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Abstract
Probabilistic Circuits (PCs) are tractable repre-
sentations of probability distributions allowing
for exact and efficient computation of likelihoods
and marginals. Recent advancements have im-
proved the scalability of PCs either by leveraging
their sparse properties or through the use of ten-
sorized operations for better hardware utilization.
However, no existing method fully exploits both
aspects simultaneously. In this paper, we propose
a novel sparse and structured parameterization
for the sum blocks in PCs. By replacing dense
matrices with sparse Monarch matrices, we signif-
icantly reduce the memory and computation costs,
enabling unprecedented scaling of PCs. From a
theory perspective, our construction arises natu-
rally from circuit multiplication; from a practi-
cal perspective, compared to previous efforts on
scaling up tractable probabilistic models, our ap-
proach not only achieves state-of-the-art genera-
tive modeling performance on challenging bench-
marks like Text8, LM1B and ImageNet, but also
demonstrates superior scaling behavior, achieving
the same performance with substantially less com-
pute as measured by the number of floating-point
operations (FLOPs) during training.

1. Introduction
Probabilistic circuits (PCs) are a unifying representation
of tractable probability distributions through computation
graphs (Choi et al., 2020; Darwiche, 2003). The key prop-
erty that separates PCs from other deep generative models
such as flow-based models (Papamakarios et al., 2021) and
VAEs (Kingma & Welling, 2013) is their tractability. This
property enables PCs to compute various queries, including
marginal probabilities, exactly and efficiently (Vergari et al.,
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2021). The tractability of PCs have been exploited in a
number of domains, including fair and explainable machine
learning (Choi et al., 2021; Wang et al., 2021b), causal infer-
ence (Wang et al., 2021a; Zečević et al., 2021; Wang et al.,
2022; Wang & Kwiatkowska, 2023), controllable generation
(Liu et al., 2024b; Zhang et al., 2024), and neuro-symbolic
AI (Ahmed et al., 2022; Maene et al., 2024).

Recent advancements in PC learning techniques (Liu et al.,
2023b; Gala et al., 2024) and efficient tensorized implemen-
tations (Peharz et al., 2020; Dang et al., 2021; Liu et al.,
2024a) have significantly enhanced the expressiveness and
scalability of PCs. However, to further boost the perfor-
mance of PCs, simply scaling up the model size is insuffi-
cient; we need to better utilize the available capacity. To this
end, Dang et al. (2022) found that learned PCs empirically
exhibit significant sparsity, and leveraged this observation
to iteratively learn PC structures through pruning and grow-
ing. However, the sparse connections learned are arbitrary,
making them difficult to tensorize and parallelize effectively.

In this paper, we focus on leveraging structured sparse pa-
rameterizations for the sum blocks in PCs, which represent
linear maps. To the best of our knowledge, all previous cir-
cuit architectures utilizing tensorized operations have relied
on dense matrices to parameterize these linear maps (Peharz
et al., 2020), which incur a quadratic cost in the number of
nodes. Inspired by recent advances in low-rank approxima-
tions for transformers (Hu et al., 2022), we propose a novel,
more efficient parameterization for the sum blocks.

We begin by illustrating how our parameterization naturally
arises from circuit multiplication. Previous analysis (Shen
et al., 2016; Vergari et al., 2021) showed that multiplying
two (compatible) circuits could result in a quadratic increase
in size in the worst case. However, we observe that the linear
maps in the sum blocks generated by multiplication are not
dense but rather the Kronecker product of the linear maps
from the original blocks, which can be implemented more
efficiently. Further, by explicitly materializing this map as
interleaving sums and permutations, we identify an inter-
esting connection between these product circuits and some
recently introduced class of structured matrices including
Butterfly matrices (Dao et al., 2019) and Monarch matri-
ces (Dao et al., 2022). Building on this insight, we propose
replacing the dense linear maps in PCs with Monarch layers.
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In our empirical evaluation1, we demonstrate that by re-
placing dense matrices in PCs with structured Monarch
matrices, we are able to scale PCs to orders-of-magnitude
larger hidden sizes and, among a variety of tractable genera-
tive models, we are able to achieve state-of-the-art density
estimation performance on various benchmarks, including
ImageNet32/64 (Deng et al., 2009) for image modeling and
Text8 (Mahoney, 2011) and LM1B (Chelba et al., 2013) for
language modeling. Furthermore, we show that, compared
to circuits with dense layers, the ones with Monarch layers
yield significantly better scaling curves: they can achieve the
same performance with substantially fewer floating-point
operations (FLOPs) in training and inference.

2. Tensorized Probabilistic Circuits
Notation We use uppercase to denote variables (e.g. X)
and lowercase to denote values of variables (e.g. x). We use
boldface to denote sets of variables/values (e.g. X,x).

Definition 2.1 (Probabilistic Circuit). A PC C = (G,θ)
represents a joint probability distribution over random vari-
ables X through a directed acyclic (computation) graph
(DAG) G parameterized by θ. Specifically, the DAG G
consists of three types of nodes – sum, product, and leaf
nodes. Each leaf node n is associated with a non-negative
function fn(Xn) over some variable Xn, called its scope
Xn := {Xn}. The scope of any sum or product node n
is defined to be Xn :=

⋃
c∈ch(n) Xc, where ch(n) denotes

the children of n in G. Each node n represents a probability
distribution pn over its scope Xn, defined recursively by:

pn(Xn)=


fn(Xn) if n is a leaf node∏

c∈ch(n) pc(Xc) if n is a product node∑
c∈ch(n) θc|n · pc(Xc) if n is a sum node

where for each leaf node, function fn(Xn) represents a nor-
malized univariate probability mass/density function (e.g.
Categorical, Gaussian); and for every sum node n, θc|n is a
non-negative weight associated with the edge (n, c) in the
DAG. If

∑
c∈ch(n) θc|n = 1, then the PC computes a normal-

ized joint probability mass/density function. The function
represented by a PC, denoted pC(X), is the function repre-
sented by its root node; and the size of a PC, denoted |C|, is
the number of edges in its graph.

