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Abstract

Although AI has made large strides in recent years, state-of-the-art models still
largely lack core components of social cognition which emerge early on in infant
development. The Baby Intuitions Benchmark was explicitly designed to compare
these "commonsense psychology" abilities in humans and machines. Recurrent
neural network-based models previously applied to this dataset have been shown
to not capture the desired knowledge. We here apply a different class of deep
learning-based model, namely a video transformer, and show that it quantitatively
more closely matches infant intuitions. However, qualitative error analyses show
that model is prone to exploiting particularities of the training data for its decisions.

1 Introduction

The foundations of "commonsense psychology" emerge early on in a human’s development: Even
pre-verbal infants have expectations about agents’ goals, preferences and actions [17]. Although
deep learning (DL) has made tremendous progress in recent years, this core component of human
cognition is still lacking in many state-of-the-art DL models [13]. When tested on the Baby Intuitions
Benchmark (BIB), a dataset designed to compare the social cognitive abilities of infants and machines,
behavioral cloning (BC) and video prediction models based on recurrent neural networks (RNNs)
failed to show infant-like reasoning [6]. We here evaluate a different class of DL model, namely a
video transformer (VT), on the BIB dataset.

Recent years have seen the rise of transformers in various areas of AI, including tasks adjacent to
social cognition, such as trajectory prediction for cars or pedestrians [20, 15, 2, 18, 9, 19] and spatial
goal navigation [4, 1, 5]. As the transformer attention mechanism is based on computing pairwise
interactions [14], this family of models constitutes a promising approach for capturing the relations
between, e.g., agents and goals in the BIB dataset. However, transformer-based video prediction
models require many costly pairwise computations. They are usually trained and evaluated on datasets
like Kinetics-400 [12] or UCF101 [16], where video clip lengths range from 7 to 10 seconds – much
shorter than those used in BIB, which may be up to 2 minutes long. We therefore implement some
modifications to allow a VT to process BIB episodes, and evaluate the resulting model.

We find that the VT quantitatively more closely matches infant intuitions about agent’s goal prefer-
ences and efficient actions than previously tested DL baselines. However, qualitative error analyses
show that the model fails to generalize systematically on some of the test tasks when agent or
environment dynamics differ slightly from background training observations.
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Table 1: Overview of BIB tasks.

Familiarization trials Test trial Expected outcome Unexpected outcome

Preference Identical to a familiarization trial,
but object positions are switched

Agent moves to preferred
object at new location

Agent moves to nonpreferred
object at familiar location

Multi-agent
Agent consistently chooses
one of two goal objects
and moves to it efficiently

New agent appears New agent moves to object not
preferred by familiar agent

Familiar agent moves to
previously not preferred object

Inaccessible goal Preferred goal becomes inaccessible Agent moves to other goal Agent moves to other goal,
even though both are accessible

Efficient agent Agent moves efficiently around
a barrier towards goal Barrier is removed Agent moves efficiently Agent moves inefficiently

Irrational agent One agent moves efficiently,
one moves inefficiently Both agents move inefficiently Previously inefficient

agent moves inefficiently
Previously efficient agent
moves inefficiently

Instrumental action Agent removes a green barrier (inserts
key into lock), then moves to goal Green barrier gone or inconsequential Agent moves directly to goal Agent still moves to key

2 Baby Intuitions Benchmark

BIB is a dataset designed to test whether machine learning systems can discern the goals, preferences,
and actions of others [6]. It consists of videos in the style of Heider and Simmel’s animations [10],
where agents, represented by simple shapes, carry out actions in a 2D grid world. BIB follows the
violation-of-expectation (VoE) paradigm, i.e., each video has a familiarization and a test phase. The
familiarization phase consists of eight successive trials during which an agent consistently displays
a certain behavior, allowing the observer to form an expectation of future actions. The test phase
includes an expected outcome (perceptually similar to the previous trials, but involves a violation of
expectation), and an unexpected outcome (perceptually less similar, but conceptually more plausible).
BIB contains six types of tests tasks, outlined in Table 1. It also contains background training
episodes, which share the same structure as the test set. However, only expected trials are provided,
and only isolated tasks are trained, such that the systematic combination of acquired knowledge is
needed to generalize to the test tasks. For examples and more details on BIB, see A.

