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Abstract

Recent advancements in Vision-Language Models (VLMs)
have led to their increased application in robotic tasks. While
the implementation of VLMs is primarily at the object level,
the distinct affordances of an object’s various parts — such
as a knife’s blade for cutting versus its handle for grasping —
remain a challenge for current state-of-the-art models. Our
investigations reveal that these models often fail to accurately
segment parts based on task instructions, a capability crucial
for precise robotic interactions. Addressing the lack of
real-world datasets to evaluate these fine-grained tasks,
we introduce a comprehensive dataset that includes image
observations, task descriptions, and precise annotations for
object-part interactions, complemented by part segmentation
masks. We present an evaluation of common pre-trained
VLMs using this benchmark, shedding light on the models’
performance in understanding and executing part-level tasks
within everyday contexts.

Introduction
Robots play an increasingly significant role in our daily
life (Matheson et al. 2019; Kaiser et al. 2021). However,
before moving on to the next generation filled with more
advanced agents, two critical challenges remain. First,
robots must comprehend natural language instructions
in the context, i.e., translating commands into actionable
tasks. This ability is essential for seamless interactions with
humans, especially in unstructured environments such as
homes. Another key challenge for robots is to perceive their
environments and ground to specific areas. This involves not
only recognizing objects but also fine-grained parts that the
robot should interact with. Specifically, given the instruction
to cut an onion and a visual observation depicted in Fig. 1,
an intelligent agent needs to first understand that the handle
of the knife can be held and then refer to the part mask be-
fore performing subsequent manipulation and control tasks.
To rigorously evaluate the agents’ capability in addressing
these challenges, we introduce a comprehensive dataset
comprising image observations with task instructions,
accompanied by part segmentation masks as ground truth.

Despite significant progress in language comprehension
and visual perception, current foundational vision-language

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Identify the part of the knife that 
should be used for picking it up. Handle of the knife!
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Figure 1: Task Description for InstructPart: Presented with
an image observation (left) and a corresponding instruction
(in the blue box on the left), the model is required to iden-
tify and output the specific part segment (highlighted in the
green mask on the right) referenced in the instruction.

models (VLMs) still struggle with fine-grained multimodal
reasoning, e.g., accurately localizing specific parts of an
object based on user instruction and functional reason-
ing (Zhou et al. 2022; Mogadala, Kalimuthu, and Klakow
2021). We attribute this primarily to the scarcity of train-
ing data, as annotating part-level labels is excessively time-
consuming and expensive. For instance, most large-scale vi-
sion datasets focus on object-level understanding (Liu et al.
2023a; Zou et al. 2023b,a; Xu et al. 2023; Liang et al. 2023;
Sun et al. 2023) and existing part-level recognition datasets
are either too limited in part categories (Nguyen et al. 2017;
Myers et al. 2015; Roy and Todorovic 2016), collected in
a controlled environment (Myers et al. 2015), or obtained
from simulator (Geng et al. 2023; Deng et al. 2021; Xiang
et al. 2020; Mo et al. 2019). Moreover, these datasets are not
specifically designed for robotics tasks and thus do not in-
clude language instructions. Given the recent surge of inter-
est in building next-generation embodied agents (Yang et al.
2023a; Huang et al. 2023; Ahn et al. 2022) capable of per-
ceiving multimodal inputs and following language instruc-
tions (Touvron et al. 2023; Liu et al. 2023b), we are moti-
vated to comprehensively assess existing VLMs by building
a dataset including both language and part annotations.

To this end, we introduce a novel dataset, InstructPart,
consisting of 700 images, 54 object classes, and 48 part
classes. Each image is accompanied by human-annotated
and GPT-polished instructions for common household tasks
and detailed part segmentation masks. Thorough evaluations
of current visual language models on our dataset reveal a no-
table deficiency in their capacity to comprehend natural lan-
guage and accurately ground it across diverse objects and



parts. This finding underscores the necessity to resolve a
critical shortfall in vision-language models for robotics.