It is immediate from the definition that one can evaluate a
PC’s function with a single traversal through its computation
graph. The distinguishing feature of PCs compared to other
computation graphs such as neural networks is that one
can also efficiently compute marginals under the following
restrictions on the node scopes:

1Code available at https://github.com/wangben88/
MonarchCircuits

Definition 2.2 (Smoothness and Decomposability). A sum
node is smooth if all of its children have the same scope. A
product node is decomposable if its children have disjoint
scope. A PC is smooth (resp. decomposable) if all of its
sum (resp. product) nodes are smooth (resp. decomposable).

In practice, probabilistic circuit graphs are typically de-
signed in a tensorized manner, in which sets of nodes of the
same type (sum, product, leaf) and with the same scope are
grouped together as a block; the computation graph is then
specified through connections between the blocks (Peharz
et al., 2020; Liu et al., 2024a; Loconte et al., 2024a). We
write n to denote a node block and |n| for the number of
nodes in the block.
Definition 2.3 (Sum Block). A sum block n has a set of
child blocks {c(i)}mi=1, such that each sum node in the block
is connected to every node in each of the child blocks. We
can write W ∈ R|n|×(

∑m
i=1 |c(i)|) for the weight matrix.

Definition 2.4 (Product Block). A product block n has a set
of child blocks {c(i)}mi=1. We define two types of product
node block with different connectivity:

• Hadamard
⊙

: If |c(i)| = |n| for all i = 1, . . . , n,
then we define a Hadamard product block where
n=

⊙m
i=1 c

(i).

• Kronecker
⊗

: If |n| =
∏m

i=1 |c(i)|, then we can
define a Kronecker product node block where n =⊗m

i=1 c
(i).

Sum blocks represent parameterized linear maps, while
product blocks represent fixed multilinear maps. Typically,
for smooth and decomposable PCs, one builds the circuit
by alternating between sum and product blocks (i.e., chil-
dren of sum blocks are product blocks, children of product
blocks are sum/leaf blocks). In this paper, we focus on the
parameterization of the sum blocks, which is independent
from the choice of Hadamard or Kronecker product blocks
(we use Hadamard product blocks for our experiments).

Measuring the sizes of PCs The size of a probabilistic
circuit (number of edges) determines the number of FLOPS
needed for a forward pass. This can be roughly characterized
as a function of two parameters: the number of sum blocks
n, and the input/output dimension of the largest sum block,
which we call the hidden size h. The size of the circuit is
then bounded by O(nh2).

3. From Circuit Multiplication to Generalized
Monarch Matrices

In this section, we describe from first principles our con-
struction of PCs parameterized by (generalized) Monarch
matrices. Firstly, in Section 3.1, we focus on the funda-
mental operation of circuit multiplication, and show how
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Figure 1: Probabilistic circuits architecture illustration with Monarch matrices. (a) Two sum blocks in PCs with weight
matrices A,B of arbitrary dimensions. (b) A constructed sum block with weight matrix as the Kronecker product A⊗B,
representing the circuit product of two sum blocks. (c) Efficient circuit representation for the linear transformation A⊗B.
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Figure 2: Generalized two-layer Monarch matrix.

the resulting circuit exhibits structured sparsity, leading to
PCs parameterized by Monarch matrices. In Section 3.2, we
extend this analysis to the multiplication of more than two
PCs, and derive a new multi-layer Monarch matrix parame-
terization. Finally, in Section 3.3, for a PC with hidden size
h, we show how this can be used to control the compute and
memory used between O(h log(h)) and O(h2), which ef-
fectively interpolates between the Monarch and the sparser
Butterfly matrices.

3.1. Materializing Circuit Multiplication

Given two circuits A and B, the goal of circuit multiplication
is to construct a tractable (i.e. smooth and decomposable)
circuit C such that pC(x) ∝ pA(x) · pB(x). If A and B
are structured-decomposable with respect to the same vtree,
i.e., the product nodes in A and B always factor the same
way, then C can be constructed with at most a quadratic
increment in size (Shen et al., 2016; Vergari et al., 2021).
The corresponding algorithm essentially constructs a new
node for each pair of nodes with the same scope.

Here we focus on the local operation of multiplying two
sum blocks. Given two sum blocks with weight matrices
A ∈ Rr×p and B ∈ Rs×q (Figure 1a), their product can
be represented as a sum block with input dimension pq
and output dimension rs, and weight matrix given by the

Kronecker product A⊗B (Vergari et al., 2021). Figure 1b
shows a circuit materialization of A ⊗ B, consisting of
O(rspq) edges. However, the linear transformation given
by A⊗B can actually be executed in a significantly more
efficient way: letting x ∈ Rp×q be an input tensor, we
compute the linear transformation (A⊗B)x as

((A⊗B)x)kl

=
∑

ij
(A⊗B)kl,ijxij =

∑
i,j
AkiBljxij

=
∑

j
Blj

∑
i
Akixij =

∑
j
Blj(Ax)kj

=
∑

j
Blj(Ax)Tjk = (B(Ax)T )lk = (B(Ax)T )Tkl;

hence, we have

(A⊗B)x = (B(Ax)T )T . (1)

We attempt to materialize Equation 1 as a circuit, as shown
in Figure 1c, with x∈Rp×q viewed as a flattened 1-d tensor
of dimension pq. The total number of edges is bounded by
O(rpq+srq). For a rough comparison against the naive
construction of A ⊗ B, if A and B are both of dimension
m×m, then the naive circuit construction contains O(m4)
edges while the construction based on Equation 1 contains
only O(m3) edges.2

Although the circuit shown in Figure 1c is constructed by
multiplying two sum blocks, it can also be interpreted as

2The code for circuit multiplication in the official implementa-
tions of Wang & Kwiatkowska (2023) and Loconte et al. (2024b)
also achieve this complexity through einsum operations; though
this is not explicitly described in either of the papers, which re-
port the looser bound of O(m4), i.e., square of the circuit size.
Crucially, we show that the product can be explicitly material-
ized as a circuit, which was missed by these prior works. This
allows us to directly apply standard PC inference and learning
algorithms to the product circuit, such as parameter learning with
expectation-maximization.
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a sparse representation for some linear transformation M
from Rpq to Rrs. Furthermore, in this interpretation, each
of the A blocks (and each of the B blocks) do not need to
have the same parameters for M to be valid. Hence, we
“untie” the parameters of A and B to obtain the (generalized)
Monarch transformation M.