Because BIB adopts its tasks and paradigm from developmental cognitive science and provides
sufficient data to train DL-based models, it allows for the direct comparison of human and machine
performance [6]. A critical first step in this direction was taken by Stojnic et al. [17], who collected
infants’ responses on a representative selection of BIB episodes and compared them with three
state-of-the-art DL models from two classes: Behavioral cloning (BC) and video modeling. Recently,
Zhi-Xuan et al. [21] proposed a principled alternative to DL approaches, based on a hierarchically
Bayesian Theory of Mind (HBToM). Results from both works serve as comparisons in this paper.
Note, however, that HBToM requires access to symbolic states and is specifically engineered to
solve BIB-like social cognition tasks, whereas the data-driven baselines and VT model have weaker
inductive biases in this regard.

3 Methods

Our model consists of a convolutional neural network (CNN) encoder, a transformer component,
a CNN decoder, and a feedforward output layer. A schematic visualization is shown in Figure 1.
The CNN encoder has two convolutional layers and two max-pooling layers. For each 3× 84× 84
input image, it produces a 30 × 21 × 21 representation, which we concatenate with x- and y-
position encodings, yielding 32× 21× 21 image patches. As attending over every pixel would be
computationally prohibitive, the CNN encoder was designed to reduce the frame’s resolution by
extracting higher-level features, while retaining a sufficient level of spatial detail.

The transformer component consists of three standard five-layer attention blocks with 8 heads of input
dimension 32 and hidden dimension 256. The number of heads and layers was chosen to strike a
balance between performance and computational complexity. The first block performs cross-attention
over the test trial’s encoded first frame and the previous familiarization trials, effectively "priming" the
model by calculating the influence of previous observations on the current input. Because attending
over every patch, frame, and trial would be extremely computationally expensive, we only feed
in the top-k patches per frame that display the highest change compared to the previous frame. K
was set to 3, as using a higher number would have exceeded the memory resources in our training
setup. The results of attending over each trial are then averaged and passed through a self-attention
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block, followed by another cross-attention block. This block attends over past steps in the test trial,
encoded in the same way as the familiarization trial frames. Intuitively, the second attention block
serves to compute a global trajectory plan, whereas the third attention block calculates the agent’s
next move based on its actions so far. In a final step, the outputs of the transformer component
are passed through a linear layer, which produces a 1 × 21 × 21 prediction of the agent’s next
position, and a CNN decoder, which produces a 3× 83× 84 prediction of the video’s next frame.

CNN 
Encoder

Cross-
Attention

Cross-
Attention

Self-
Attention

CNN 
Decoder

K

MLP

K Q V

K

frames of past trials
current frame past frames of 

current trial

......

next frame 
prediction

agent position 
prediction

per frame: 
extract k 

patches with 
largest 
change

Q

V

Q

V

per frame: 
extract k 

patches with 
largest 
change

Figure 1: Schematic visualiza-
tion of the VT architecture.

As in Gandhi et al. [6], the videos’ frame rate was downsampled by
a factor of 5. We used a maximum sequence length of 90. Frame
rates of longer sequences were interpolated to fit the maximum
length. Of the BIB background episodes, we used 80% for training,
15% for testing, and 5% for validation. Models were trained using
the Adamax optimizer for a total of 6 epochs. The batch size was
set to 6 because of the VT’s high memory requirements. We tested
the models on the validation set in five evenly spaced intervals
per epoch and saved the model with the lowest validation loss
to avoid overfitting. Our loss function consisted of the sum of
two terms. The first term was the binary cross-entropy (BCE)
loss between the prediction of the agent’s next step and the actual
agent position. To address the imbalance between the "agent" and
"no-agent" class, we employed a weighted version of the BCE loss,
which is widely used in instance segmentation [11]. The second
term was the mean squared error (MSE) between the prediction
of the next frame and the actual next frame, upweighted by a
constant factor so that both loss terms were scaled evenly. This
second term was introduced because transformers may disregard
agent identities unless incentivized otherwise [20]. For tasks like
preference, which relies on the preservation of agent shapes and
colors, we therefore found it improved performance to include an
auxiliary reconstruction loss. During evaluation, only the main
BCE loss was used. On a 16-Core AMD EPYC 7282 server with
six GeForce RTX 2080 GPUs, training time was around 3 hours
per epoch. Our code is available at github.com/zero-k1/BIB-VT.