To enhance our understanding of our dataset’s capabili-
ties, we fine-tune a state-of-the-art model using one-third of
the dataset. This approach results in a significant 20% im-
provement in performance, demonstrating the exceptional
quality and value of our data for advanced training purposes.
With our proposed benchmark, we emphasize the essential-
ity of advancing vision-language models to excel not only at
object-level understanding but also at discerning parts-level
details. This advancement is crucial in varied contexts, from
home service robots aiding in domestic tasks to industrial
robotic arms, all playing a vital role in improving our daily
experiences. Our contributions are as follows:

• To the best of our knowledge, we present the first dataset
that bridges instruction-based interactions with part seg-
mentation for common household tasks, a critical step
towards more intuitive and versatile robotic systems.

• We rigorously evaluate various vision-language models
on the introduced dataset, demonstrating their applicabil-
ity and potential for the advancement of the community.

• We boost the state-of-the-art model’s performance by
20% via fine-tuning with one-third of our dataset, high-
lighting our data’s quality and training potential.

Related Work
Part Segmentation
Object segmentation aims to find semantically meaningful
pixels of each object in an image. Unlike traditional ob-
ject segmentation, part segmentation provides a more fine-
grained understanding of each object, assigning different
semantic labels to prominent parts within an object (Wang
et al. 2015). Previous methods are mainly based on a fully
supervised manner which needs to be trained on numerous
data, and various part annotation datasets have been col-
lected to support the process (Sun et al. 2023), such as Par-
tImageNet (He et al. 2022), Pascal-Part (Chen et al. 2014),
ADE20K (Zhou et al. 2019), and PACO (Ramanathan et al.
2023). However, such methods are constrained to the do-
main of the training data and focused on specific classes,
such as humans (Gong et al. 2017), birds (Wah et al. 2011),
fashion (Jia et al. 2020), and cars (Song et al. 2019). This
limits their usage in daily scenarios, especially for the inter-
action of robots and the environment.

In robotic tasks, understanding the parts of articulated ob-
jects is a popular topic, and the affordances of parts are
used for further manipulation (Gadre, Ehsani, and Song
2021; Yi et al. 2018). Related datasets include PartNet (Mo
et al. 2019), PartNet-Mobility (Xiang et al. 2020), 3D Af-
fordanceNet (Deng et al. 2021), GAPartNet (Geng et al.
2023) etc. However, these datasets are all generated from
simulators and have potential sim-to-real gaps when trans-
ferring to real-world scenarios. On the other hand, several
works collect real-world images curated for affordance un-
derstanding, such as UMD-Affordance (Myers et al. 2015),
NYUv2-Affordance (Roy and Todorovic 2016), and IIT-
AFF (Nguyen et al. 2017). However, these datasets cover

Table 1: Comparison of relevant part segmentation datasets.
We show the number of object classes (#Object), part classes
(#Part), affordances (#Affordance), actions (#Action), and
whether instructions are included (Instruction). N/A means
there is no such type of data, while – means the data exists
while no relevant information is provided. 11/158 indicates
the super-class and sub-class numbers in PartImageNet.

#Object #Part #Affordance #Action Instruction
UMD 17 N/A 7 N/A %

NYUv2 40 N/A 5 N/A %

IIT-AFF 10 N/A 9 N/A %

PartImageNet 11/158 13 N/A N/A %

Pascal-Part 20 – N/A N/A %

PACO 75 – N/A N/A %

InstructPart 54 48 32 38 !

a limited set of scenes and contain less than 10 classes of
affordance. Besides, using a simple word or phrase can be
insufficient to represent affordance sometimes. For example,
the affordance of the light switch can be “turn on”, while a
more precise description can be “press” or “twist” according
to the switch’s type. In real-world situations, people tend to
refer to a part using an instructional sentence instead of a sin-
gle word. Motivated by this, we construct a comprehensive
dataset with instruction-part pairs, object-part classes, affor-
dances, and actions. A comparison of relevant real-world
part segmentation datasets is shown in Tab. 1. We hope the
dataset can provide more insights into future work about the
interaction between robots and the environment.

