by selectively perturbing node attributes while ensuring the trig-
gers exert significant influence through a global importance-driven
feature selection strategy. Additionally, a neighborhood-aware trig-
ger generator is employed to underpin a high attack success rate
by utilizing semantic information from the neighborhood. SPEAR
amplifies effectiveness and stealthiness by combining subtle yet
impactful attribute manipulation with a refined trigger genera-
tion mechanism. Extensive experiments demonstrate that SPEAR
achieves state-of-the-art effectiveness in bypassing defenses on real-
world datasets, establishing it as a potent and stealthy backdoor
attack for graph-based tasks.

CCS Concepts
• Computing methodologies → Machine learning; • Security
and privacy;

Keywords
Adversarial Attack, Backdoor Attack, Graph Neural Network

ACM Reference Format:
Anonymous Author(s). 2018. SPEAR: A Structure-Preserving Manipula-
tion Method for Graph Backdoor Attacks. In Proceedings of Make sure
to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 10 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
Graph Neural Networks (GNNs) have become an indispensable tool
for learning and extracting insights from graph-structured data [2,
24, 31, 40], which is prevalent in many real-world domains such as
social networks, molecular biology, and financial systems [3, 10, 15,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

42]. The coremechanism that drives the success of GNNs ismessage-
passing, where the model iteratively aggregates information from
each node’s neighbors, producing node representations that encode
both local structure and feature information. This capability has
led GNNs to excel in various tasks, including node classification,
graph classification, and link prediction [16, 17, 34, 35], etc.

Recent research [7, 32, 37] has shown that GNNs are vulnera-
ble to backdoor attacks, which pose significant threats in sensitive
applications like fraud detection, cybersecurity, and healthcare. In
backdoor attacks, adversaries implant backdoors by injecting ma-
licious triggers into the target nodes and manipulating the labels
of these nodes to a target class. When a GNN is trained on the
dataset poisoned with these triggers, it easily learns the associa-
tion between the trigger and the manipulated class and is named
backdoored GNN. When test samples containing the trigger are
presented to the backdoored GNN, the backdoor attack is deemed
successful if the backdoored GNN misclassifies the test samples
associated with the trigger to the target class.

In backdoor attacks, triggers are typically constructed with the
basic elements of data samples. Analogously to how pixel-level
visual patterns serve as triggers in computer vision [4, 12] and
word-level token-based triggers in NLP [21, 22], subgraphs are
natural triggers in graph data, where nodes and edges form the
fundamental building blocks [7, 32, 37]. For instance, SBA [37] is a
pioneering work that uses random or sampled subgraphs as triggers,
though its attack effectiveness is limited. GTA [32] introduces a
learnable trigger generator, which adapts subgraphs to specific
samples, significantly improving attack performance. To evade
detection, other approaches such as UGBA [7] and DPGBA [38]
integrate regularization terms into thier loss functions, allowing
them to bypass certain defense mechanisms. Beyond subgraph-
based triggers, other methods such as NFTA [5], perturb both node
features and graph structures to implant triggers. The implantation
of these triggers is typically categorized as local neighborhood
manipulation.

While existing graph backdoor attacks have demonstrated strong
performance, implanting triggers via local neighborhood manip-
ulation may hinder their stealthiness, i.e., the ability to remain
undetected and bypass defense mechanisms. The effectiveness of
the local neighborhood manipulation relies on the malicious edges
that link the triggers to the clean graph. Unlike the continuous and
subtle perturbations typical of attribute manipulation, these edges
are discrete and structurally conspicuous, making it considerably
more challenging to maintain a high level of stealthiness for the
attack. These anomalous edges, akin to a crack in the backdoor,
provide clear entry points for defense mechanisms to exploit. The
results of our empirical study in Table 1 indicate that neighborhood
perturbation-based attacks are vulnerable to at least one defense
strategy, whether anomalous edge detection or robust downstream
classifiers.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

To overcome these limitations, designing a backdoor attack that
implants triggers without altering the graph’s topology presents a
promising solution to circumvent the creation of anomalous edges.
The challenges of developing such an attack lie in two aspects. First,
the budget for node attribute manipulation is limited. Although
routine in many attacks, performing all-dimensional feature pertur-
bation or generalization is costly and often infeasible in real-world
scenarios where security and privacy are major concerns. For ex-
ample, in financial systems, where nodes represent participants
and edges represent transactions, modifying sensitive attributes
such as credit records is impractical and likely to trigger alarms
within regulatory systems. Thus, practical constraints demand a
smaller attack budget, allowing only perturbations in limited fea-
ture dimensions. Second, the manipulated node attributes should be
reasonable. With a limited attack budget, minimizing modifications
is imperative to maintain the trigger’s stealthiness and restraining
significant semantic changes.

To tackle these issues, we propose an approach named SPEAR
(Structure-PresErving grAph backdooR attack). First, to maximize
the efficiency of the attack budget, we focus on effectively selecting
poisoned nodes by examining the variety and prediction uncertainty
of candidate nodes. Second, to ensure that the triggers exert signifi-
cant influence over the downstream classifier and generalize well
to unseen nodes, we implement a global importance-driven feature
selection strategy to identify the most impactful feature for trigger
implantation. The structure-preserving manipulation is achieved
via a trigger generator that leverages neighborhood-aware semantic
enrichment. In addition, we integrate a self-similarity regulariza-
tion term into the loss function to promote minimal modifications.
In summary, our main contributions can be summarized as follows:

• We empirically demonstrate the vulnerability of existing back-
door attacks to robust test models and anomalous edge detection,
leading to our proposal of a structure-preserving attack named
SPEAR.

• In SPEAR, we introduce a novel node selection method to miti-
gate antagonistic effects, a global importance-driven feature se-
lection method to enhance the effectiveness of trigger implanting,
along with a refined trigger generator to leverage neighborhood
information.

• Extensive experiments on real-world datasets with various test
and defense models demonstrate that SPEAR outperforms state-
of-the-art backdoor attacks.

2 Related Works
2.1 Adversarial Attacks against GNNs
Graph Neural Networks (GNNs) have emerged as indispensable
tools for complex graph-structured data analysis [18, 27, 29, 30],
showing exceptional capability in tasks like node classification
and link prediction [31, 34]. Foundational models such as Graph
Convolutional Networks (GCN) [16] and GraphSAGE [13] have
provided scalable solutions, driving the adoption of GNNs across
various fields, including fraud detection, biological systems, and
recommendation systems [3, 9, 15, 30, 42]. However, GNNs remain
vulnerable to adversarial attacks [8, 32, 37, 43].

Table 1: Attack success rate (%) of backdoor attacks under
different defenses on the dataset OGB-arxiv. The underlined
results indicate unsuccessful attacks compared with perfor-
mance without defense.

Defense SBA-Gen GTA UGBA DPGBA

None 47.52 74.99 97.39 94.65
OD 12.91 0.00 10.29 92.40

RIGBD 0.00 53.56 0.00 0.00
GNNGuard 40.03 0.94 97.29 91.22

Adversarial attacks on GNNs exploit the model’s inherent vul-
nerabilities, leading to either reduced accuracy or manipulated
predictions [25, 43, 44]. Broadly classified into evasion and poison-
ing attacks, these methods undermine GNNs at different stages.
Evasion attacks occur during the testing phase, where adver-
saries perturb the graph structure or node attributes of a trained
model [26, 28, 33]. Poisoning attacks, on the other hand, target
the training phase, where attackers tamper with training data to
mislead the model [19, 20, 44].