Definition 3.1 (Generalized Monarch Matrices I). Given
A ∈ Rr×p×q and B ∈ Rs×q×r, we define M to be the
linear transformation from Rpq to Rrs such that

(Mx)kl =
∑
i,j

AkijBljkxij = (B ∗ (A ∗ x)T )T ;

where A ∗ x denotes a “batched” linear transformation

(A ∗ x)kj =
∑
i

Akijxij

with j enumerating through the “batch” dimension.

We visualize the generalized Monarch matrix in Figure 2.
Here, the 2D matrices Aj and Bi are actually slices of the
3D tensors A, B in Definition 3.1; specifically (Aj)ki =
Akij and (Bk)lj = Bljk.

Thus, to enable structured sparsity in PCs, we propose to
replace the dense matrices in sum blocks with generalized
Monarch matrices, parameterized by the tensors A,B. In
the case where we have h input and output nodes (with
p = q = r = s =

√
h), then the compute and memory

requirements are O(h3/2) as compared to the O(h2) cost for
a dense PC. The interpretation as circuit multiplication gives
us a principled means to initialize the parameters of such
a circuit: namely, train two smaller PCs A,B with dense
layers and hidden sizes

√
h and then multiply them to obtain

a circuit representing the distribution pC(x) ∝ pA(x)pB(x).
We can then untie the parameters of C during training to
leverage the fully general Monarch paramterization.

3.2. Multiplying Multiple PCs

A natural way to further generalize the construction above
would be to consider products of multiple PCs, or more
specifically, Kronecker products of multiple matrices. We
generalize Equation 1 as:

(A1 ⊗A2 · · · ⊗Ad)x

= (Ad . . . (A2(A1x)S)S . . . )S ;
(2)

with At ∈ Rmt×nt and x ∈ Rn1×···×nd ; the superscript
S denotes the left shifting operation where, e.g., xS

jki =
xijk. Similarly, we can materialize Equation 2 as a circuit,
untie the shared parameters among the blocks A1, . . . , Ad,
and then obtain the (further) generalized construction of
Monarch matrices.

Definition 3.2 (Generalized Monarch Matrices II). Let
{At}1≤t≤d be d tensors, where At has dimensions mt ×

nt × nt+1 × · · · × nd ×m1 × · · · ×mt−1. We define the
generalized Monarch matrix M ∈ R(m1×···md)×(n1×···nd)

(Mx)j1,j2,...,jd

=
∑

i1,i2,...id

 ∏
1≤t≤d

At
jtitit+1...idj1...jt−1

xi1...id

= (Ad ∗ (Ad−1 ∗ (· · · ∗ (A2 ∗ (A1 ∗ x)S)S . . . )S .

Here xt := (At ∗ · · · ∗ (A1 ∗ x)S · · · )S is of dimension
nt+1×· · ·nd×m1×· · ·mt and At+1∗xt denotes a batched
linear transformation such that

(At ∗ xt−1)··· =
∑

it
At

jtit···idj1···jt−1xit···idj1···jt−1 ,

with it+1 · · · idj1 · · · jt−1 enumerating over the batch di-
mension. Note that the circuit materialization of this con-
struction of Monarch matrix consists of d consecutive sum
blocks, so we call it a d-layer Monarch matrix.

Despite the complexity of this definition, to construct a PC
A with Monarch layers of hidden size h =

∏
1≤t≤d ht,

we really just need to multiply d PCs At, each with dense
layers of hidden size ht. As in the case of two circuits,
we can first train the smaller PCs At with dense layers
and use their parameters as an initialization point for the
training of A where pA(x) ∝

∏
t pAt

(x). Such parameter
initialization significantly improves the result of training
PCs with Monarch layers of large hidden sizes, and we refer
readers to Section 5.2 for details.

3.3. Interpolating Butterfly and Monarch Matrices

To conclude this section, we draw an interesting connection
between the generalized d-layer Monarch matrices and the
butterfly matrices (Parker, 1995; Dao et al., 2019; Meng
et al., 2022). Butterfly matrices are a class of expressive
structured matrices, constructed as the product of sparse
matrices known as butterfly factor matrices. For ease of
exposition, we will describe here butterfly factor matrices
of size D ×D, where D is a power of 2.

Definition 3.3 (Butterfly Factor). Given any D = 2d and
1 ≤ i ≤ d, a butterfly factor matrix B(i,D) is a sparse
matrix with the following sparsity pattern:

• B(1, D) has non-zero elements only along the diago-
nals of the four D

2 × D
2 submatrices.

• B(i,D) is a block-diagonal matrix with block size
D

2i−1× D
2i−1 , where each block is a B

(
1, D

2i−1

)
butterfly

factor.

Examples of butterfly factors for D = 16 are shown in
Figure 3. A D × D butterfly matrix is given by the ma-
trix multiplication B(D) := B(1, D)B(2, D) . . . B(d,D).
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𝐵(1, 16) 𝐵(2, 16) 𝐵(3, 16) 𝐵(4, 16)

Figure 3: Illustration of Butterfly factors (Meng et al., 2022).

Even though this is a product of sparse matrices, we show
that in fact it can be interpreted as a product of dense tensors,
specifically, generalized Monarch matrices:

Theorem 3.4. Suppose that mt = nt = 2 for all 1 ≤ t ≤
d. Then the generalized d-layer Monarch matrix M is a
butterfly matrix of dimension 2d × 2d.