Open-Vocabulary Segmentation
Traditional fully-supervised recognition methods have lim-
ited generalization ability, leading to more attention to rec-
ognizing open-world classes beyond the training phase. Re-
cently, the pre-trained vision language model, CLIP (Rad-
ford et al. 2021), which was trained on 400 million image-
caption pairs, aligns the gap between embedding space
of vision and language and demonstrates valuable poten-
tial in open-vocabulary segmentation. Most related methods
use existing image encoders as the backbone, e.g., Mask-
Former (Cheng et al. 2022) or SAM (Kirillov et al. 2023),
and apply CLIP for classification. The key to these meth-
ods is to align the embedding space of the image encoder
with that of CLIP. For example, OVSeg (Liang et al. 2023)
proposes to crop the region proposals and finetune CLIP us-
ing a mask prompt tuning mechanism. FC-CLIP (Yu et al.
2023) uses a frozen convolutional CLIP backbone and aligns
the region features from the visual backbone with CLIP.
SAN (Xu et al. 2023) applies a side adapter network to a
frozen CLIP to get the class of masks.

Going beyond object-level segmentation, more recent
works propose the open-vocabulary part segmentation task.
VLPart (Sun et al. 2023) parses the novel object into parts
using its semantic correspondence with the base object and
classifies it with CLIP. OPS (Pan et al. 2023) generates
pseudo labels for unlabeled data with a trained object detec-
tor and clusters between different parts in a self-supervised
procedure. However, OPS cannot predict semantic labels for
the segments and is not suitable for our task.



Figure 2: Examples from our InstructPart dataset are illustrated as follows: instructions are denoted in red text, while object and
part names are indicated in blue. Each example includes a input observation image (left), with the corresponding ground truth
part segments (right), highlighted with a green mask.

Although these open-world recognition methods have
demonstrated potential in recognizing out-of-distribution
classes, they have limited reasoning ability to understand
complex instructional sentences, thus prohibiting their wide
usage in real-world robotic tasks.

Referring Segmentation
The aforementioned open-world recognition methods recog-
nize objects and parts by their names while failing to refer to
a specific instance using a detailed description. On the other
hand, referring expression segmentation aims to generate a
segmentation mask from a given language expression (Hu,
Rohrbach, and Darrell 2016), and various datasets such as
ReferIt (Kazemzadeh et al. 2014), CLEVR-Ref+ (Liu et al.
2019), refCOCO (Yu et al. 2016), refCOCOg (Mao et al.
2016), gRefCOCO (Liu, Ding, and Jiang 2023) are collected
to support the task. These datasets contain image-expression
pairs and the masks of objects being referred to. Popu-
lar referring segmentation methods use a visual and a lan-
guage encoder to extract features from the two modalities re-
spectively, and design attention mechanisms to incorporate
the features and assemble classes for region masks (Yang
et al. 2022; Liu, Ding, and Jiang 2023; Ouyang et al. 2023;
Liu et al. 2023a). Recently, more works have applied pre-
trained foundation models, e.g., SAM(Kirillov et al. 2023)
and CLIP (Radford et al. 2021) as the encoder and focused
on the design of the decoder, such as X-Decoder (Zou et al.
2023a) and SEEM (Zou et al. 2023b). However, the refer-
ring expression task only takes short phrases as input and
does not consider complex reasoning, for example, when the
target name does not directly appear in the expression.

Reasoning Segmentation
On the other hand, remarkable advances have been made
in large language models (LLMs), which possess the ability
to understand complex language inputs and have the poten-
tial for more complex referring segmentation. Models such
as BLIP-2 (Li et al. 2023), LLaVA-1.5 (Liu et al. 2023b),
MiniGPT-4 (Zhu et al. 2023), Flamingo (Alayrac et al.
2022), and GPT-4V (Yang et al. 2023c) have explored the
design of multi-modal LLMs for visual understanding and
demonstrate their ability through tasks such as image cap-

tioning, visual question answering (VQA), etc. To enable the
grounding ability of multimodal LLMs, VisionLLM (Wang
et al. 2023) proposes an open-ended task decoder with LLM
and returns the coordinates of object polygons. Similarly,
Shikra(Chen et al. 2023b) and MiniGPT-v2 (Chen et al.
2023a) process object coordinates as input and enable the
localization ability by returning coordinates. However, both
these methods cannot produce segmentation masks and can
only implicitly generate texts using LLMs rather than us-
ing a visual decoder for localization directly, which can be
counterintuitive for image segmentation or detection.