As a specific type of poisoning attacks, backdoor attacks have
emerged as a more insidious threat [32, 37]. These attacks implant
triggers that activate malicious behavior only under predefined
conditions, making them exceptionally difficult to detect and defend
against. This increasing threat elevates the urgency of addressing
the growing security concerns surrounding GNNs.

2.2 Backdoor Attacks and Defenses on GNNs
Backdoor attacks implant malicious triggers within training data,
causing the model to function normally under standard conditions
but to misbehave when encountering trigger-implanted samples.
Early approaches, such as in [37], introduced subgraph-based back-
doors, which implant universal triggers into training samples. More
recent advancements like GTA [32] focus on generating adaptive
triggers, tailoring them to individual samples to enhance attack ef-
fectiveness. To further improve stealthiness, methods like UGBA [7]
and DPGBA [38] incorporate regularization terms in the loss func-
tions, enabling these triggers to evade certain anomalous edge
detection mechanisms. NFTA [5], on the other hand, manipulates
both node features and graph structure as triggers. However, its
reliance on binary feature data limits its adaptability, especially in
real-world scenarios where feature types tend to be more complex.
Our proposed method is inherently different from these approaches
in the following ways: (i) We aim to manipulate the attribute space
to generate triggers that avoid producing anomalous edges; (ii) We
adopt a novel candidate selection method to adapt the attack to
real-world constraints.

In response to the growing threat of backdoor attacks, several
defense mechanisms have been proposed. Among these, anomalous
edge detection stands out as a promising approach. Prune [7] aims
to mitigate the effect of triggers by identifying and removing edges
that deviate from the homophily assumption. Another approach,
OD [38], leverages an autoencoder-based outlier detection method
to identify out-of-distribution edges by filtering those with the

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SPEAR: A Structure-Preserving Manipulation Method for Graph Backdoor Attacks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

highest reconstruction errors. By analyzing prediction variance
after removing anomalous edges, RIGBD [39] was developed to
identify compromised target nodes and mitigate their impact on
downstream tasks. Furthermore, robust GNN models such as GN-
NGuard [36] and RobustGCN [41] have demonstrated resistance
to backdoor attacks. Our proposed method is capable of bypassing
such defenses as we avoid introducing anomalous edges through
structure-preserving manipulation and constrain the magnitude of
manipulation to prevent substantial semantic shifts.

3 Preliminaries
3.1 Notions
Let G = (V, E,X) represent an attributed graph with 𝑁 nodes,
where V is the node set, E ⊆ V × V is the edge set, and X =

{𝑥1, . . . , 𝑥𝑁 } is the original feature matrix of nodes, where 𝑥𝑖 ∈ R𝑑

is the node feature of 𝑣𝑖 . The adjacency matrix of the graph G
is denoted by A ∈ {0, 1}𝑁×𝑁 , with A𝑖 𝑗 = 1 indicating an edge
between nodes 𝑣𝑖 and 𝑣 𝑗 . The neighborhood of node 𝑣𝑖 , including
the node itself, is denoted by N𝑖 . In this paper, we focus on an
inductive semi-supervised node classification task, where a small
set of nodes V𝐿 ⊆ V in the training graph G are provided with
labels fromL = {1, . . . ,𝐶}, and the test graphG𝑇 = (V𝑇 , E𝑇 ,X𝑇 ) is
not available during the training stage. LetY = {𝑦1, . . . , 𝑦𝑁 } denote
the ground-truth labels of nodes in the training graph, with Y𝐿

and Y𝑈 denoting the ground-truth labels of labeled and unlabeled
nodes, respectively.

3.2 Threat Model
In this paper, following prior studies [32, 37, 38], we focus on gray-
box backdoor attacks on node classification tasks. In a gray-box
scenario, attackers have access to the training data, including node
attributes, graph structure, and label information, but lack knowl-
edge of the specific architecture or parameters of the target model.
The objective of the backdoor attack is to manipulate the down-
stream GNN classifier into producing malicious outputs on poi-
soned samples, while behaving normally on clean ones. To achieve
this, attackers poison the training set by implanting triggers into
a set of poisoned nodes, then labeling them with the target class.
Ideally, this approach ensures that the backdoored GNN associates
the trigger with the target label, causing any node containing the
trigger to be misclassified as the target class. However, the effective-
ness of typical graph backdoor attack lies on introducing malicious
edges which can be detected then eliminated by defenses, making
it significantly harder to achieve a high level of stealthiness for the
attack.

3.3 Problem Formulation
We consider a standard semi-supervised inductive node classi-
fication task in which the goal is to learn a mapping function
𝑓 : V → L, where V denote nodes in the training graph com-
prising of labelled nodes V𝐿 and unlabelled ones V𝑈 , L denotes
the ground-truth labels, and 𝑓 is a GNN classifier. Following the
standard training scheme of graph backdoor attack, we first poi-
son the training set by implanting triggers in target nodes before
classifier is trained. We denote V𝑃 ⊂ V𝑈 as the poisoned samples
selected from unlabelled nodes in the training graph. For each node

𝑣𝑃
𝑖

∈ V𝑃 , we transform it into a poisoned sample by implanting
trigger in attribute space and alter its ground-truth label as shown
in Eq. (1):

𝑥𝑃𝑖 = IMPLANT(T𝜙 (𝑣𝑃𝑖 ), 𝑥𝑖 ), 𝑦𝑃𝑖 = 𝑦𝑡 , (1)

where 𝑥𝑖 is the original feature, which is transformed into 𝑥𝑃
𝑖
after

trigger implanting, T𝜙 (·) denotes the trigger generator that takes
𝑣𝑖 as input, and 𝑦𝑡 ∈ L is the target label assigned by the attacker.
Taking the attack budget into account, the transformation also need
to satisfy the following inequality:

𝑑∑︁
𝑘=1

I(𝑥𝑖 [𝑘] ≠ 𝑥𝑃𝑖 [𝑘]) ≤ Δ𝐷 , (2)

where Δ𝐷 is the budget for attribute manipulation, I(·) is an indi-
cator function, which equals 1 when 𝑥𝑖 [𝑘] ≠ 𝑥𝑃

𝑖
[𝑘]. We denote the

modified features as D.
Given a GNN classifier 𝑓 trained on the poisoned training set,

ideally, its behavior is manipulated so that:

𝑓 (𝑥 𝑗 ,N𝑗 ) = 𝑦 𝑗 , 𝑓 (𝑥𝑃𝑗 ,N𝑗 ) = 𝑦𝑡 , (3)

for node 𝑣 𝑗 from an unseen test graph G𝑇 that is sampled from the
same data distribution as the training graph. Following the setting of
gray-box attack, the architecture and parameters of 𝑓 are unknown
to the attacker. Therefore, we adopt surrogate model 𝑓𝜔 to simulate
the downstream classifier. In the empirical riskminimization setting,
the objective is to minimize the loss function in Eq. (4) on the
training graph:

L𝑠𝑢𝑟 (𝜔,𝜙) =
∑︁

𝑣𝑖 ∈V𝐿

𝑙 (𝑓𝜔 (𝑥𝑖 ,N𝑖 ), 𝑦𝑖 ) +
∑︁

𝑣𝑖 ∈V𝑃

𝑙 (𝑓𝜔 (𝑥𝑃𝑖 ,N𝑖 ), 𝑦𝑡 ), (4)

where 𝜔 denotes the learnable parameter of 𝑓𝜔 , and 𝑙 (·) is the cross
entropy loss. Our goal is to learn the selection of poisoned nodes
V𝑃 , the selection of feature dimensions D for trigger implanting,
and the trigger generator T𝜙 by solving a bi-level optimization
problem:

min
V𝑃 ,D,T𝜙

∑︁
𝑣𝑖 ∈𝑉

𝑙 (𝑓𝜔∗ (𝑥𝑃𝑖 ,N𝑖 ), 𝑦𝑡 ),

s.t.(𝑖) 𝜔∗ = arg min
𝜔

L𝑠𝑢𝑟 (𝜔,𝜙),

(𝑖𝑖) |V𝑃 | ≤ Δ𝑃 , T𝜙 (𝑣𝑖 ) ∈ U,

(5)

where Δ𝑃 is the budget of poisoned nodes in training set, and U
denotes all triggers that meet the stealthiness requirement. Con-
sidering that jointly optimizingV𝑃 , D, and T𝜙 is computationally
prohibitive, we break the optimization into two steps. First, we
heuristically select poisoned nodes and trigger implanting dimen-
sions as a preprocessing step to approximate the optimalV𝑃 and
D. Then, we fix these selections to optimize T𝜙 .

4 Methodology
4.1 Overall Architecture of SPEAR
The overall architecture of our framework revolves around three
key components, namely poisoned node selection, feature selec-
tion, and trigger generator. Effective poisoned node selection is
achieved by assessing both the class variety and prediction un-
certainty among unlabelled nodes, focusing on those that meet
criteria for both effectiveness and stealthiness. To ensure that the

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

+

-

Clean Training Graph  𝒢

+

-

Poisoned Node Selection

Feature Selection

Importance ↑

Uncertainty ↑

Class Variety ↑

Sensitivity ↓

Surrogate GNN Model 𝑓௦

Trigger Generator 𝓣𝒕

Structure-Preserving Manipulation

𝒢

𝜽𝒕

𝜃௦

+

-

Poisoned Training Graph 𝒢

𝒱

𝒟

Clean Test Graph

Classifier 
Trained on 𝒢

Poisoned Test Graph

Manipulated Prediction

+
+

+
+

-
-

𝒯௧

+
+

𝒩

+

Candidate Selection Inference

Figure 1: Overall framework of SPEAR. We use ‘+’ and ‘-’ to denote the annotated labels, with shades of orange and green
indicating the corresponding ground-truth labels. During the training phase (blue background), SPEAR selects target nodesV𝑃 ,
identifies high global-importance features D, and optimizes the trigger generator T𝑡 to produce the poisoned graph G𝑃 . The
downstream classifier is trained on G𝑃 and is embedded with backdoor consequently. In the inference phase (green background),
SPEAR implants triggers into the test graph to manipulate the classifier’s predictions.

implanted triggers exert an impactful influence on the downstream
classifier while maintaining generalizability to unseen data, we
employ a global importance-driven feature selection strategy. This
method identifies the most critical feature dimensions for trigger
implantation by assessing their overall contribution to the model’s
prediction. Lastly, the trigger generator is designed to perform
structure-preserving manipulations, utilizing semantic informa-
tion from the neighborhood of poisoned nodes. The generator also
incorporates a self-similarity normalization term into the loss func-
tion, promoting minimal perturbations to enhance stealthiness. The
overall framework is illustrated in Fig. 1.

4.2 Effective Poisoned Nodes Selection
Given the extensive and diverse nature of graph data, the selection
of poisoned nodes is critical for ensuring efficient use of the attack
budget. Accordingly, the selection of poisoned nodes should adhere
to two principles: (i) the chosen nodes should effectively deceive the
downstream classifier into associating the trigger with the poisoned
label; and (ii) manipulations of these nodes should not have adverse
effects on the classifier’s performance on clean data.

Therefore, we propose selecting samples with high classifica-
tion uncertainty within each category as poisoned nodes, which
provides several notable advantages. First, sampling from different
categories provides class variety which is crucial for successfully
implanting targeted backdoor triggers across different class distri-
butions. Second, this approach helps to avoid the creation of strong
outliers, thereby mitigating the negative impact on the classifier’s
generalization, ensuring that the clean accuracy is intact. Besides,
robust samples with high classification confidence demonstrate a
strong semantic correlation between their attributes and true labels,

leading to antagonistic effects between the original attributes and
implanted triggers [1, 11], making it more complex for the classifier
to learn the mapping between triggers and the target label.

Recall that poisoned nodes are selected from the unlabeled train-
ing set V𝑈 , in order to obtain the uncertainty and pseudo labels,
we train a GNN classifier 𝑓𝑝 on clean data based on Eq. (6):

L𝑝𝑟𝑒 =
∑︁

𝑣𝑖 ∈V𝐿

𝑙 (𝑓𝑝 (𝑥𝑖 ,N𝑖 ), 𝑦𝑖 ) . (6)

For each node 𝑣𝑖 in the training set, its classification uncertainty
and pseudo label are calculated as follows:

𝐻 (𝑣𝑖 ) = −
∑︁
𝑐∈L

𝑃𝑣𝑖 (𝑐 |𝑓𝑝 ) log 𝑃𝑣𝑖 (𝑐 |𝑓𝑝 ), 𝑌 (𝑣𝑖 ) = 𝑓𝑝 (𝑥𝑖 ,N𝑖 ), (7)

where L denotes label set, and 𝑃𝑣𝑖 (𝑐 |𝑓𝑝 ) indicates the confidence of
𝑓𝑝 that node 𝑣𝑖 belongs to class 𝑐 . For nodes assigned with pseudo-
label 𝑐 , we rank them in descending order by their classification
uncertainty, as defined in Eq. (7), and denote the resulting sequence
as 𝑇𝑐 . Given the size of poisoned nodes Δ𝑃 , the final selected node
set V𝑃 can be written as:

V𝑃 =
⋃
𝑐∈L

𝑇𝑐

[
:
⌊
Δ𝑃

𝐶

⌋ ]
. (8)

4.3 Global Importance-Driven Feature Selection
As mentioned in Sec. 1, performing all-dimension manipulation
is impractical in real-world scenarios, so we set a budget Δ𝐷 to
restrict the number of poisoned features, and introduce F to denote
sensitive features that are not allowed to be modified. Considering
that the dimension of node features is typically large for graph data,
as shown in Table 2, randomly selecting poisoned features exhibits

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

SPEAR: A Structure-Preserving Manipulation Method for Graph Backdoor Attacks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

high instability and may waste the attack budget. Therefore, we
need to determine which dimensions the triggers should be im-
planted in. To enhance the influence of the trigger on the prediction
result, we propose selecting the most important features, that is,
the features that contribute the most to the classifier’s prediction.