4 Results

In total, we trained five models with different random seeds, and we report their average performance
and standard deviations. The baseline DL models previously tested on BIB used the prediction error of
the frame with the highest loss as their metric of "surprise", as this provided better results compared to
the mean error over entire trials [6]. In our case, the mean error yielded a higher performance on most
tasks, which is why we here report both metrics. Performance comparisons with models previously
tested on BIB are shown in Table 2. However, binary VoE accuracies include no information about
the magnitude of the difference in surprisal scores between expected and unexpected trials. We
therefore also show z-scored means of both the models’ average prediction error and infants’ looking
times, as reported by Stojnic et al. [17], in Figure 2.

4.1 Goal-directed

4.1.1 Preference

In contrast to previous DL-based models, the VT seems, at least to some degree, to associate agents
with certain goal preferences in the preference task (see Figure 2a). To investigate which parts of the
familiarization trials the model relied on most for its decisions, we performed a form of occlusion
analysis. We used only one trial as the familiarization input (performance was almost identical when
using one vs. the full eight trials), and dropped each of the patches fed into the first transformer block
in turn. For each patch, we recorded the z-scored difference in prediction error between the expected
and unexpected outcome. An example result is shown in Figure 3. Models tended to either focus on
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Table 2: VoE Accuracy on BIB tasks. VoE Accuracy denotes whether model error is higher on
expected trials than unexpected trials. VT (Mean) uses the avg. error over all test trial frames as the
"surprise" metric, whereas VT (Max) uses the error for the frame with the highest loss. Baselines
and Video Transformers are data-driven computer vision models, whereas HBToM uses a principled
Bayesian solution that requires access to symbolic states. Chance level accuracy 50%

Baselines Video Transformer (ours)

Task HBToM BC-MLP BC-RNN Video-RNN VT (Mean) VT (Max)
Goal-directed

Preference 99.7 26.3 48.3 47.6 82.1 ± 0.0 80.8 ± 0.0
Multi-agent 99.2 48.7 48.2 50.3 49.1 ± 0.0 49.2 ± 0.0
Inaccessible goal 99.7 76.9 81.6 74.0 89.8 ± 0.0 85.5 ± 0.0

Efficiency
Efficient agent 95.8 96.0 95.3 99.5 98.3 ± 0.0 98.4 ± 0.0
Irrational agent 96.6 73.8 56.5 50.1 29.5 ± 0.1 34.1 ± 0.1

Instrumental actions
Instrumental action 98.5 67.0 77.9 79.9 92.6 ± 0.0 84.7 ± 0.0

(a) (b) (c) (d) (e) (f)

Figure 2: Z-scored means of the models’ average surprisal scores and infants’ looking times to the
expected and unexpected outcomes in the BIB test episodes.

the agent’s last or first step. Averaged over all models and episodes, the patch with the largest impact
on the final prediction was part of the last two frames of the familiarization trial in 52.6% of cases.

4.1.2 Multi-Agent

Similar to the other DL models, the VT does not acquire the desired knowledge from the multi-agent
background training tasks, which feature both agents moving towards the same single goal across
trials. Note that the infants tested on BIB were in fact more surprised at the supposedly "expected"
trials (see Figure 2b). Stojnic et al. [17] hypothesize that this may be because of the increased
novelty of the new agent. A closer look at the frame predictions produced by the VTs hints at some
confusion regarding the agents’ identity: In some cases, the model reconstructs the familiar agent
in the unexpected trial, rather than the new agent present in the input (see Figure 4 for an example).
Averaged over all models and episodes, this was the case 27.9% of the time.