Recently, LISA (Lai et al. 2023) incorporates a multi-
modal LLM(Liu et al. 2023b) with a vision backbone and
jointly trains a decoder to produce the segmentation masks.
They propose a new task – reasoning segmentation, which
requires the model to ground an area after comprehending
a complex input sentence. Intuitively, we are curious about
whether LISA has the ability to reason from instructions in
the context of robotic applications and refer to specific parts
that is essential for effective interaction.

To quantitatively evaluate the aforementioned methodolo-
gies in these scenarios, we propose the InstructPart dataset,
which contains instruction-part pairs, object-part names,
high-level affordance, low-level action, and the part seg-
mentation mask. It aims to rigorously test and potentially
improve the ability of current models to accurately identify
specific parts based on instructions in robotic applications.

Dataset and Task Settings
InstructPart Dataset
Motivated by scenarios where an agent is required to follow
instructions, we create the InstructPart dataset. This dataset
is designed to measure the effectiveness of current models in
understanding natural language and their ability to perform
reasoning and grounding. The dataset consists of 700 im-
ages sourced from Flickr and the internet, carefully chosen
to align with everyday household tasks. We ensure a uni-
form collection of object classes and thoroughly annotate all
relevant parts within each image.

We design tailored instructions for each image to aid intel-
ligent agents in better understanding their surroundings and
performing an action, as illustrated in the first row of Fig. 2.



In the three examples shown in the first row, the agents need
to understand the parts for sitting, dispensing, and gripping
respectively, where the parts are highlighted in the green
masks in the image. For each image-instruction pair, we an-
notate all the fine-grained segmentation masks that satisfy
the instruction and treat them as the ground truth to evaluate
whether a system successfully localizes the regions.

We purposefully avoid specific references to part names
in our instructions to enhance their practicality in real-world
situations. For instance, commonly used expressions such
as “Flush the toilet” or “Turn on the faucet” are preferred
over more detailed directives like “Press the toilet handle”
or “Lift the faucet handle”. We had 6 human experts create
free-form natural language instructions, which were then re-
fined using GPT-4 to ensure grammatical precision and di-
verse sentence construction. This process was followed by a
thorough human verification of the refined instructions.

In addition to the instruction-image pairs, we provide the
names of objects and parts relevant to the image, such as seat
of the chair, spout of the kettle, handle of the cup. We also
include a corresponding affordance and action for each in-
struction. Specifically, affordances refer to low-level actions
performed to a specific part, like “pull”, “push”, or “twist”,
while actions refer to the high-level function to be achieved,
such as “turn on”, “pick up”, or “open”. Note that the
affordance and action could be identical sometimes, e.g.,
“pour”, “cut”, etc. In the examples shown in the first row of
Fig. 2, the affordances are “support”, “pour”, “grip”, and
the actions are “sit”, “pour” and “pick up”. This allows us
to categorize affordances into two levels, addressing the am-
biguity in definitions as noted in previous studies (Nguyen
et al. 2017; Roy and Todorovic 2016; Myers et al. 2015).

In summary, the components for an image of our dataset
can be represented as:

(Itext, Iimage, O, P,M,Aaffordance, Aaction),

where these items refer to text instruction, image obser-
vation, object name, part name, segmentation mask, affor-
dance name, and action name, respectively. Note that Itext ∈
{Ihuman, IGPT}, which means the text instruction is either di-
rectly annotated by humans or rewritten by GPT-4.

Task Definition
The task of localizing an area based on a given instruction
necessitates the model’s capability to comprehend complex
directives and refer to them appropriately. Accordingly, we
propose the Instruction Reasoning Part Segmentation
(IRPS) task, challenging the model to develop proficiency
in both linguistic reasoning and visual grounding. Fur-
thermore, to exclusively evaluate the visual grounding
capability of existing models, we introduce the Oracle
Referring Part Segmentation (ORPS) task, which utilizes
oracle information about the designated object and part.