The challenge lies in selecting an appropriate criterion to mea-
sure the importance of features. One straightforward approach is
to compute Shapley values for feature combinations that satisfy the
budget for each node individually to decide the candidate feature
set. However, it is computationally expensive and fails to generalize
to test nodes that are unseen during the training phase. Additionally,
inconsistent trigger placement across different nodes can confuse
the classifier, weakening its ability to associate the trigger with the
target label. Hence, inspired by [6], we aggregate information from
all labeled nodes to compute the global importance of each feature,
and greedily select the top-Δ𝐷 most important features.

Given the complete feature setD𝑎 and aGNN classifier 𝑓𝑝 trained
on clean graph, we define the global predictive power of a subset
S as 𝑟 (S):

𝑟 (S) = 𝑇 −
∑︁

𝑣𝑖 ∈V𝐿

[
𝑙 (𝑓𝑝 (𝑥S𝑖 ,NS

𝑖 ), 𝑦𝑖 )
]
, (9)

where S ⊆ D𝑎 , 𝑇 represents a constant value for the mean predic-
tion loss of 𝑓𝑐 , 𝑥S𝑖 denotes the partial feature of node 𝑣𝑖 according to
S, and 𝑙 (·) is the cross entropy loss. For each feature𝑚, we compute
its global importance in Eq. (10) by calculating a weighted average
of the incremental changes when adding𝑚 to subsets S:

𝜙 (𝑚) = 1
|D𝑎 |

∑︁
𝑆⊆D𝑎\{𝑚}

(
|D𝑎 | − 1

|S|

)−1
(𝑟 (S ∪ {𝑚}) − 𝑟 (S)) .

(10)
After obtaining the global importance of the features, we sort them
in descending order and ensure the feature budget and sensitivity
constraints are met to obtain the selected feature set D:

D = (arg sort
𝑚

𝜙 (𝑚) \ F )[: Δ𝑑 ] . (11)

4.4 Neighborhood-Aware Trigger Generator
After deciding on the poisoned nodesV𝑃 and feature D, we pro-
ceed to implant the triggers into the training set. A key challenge in
backdoor attacks is generating effective triggers.We employ sample-
specific triggers generated by a learnable generator T𝑡 , which is
parameterized by 𝜃𝑡 . The optimization objective of the trigger gen-
erator is equivalent to solving a simplified optimization problem in
Eq. (5), formulated as:

min
𝜃𝑡

∑︁
𝑣𝑖 ∈V𝐿

𝑙 (𝑓𝑠∗ (𝜏𝑖 ,N𝑖 ), 𝑦𝑡 )

s.t. 𝜃∗𝑠 = arg min
𝜃𝑠

L𝑠𝑢𝑟 (𝜃𝑠 , 𝜃𝑡 ), T𝑡 (𝑣𝑖 ) ∈ U,

(12)

where 𝜃𝑠 is the learnable parameter of surrogate model 𝑓𝑠 and 𝜏𝑖
represents the node feature after trigger implanting. For simpli-
fication, we denote the loss function in the upper-level objective
as L𝑎𝑡𝑘 , which effectively guides T𝑡 to produce triggers that can
generalize to various nodes in V .

Existing backdoor attacks usually take attributes as input, yet
we argue that, in order to boost the trigger’s efficacy, the core idea

is to leverage neighborhood information from the target nodes,
ensuring the trigger is well-adapted to graph-structured data. For
each nodes 𝑣𝑖 , its neighborhood-aware encoding can be obtained
through an aggregation function:

ℎ𝑖 = AGGREGATE(𝑙 ) ({𝑥𝑢 : 𝑣𝑢 ∈ N (𝑙 )
𝑖

}), (13)

whereN (𝑙 )
𝑖

denotes the neighbors of node 𝑣𝑖 that are at most 𝑙 hops
away. Using ℎ𝑖 as input, the trigger for the node 𝑣𝑖 can be defined
as T𝑡 (ℎ𝑖 ). Then we can implant the trigger and obtain the poisoned
node attribute 𝜏𝑖 :

𝜏𝑖 = 𝑥𝑖 + T𝑡 (ℎ𝑖 ), (14)

where T𝑡 (ℎ𝑖 ) is constrained to be zero outside the features defined
byD. In our experiments, we observe that the choice of aggregation
function has a vital influence on the quality of triggers. Optimal
performance is achieved when the aggregation function and the
surrogate model share the same architecture and parameters. We
believe this effectiveness stems from the surrogate model closely
simulating the behavior of a backdoored model, thus ensuring that
the generated triggers are well-aligned with a manipulated model’s
decision-making process.

Even though limiting the number of perturbed features enhances
the trigger’s stealthiness, it still remains essential to further con-
strain the magnitude of these perturbations to prevent substantial
semantic shifts. Thus, we propose a self-similarity loss function,
defined as:

L𝑠𝑖𝑚 (𝜃𝑡 ) =
∑︁

𝑣𝑖 ∈V𝑃

− log
(
1 + 𝛼

(
1 − 𝑥𝑖 · 𝜏𝑖

∥𝑥𝑖 ∥2∥𝜏𝑖 ∥2

))
, (15)

where 𝛼 controls the contribution of the self-similarity loss.
Combining Eq. (12) and Eq. (15), the final objective can be for-

mulated as follows:

min
𝜃𝑡

L𝑎𝑡𝑘 (𝜃∗𝑠 , 𝜃𝑡 ) + L𝑠𝑖𝑚 (𝜃𝑡 )

s.t. 𝜃∗𝑠 = arg min
𝜃𝑠

L𝑠𝑢𝑟 (𝜃𝑠 , 𝜃𝑡 ).
(16)

Optimizing Eq. (16) directly can be computationally expensive, so
we solve it with an alternative optimization schema as [44] does.
In inner-level optimization, we update 𝜃𝑠 for 𝐸 iterations on G𝑃 to
accelerate the training process:

𝜃
(𝑒+1)
𝑠 = 𝜃

(𝑒 )
𝑠 − 𝛾𝑠∇𝜃𝑠L𝑠𝑢𝑟 (𝜃 (𝑒 )𝑠 , 𝜃𝑡 ), (17)

where 𝜃
(𝑒 )
𝑠 is the learnable parameter of surrogate model 𝑓𝑠 in

the 𝑒-th iteration, and 𝛾𝑠 is the corresponding learning rate. In
upper-level optimization, we fix 𝜃𝑠 and update 𝜃𝑡 using a first-order
approximation:

𝜃
(𝑘+1)
𝑡 = 𝜃

(𝑘 )
𝑡 − 𝛾𝑡∇𝜃𝑡

(
L𝑎𝑡𝑘 (𝜃∗𝑠 , 𝜃

(𝑘 )
𝑡 ) + L𝑠𝑖𝑚 (𝜃 (𝑘 )𝑡 )