4.1.3 Inaccessible

In the inaccessible-goal task, the VT model achieves a higher accuracy than previous DL models.
It exhibits a stronger deviation in surprise than the infants, who were indifferent on this task (see
Figure 2c). Stojnic et al. [17] posit that infants may have considered the new barrier in the expected
outcome as indicative of a new environment and not carried over any goal preference expectations
from the familiarization trials. Although the VT has a lower prediction loss on the expected outcome
in most cases, it is more "split" than in the single-object case (see Figure 5 for an example prediction).
Averaged over all models and episodes, the entropy of the models’ prediction on the test trial’s last
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Figure 3: Z-scored impact
of omitting a patch from
the preference familiariza-
tion trial.

(a) (b) (c)

Figure 4: 3a: Unexpected multi-agent
outcome (familiar agent). 3b: Expected
outcome (new agent). 3c: Prediction for
expected outcome.

Figure 5: Inaccessible goal
task. Predicted agent posi-
tions marked blue.

frame was 1.10 for the expected, and 1.47 for the unexpected outcome. For comparison, the average
entropy for the last frame of the single-object efficiency-time trials was only 0.58.

4.2 Efficiency

Figure 6: Avg. difference in the VT
layers’ activations when processing the
episodes’ unexpected vs. expected famil-
iarization trials, featuring a rational or an
irrational agent, respectively.

Similar to previous models, the VT’s VoE accuracy on the
path-control and time-control tasks are nearly perfect – the
model strongly expects agents to move towards their goal
efficiently. This is in accordance with infant’s intuitions
(see Figure 2d). On the inefficient-agent task, the VT tends
to be more surprised at the previously inefficient model
moving inefficiently than at the previously efficient agent
doing so. Although not necessarily a desired outcome, this
is actually more in line with the intuitions of the infants
tested on BIB, who attributed rational action both to previ-
ously efficient and inefficient agents in a new environment
(see Figure 2e). When we compare the impact of the famil-
iarization trials featuring the efficient vs. inefficient agent
on the VT model (see Figure 6), we see that a similar mechanism is at work: The lowest levels, which
attend over past familiarization trials, show differences in activation. However, these differences all
but disappear throughout the higher layers. This leads to the inefficient agent being treated in the
same way as the efficient one, which explains the mean surprise score being almost the same in both
cases. The slightly larger error for the inefficient agent most likely stems from the fact that irrational
agents are not seen during training, leading to higher prediction uncertainty.

4.3 Instrumental Actions

(a) Predicted
last frame and
agent trajectory
(yellow).

(b) Z-scored impact
of each test trial
patch on final MSE
error.

Figure 7: Prediction on an
instrumental-action task.

Compared with the other DL models, the VT performs similar on
episodes with no barrier, and better on episodes with inconsequen-
tial or blocking barriers. Again, infants were indifferent on this
task (see Figure 2f). Stojnic et al. [17] note that they may have
failed to recognize the instrumental actions because they were
causally opaque. Although the VT is correct in most cases in
terms of VoE accuracy, it, too, seems to not have quite understood
the causal mechanism. A look at the frame predictions shows
that the model usually expects the disappearance of the key on
the first step, even though the agent has not collected and inserted
it. Averaged over all models and episodes, the VT at least partly
predicts the key’s position as the agent’s first step in 47% of cases,
even though the key is mostly far away from the agent. This is
most likely because the key is always right next to the agent in the

background instrumental-action tasks, and thus constitutes its first step. The VT also often predicts
the disappearance of the green barrier towards the end of the episode, even though the key was not
inserted. This is most likely because the green barrier has always disappeared by the time the agent
reaches the goal in the background tasks. Occlusion analyses support this hypothesis: The parts of the
test trial that most contribute to the z-scored MSE prediction error on expected instrumental-action
outcomes were usually the agent’s first and last steps (see Figure 7 for an example).
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Figure 8: Weighted binary cross-entropy loss for linear regression models trained on decoding the
current position of goals, agents, and sub-goals, from each layer of the five models.