More generally, suppose that we want to construct a gen-
eralized Monarch matrix of dimension h × h. We can in-
terpolate between butterfly (consisting of log2(h) different
(log2(h)+1)-dimensional tensors of shape 2×2×...×2) and
Monarch matrices (consisting of 2 different 3-dimensional
tensors of shape h1/2 × h1/2 × h1/2) as follows. We can
first pick a number c such that cd = h for some d, and then
the construction in Defintion 3.2 would give us a logc(h)-
layer Monarch matrix with each layer (in terms of the circuit
materialization) consisting of hc edges; i.e., the # of FLOPs
needed for the linear transformation is given by hc logc(h).
We have the butterfly matrix if c = 2 and the commonly
known Monarch matrix (Dao et al., 2022) if c =

√
h. If

h is nice enough, e.g., 220, we can freely choose c to in-
terpolate between 2 and

√
h, which corresponds to d-layer

Monarch matrices with d ranging from log2(h) to 2, each
having different degrees of sparsity.

4. Scaling PCs via Monarch Matrices
Employing structured matrices improves two aspects of
probabilistic circuits. First, fixing the hidden size, the PCs
require fewer FLOPs so training will be more efficient. Sec-
ond, it reduces the memory consumption, so models with
larger hidden sizes are able to fit in the GPU memory. These
two benefits make it possible to scale up probabilistic cir-
cuits to much larger hidden sizes. In this section, we discuss
some of the practical choices to be made for learning PCs
with (generalized) Monarch parameterizations, the effect of
which we investigate empirically through ablation studies.

Choices of Monarch Structures As described at the end
of Section 3, given a desired linear transformation from
Rh to Rh, there are different choices of Monarch struc-
tures. For example, h = 218 can be factorized as 29 × 29,
26 × 26 × 26, (23)6 etc., where 29 × 29 gives the standard
two-layer Monarch matrix and 26 × 26 × 26 gives a three-
layer Monarch matrix. For hidden sizes like 219 that cannot

be nicely “factored” into squared matrices, we resort to
the almost-squared factorizations like 219 = 29 × 210. In
Section 5.1 and 5.2, we conduct an empirical study on the
scaling behavior of Monarch matrices with different number
of layers and show that even though Monarch matrices with
more layers exhibit slightly better scaling behavior com-
pared to two-layer Monarch matrices, they induce higher
memory consumption and thus are less desirable in practice.

Initialization The probabilistic interpretation of Monarch
layers as circuit multiplication further provides an intuitive
way for initializing large circuits. For instance, to initialize
a 2-layer Monarch with hidden size of h = 220, we can
multiply two smaller models with hidden size of h = 210

(or any possible factorizations). The smaller models are
trained separately to fit the same data distribution and then
combined to initialize the larger model’s parameters.

Training We use a stochastic mini-batch version
of Expectation-Maximization optimization (Peharz et al.,
2016). Empirically, this approach converges faster and is
better regularized compared to EM on the whole dataset.

Research Questions In the following experiments, we
seek to verify the following hypotheses:

• Scaling law for Monarch PCs. Sparse structures
achieve better scaling behavior compared to dense ones
in terms of bits-per-dimension (BPD) versus floating
point operations (FLOPs).

• Effect of Circuit Multiplication. Initializations using
circuit multiplication leads to better performance.

• Increasing model size induces sparsity. For a fixed
hidden size, denser matrices perform better, but the
performance gap between sparse and dense matrices
diminishes quickly as the hidden size increases.

5. Experiments
We evaluate our method using generative modeling bench-
marks for both text and image data. We use log-likelihoods
as a measurement of a model’s performance and the number
of floating point operations (FLOPs) per dimension as a
measurement of a model’s efficiency. Given hidden size of
h, the FLOPs per token is h2 for an HMM and 2h3/2 for a
two layer Monarch-HMM. Details are in Appendix B.

5.1. Character-level Language Modeling

Dataset Text8 (Mahoney, 2011) is a character-level lan-
guage modeling dataset with a vocabulary of 27 tokens: the
letters ‘a’-‘z’ and the whitespace token. We follow the stan-
dard practice of training and evaluating text8 in chunks of
length 256 without preprocessing (Hoogeboom et al., 2021).

5



Scaling Probabilistic Circuits via Monarch Matrices

Type Model BPC (↓) Time (s) (↓)

Flow IAF/SCF 1.88 0.04
Flow Argmax Coup Flow 1.80 0.40
Diffusion D3PM Uniform ≤ 1.61 3.60
Diffusion SEDD Uniform ≤ 1.47 -

PC SparsePC 2.60 -
PC NPC2 3.17 -
PC HMM 1.69 0.006
PC Monarch-HMM 1.57 0.017

Table 1: Averaged test set BPC on text8. Sample times
are for generating an example of length 256. Our method
outperforms PC baselines, and significantly close the gap
between PCs and the other less tractable generative models.

Baselines We compare our method with probabilistic
circuit structures, including SparsePC (Dang et al., 2022),
NPC2 (Loconte et al., 2024b), and HMM (Zhang et al.,
2023; 2024), as well as other types of less tractable gen-
erative models as a reference, such as flow-based mod-
els (IAF/SCF (Ziegler & Rush, 2019), Argmax Coupling
Flow (Hoogeboom et al., 2021)) and diffusion models
(D3PM (Austin et al., 2021), SEDD (Lou et al., 2024))
with uniform transition matrices. The results for SparsePC
and NPC2 are obtained by rerunning their official imple-
mentations. SparsePC constructs arbitrary sparse structures
by iteratively pruning and growing an initial model, which
prevents it from scaling to very large hidden size due to sys-
tem limitations. For HMM, we use dense transition matrices
with the largest possible hidden state and run it using our
codebase to ensure optimal performance. The results for
other generative models are taken from (Austin et al., 2021)
and (Lou et al., 2024).

Benchmark We report log-likelihood results in bits-per-
character (BPC) in Table 1. The results show that Monarch-
HMM outperforms all PC models and significantly narrows
the gap between PC models and other less tractable gen-
erative models. We improve upon the baseline HMM by
replacing dense matrices with structured sparse (Monarch)
matrices; thus, we are able to scale up hidden size from 215

to 219. Additionally, Monarch-HMM achieves significantly
faster inference, 200x times faster than diffusion models.

