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Abstract

Drug design and development is a time- and cost-intensive process with a low
success rate. The process is more complex in case of drugs targeting diseases
of the central nervous system (CNS) where blood-brain barrier (BBB) acts as an
additional challenge for drug delivery. Recent applications of deep learning in
ligand-based drug discovery are promising, although these methods can suffer from
lack of target-specific ligand data to train the models. To address these issues, we
have developed a de novo drug design method which can design novel molecules by
optimizing target specificity as well as multiple properties that make them suitable
to cross the BBB. A target-specific ligand dataset is curated by collecting known
inhibitors of proteins structurally similar to the target protein. The generative model
which learns and designs new molecules is systematically optimized using transfer
and reinforcement learning. The reward function is designed to optimize multiple
properties simultaneously with state-of-the-art predictive models. The proposed
method was validated against the human 5-hydroxy tryptamine receptor 1B (5-
HT1B), a G protein-coupled receptor responsible for several psycho-physiological
functions and disorders. All existing 5-HT1B inhibitors were collected but used
only for validation. We were able to design inhibitors with better binding affinity
when compared to the existing inhibitors, with optimized property to cross the
BBB. Results from the study show the capability of the proposed method to learn
the molecular features required to produce novel small molecules with multiple
desired physico-chemical properties against the target protein rapidly.

1 Introduction

Drug design is one of the crucial steps of the drug discovery and development process [1]. The
success rate of the complete process can be maximized by efficiently designing the small molecules
with suitable drug-like properties. Multiple properties need to be considered while designing drug-
like small molecules. For example, designing drugs for neurological diseases is challenging due
to the protective barrier of the central nervous system (CNS). Apart from target specificity, these
drugs additionally require effective BBB permeability [2]. Multiple properties such as octanol-water
partition coefficient (logP), molecular weight (MW), polar surface area and hydrogen bonding [3] are
important factors for successful design of drugs against the proteins responsible for CNS disorders.
Another major issue of ligand-based drug design is the presence of insufficient target-specific ligand
data to train the deep learning models. In this work, we have proposed a method which can overcome
the issue of target-specific ligand dataset and design small molecules specific to novel target proteins,
while also being able to control multiple desirable physico-chemical properties simultaneously.
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Figure 1: Ligand-based de novo small molecule design method. a Pre-trained generative model on the
ChEMBL database; b A dataset curated from small molecules that modulate the activity of structurally
related proteins; c Transfer learning with the curated dataset; d Multi-property optimization using
reinforcement learning; e Physico-chemical properties and structural alerts (rule-based filters) were
used to filter drug-like molecules specific to the target protein of interest.

2 Background

2.1 Related work

Recent developments in the field of artificial intelligence (AI) and big data have shown the potential to
radically transform the accuracy and reliability of computational models in several fields of healthcare
[4–6], including drug discovery [7]. While earlier studies were focused on generation of libraries
for virtual screening [8], the introduction of reinforcement learning for property optimization has
helped in biasing the models to generate compounds with the properties of interest [9–12]. Further,
the efficiency of the models to generate chemically valid molecules can be significantly improved by
using memory-augmented neural networks [10, 11, 13].

2.2 This work

In this study, we have developed a de novo ligand-based drug design method that addresses three
major problems: a) Data availability to train the deep learning models, b) Efficient sampling of
chemical space and c) Simultaneous optimization of multiple properties. As a proof of concept,
the method was used to design novel small molecules against the human 5-hydroxy tryptamine
receptor 1B (5-HT1B) protein, which acts as a major target protein for therapeutics in the CNS. We
have optimized the binding affinity, logP and the probability of crossing the BBB of the designed
molecules.

3 Materials and Methods

3.1 Dataset curation and preprocessing

The dataset for pre-training the generative model was obtained from the ChEMBL database [14]. The
molecules were represented in the SMILES format [15] to leverage the effectiveness of recurrent
neural networks (RNNs) in handling sequential data through existing natural language processing
algorithms. The RDKit library in Python was used for dataset pre-processing.