4.4 Decoding experiment

Inspired by probing analyses of pre-trained language models [3], we train linear regression models
to predict the current position of the agent, goal, and sub-goals (keys and locks), based on the
concatenated output of the eight attention heads in each layer of each video transformer block. We use
the background training set for optimization and display the results for the background validation set
in Figure 8. In general, we see errors decrease in the deeper layers of the attention blocks, indicating
more focused attention heads. The heads in the first block, which attends over familiarization trials,
do not display a large degree of specialization regarding the analysed categories. However, at least
in the higher layers, the agent, key, and lock categories have a comparatively lower decoding error
than the goal category. Note that the agent’s position often corresponds to the key and lock position
for long stretches of instrumental action trials, as the agent waits for the green barrier to disappear
after having inserted the key into the lock. The second block, which self-attends over the test trial’s
first frame, has the lowest decoding error across categories and a particular low error for the agent’s
current position. The third block shows a clear separation between categories, with locks and keys
displaying a much lower decoding error than goals and agents. This is presumably because the third
attention block autoregressively predicts the agent’s next step, which, as mentioned, often coincides
with the key and lock position while the agent is waiting in place for the barrier to disappear. In
summary, the video transformer seems to have learned to implicitly keep track of relevant semantic
categories, such as agents, goals, and subgoals, which are usually modelled as explicit variables in
Bayesian approaches.

5 Discussion and Conclusion

In conclusion, the VT model tested in this paper outperforms previous DL-based baselines on the
preference, inaccessible-goal, and instrumental-actions BIB tasks in terms of VoE accuracy. Its
surprisal scores are also more in line with infants’ expectations than previous DL models, in that it
tends to represent agents’ actions as directed towards goals, rather than locations, and defaults to
expecting rational actions. This suggests that the transformer’s attention mechanism can be helpful in
acquiring intuitions about agents’ goals, preferences, and actions, purely from predicting the next
step in videos. However, a qualitative analysis of the VT’s errors also demonstrated the pitfalls of
this approach: Models may exploit the particularities of a training dataset in an unintended way
[7, 8], e.g. by associating the disappearance of the green barrier in the instrumental-actions task
with the agent’s first and last step rather than the key mechanism. This may be mitigated with a
more realistic data setting, where models can gain experience with diverse agents and disambiguate
causes and effects of instrumental mechanisms interactively, in a manner closer to human infants.
The findings also support the benefit of investigating hybrid architectures that incorporate methods
which explicitly model human intuitions, such as HBToM, to take advantage of both the flexibility of
DL-based approaches and the data efficiency and robustness of principled Bayesian models.
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A Appendix

A.1 BIB Tasks

A.1.1 Goal-directed actions

The preference task (1,000 episodes) tests whether an observer represents agents as having a pref-
erence for goal objects, rather than locations. The setup consists of two goals and an agent, whose
starting position is fixed. In the familiarization trials, the agent consistently moves towards the same
object. Goal locations and identities are correlated, such that preferred and nonpreferred goals have a
similar position across trials. In the test phase, the two objects appear in positions previously seen
during familiarization. However, goal identities are switched. In the expected outcome, the agent
moves to the preferred object. In the unexpected trial, the agent follows the same trajectory as seen
during familiarization and moves to the nonpreferred object (see Figure 9a).

The multi-agent task (1,000 episodes) tests whether an observer attributes specific goal preferences to
specific agents. The setup consists of two goal objects appearing at different positions across trials,
and an agent with a fixed starting position. Again, the agent moves repeatedly to the same object
during familiarization. In the unexpected test outcome, the agent moves towards its nonpreferred goal.
In the expected outcome, a new agent replaces the previously seen one and moves toward the familiar
agent’s nonpreferred object. The unfamiliar agent choosing a new goal should be less surprising than
a familiar agent switching preference (see Figure 9b).

The inaccessible-goal task (1,000 episodes) tests whether an observer understands the principle
of solidity, and that physical obstacles may restrict agents’ actions. The familiarization trials are
identical to the multi-agent task. In the expected test trial, the previously preferred object is made
inaccessible by a black barrier, and the agent moves to the other goal. In the expected test trial, the
agent switches goal preference despite both objects staying accessible (see Figure 9c).

(a) Example of a preference task.
Goal locations are switched for test-
ing. In the expected outcome, the
agent still chooses the same ob-
ject. In the unexpected outcome,
the agent instead follows the familiar
path to its nonpreferred goal.

(b) Example of a multi-agent task.
A new agent appears in the test
trial. This new agent choosing the
other agent’s nonpreferred object
(top right) should be less surpris-
ing than the familiar agent doing
so (bottom right).