)
, (18)

where 𝜃 (𝑘 )𝑡 is the learnable parameter of the trigger generator T𝑡
in the 𝑘-th iteration, 𝛾𝑡 is the learning rate of T𝑡 , and 𝜃∗𝑠 is he latest
value of 𝜃𝑠 obtained from the lower-level optimization. Once 𝜃𝑡 is
obtained, we use T𝑡 to update the poisoned graph G𝑃 . The detailed
training algorithm can be found in Algorithm 1.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 1 Training algorithm of SPEAR
Input: G – training graph; 𝑦𝑡 – target label; Δ𝑃 , Δ𝐷 – attack

budget; 𝛼 , 𝐸 – hyperparameter.
Output: G𝑃 – poisoned graph; 𝜃𝑡 – parameters of trigger gen-

erator.
1: Initialize 𝜃𝑝 , 𝜃𝑡 and 𝜃𝑠 ; Set G𝑃 = G;
2: while not converged do
3: Update 𝜃𝑝 according to Eq. (6);
4: end while
5: Select poisoned nodesV𝑃 according to Eq. (8);
6: Alter labels of nodes inV𝑃 to 𝑦𝑡 ;
7: Select implanting dimension D according to Eq. (11);
8: while not converged do
9: for 𝑒 = 1, 2, . . . , 𝐸 do
10: Update 𝜃𝑠 according to Eq. (17);
11: end for
12: Update 𝜃𝑡 according to Eq. (18);
13: Update G𝑃 according to 𝜃𝑡 ;
14: end while
15: return G𝑃 and 𝜃𝑡 ;

5 Experiments
In this section, we empirically analyze the effectiveness and stealth-
iness of SPEAR on various datasets. Specifically, we aim to answer
the following research questions:
• RQ1:Does SPEAR outperform the state-of-the-art backdoormod-

els under various defenses?
• RQ2: What is the impact of different attack budgets on SPEAR’s

performance?
• RQ3: How do the key components contribute to the attack per-

formance?
• RQ4: How does SPEAR balance training time and performance?

5.1 Experimental Settings
5.1.1 Datasets. To evaluate the effectiveness of our proposed
method, we conduct experiments on three widely used datasets, i.e.,
Cora, Pubmed [23], and OGB-arxiv [14], which correspond to small,
medium, and large graphs, respectively. The detailed statistics of
these datasets are presented in Table 2.

5.1.2 Baselines. We compare SPEAR against five representative
and state-of-the-art graph backdoor attack methods, namely SBA-
Samp, SBA-Gen [37], GTA [32], UGBA [7], and DPGBA [38].
To assess the stealthiness of SPEAR, we implement three graph
backdoor defenses: Prune [7], OD [38], and RIGBD [39]. Addition-
ally, to validate its stealthiness and transferability, we conduct tests
across various models on OGB-arxiv, including prominent GNN
architectures such as GCN [16], GraphSAGE [13], and GAT [27],
as well as robust GNNs likeGNNGuard [36] andRobustGCN [41].
Comprehensive details regarding these methods can be found in
Appendix B.

5.1.3 Evaluation. Following [7, 39], we perform experiments on
the inductive node classification task, where the test graph is un-
seen by both the attacker and the victim model before inference.
To evaluate effectiveness and evasiveness, we use two metrics: (i)

Table 2: Dataset statistics

Datasets Nodes Edges Features Classes

Cora 2,708 5,429 1,443 7
Pubmed 19,717 44,338 500 3

OGB-arxiv 169,343 1,166,243 128 40

attack success rate (ASR), which measures the likelihood that the
backdoored GNN classifies trigger-implanted nodes into the target
class 𝑦𝑡 ; and (ii) clean accuracy (CA), which measures the classifica-
tion accuracy of the backdoored GNN on clean nodes. We randomly
mask out 20% of the nodes in each dataset, with half designated as
target nodes for assessing attack performance and the other half
as clean test nodes to evaluate performance on clean data. The
remaining 80% of nodes form the training graph, where 10% of the
nodes are used for labeled training and another 10% for validation.

5.1.4 Implementation. For SPEAR, the rate of poisoned nodes in
training data is set to less than 1% for each dataset, and the feature
budget Δ𝐷 = max(0.02𝑑, 5), where 𝑑 is the dimension of node
attribute. For baseline attack methods, we adopt the same rate of
poisoned nodes, and set the trigger size to 3 with all-dimensional
manipulable generated nodes. A two-layer MLP is deployed as
trigger generator. As for the surrogate model, a two-layer GCN is
used for all attack methods. Each experiment is run five times per
architecture, and the average ASR and CA are reported. More details
can be found in Appendix A, and the implementation of SPEAR is
available at https://anonymous.4open.science/r/SPEAR-48EC.

5.2 Attack Performance
To answer RQ1, we evaluate SPEAR against baseline backdoor
attacks across three datasets with or without defenses. To further
assess the transferability and stealthiness, we vary the test models
from prominent GNN architectures to robust GNNs.

5.2.1 Comparison with Baseline Attacks. Table 3 shows the per-
formance on three datasets against baseline attacks. The top two
performances are highlighted in bold and underline. From this
experiment, we have the following observations:
• All baseline attacks fail to bypass at least one defense across all

datasets, revealing their vulnerabilities. Specifically, SBA-Samp
and its variant consistently exhibit lower ASRs, while GTA fails
under Prune and OD defenses in most cases. UGBA and DPGBA
benefit from specific countermeasures, showing resistance to
Prune and OD, respectively, but remain ineffective against other
defenses. In contrast, SPEAR shows significantly smaller ASR
drops across all defenses, highlighting its superior stealthiness.

• When no defense is applied, SPEAR consistently achieves compa-
rable or better ASR compared with baselines across all datasets,
demonstrating its effectiveness. This consistent performance
highlights SPEAR’s ability to implant effective and impactful
triggers without producing anomalous edges.

• SPEAR maintains CA levels similar to the baselines, and often
higher than those on the clean graph, both with and without de-
fense methods. This shows that the SPEAR-backed downstream

6

https://anonymous.4open.science/r/SPEAR-48EC


697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

SPEAR: A Structure-Preserving Manipulation Method for Graph Backdoor Attacks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Backdoor attack results (ASR (%) | CA (%)) under different defenses. For clean graphs (Clean), only clean accuracy is
reported. The top two performances in terms of ASR are highlighted in bold and underline.

Datasets Defense Clean SBA-Samp SBA-Gen GTA UGBA DPGBA SPEAR

Cora

None 83.49 29.52 | 82.49 44.65 | 82.96 91.79 | 84.07 96.05 | 83.70 95.67 | 82.96 98.85 | 83.96
Prune 81.48 16.70 | 82.98 19.56 | 83.19 0.06 | 84.04 97.41 | 82.82 16.97 | 78.52 97.78 | 82.66
OD 83.82 34.70 | 83.00 44.10 | 83.60 44.00 | 84.81 0.00 | 83.60 94.78 | 84.08 96.31 | 84.07

RIGBD 83.41 11.56 | 83.04 0.03 | 82.75 0.00 | 83.70 29.33 | 83.33 0.01 | 85.19 91.56 | 83.33

Pubmed

None 84.93 26.47 | 85.13 29.16 | 85.03 92.49 | 85.11 93.17 | 85.44 95.64 | 83.97 95.03 | 85.08
Prune 84.31 22.26 | 85.08 20.99 | 85.08 23.36 | 85.08 91.01 | 84.35 64.25 | 85.29 96.70 | 85.24
OD 85.27 21.05 | 85.29 28.45 | 85.44 85.39 | 85.34 20.84 | 84.53 91.99 | 84.37 92.04 | 85.64

RIGBD 84.86 0.00 | 84.35 0.00 | 84.71 0.01 | 84.32 0.01 | 85.13 0.01 | 84.32 95.33 | 84.78

OGB-arxiv

None 65.60 17.70 | 65.19 47.52 | 65.03 74.99 | 63.22 97.39 | 65.65 94.65 | 64.56 96.95 | 66.91
Prune 63.22 0.04 | 63.64 0.02 | 63.53 0.00 | 63.32 94.81 | 63.49 0.00 | 63.27 98.66 | 64.83
OD 65.71 12.91 | 64.18 40.03 | 64.22 0.00 | 64.73 10.29 | 65.03 92.84 | 65.12 88.92 | 66.17

RIGBD 65.53 0.00 | 64.08 0.00 | 63.97 53.56 | 64.03 0.00 | 65.21 0.00 | 65.24 96.20 | 65.96

Table 4: Backdoor attack results (ASR (%) | CA (%)) on different testmodels using theOGB-arxiv dataset. The top two performances
in terms of ASR are highlighted in bold and underline.