Instruction Reasoning Part Segmentation (IRPS). To
explore the reasoning and part grounding ability of cur-
rent models, we propose the IRPS task, which is shown
in the first row of Fig. 2. The models should only take an
instruction-image pair as the input, and find the part seg-
mentation masks being referred to, which are shown in green

masks in Fig. 2. This requires the model to possess the abil-
ity to understand the instruction, analyze the image, and re-
fer to the corresponding part area. The task can be formu-
lated as:

F(Itext, Iimage) ⇒ M, (1)
where F is the vision-language model, and Itext ∈
{Ihuman, IGPT}, indicating that the instruction can be either
human-annotated or GPT-4 rewritten.

Oracle Referring Part Segmentation (ORPS). In the
ORPS setting, we consider using the part name to directly
refer to the part, which ensures the model has a correct text
input. The task is shown in the second row of Fig. 2. We
formulate the ORPS task in two formats:
1. We use a template to connect the part name and the object

name with the word “of”, e.g., the handle of the faucet:

F(P ofO, Iimage) ⇒ M. (2)

2. Besides, considering that affordance could potentially
help the model refer to a part, we add the affordance
name to the former format:

F(P ofO thatAa, Iimage) ⇒ M, (3)

where Aa incorporates the affordance, e.g., the handle of
the cup that can be held.

Metrics
We follow LISA (Lai et al. 2023) to use two metrics, gIoU
and cIoU. gIoU is the average of all per-image Intersection-
over-Unions (IoUs), and cIoU is defined by the cumulative
intersection over the cumulative union.

Besides, to evaluate the precision of the models, we adopt
Precision@50 (P@50) metric as the previous referring seg-
mentation works (Liu et al. 2023a; Mao et al. 2016) and
develop a Precision@50:95 (P@50:95) metric according to
COCO (Lin et al. 2014). The P@50 metric simply consid-
ers a mask to be a true positive when the IoU ratio exceeds
0.5, and P@50:95 calculates across a range of IoU thresh-
olds from 0.50 to 0.95 with increments of 0.05, then aver-
ages across all the thresholds. The P@50:95 metric requires
a higher least IoU for the prediction hence it is always lower
than the P@50 metric.

For the two metric types, IoU and Precision, the latter
metric only counts those results greater than a threshold,
hence can pose more challenges to the model than the former
one and fairly evaluate the results with a high recall rate.

Experiments
Evaluated Methods
Open-vocabulary Segmentation Models. The open-
vocabulary part segmentation model, i.e., VLPart (Sun et al.
2023), is intuitively suitable for our tasks since plentiful
part segments were used for training. As a result, we would
like to know whether they can perform well in our dataset
collected especially for robotic daily tasks. We also choose
OVSeg (Liang et al. 2023) and SAN (Xu et al. 2023) to dis-
cover the performance of the open-vocabulary object seg-
mentation methods on our task. We select the best-reported
models for the three methods.



Refering Segmentation Models. We conduct experi-
ments with off-the-shelf models including X-Decoder (Zou
et al. 2023a), SEEM (Zou et al. 2023b), and TRIS (Liu et al.
2023a). Besides, we also evaluate Grounding-DINO (Liu
et al. 2023c), which has witnessed a great open-vocabulary
referring detection ability and been integrated with
SAM (Kirillov et al. 2023) to a project, Grounded-SAM1.
We adopt the best models for these methods.

Reasoning Segmentation Models. For our tasks,
LISA (Lai et al. 2023) can naturally be a good choice since
it can return masks and has been trained on several part seg-
mentation datasets. As a result, it is interesting to explore
whether it possesses the ability to understand instructions
and find part segments. Other multi-modal LLMs, including
VisionLLM (Wang et al. 2023), Shikra (Chen et al. 2023b),
and MiniGPT-v2 (Chen et al. 2023a) also have localization
ability. Since they can only return bounding box outputs, we
use the results as box prompts for SAM (Kirillov et al. 2023)
to get a mask output for fair comparison. However, we can-
not test VisionLLM since its code has not been released. We
adopt LISA-7B-v1 (Lai et al. 2023) model that has been fine-
tuned on both training and validation data of LISA’s dataset.
Besides, we select the Shikra-7B-delta-v1-0708 for Shikra
and the stage-3 model for MiniGPT-v2.