3.2 Pre-training the generative model and predictive models

The generative model was pre-trained on a dataset of ~1.6 million SMILES strings from the ChEMBL
database [14] (step a, Fig. 1). The use of stack-augmented memory [13] enabled the generation of
chemically valid SMILES with high accuracy. The trained generative model was used to sample
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100,000 compounds in 10 batches of 10,000 compounds each. The model was found to have a high
accuracy of 96.6% defined as the mean percentage of chemically valid molecules present in all the
sampling batches. The predictive model learns a mapping between the small molecules and their
corresponding property values [9, 10]. In this study, three predictive models were trained to predict
the blood-brain barrier (BBB) permeability (classification), logP and docking score (regression)
against the 5-HT1B protein, for any given small molecule. The corresponding datasets for training
were obtained from MoleculeNet [16], an earlier work [10] and Ex-CAPE DB [17], respectively.
After extensive hyperparameter tuning, we attained the state-of-the-art ROC-AUC score of 0.90 for
the BBB permeability model. The docking score prediction model had a root mean square error
(RMSE) of 0.28 and a R2 score of 0.82. The logP prediction model had a RMSE of 0.43 and a R2
score of 0.91. The models were trained using mini-batch gradient descent with the Adam optimizer
[18].

3.3 Ligand-based drug design via transfer learning and multi-property optimization with
reinforcement learning

The drug design pipeline aims to discover novel small molecules against a specific target protein.
In most cases, there is limited or no knowledge about the small molecules that can bind to the
target protein. In this study, an initial target-specific small molecule dataset was curated considering
known small molecules targeting active sites similar to that of the target protein (step b, Fig. 1).
The suitability of this dataset was further enhanced by docking these molecules in the active site of
the protein of interest. The molecules with high docking scores (<= -7.0) were used to re-train the
generative model to capture the molecular features specific to a target protein of interest through
transfer learning (step c, Fig. 1). During transfer learning, the weights of all the layers of the
pre-trained generative model (prior network) were frozen except for the last dense layer [19]. The
model was trained until the inferred molecules showed an observable shift in similarity with respect
to the training dataset, quantified using the Tanimoto coefficient [20].

The generative model obtained after transfer learning was combined with the predictive model to bias
the generative model towards the property space of interest using reinforcement learning (step d, Fig.
1) [9]. The method was modified to support simultaneous multi-property optimization. The reward
function for training the agent (generative model) was,

r(MPO) =

{
11, if x = 1

1, if x = 0
+ e(−y/3) +

{
11, if 0 < z ≤ 4

1, otherwise
(1)

where x is the predicted BBB permeability class, y is the predicted docking score specific to the
active site of the target protein and z is the predicted logP value. The reward function (1) helps
in optimizing all the three properties of the generated molecules in the desired range. To avoid
catastrophic forgetting of the canonical policy gradient algorithm, the regularization was required to
keep the new policy anchored to the learned prior policy of the agent [9, 21]. The regularized policy
gradient method was trained using mini-batch gradient descent with AMSGrad optimizer [22].

3.4 Identification of potential molecules through property filters and rule-based filters

The 10,000 molecules sampled from the trained model after transfer learning and reinforcement learn-
ing, were subjected to several stringent drug-like physico-chemical property filters. The molecules
obtained after applying drug-like property filters (logP, MW, synthetic accessibility score (SAS) [23])
were further subjected to four empirical rule-based filters – PAINS, BRENK, NIH and ZINC, to
remove molecules with potentially unwanted subgroups (step e, Fig. 1).

4 Results and Discussion

In the following sections, the results of the case study based on our method is discussed.
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4.1 Designing small molecules against the human 5-hydroxy tryptamine receptor 1B
(5-HT1B) protein

5-HT1B belongs to the G protein-coupled receptor family and is the target of serotonin (5-HT).
It has been implicated in cancer proliferation [24] and several CNS disorders including obsessive-
compulsive disorder (OCD) [25], depression [26], migraine and Parkinson’s disease [27].

The known inhibitors of 5-HT1B were collected from Ex-CAPE DB (Sun et al., 2017) but used only
for validation. Small molecules specific to the proteins of the 5-HT1 receptor family (A, D, E and
F, which are similar to 5-HT1B) were collected. Docking calculation was performed with these
molecules to identify molecules specific to 5-HT1B. This produced a dataset of 2,807 small molecules,
which was utilized for training the pre-trained generative model using transfer learning. A multi-
property optimization (MPO) was performed using reinforcement learning so that the designed small
molecules can cross the blood brain barrier (BBB). After reinforcement learning, 10,000 molecules
were sampled from the trained generative model. We have also observed that by optimizing the
logP, the model could generate molecules with low MW (data not shown). Upon pre-processing,
application of property filters (200 Da < MW < 450 Da, 0 < logP <= 4.0, SAS <= 4.0 and TPSA < 70
Å2) and rule-based filters, a final dataset of 3,476 molecules were obtained.