Test Models Clean SBA-Samp SBA-Gen GTA UGBA DPGBA SPEAR

GCN 65.60 17.70 | 65.19 47.52 | 65.03 74.99 | 63.22 97.39 | 65.65 94.65 | 64.56 96.95 | 66.91
GAT 66.25 49.75 | 65.06 94.86 | 65.01 1.72 | 63.00 96.53 | 65.08 95.88 | 64.79 96.86 | 64.56

GraphSAGE 65.86 21.64 | 65.47 40.49 | 65.44 96.67 | 65.20 96.61 | 65.20 78.30 | 65.33 97.93 | 65.50
GNNGuard 66.03 22.59 | 64.66 39.76 | 64.60 0.94 | 65.14 97.29 | 65.64 91.22 | 63.94 97.64 | 65.65
RobustGCN 61.36 56.50 | 62.03 55.03 | 64.02 86.86 | 61.01 94.93 | 61.19 89.90 | 61.08 95.99 | 61.37

classifier preserves its classification ability in clean samples, fur-
ther highlighting the stealthiness of SPEAR.

• We note that SPEAR’s ASR on OGB-arxiv against ODwas slightly
lower than that of DPGBA by about 4%. This discrepancy can be
attributed to DPGBA’s distribution-preserving module, which is
tailored for out-of-distribution detectors, enhancing its ability
to bypass OD. However, this advantage is less effective against
other defense mechanisms. In contrast, SPEAR focuses on over-
all stealthiness, enabling it to demonstrate resilience against a
broader range of defenses.

5.2.2 Performance with Different Test Models. Table 4 shows the
performance of SPEAR and baseline models with different test mod-
els on OGB-arxiv, including three mainstream GNN models (GCN,
GAT and GraphSAGE) and two robust GNN models (GNNGuard
and RobustGCN), to demonstrate its transferability and stealthiness.
From the table, we make the following observations:

• For the two robust GNN models, GNNGuard calculates edge
pruning probabilities through a non-linear transformation, while
RobustGCN uses Gaussian distributions to represent nodes and
employs a variance-based attention mechanism. Results demon-
strate that SPEAR is resistant to both GNNGuard and RobustGCN,
showcasing its ability to bypass robust GNNs that focus on either
graph structure or node attributes.

• SPEAR maintains leading ASR across all test models compared
to baseline attacks. Given that we fix the surrogate model to be
a 2-layer GCN while varying the test models, such performance
demonstrates SPEAR’s ability to generate triggers that effectively
adapt to different GNN architectures.

5.3 Impact of Attack Budget
To answer RQ2, we conduct experiments to evaluate the sensitiv-
ity of SPEAR under different attack budgets. Specifically, for V𝑃 ,
we vary the ratio of poisoned nodes in the training graph across
{0.05, 0.1, 0.2, 0.5, 1, 2, 5}%, and for D, we adjust the ratio of manip-
ulated features to {0.2, 0.5, 1, 2, 5, 10, 15}%, with at least one feature
manipulated. Fig. 2 shows the results on Pubmed and OGB-arxiv.
We only report attack success rate, as no notable changes in clean
accuracy were detected across all baselines and SPEAR. From Fig. 2
we can observe that:

• As the ratio of poisoned nodes grows, SPEAR’s ASR shows a
consistent increase on both datasets, highlighting that it can ef-
fectively leverage a larger attack budget to achieve better results.
Meanwhile, SPEAR maintains an ASR above 89% even with a
poisoned node ratio as low as 0.05%, showcasing its efficient use
of the attack budget.

• When varying the ratio of features budget D, similar trends
are observed. The ASR increases steadily as the proportion of

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

A
S

R
 (

%
)

Ratio of Poisoned Nodes (%)

 Pubmed

 OGB-arxiv

0.05 0.1   0.2  0.5  1   2      5

99

97

95

93

91

89
A

S
R

 (
%

)
Ratio of Poisoned Feature (%)

 Pubmed

 OGB-arxiv

0.2 0.5    1   2  5   10   15

99

97

95

93

91

89

Figure 2: Impact of size of attack budget.
perturbed features grows, indicating that SPEAR benefits from
manipulating more features. Even with a feature budget of just
1%, meaning that only 1 out of 128 features is manipulable in
OGB-arxiv, the attack remains highly effective. This confirms
that SPEAR can still be applied in real-world environments where
feature sensitivity is a critical concern.

5.4 Ablation Study
To answer RQ3, we conduct an ablation study to examine the con-
tributions of the key components in SPEAR: the node selection
module, the feature selection module, and the neighborhood-aware
mechanism in trigger generation. To evaluate the effectiveness of
node selection, we design a variant of SPEAR named SPEAR-RN,
which randomly selects poisoned nodes in the training graph. To
assess the contribution of the global importance-driven feature
selection strategy, we replace the original feature selection module
with random selection, naming it SPEAR-RF. We also introduce
a variant called SPEAR-NE, where an MLP is used to substitute
the aggregation function in Eq. (13) to evaluate the role of the
neighborhood-aware mechanism in trigger generation. To guaran-
tee fair comparisons, hyperparameters for each variant are tuned
according to the performance on validation set. Fig. 3 illustrates
the results, showing that:
• We observe a notable drop in ASR for SPEAR-NE compared to

SPEAR, with reductions of 22.47% on Cora, 4.48% on Pubmed,
and 1.14% on OGB-arxiv. This result highlights the crucial role
of the neighborhood-aware mechanism in SPEAR’s effectiveness.
We infer that the larger benefit observed on Cora arises from
its simple local structure and high homophily, which allow the
aggregation function to extract more relevant information and
thus enhancing trigger generation.

• SPEAR achieves higher ASR than its variants, SPEAR-RN and
SPEAR-RF, affirming the contributions of both the node selection
and feature selection modules. We notice that the advantage of
the global importance-driven feature selection method becomes
more pronounced as the feature size increases. This suggests that
the method is highly effective at identifying influential features
from large candidate sets, a critical capability for datasets with a
large number of features.