Grid-based GPT-4V. The recent release of GPT-4V
has demonstrated remarkable advancements in complex
visio-linguistic reasoning (Yang et al. 2023c), outper-
forming its predecessors in previous challenges, such as
Winoground (Thrush et al. 2022). As a natural thought, we
wonder if GPT-4V can also succeed in understanding and
grounding object parts. However, GPT-4V API cannot re-
turn segmentation mask output directly, and our preliminary
experiments showed that GPT-4V performs poorly when it
is asked to generate text coordinates. As a result, we first
use Grounding-DINO (Liu et al. 2023c) to find the bound-
ing box of the entire object and crop it, then ask GPT-4V to
virtually divide the box to 7× 7 grids and identify the grids
including the desirable parts. Afterward, the coordinates of
the grids are used as a prompt for SAM (Kirillov et al. 2023)
to obtain the segmentation mask.

SoM-based GPT-4V. SoM (Yang et al. 2023b) proposes
to label the masks obtained by SAM (Kirillov et al. 2023)
with numbers in the center of each object. As it proves that
precise referring can boost the performance of GPT-4V, we
apply a similar manner for our part segmentation task. Al-
though SAM (Kirillov et al. 2023) can be a superior choice
to obtain masks at multiple granularities (Zou et al. 2023b),
it is prone to failing in part segmentation for small objects.
As a result, we add Grounding-DINO (Liu et al. 2023c) to
detect the object first, then apply SoM to the object patch
instead of entire image.

Quantitative Results
The left part of Tab. 2 shows the result of oracle refer-
ring part segmentation, where object and part names are
explicitly embedded into a template, mitigating the need

1https://github.com/IDEA-Research/Grounded-Segment-
Anything

for models’ reasoning ability. The Object-Part column
stands for the results using the template mentioned in Eq. 2,
while the Object-Part-Affordance column incorporates the
affordance according to Eq. 3. The right part of Tab. 2 shows
the result of instruction reasoning part segmentation, where
part names are not present in the instruction and require
more reasoning ability to understand the implicit meaning.

Comparing the left and right parts of Tab. 2 we can find
that the performance of oracle referring task is generally
better than that of instruction reasoning. This demonstrates
that current models lack the reasoning ability to infer from
an instruction-image pair to the correct interactive part. For
the oracle referring segmentation task, incorporating the
affordance in the instruction leads to no apparent increase
in the average performance. While LISA and X-Decoder
achieve some increase, other models are impacted by
the affordance. This indicates that most models may not
possess the common sense to relate a part to an affordance.
Besides, from the average results shown in the right part of
Tab. 2, we can find that GPT-4 rewritten instructions lead
to overall better performances. We infer this may derive
from GPT-4’s potential reasoning ability. For example,
given an instruction “If I want to pick up the knife, which
part in the picture can be used?”, GPT-4 would explicitly
point out the specific part that the model should refer to,
such as “Indicate which part of the picture represents the
handle of the knife.”. This performance reveals that current
vision-language models (VLMs) still lag behind LLMs in
the realm of reasoning, and more work needs to be done to
leverage LLMs’ ability to VLMs.

As the oracle referring segmentation task is the optimal
condition of instruction reasoning segmentation task, we
will first analyze it to explore the visual grounding ability
of the models.

Oracle Referring Results. The methods in Tab. 2 are di-
vided into 3 categories, namely, open vocabulary segmenta-
tion (OVS), referring expression segmentation (RES), and
reasoning segmentation (RS). VLPart, although has been
trained on numerous part segmentation data, still fails to
handle the oracle referring task, indicating that it cannot
generalize to our robot-oriented data distribution. The OVS
methods, OVSeg and SAN, outperform VLPart in two IoU
metrics. However, it obtains low P@50 and P@50-95 scores,
which can be attributed to the models generating object seg-
ments rather than parts, leading to high recall rates while
suffering from reduced accuracy.