This final set of molecules was compared against the validation dataset of 5-HT1B-specific molecules.
It was observed that, 49 molecules from the generated set of molecules have Tanimoto coefficient
above 0.75 [20] to the molecules from the validation dataset, indicating high similarity. Based on the
virtual screening scores, we also observed that the new molecules are better inhibitors of 5-HT1B
compared to the best known inhibitor molecules. The embedding provided below (Fig. 2A) highlights
the molecule with the highest docking score and molecules which show high similarity to the training
and validation dataset. To validate the docking score predictive model, the final set of molecules
were subjected to virtual screening within the binding site of the 5-HT1B protein using AutoDock
Vina [28]. A R2 score of 0.80 was observed between the values obtained from the docking software
and predicted values (Fig. 2B) A sub-structural fragment analysis was performed to understand
whether newly designed molecules captured the features of the validation dataset. The generated
molecules showed the presence of tertiary amines and secondary amines in accordance with the
natural ligand of 5-HT1B receptor (serotonin, which is an amine) [29]. Also, bicyclic and tricyclic
groups containing aromatic heterocyclics (anilines, piperazines, piperidines and indoles) were more
frequently observed, which is also in alignment with their well-known capability to act as selective
5-HT1B inhibitors [29, 30]. These results indicate that the generative model was able to capture and
generate molecules with features specific to inhibit the 5-HT1B protein and also enhance the binding
affinity using transfer learning and reinforcement learning.

Figure 2: A. Embedding of the final set of generated small molecules colored based on their docking
score. The generated molecules with their corresponding docking score are colored in black. The
most similar molecules (in terms of Tanimoto coefficient) from the training set (red font) and the
validation set (blue font) are indicated with their ChEMBL ID followed by Tanimoto coefficient in
bracket. B. Comparison between the predicted and observed docking scores.

5 Conclusion

We have proposed a ligand-based de novo drug design method for generating small molecules against
any novel target of interest. The fundamental problem of data availability for a given target protein
could be overcome using the concept of active site similarity in closely related proteins. Transfer
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learning, followed by reinforcement learning, is used for generation of a focused library of molecules
against the 5-HT1B protein responsible for central nervous system disorders with multiple desired
properties.

Acknowledgments and Disclosure of Funding

We thank our colleagues Dr. Rajgopal Srinivasan and Dr. Gautam Shroff for helpful discussions.

References
[1] Jing Chen, Xiaofang Luo, Huimin Qiu, Vienna Mackey, Lichun Sun, and Xiaoping Ouyang. Drug discovery

and drug marketing with the critical roles of modern administration. American journal of translational
research, 10(12):4302, 2018.

[2] Yoichi Morofuji and Shinsuke Nakagawa. Drug development for central nervous system diseases using
in vitro blood-brain barrier models and drug repositioning. Current Pharmaceutical Design, 26(13):
1466–1485, 2020.

[3] Clifford W Fong. Permeability of the blood–brain barrier: molecular mechanism of transport of drugs and
physiologically important compounds. The Journal of membrane biology, 248(4):651–669, 2015.

[4] Kun-Hsing Yu, Andrew L Beam, and Isaac S Kohane. Artificial intelligence in healthcare. Nature
biomedical engineering, 2(10):719–731, 2018.

[5] CWL Ho, D Soon, K Caals, and J Kapur. Governance of automated image analysis and artificial intelligence
analytics in healthcare. Clinical radiology, 74(5):329–337, 2019.

[6] Richard Colling, Helen Pitman, Karin Oien, Nasir Rajpoot, Philip Macklin, CM-Path AI in Histopathology
Working Group, Velicia Bachtiar, Richard Booth, Alyson Bryant, Joshua Bull, et al. Artificial intelligence
in digital pathology: A roadmap to routine use in clinical practice. The Journal of pathology, 249(2):
143–150, 2019.

[7] Kit-Kay Mak and Mallikarjuna Rao Pichika. Artificial intelligence in drug development: present status
and future prospects. Drug discovery today, 24(3):773–780, 2019.

[8] Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused molecule
libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):120–131, 2018.

[9] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo design
through deep reinforcement learning. Journal of cheminformatics, 9(1):48, 2017.

[10] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de novo drug
design. Science advances, 4(7):eaap7885, 2018.