Scaling laws of structured matrices We also include a
plot in Figure 4 comparing HMM and Monarch-HMM in
terms of BPC as a function of inference FLOPs. Monarch-
HMM is trained with hidden size ranging from 212 to 219.
Monarch-HMM demonstrates greater efficiency than HMM
across different computational budgets consistently. We
additionally include Monarch-3 and Monarch-4, which rep-
resent Monarch-HMM with three and four Monarch layers
respectively (Section 3). Since models with more layers
have more sparse structures, this suggests that increased

Figure 4: Scaling curves comparing HMM and varying
Monarch structures. BPC (↓) as a function of training
FLOPs per character. Monarch-HMM demonstrates greater
efficiency than HMM across varying computational budgets.
Sparser Monarch further leads to better scaling behaviors.

Hidden Size 212 213 214 215

Random Initialization 2.25 2.10 1.98 1.88
PC Multiplication 2.14 2.01 1.90 1.81

Table 2: Test set BPC (↓) of a 3-layer Monarch-HMM for
different hidden sizes comparing random initialization and
initialization from PC multiplication with 3 dense HMMs.

sparsity leads to better scaling behavior. However, sparser
structures are constrained by memory consumption (Sec-
tion 5.2), so we use Monarch-2 as our main result in Table 1.

5.2. Ablation and Analysis

We investigate the relationship between hidden size, FLOPs
and memory consumption for varying structures, including
dense HMM and differernt layers of Monarch-HMM. From
Section 5.1, we conclude that sparser structures achieve bet-
ter FLOPs. In this section, we aim to verify the following
hypotheses: (1) Initializations from circuit multiplications
give better performance. (2) For a fixed hidden size, denser
matrices outperform sparse ones but the performance gap
dimish quickly as hidden size increases; and (3) Monarch-
HMMs with more layers requires significantly higher mem-
ory consumption.

Initialization matters The probabilistic interpretation of
Monarch matrices as circuit multiplication, as introduced
in Section 3, provides an effective approach for initializ-
ing the parameters of PCs with Monarch layers. We com-
pare the performance of Monarch-HMM trained with two
parameter-initialization strategies: random initialization vs.
initialization from multiplying dense HMMs. As shown
in Table 2, circuit multiplication as initialization leads to
consistent improvement across all scales.

6
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Figure 5: Test set BPC as a function of hidden size for
HMM and varying Monarch structures.

Model FLOPs Mem Complexity GPU Mem
O(·) O(·) GB

HMM h2 nhB+h2 288
Monarch 2 2h3/2 2nhB+2h3/2 65
Monarch 3 3h4/3 3nhB+3h4/3 96
Monarch 4 4h5/4 4nhB+4h5/4 128

Table 3: FLOPS and memory consumption for varying
structures. GPU memory is computed when batch size
B=128, sequence length n=256, and hidden size h=218.

Scaling up hidden size As shown in Figure 5, bits-per-
character improves as hidden size increases. For a fixed
hidden size, denser structures always perform better as a
dense matrix can always represent a sparse one by incorpo-
rating zero values, while having greater capacity in theory.
However, this comes at the cost of increased FLOPs as
shown in Figure 4. Very interestingly, as the hidden size in-
creases, the performance gap between dense and sparse ones
diminishes quickly. This suggests that larger PC models
are inherently more sparse, making structured sparse lay-
ers increasingly effective in capturing the underlying data
distribution as we scale up.

Sparse structures and memory consumption For a prob-
abilistic circuit with either dense or sparse matrices, let n
be the sequence length, h the hidden size, d the number of
Monarch layers, and B the batch size. The training memory
consumption consists of: (1) parameter caching, which is
also linear with FLOPs per character, requiring O(h2) for
a dense HMM and O(dhd+1/d) for a d layer Monarch); (2)
gradient caching for backward propagation, which is pro-
portional to the number of nodes (hidden states), requiring
O(nhB) for a dense HMM and O(dnhB) for a d layer
Monarch. This connection is summarized in Table 3. The
last column provides an example on GPU memory usage:
though Monarch-3/4 have better FLOPs efficiency, training
them is impractical due to their memory consumption.

Figure 6: We can effectively prune up to 90% hidden states
with no sigificant performance drop for Monarch-HMM.

Type Model Perplexity (↓) Time (s) (↓)

Diffusion D3PM Uniform ≤ 137.9 1.82
Diffusion SEDD Uniform ≤ 40.24 -

PC HMM 320.78 0.0026
PC Monarch-HMM 190.34 0.0095

Table 4: Averaged test set perplexity on LM1B. Sample
times are for generating an example of length 128. Our
method outperforms PC baselines, and significantly close
the gap between PC and other generative models.

Sparse hidden representations Dang et al. (2022) show
that learned dense layers in PCs are inherently sparse, mo-
tivating our use of Monarch layers. Using Monarch layers,
we scale circuits to larger hidden sizes, where memory con-
sumption from caching hidden states (node values) for back-
ward propagation becomes the new bottleneck (O(dnhB)
in Table 3). We investigate whether these representations are
also sparse by pruning hidden states during the forward pass
of a Monarch-HMM. Figure 6 shows up to 90% of hidden
states across all layers can be pruned without a significant
drop in log-likelihood.

5.3. Token-level Language Modeling

Language modeling for large-scale datasets with large vo-
cabularies using probabilistic circuits has not been previ-
ously demonstrated. We present results on the One Billion
Word dataset (LM1B)(Chelba et al., 2013) as a proof of
concept, demonstrating the scalability of Monarch-HMM.
Following D3PM(Austin et al., 2021), all models are trained
and evaluated on packed sequences of length 128 using a
SentencePiece 3 vocabulary of size 8192. We use HMM as
our baseline, as other probabilistic circuit models are unable
to scale to this dataset. Additionally, we include results from
diffusion models from Austin et al. (2021) and Lou et al.
(2024) for reference. Monarch-HMM is trained using the
same setup as in the text8 experiments for two epochs.

3https://github.com/google/sentencepiece
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ImageNet 32×32 ImageNet 64×64
Lossy Lossless Lossy Lossless

LVD 4.39 - 4.12 -
LVD-PG 4.06 - 3.80 -

QPC 4.46 5.08 4.42 5.05
Monarch 4.01 4.62 3.74 4.33

RealNVP - 4.28 - 3.98
Glow - 4.09 - 3.81
VDM - 3.72 - 3.40

Table 5: Density estimation on image datasets. Test set
log-likelihoods are in bits-per-dimension (lower is better).
Our method performs favorably relative to all PC baselines.