Out of expectation, the RES methods, X-Decoder, SEEM,
and TRIS perform poorly even in the oracle referring part
segmentation task. On the other hand, Grounded-SAM is
relatively better than the aforementioned methods. This in-
dicates that its base model, Grounding-DINO (Liu et al.
2023c), possesses a better ability to detect parts than other
segmentation-based methods. This may be explained by the
fact that detection data, with the format of only four coor-
dinates, is easier to obtain and Grounding-DINO has seen
more data with various distributions.

LISA, as a reasoning segmentation method trained on
sentence-mask pairs, is indeed better than previous meth-
ods. Remarkably, even though Shikra and MiniGPT-v2 are



Table 2: Results on oracle referring part segmentation task (left) and instruction referring part segmentation task (right). We
divide the methods into three categories, namely, open-vocabulary segmentation (OVS), referring expression segmentation
(RES), and reasoning segmentation (RS).

Methods

Oracle referring part segmentation results Instruction reasoning part segmentation results

Object-Part Object-Part-Affordance Human-Annotated GPT-4-Rewritten

gIoU cIoU P50-95 P50 gIoU cIoU P50-95 P50 gIoU cIoU P50-95 P50 gIoU cIoU P50-95 P50

O
V

S VLPart 15.11 17.93 11.44 15.38 13.56 12.15 10.86 13.64 0.32 0.94 0.06 0.15 0.46 0.97 0.20 0.44
OVSeg 20.86 17.78 7.21 15.67 20.61 17.59 7.07 15.53 16.44 13.11 5.34 10.74 16.93 14.21 4.67 10.89
SAN 13.45 19.70 5.36 10.74 14.72 20.17 5.86 12.19 9.03 13.99 2.70 6.10 9.02 15.87 2.79 6.39

X-Decoder 8.76 10.90 2.79 5.66 9.64 11.47 3.11 6.53 9.92 10.62 3.32 6.97 9.51 9.74 2.99 6.68

R
E

S SEEM 8.29 11.66 2.53 5.37 8.29 11.66 2.53 5.37 7.80 9.88 2.00 4.50 9.39 11.67 2.55 6.53
TRIS 17.04 17.28 5.12 11.76 17.05 17.28 5.01 12.19 14.74 14.85 3.53 9.58 15.47 15.56 3.95 10.89

G-SAM 26.21 22.47 10.09 19.30 25.71 22.43 9.78 18.87 22.11 19.79 7.16 15.67 22.38 19.60 7.30 15.53

R
S

LISA 35.91 41.36 20.55 34.98 36.67 42.91 20.87 35.56 26.06 28.63 14.15 23.08 26.25 30.14 13.72 24.38
Shikra 37.74 33.89 24.37 36.87 35.44 32.64 21.94 33.24 2.76 4.33 1.26 2.18 8.59 11.38 4.38 6.82

MiniGPT-v2 37.64 40.80 22.44 34.11 36.32 38.88 21.38 32.66 21.81 20.95 10.39 17.56 23.01 22.18 12.38 20.46

Average 22.10 23.38 11.19 18.98 21.80 22.72 10.84 18.58 13.10 13.71 4.99 9.65 14.10 15.13 5.49 10.90

Table 3: GPT-4’s performance in the object-part oracle re-
ferring part segmentation task, as applied to a subset of In-
structPart.

Methods
Object-Part

gIoU cIoU P50-95 P50

Grid-based GPT-4V 14.14 17.15 5.67 12.37

SoM-based GPT-4V 25.41 26.82 17.90 25.81

not specifically designed for segmentation tasks, simple in-
tegration with SAM (Kirillov et al. 2023) yields results that
surpass those of LISA. This demonstrates again that detec-
tion data with a wide range of distribution is easier to collect
and could cover more part categories.

Instruction Reasoning Results. In the right part of
Tab. 2, we report the result using our hand-collected data
and GPT-4 rewritten data respectively. As the task poses
more challenges to understanding sentences, all the results
undergo a decrease, especially in VLPart, which drops sig-
nificantly. The results of OVSeg and SAN have a smaller de-
crease, which can be explained that these models recognize
keywords to find the entire object. Since our instructions do
not intentionally avoid object names, these OVS methods
can still find the entire object. Interestingly, the performance
of X-Decoder experiences a small increase in the human-
annotated data. Not surprisingly, LISA performs best among
all the models since it has been trained on similar data. How-
ever, Shikra experiences an unusual decrease of nearly 20
times. This indicates that although trained on various visio-
linguistic data, Shikra still lacks enough reasoning ability to
handle our instruction reasoning task.