5.5 Trade-off between Time and Performance
To answer RQ4, we conduct experiments examining the trade-off
between the training time of the trigger generator and the average
ASR on Pubmed and OGB-arxiv. We compute the average ASR both

70

75

80

85

90

95

100

Cora Pubmed OGB-arxiv

A
S

R
 (

%
)

SPEAR-NE SPEAR-RN
SPEAR-RF SPEAR

Figure 3: Comparisons between SPEAR and its variants.
with and without defenses, following the setup in Sec. 5.2.1. For
the learnable trigger generators in SPEAR, DPGBA, UGBA, and
GTA, the same number of training epochs is used. On OGB-arxiv,
we adopt the simplified version of DPGBA, which is designed to
handle large-scale graphs. The experiments are performed on an
NVIDIA GeForce RTX 4090 with 24GB of memory, and the results
are shown in Fig. 4. Compared to other attacks with similar or
shorter training time, SPEAR significantly outperforms SBA-Gen
and GTA in terms of average ASR. In contrast, DPGBA and UGBA
require considerably more time for training the trigger generator,
e.g., DPGBA takes 391.98 seconds on Pubmed, making them 50.51×
and 4.84× slower than SPEAR, respectively. Overall, SPEAR strikes a
superior balance between attack success rate and training efficiency,
making it a more practical choice for real-world applications.

ିଵ  ଵ ଶ ଷ

8.E+00
4.E+02
4.E+01
7.E+00
1.E-01

SPEAR
DPGBA
UGBA
GTA
SBA-GEN

Log Scale Training Time (s) 

A
ve

ra
ge

 A
S

R
 (

%
)

100

80

60

40

20

(a) Pubmed

ିଵ  ଵ ଶ ଷ

2.E+01
8.E+02
1.E+02
3.E+01
2.E-01

SPEAR
DPGBA
UGBA
GTA
SBA-GEN

Log Scale Training Time (s) 

A
ve

ra
ge

 A
SR

 (
%

)

100

80

60

40

20

(b) OGB-arxiv

Figure 4: Training time of trigger generator vs. performance

6 Conclusion
In this work, we propose SPEAR, a novel structure-preserving back-
door attack designed to exploit the vulnerabilities of GNNs while
minimizing the risk to be detected. Unlike traditional backdoor
attacks that rely on structural perturbations, SPEAR preserves the
graph’s topology, focusing instead on perturbing node attributes.
By leveraging novel selection methods and neighborhood-aware
trigger generation, SPEAR effectively balances attack success rate
and stealthiness, making it particularly suited for sensitive graph-
based applications. Through extensive experiments on real-world
datasets, we demonstrated that SPEAR consistently outperforms
existing methods in both effectiveness and stealthiness, even under
rigorous defense mechanisms. Our work highlights the significant
threat posed by stealthy, structure-preserving backdoor attacks, par-
ticularly as GNNs are increasingly deployed in security-sensitive
domains. Future research may explore further optimizations in
trigger generation and investigate defenses specifically tailored to
detect such attribute-focused backdoor attacks.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

SPEAR: A Structure-Preserving Manipulation Method for Graph Backdoor Attacks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Zeyuan Allen-Zhu and Yuanzhi Li. 2022. Feature purification: How adversarial

training performs robust deep learning. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS). IEEE, 977–988.

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261 (2018).

[3] Pietro Bongini, Monica Bianchini, and Franco Scarselli. 2021. Molecular gen-
erative graph neural networks for drug discovery. Neurocomputing 450 (2021),
242–252.

[4] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[5] Yang Chen, Zhonglin Ye, Haixing Zhao, and Ying Wang. 2023. Feature-Based
Graph Backdoor Attack in the Node Classification Task. International Journal of
Intelligent Systems 2023, 1 (2023), 5418398.

[6] Ian Covert, Scott M Lundberg, and Su-In Lee. 2020. Understanding global feature
contributionswith additive importancemeasures. Advances in Neural Information
Processing Systems 33 (2020), 17212–17223.

[7] Enyan Dai, Minhua Lin, Xiang Zhang, and Suhang Wang. 2023. Unnoticeable
backdoor attacks on graph neural networks. In Proceedings of the ACM Web
Conference 2023. 2263–2273.

[8] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
2018. Adversarial attack on graph structured data. In International conference on
machine learning. PMLR, 1115–1124.

[9] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[10] Wenqi Fan, Yao Ma, Qing Li, Jianping Wang, Guoyong Cai, Jiliang Tang, and
Dawei Yin. 2020. A graph neural network framework for social recommendations.
IEEE Transactions on Knowledge and Data Engineering 34, 5 (2020), 2033–2047.

[11] Yinghua Gao, Yiming Li, Linghui Zhu, Dongxian Wu, Yong Jiang, and Shu-Tao
Xia. 2023. Not all samples are born equal: Towards effective clean-label backdoor
attacks. Pattern Recognition 139 (2023), 109512.

[12] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. Badnets:
Evaluating backdooring attacks on deep neural networks. IEEE Access 7 (2019),
47230–47244.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[14] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[15] Mengda Huang, Yang Liu, Xiang Ao, Kuan Li, Jianfeng Chi, Jinghua Feng, Hao
Yang, and Qing He. 2022. Auc-oriented graph neural network for fraud detection.
In Proceedings of the ACM web conference 2022. 1311–1321.

[16] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings.

[17] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. 2018. Graph classification
using structural attention. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1666–1674.

[18] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In 4th International Conference on Learning
Representations, ICLR 2016, May 2-4, 2016, Conference Track Proceedings.

[19] Xixun Lin, Chuan Zhou, Jia Wu, Hong Yang, Haibo Wang, Yanan Cao, and
Bin Wang. 2023. Exploratory adversarial attacks on graph neural networks for
semi-supervised node classification. Pattern Recognition 133 (2023), 109042.

[20] Zihan Liu, Yun Luo, Lirong Wu, Zicheng Liu, and Stan Z. Li. 2024. Towards
reasonable budget allocation in untargeted graph structure attacks via gradient
debias (NIPS ’22). Red Hook, NY, USA, Article 2028, 12 pages.

[21] Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun.
2020. Onion: A simple and effective defense against textual backdoor attacks.
arXiv preprint arXiv:2011.10369 (2020).

[22] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng
Wang, and Maosong Sun. 2021. Hidden killer: Invisible textual backdoor attacks
with syntactic trigger. arXiv preprint arXiv:2105.12400 (2021).

[23] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[24] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Extend-
ing high-dimensional data analysis to networks and other irregular domains.
IEEE signal processing magazine 30, 3 (2013), 83–98.

[25] Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, S Yu Philip, Lifang
He, and Bo Li. 2022. Adversarial attack and defense on graph data: A survey.
IEEE Transactions on Knowledge and Data Engineering 35, 8 (2022), 7693–7711.

[26] Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu, and Xueqi
Cheng. 2021. Single node injection attack against graph neural networks. In
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 1794–1803.

[27] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, et al. 2017. Graph attention networks. stat 1050, 20 (2017),
10–48550.

[28] Binghui Wang, Minhua Lin, Tianxiang Zhou, Pan Zhou, Ang Li, Meng Pang,
Hai Li, and Yiran Chen. 2024. Efficient, direct, and restricted black-box graph
evasion attacks to any-layer graph neural networks via influence function. In
Proceedings of the 17th ACM International Conference on Web Search and Data
Mining. 693–701.

[29] XiyuanWang and Muhan Zhang. 2022. How Powerful are Spectral Graph Neural
Networks. In Proceedings of the 39th International Conference onMachine Learning,
Vol. 162. 23341–23362.