We report test set perplexity and sampling tims in Table 4.
While other PC models cannot scale to this range, Monarch-
HMM significantly bridges the gap between probabilistic
circuits and diffusion models, while retaining the tractability
advantage of PCs over diffusion models.

5.4. Image Modeling

In this section, we conduct experiments on the ImageNet32
and ImageNet64 datasets, which are downscaled 32 × 32
and 64× 64 versions of ImageNet (Deng et al., 2009). To
improve modeling performance, and following prior work
(Liu et al., 2023a; 2024b;a; Gala et al., 2024), we apply a
color transform to the original RGB data, and fit PC models
on this transformed data. In particular, we employ a loss-
less YCoCg-R transform (Malvar & Sullivan, 2003) (see
Appendix B for details); as such likelihoods on this trans-
formed data are comparable to those on the original RGB
dataset. As some prior works on PC learning (Liu et al.,
2023a;b) employ a lossy quantized YCoCg transform; we
also report results using this transform for fair comparison.

To improve training efficiency and enable greater scaling
up of hidden size, we split each image into 8 × 8 patches
and train and evaluate our PCs over these 8 × 8 images
(8 × 8 × 3 = 192 dimensions, accounting for the color
channels) rather than the full image. We evaluate models
using test-set bits-per-dimension (bpd); as this is normalized
for dimension, our bpds are directly comparable with bpds
on the entire image.

Our Monarch-HCLTs replace the dense sum blocks with
Monarch matrices. In particular, we use a composition of
two Monarch-2 layers (as described in Dao et al. (2022))
as we found this to improve performance for the image
datasets. Analogously with HMMs for language modeling,
we use the number of floating point operations per pixel
as a measure of model efficiency. This is h2 for a HCLT
and 3h3/2 for a Monarch-HCLT (the factor of 3 instead of

Figure 7: Results for Training on ImageNet32 Dataset.
Test bits-per-dimension (↓) as a function of training FLOPs
per pixel. Monarch-HCLT demonstrates greater efficiency
than HCLT as the computation budget increases.

2 is due to the composition). We show the scaling plot for
both PC variants on ImageNet64 (YCoCg-R) in Figure 7.
We find that dense PCs plateau quickly in terms of their
performance, with the more compute and memory-efficient
Monarch layers often having similar performance to the
corresponding dense layers with the same number of hidden
states. On the other hand, scaling up the number of hidden
states further via Monarch parameterizations remains effec-
tive; this is because we can use a much larger hidden size
with the same compute/memory.

We further show a comparison between our models and the
state-of-the-art PCs on these datasets. For reference, we
also show some neural baselines, namely, RealNVP (Dinh
et al., 2017), Glow (Kingma & Dhariwal, 2018), and VDM
(Kingma et al., 2021). It can be seen that Monarch-HCLTs
show improved scaling beyond what is achievable with stan-
dard HCLTs. Our largest model, with m= 16384 hidden
states, achieves state-of-the-art performance for PCs (Ta-
ble 5), beating even LVD-PG (Liu et al., 2023b), which is
an image-specialized PC-based model that uses a high-level
PC over 4× 4 patch PCs, together with a complex optimiza-
tion procedure involving latent variable distillation (Liu
et al., 2023a) for initializing the parameters and a progres-
sive growing technique. In contrast, we simply use random
initializations, the generic HCLT variable decomposition,
and train end-to-end using only the well-established EM
algorithm for PCs.

Despite the improvements achieved by employing Monarch
matrices to scale up the hidden state size, the modeling per-
formance still currently lags behind neural image models.
Relative to language modeling, this might be because of the
lack of an effective homogeneous architecture like HMMs,
which limits scaling up the hidden size further. In particu-
lar QPCs, which are based on the quad-graph architecture
(Mari et al., 2023), have significantly worse performance
compared to HCLTs.

8
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6. Related Work
Our work is connected to recent efforts in the probabilistic
circuits community to find more efficient parameterizations
of tensorized circuits. While early implementations of ten-
sorized circuits used Kronecker product blocks (Peharz et al.,
2020), the recent trend has been to prefer Hadamard product
blocks. Loconte et al. (2024a) noted that the composition of
Kronecker/Hadamard product blocks with sum blocks can
be interpreted as Tucker (Tucker, 1964) / canonical-polyadic
(CP) (Carroll & Chang, 1970) tensor decompositions re-
spectively. Our work tackles an orthogonal aspect in that it
focuses on the sum-to-product connection, which has thus
far always been implemented as a dense matrix.

Circuit multiplication is a fundamental operation which
has been studied extensively in the probabilistic circuits
literature, with work on deriving theoretical conditions for
tractability (Shen et al., 2016; Vergari et al., 2021; Wang
et al., 2024; Zhang et al., 2025), use as a building block
in various applications of PCs (Choi et al., 2015; Khosravi
et al., 2019; Wang & Kwiatkowska, 2023; Zhang et al.,
2024), and improving the expressivity of PCs (Loconte
et al., 2024b; 2025; Wang & Van den Broeck, 2025). Our
work shows how to explicitly materialize and implement
these products efficiently for tensorized circuits.

There is extensive research on structured matrices for im-
proving neural network efficiency and scalability. Qiu et al.
(2024) study scaling laws across structures and introduce
Block Tensor-Train (BTT), which generalizes tensor-train
(TT) (Oseledets, 2011) and Monarch matrices, achieving
competitive performance with lower computational costs.
Potapczynski et al. (2024) extend this to BTT-MoE, a
Mixture-of-Experts model that sparsifies BTT computation.
While our generalized Monarch matrices align with the
TT-to-BTT generalization (rank-1 case), our approach pro-
vides practical probabilistic semantics, enabling PCs with
Monarch matrices to be formed by multiplying smaller PCs
with dense matrices. Additionally, Sehanobish et al. (2024)
propose structured unrestricted-rank matrices for efficient
Transformer fine-tuning.