GPT-4V Based Methods Results. Tab. 3 shows the re-
sults of two GPT-4V segmentation methods. However, due
to the quota restriction, we are not able to frequently call
GPT-4V API. As a result, we first test the two methods on
the oracle referring task to explore GPT-4V’s localization
ability. Besides, we select a subset consisting of 226 samples

from the dataset according to the original category distribu-
tion. Although the results cannot be fairly compared with
other methods in Tab. 2, it still reveals the poor performance
of GPT-4V. For the two methods, the SoM-based method
performs better, demonstrating that GPT-4V can hardly di-
rectly localize the part targets and has to choose from a set.
However, compared to the satisfactory results in (Yang et al.
2023b), SoM fails to handle our dataset. This may be ex-
plained by two reasons: 1) While GPT-4V can localize ob-
jects (Yang et al. 2023b), we hypothesize that it is not di-
rectly trained on fine-grained part data. 2) Labeling numbers
in the center of fine-grained parts may lead to overlapping
and ambiguity in referring.

Qualitative Results

Fig. 3 shows the visualization results on the instruction
reasoning segmentation task. The first column depicts the
ground truth labels, and the remaining columns include the
results of three categories, namely, OVS: OVSeg (Liang
et al. 2023) , SAN (Xu et al. 2023) , RES: X-Decoder (Zou
et al. 2023a) , SEEM (Zou et al. 2023b) , TRIS (Liu et al.
2023a) , Grounded-SAM, and RS: MiniGPT-v2 (Chen et al.
2023a) , LISA. (Lai et al. 2023) . We do not include results
on VLPart (Sun et al. 2023) and Shikra (Chen et al. 2023b)
because they barely obtain any output in these samples.

The first five rows show handle of the refrigerator, bowl of
the spoon, handle of the microwave, seat of the chair, stem of
the wine glass, respectively. We can find that LISA can cor-
rectly distinguish a specific part from the entire object while
other methods tend to predict a larger area. However, in the
remaining three samples, including handle of the knife, han-
dle of the pliers, and handle of the cup, although the parts
are distinguished from the background and seem to be easy
for human judgment, all the models struggle to find the cor-
rect part. This indicates that the models lack understanding
of the feature of parts and more work needs to be performed
to solve the challenge.
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Figure 3: Visualization results on the instruction reasoning part segmentation task. The instructions are human-annotated. Green
masks stand for the ground truth and red masks represent the predictions.

Discussion
Our findings reveal that reasoning segmentation techniques
typically outperform other methods. This highlights the ef-
fectiveness of end-to-end multi-modal foundation models
in vision-language grounding, surpassing traditional models
that are limited to specific, narrow tasks. Additionally, the
impressive results achieved by detection-based models sug-
gest that incorporating a mix of detection and segmentation
data during the training phase could be beneficial.

Moreover, we show that a minimal set of our InstrutPart
samples can significantly enhance instruction reasoning ca-
pabilities in existing models. Specifically, fine-tuning the
LISA-7B-v1 model (Lai et al. 2023) with only 226 samples
for 600 iterations yielded notable improvements. This was
evidenced by the substantial increases in gIoU (26.18% to
42.01%) and cIoU (28.10% to 48.75%) on the test set com-
prising the remaining 474 samples. This demonstrates that
even a small subset of our high-quality data can significantly

enhance the model’s ability to comprehend instructions and
segment parts, affirming the exceptional quality and utility
of our data for further training.

Conclusion

In this work, we have introduced InstructPart, a novel
dataset containing part annotations for common household
tasks instructions. We showed that even the most advanced
vision-language models struggle with instructions that link
specific affordances to the corresponding parts of an object.
This highlights a significant gap in foundation models for
robotics. With our dataset, we hope to enable future re-
search that can pave the way for more natural human-robot
interactions by allowing laypeople to effectively interact
with assistive robots in their in-home environment through
grounding high-level instructions in objects and, most
importantly, object parts that can fulfill their needs.
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