(c) Example of an inaccessible-
goal task. The agent switches
goals in the test trial. This should
be expected if the preferred ob-
ject is inaccessible (top right), but
unexpected if both objects are ac-
cessible (bottom right).

Figure 9: Examples of goal-directed action tasks. Agents move repeatedly to the same goal during
familiarization (left), while test trials differ by task type (right). Blue solid lines represent expected
outcomes, red dashed lines represent unexpected outcomes.

A.1.2 Efficient actions

The efficient-agent task tests whether an observer expects agents to move efficiently towards their
goal. It consists of two subtasks: path control (1,500 episodes) and time control (1,000 episodes).
In both subtasks, the setup consists of one goal object and one agent. During familiarization, the
agent moves efficiently towards the object, but must navigate around a barrier to reach it. This
obstacle is removed in the test phase. In both subtasks, the expected outcome consists of the agent
moving efficiently towards its now-unobstructed goal. For the path control task, a previously seen
combination of agent and goal location is used, and the unexpected outcome consists of the agent
moving along the familiar, but now inefficient, trajectory (see Figure 10a). For the time control
subtask, the goal object is placed closer to the agent and the unexpected outcome consists of the agent
following a path that is inefficient, but takes up the same amount of time as the efficient one.
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The inefficient-agent task (890 episodes) tests whether an observer forms expectations about the
actions of irrational agents. During familiarization, an agent is shown either moving efficiently, as in
the efficient-agent task, or inefficiently. In the test phase, the agent is shown moving inefficiently to
the goal. This should be an unexpected outcome if the agent previously behaved rationally, and an
expected outcome if the agent previously behaved irrationally (see Figure 10b).

(a) Example of an efficient-agent task. Dur-
ing familiarization, the agent navigates efficiently
around an obstacle to reach its goal. The barrier
is removed during testing. The agent is expected
to now move efficiently, rather than following the
same path as before.

(b) Example of an inefficient-agent task. An agent
that moves inefficiently during familiarization (top)
is expected to continue doing so during testing,
whereas an efficient agent (bottom) beginning to
move inefficiently should be surprising.

Figure 10: Examples of efficiency tasks. Familiarization trial shown on the left, test trials on the right.
Blue solid lines represent expected outcomes, red dashed lines represent unexpected outcomes.

A.1.3 Instrumental actions

The instrumental-action task (987 episodes) tests whether an observer can recognize an agent’s action
sequences as instrumental and directed towards higher-order goals. The setup consists of a goal,
an agent, a removable green barrier with a lock, and a key, represented by a red triangle. During
familiarization, the goal is obstructed by the green barrier. The agent collects the key, inserts it
into the lock, removes the barrier, and moves to the goal. In the test phase, a key is still present,
but the green barrier is either absent or no longer blocking the goal. In the expected outcome, the
agent moves directly towards the goal, whereas it still moves towards the now-obsolete key in the
unexpected outcome (see Figure 11).

Figure 11: Example of an instrumental-action task.

A.1.4 Background training episodes

To facilitate the training of machine learning models, BIB includes a large number of background
episodes which share the same structure, agents, and goal objects as the test set. However, only
expected trials are provided during training. The training set is split into four tasks. In order to
generalize systematically to the test trials, the model needs to combine knowledge acquired from
all four training tasks. In the single-object task (10,000 episodes), an agent navigates efficiently
to a goal object (see Figure 12a). In the preference task (10,000 episodes), the agent consistently
chooses one object over another across trials (see Figure 12b). In contrast to the preference test task,
both objects are located very close to the agent, so navigation is not trained. In the multi-agent task
(4,000 episodes), the agent moves to a very close-by single goal object (see Figure 12c). At some
point during the episode, the agent is replaced with a new agent. This differs from the multi-agent
test task, where there are two goals which are placed farther away and the new agent only appears
in the test trial. In the instrumental-action task (4,000 episodes), the agent is initially confined by
a green barrier, which it removes with a key in order to move to its goal. This differs from the
instrumental-action test task in that the barrier surrounds the agent, rather than the goal.
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(a) (b) (c) (d)

Figure 12: Examples of training trials, consisting of single-object (12a), preference (12b), multi-agent
(12c), and instrumental (12d) tasks.
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