7. Conclusion
We propose scaling up probabilistic circuits by replacing
dense sum blocks with structured sparse matrices. Our ap-
proach not only provides theoretical insight by establishing
the connection between circuit multiplications and struc-
tured matrices but also demonstrates significant empirical
improvements, including in modeling performance normal-
ized for compute. Future work could examine sparsifying
the hidden state representation to overcome the memory bot-
tleneck, as well as utilizing the improved scaling to unlock
improvements in downstream applications of PCs such as

controllable language generation.
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Zečević, M., Dhami, D., Karanam, A., Natarajan, S.,
and Kersting, K. Interventional sum-product networks:
Causal inference with tractable probabilistic models. Ad-
vances in neural information processing systems, 34:
15019–15031, 2021.

Zhang, H., Dang, M., Peng, N., and Van den Broeck, G.
Tractable control for autoregressive language generation.
In Proceedings of the 40th International Conference on
Machine Learning (ICML), jul 2023.

11

http://mattmahoney.net/dc/text8.zip
http://mattmahoney.net/dc/text8.zip


Scaling Probabilistic Circuits via Monarch Matrices

Zhang, H., Kung, P.-N., Yoshida, M., den Broeck, G. V.,
and Peng, N. Adaptable logical control for large lan-
guage models. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

Zhang, H., Wang, B., Arenas, M., and Van den Broeck, G.
Restructuring tractable probabilistic circuits. In Proceed-
ings of the 28th International Conference on Artificial
Intelligence and Statistics (AISTATS), may 2025. URL
https://arxiv.org/pdf/2411.12256.

Ziegler, Z. and Rush, A. Latent normalizing flows for dis-
crete sequences. In Proceedings of the 36th International
Conference on Machine Learning, 2019.

12

https://arxiv.org/pdf/2411.12256


Scaling Probabilistic Circuits via Monarch Matrices

A. Interpolating Butterfly and Monarch Matrices
Butterfly matrices (Dao et al., 2019; Meng et al., 2022) are a class of expressive structured matrices. They are constructed as
the product of sparse matrices known as butterfly factor matrices (Parker, 1995). In this section, we will show how Butterfly
matrices (products of sparse Butterfly factor matrices) can be viewed as generalized Monarch matrices (products of dense
high-dimensional tensors), as stated in Theorem 3.4. For ease of exposition, we will describe here Butterfly factor matrices
of size D ×D, where D is a power of 2.

Definition A.1 (Butterfly Factor). Given any D = 2d and 1 ≤ i ≤ d, a butterfly factor matrix B(i,D) is a sparse matrix
with the following sparsity pattern:

• B(1, D) has non-zero elements only along the diagonals of the four D
2 × D

2 submatrices.

• B(i,D) is a block-diagonal matrix with block size D
2i−1 × D

2i−1 , where each block is a B
(
1, D

2i−1

)
butterfly factor.

𝐵(1, 16) 𝐵(2, 16) 𝐵(3, 16) 𝐵(4, 16)

Figure 8: Illustration of Butterfly factors (Meng et al., 2022).

Examples of butterfly factors for D = 16 are shown in Figure 8. Notice that each butterfly factor B(i,D) for i ∈ [d] has 2D
nonzero elements, but different sparsity patterns. We now present a new interpretation of butterfly factors as a reshaping of a
dense (d+ 1)-dimensional tensor of shape 2× 2× · · · × 2. In particular, consider the following reshaping:

Definition A.2 (Butterfly Unfurling). Let Ak1,...,kd+1
be a (d+ 1)-dimensional 2× 2× ...× 2 tensor. We define the ith

butterfly unfurling of A to be the 2d × 2d matrix defined by:

Bj1j2...jd,j′1j
′
2...j

′
d
:= Aji,j1,...,ji−1,ji+1,...,jd,j′i

∏
c̸=i

δ
j′c
jc

(3)

where we interpret e.g. j1j2...jd as the integer in {0, ..., 2d−1} represented by the binary string, and δ
j′c
jc

is equal to 1 if
jc = j′c and 0 otherwise.

Intuitively, this takes the first and last dimensions of A and inserts them into the ith bit of the row and column of B
respectively; while all other bits of B between the rows and columns are tied. This produces the sparse structure of a
Butterfly matrix. For instance, the dth butterfly unfurling creates a block-diagonal matrix with block size 2.

Proposition A.3. The ith butterfly unfurling of a (d+ 1)-dimensional tensor is a butterfly factor matrix B(i, 2d).

Proof. We begin by considering the 1st butterfly unfurling, which is:

Bj1j2...jd,j′1j
′
2...j

′
d
:= Aj1,j2,...,jd,j′1

∏
c̸=1

δ
j′c
jc

Notice that the j1, j
′
1 are the most significant bits of the row/column respectively, and as each value of (j1, j′1) corresponds

to one of the D/2×D/2 shaped submatrices. The entry Bj1j2...jd,j′1j
′
2...j

′
d

is 0 unless jc = j′c for all c ̸= 1, i.e. if the entry
lies along the diagonal of the submatrix.

Now let us consider the ith butterfly unfurling for i ̸= 1:

Bj1j2...jd,j′1j
′
2...j

′
d
:= Aji,j1,...,ji−1,ji+1,...,jd,j′i

∏
c̸=i

δ
j′c
jc
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Notice that, as the most significant bits, j1, ..., ji−1 and j′1, ..., j
′
i−1 index the submatrices of size D

2i−1 . Note that the entry
Bj1j2...jd,j′1j

′
2...j

′
d

is zero unless jc = j′c for all c = 1, .., i− 1; thus only the block submatrices along the diagonal can have
nonzero elements. Now let us consider any such submatrix; w.l.o.g. let us choose j1 = ... = ji−1 = j′1 = ... = j′i−1 = 0.
Then we have:

B00...0ji...jd,00...0j′i...j
′
d
:= Aji,00..0ji+1,...,jd,j′i

∏
c>i

δ
j′c
jc

This submatrix satisfies the sparsity pattern of the 1st butterfly unfolding of a d− i+ 1 dimensional tensor, i.e. is a butterfly
factor matrix B(1, D

2i−1 ) as required.