[30] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[31] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[32] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. 2021. Graph backdoor. In
30th USENIX Security Symposium (USENIX Security 21). 1523–1540.

[33] He Zhang, Bang Wu, Xiangwen Yang, Chuan Zhou, Shuo Wang, Xingliang Yuan,
and Shirui Pan. 2021. Projective ranking: A transferable evasion attackmethod on
graph neural networks. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management. 3617–3621.

[34] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural
Networks. In Advances in Neural Information Processing Systems, Vol. 31.

[35] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An
end-to-end deep learning architecture for graph classification. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 32.

[36] Xiang Zhang and Marinka Zitnik. 2020. Gnnguard: Defending graph neural
networks against adversarial attacks. Advances in neural information processing
systems 33 (2020), 9263–9275.

[37] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2021. Back-
door attacks to graph neural networks. In Proceedings of the 26th ACM Symposium
on Access Control Models and Technologies. 15–26.

[38] Zhiwei Zhang, Minhua Lin, Enyan Dai, and Suhang Wang. 2024. Rethinking
graph backdoor attacks: A distribution-preserving perspective. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
4386–4397.

[39] Zhiwei Zhang, Minhua Lin, Junjie Xu, Zongyu Wu, Enyan Dai, and Suhang
Wang. 2024. Robustness-Inspired Defense Against Backdoor Attacks on Graph
Neural Networks. arXiv preprint arXiv:2406.09836 (2024).

[40] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI open 1 (2020), 57–81.

[41] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust graph
convolutional networks against adversarial attacks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1399–1407.

[42] Xiaoqian Zhu, Xiang Ao, Zidi Qin, Yanpeng Chang, Yang Liu, Qing He, and
Jianping Li. 2021. Intelligent financial fraud detection practices in post-pandemic
era. The Innovation 2, 4 (2021).

[43] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
attacks on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 2847–2856.

[44] Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann.
2020. Adversarial attacks on graph neural networks: Perturbations and their
patterns. ACM Transactions on Knowledge Discovery from Data (TKDD) 14, 5
(2020), 1–31.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Detailed Implementation
A.1 Hyperparameters
All hyperparameters are tuned based on the loss and accuracy of
the validation set. For SPEAR, the parameter 𝛼 , which controls
the contribution of the self-similarity loss, is tuned from {0.1, 1,
3, 5, . . . , 15}, and 𝐸, the number of repeated iterations for inner-
optimization, is tuned from {1, 3, 5, 7, 9, 11}. A 2-layer GCN is
deployed as 𝑓𝑝 , and a 2-layer MLP is used as the trigger generator,
both with hidden dimensions set to 32. Another 2-layer GCN is
deployed as the surrogate model, which also acts as the aggregator
providing input for the trigger generator. Its hidden dimension 𝑁ℎ ,
which determines the level of information compression in the input
to the generator, is tuned from {16, 32, 64, 80, 128}. The learning rate
𝛾 for the surrogate and trigger generator is tuned from {0.0001, 0.001,
0.005, 0.01}. The ratio of poisoned nodes Δ𝑃 in training set is tuned
from {0.5, 1}% for experiments in Sec. 5.2.1, with all baseline attack
methods using the same poisoning rate as SPEAR to guarantee a
fair comparison. The specific choice of hyperparameters is listed in
Table 5 and 6 as follows:

Table 5: Hyperarameter settings for different models.

Model 𝛼 E Δ𝑃

GCN 0.1 1 0.5
GAT 0.1 1 0.5

GraphSAGE 0.1 1 0.5
GNNGuard 1 2 1
RobustGCN 5 2 1

Prune 1/1/5 2 0.5
OD 5/1/15 3 1

RIGBA 1/1/5 3 1

Table 6: Hyperparameters settings for different datasets.

Dataset 𝑁ℎ 𝛾

Cora 80 0.001
Pubmed 64 0.01

OGB-arxiv 32 0.01

In Table 5, the values separated by ‘/’ correspond to the parameter
settings for Cora, Pubmed, and OGB-arxiv, respectively.

A.2 Computing infrastructures
We implement the proposed methods with Numpy 1.26.0, PyTorch
2.2.1 and PyTorch Geometric 2.5.1. We conduct the experiments on
a Linux server with an Intel Xeon E5-2680 v4 CPU and a NVIDIA
GeForce RTX 4090 GPU with 24GB memory.

B Baselines Information
In this section, we provide a brief overview of the baseline methods
used in our experiments.

• SBA-Samp & SBA-Gen [37]: SBA-Samp injects fixed subgraph
triggers, while SBA-Gen enhances this by generating adaptive
triggers. These methods face challenges in high ASR and are
susceptible to defense mechanisms such as pruning.

• GTA [32]: GTA introduces a trigger generator that tailors triggers
to specific samples, improving attack effectiveness but vulnerable
to several defense mechanisms.

• UGBA [7]: UGBA selects poisoned nodes based on representa-
tiveness and generates triggers that obey the homophily assump-
tion, maintaining high stealth under a limited budget.

• DPGBA [38]: DPGBA improves by ensuring that triggers re-
main within distribution through adversarial learning, further
reducing detectability.

• Prune [7]: Prune removes dissimilar edges to disrupt the effec-
tiveness of backdoor triggers by filtering out suspicious connec-
tions.

• OD [38]: OD leverages autoencoders for outlier detection, iden-
tifying and removing out-of-distribution edges to mitigate back-
door attacks.

• RIGBD [39]: RIGBD detects poisoned nodes by leveraging ran-
dom edge dropping and the prediction variance, offering strong
defense while maintaining high clean accuracy.

• GCN [16]: A standard GNN widely used for node classification,
serving as a benchmark for graph-based tasks.

• GAT [27]: GAT assigns different attention weights to neigh-
boring nodes, enabling more expressive and flexibility without
requiring prior knowledge of the global graph structure.

• GraphSAGE [13]: GraphSAGE generates inductive node embed-
dings by sampling and aggregating information from local node
neighborhoods.

• RobustGCN [41]: RobustGCN models nodes with Gaussian dis-
tributions and employs a variance-based attention mechanism
to reduce the spread of adversarial attacks through the network.

• GNNGuard [36]: GNNGuard dynamically reweights edges based
on cosine similarity, pruning adversarial connections and improv-
ing the model’s robustness against attacks.

10


	Abstract
	1 Introduction
	2 Related Works
	2.1 Adversarial Attacks against GNNs
	2.2 Backdoor Attacks and Defenses on GNNs

	3 Preliminaries
	3.1 Notions
	3.2 Threat Model
	3.3 Problem Formulation

	4 Methodology
	4.1 Overall Architecture of SPEAR
	4.2 Effective Poisoned Nodes Selection
	4.3 Global Importance-Driven Feature Selection
	4.4 Neighborhood-Aware Trigger Generator

	5 Experiments
	5.1 Experimental Settings
	5.2 Attack Performance
	5.3 Impact of Attack Budget
	5.4 Ablation Study
	5.5 Trade-off between Time and Performance

	6 Conclusion
	References
	A Detailed Implementation
	A.1 Hyperparameters
	A.2 Computing infrastructures

	B Baselines Information