[11] Jannis Born, Matteo Manica, Ali Oskooei, Joris Cadow, and María Rodríguez Martínez. Paccmann
rl: Designing anticancer drugs from transcriptomic data via reinforcement learning. In International
Conference on Research in Computational Molecular Biology, pages 231–233. Springer, 2020.

[12] Niclas Ståhl, Goran Falkman, Alexander Karlsson, Gunnar Mathiason, and Jonas Bostrom. Deep reinforce-
ment learning for multiparameter optimization in de novo drug design. Journal of chemical information
and modeling, 59(7):3166–3176, 2019.

[13] Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets. In
Advances in neural information processing systems, pages 190–198, 2015.

[14] Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale bioactivity
database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2012.

[15] David Weininger, Arthur Weininger, and Joseph L Weininger. Smiles. 2. algorithm for generation of unique
smiles notation. Journal of chemical information and computer sciences, 29(2):97–101, 1989.

[16] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. Chemical
science, 9(2):513–530, 2018.

5



[17] Jiangming Sun, Nina Jeliazkova, Vladimir Chupakhin, Jose-Felipe Golib-Dzib, Ola Engkvist, Lars Carlsson,
Jörg Wegner, Hugo Ceulemans, Ivan Georgiev, Vedrin Jeliazkov, et al. Excape-db: an integrated large scale
dataset facilitating big data analysis in chemogenomics. Journal of cheminformatics, 9(1):17, 2017.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey on deep
transfer learning. In International conference on artificial neural networks, pages 270–279. Springer, 2018.

[20] Alan H Lipkus. A proof of the triangle inequality for the tanimoto distance. Journal of Mathematical
Chemistry, 26(1-3):263–265, 1999.

[21] Natasha Jaques, Shixiang Gu, Richard E Turner, and Douglas Eck. Tuning recurrent neural networks with
re-inforcement learning. arXiv preprint arXiv:1611.02796, 2016.

[22] Phuong Thi Tran et al. On the convergence proof of amsgrad and a new version. IEEE Access, 7:
61706–61716, 2019.

[23] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules
based on molecular complexity and fragment contributions. Journal of cheminformatics, 1(1):8, 2009.

[24] Nilgun Gurbuz, Ahmed A Ashour, S Neslihan Alpay, and Bulent Ozpolat. Down-regulation of 5-ht 1b and
5-ht 1d receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells. PloS
one, 9(8):e105245, 2014.

[25] Christopher Pittenger, Thomas G Adams Jr, Jean-Dominique Gallezot, Michael J Crowley, Nabeel Nabulsi,
James Ropchan, Hong Gao, Stephen A Kichuk, Ryan Simpson, Eileen Billingslea, et al. Ocd is associated
with an altered association between sensorimotor gating and cortical and subcortical 5-ht1b receptor
binding. Journal of affective disorders, 196:87–96, 2016.

[26] Mikael Tiger, Katarina Varnäs, Yoshiro Okubo, and Johan Lundberg. The 5-ht 1b receptor-a potential
target for antidepressant treatment. Psychopharmacology, 235(5):1317–1334, 2018.

[27] Xiaoqun Zhang, Per E Andren, Paul Greengard, and Per Svenningsson. Evidence for a role of the 5-ht1b
receptor and its adaptor protein, p11, in l-dopa treatment of an animal model of parkinsonism. Proceedings
of the National Academy of Sciences, 105(6):2163–2168, 2008.

[28] Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with a new
scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2):
455–461, 2010.

[29] Lisa Matzen, Christoph van Amsterdam, Wilfried Rautenberg, Hartmut E Greiner, Jürgen Harting,
Christoph A Seyfried, and Henning Böttcher. 5-ht reuptake inhibitors with 5-ht1b/1d antagonistic activity:
a new approach toward efficient antidepressants. Journal of medicinal chemistry, 43(6):1149–1157, 2000.

[30] Serge Halazy, Marie Lamothe, and Catherine Jorand-Lebrun. 5-ht1b/1d antagonists and depression. Expert
Opinion on Therapeutic Patents, 7(4):339–352, 1997.

6


	Introduction
	Background
	Related work
	This work

	Materials and Methods
	Dataset curation and preprocessing
	Pre-training the generative model and predictive models
	Ligand-based drug design via transfer learning and multi-property optimization with reinforcement learning
	Identification of potential molecules through property filters and rule-based filters

	Results and Discussion
	Designing small molecules against the human 5-hydroxy tryptamine receptor 1B (5-HT1B) protein

	Conclusion