Notice that, since a butterfly unfurling is just a reshaping, given any butterfly factor B(i,D) we can invert the unfurling
operation and get a dense tensor A(i,D).

Butterfly matrices Butterfly matrices are constructed as the product of butterfly factors of a given dimension, i.e.
B(2d) := B(1, 2d)B(2, 2d) . . . B(d, 2d). If we instead parameterize these matrices using a butterfly unfurling, we get a
product of dense tensors with some repeated indices. For example, when d = 2, we get the following expression:

B(4)j1j2,j5j6 =
∑
j3,j4

B(1, 4)j1j2,j3j4B(2, 4)j3j4,j5j6

=
∑
j3,j4

A(1, 4)j1,j2,j3δ
j4
j2
A(2, 4)j4,j3,j6δ

j5
j3

= A(1, 4)j1,j2,j3A(2, 4)j2,j5,j6

We can generalize this idea to higher dimensions:
Theorem A.4. Any butterfly matrix B(2d) matrix of size 2d × 2d can be written as:

B(2d)j1...,jd,jd+1...j2d

= A(1, 2d)j1,...,jd+1
A(2, 2d)j2,...,jd+1

. . . A(d, 2d)jd,...,j2d

where each A(i, 2d) is a 2× 2× ...× 2 dense tensor of dimension d+ 1.

Proof. Essentially this is replacing each butterfly factor with its furled version, and by inspection of the unfurling formula in
Equation 3. For each of the butterfly factors, let us write:

B(i, 2d)
j
(i)
1 j

(i)
2 ...j

(i)
d ,j

(i+1)
1 j

(i+1)
2 ...j

(i+1)
d

:= A(i, 2d)
j
(i)
i ,j

(i)
1 ,...,j

(i)
i−1,j

(i)
i+1,...,j

(i)
d ,j

(i+1)
i

∏
c̸=i

δ
j(i+1)
c

j
(i)
c

where we have attached a superscript to each index to indicate it is associated with the ith butterfly factor; in particular,
j
(1)
c = jc and j

(d)
c = jd+c.

Notice that the delta functions require (for a non-zero entry) that j(i)c = j
(i+1)
c whenever c ̸= i. By iterative application of

this rule, one can see that the indices of A(i, 2d) correspond to ji, ..., ji+d (up to some permutation). For example, the first
index j

(i)
i = j

(i−1)
i = ... = j

(1)
i = ji. In general, j(i)c = jd+c whenever c < i, and j

(i)
c = jc whenever c ≥ i.

Interpreting xj3j6 as a matrix xj3,j6 , we get a sequence of tensor contractions matching the structure of the generalized
Monarch matrices. By generalizing this idea to larger d, we can encode and execute any butterfly matrix-vector multiplication
as a series of dense tensor contractions.

B. Additional Experimental Results and Details
B.1. Additional experiment setup for text8

We train Monarch-HMM using two-layer Monarch matrices and a 219 hidden state for 20 epochs. Following prior
works (Zhang et al., 2024), optimization is performed using the stochastic EM algorithm with a mini-batch of 4096 and a
linearly decaying learning rate from 1 to 0.
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B.2. Additional results for text8

Hidden Size Monarch-2 Monarch-3 HMM Monarch-4

FLOPs BPC FLOPs BPC FLOPs BPC FLOPs BPC

212 = 4096 524288 2.041 196608 2.135 16777216 1.908 131072 2.188
213 = 8192 1572864 1.926 524288 2.013 67108864 1.786 327680 2.065
214 = 16384 4194304 1.824 1310720 1.895 268435456 1.726 786432 1.948
215 = 32768 12582912 1.747 3145728 1.814 1073741824 1.687 1835008 1.853
216 = 65536 33554432 1.690 8388608 1.741
217 = 131072 100663296 1.637
218 = 262144 268435456 1.609
219 = 524288 805306368 1.578

Table 6: We report FLOPs and test set BPC of HMM and variying Monarch structures (Monarch-2, Monarch-3, and
Monarch-4) for hidden size ranging from 212 to 219 on dataset text8.

B.3. Additional experimental setup for image modeling

We use hidden Chow-Liu trees (HCLT) (Liu & Van den Broeck, 2021) to define the variable decomposition (vtree) of the
PC. We train all models using stochastic EM. In particular, we use a cosine learning rate decay scheduler over the course of
the entire training. The mini-batch size M = 20000 and number of epochs E = 20 used in all experiments were chosen
based on an initial hyperparameter search in the range M ∈ [1000, 5000, 20000, 60000] and E ∈ [5, 10, 20].

Color Transforms The original ImageNet data has three color channels R, G, B, each taking integer values in [0, 255].
We apply a lossless YCoCg-R transform (Malvar & Sullivan, 2003) to this data to obtain three transformed color channels
Y,Co,Cg, given as follows in integer arithmetic:

Co = R−B

tmp = B + ⌊Co/2⌋
Cg = G− tmp

Y = tmp+ ⌊Cg/2⌋

where Y and Cg take integer values in [0, 255] and Co takes integer values in [−255, 255]. This transform is exactly
invertible (lossless) and as such likelihoods on this transformed data are comparable to likelihoods on the RGB dataset.

To compare against prior PC results, we also report results using a lossy YCoCg transform defined as follows. Firstly, the
data is normalized to take values in the range [0, 1]:

r = R/255; g = G/255; b = B/255

Then, the following linear transformation is applied:

co = r − b

tmp = b+ co/2

cg = g − tmp

y = tmp ∗ 2 + cg + 1

The variables y, co, cg now take values in [−1, 1]. To convert back to categorical data, we quantize the interval [−1, 1]
uniformly into 256 bins and convert y, co, cg into their quantized versions Y,Co,Cg which take integer values in [0, 255].
This transformation from R,G,B to Y,Co,Cg is not invertible and so likelihoods on this dataset cannot be compared to the
original RGB dataset.

Image Patches We train PCs with 192 variables, modeling 8× 8 aligned image patches (with 3 color channels). This data
is obtained by splitting each image from the the ImageNet32 (resp. ImageNet64) dataset into 16 (resp. 64) of these patches.
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