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ABSTRACT

Recent years have seen significant progress in Text-To-Audio (TTA) synthesis, en-
abling users to enrich their creative workflows with synthetic audio generated from
natural language prompts. Despite this progress, the effects of data, model archi-
tecture, training objective functions, and sampling strategies on target benchmarks
are not well understood. With the purpose of providing a holistic understanding
of the design space of TTA models, we setup a large-scale empirical experiment
focused on diffusion and flow matching models. Our contributions include: 1)
AF-Synthetic, a large dataset of high quality synthetic captions obtained from an
audio understanding model; 2) a systematic comparison of different architectural,
training, and inference design choices for TTA models; 3) an analysis of sampling
methods and their Pareto curves with respect to generation quality and inference
speed. We leverage the knowledge obtained from this extensive analysis to pro-
pose our best model dubbed Elucidated Text-To-Audio (ETTA). When evaluated
on AudioCaps and MusicCaps, ETTA provides improvements over the baselines
trained on publicly available data, while being competitive with models trained on
proprietary data. Finally, we show ETTA’s improved ability to generate creative au-
dio following complex and imaginative captions — a task that is more challenging
than current benchmarks.

1 INTRODUCTION

The design space of text-to-audio (TTA) models is complex, including a myriad of correlated factors.
While our research community has attempted to understand this design space and the contribution of
each factor, drawing conclusions between experiments is challenging. Our goal in this work is not to
explore novel model designs or methodologies. Instead, we aim to provide a holistic understanding of
existing paradigms for building TTA models, to identify important aspects that allow for improving
results, and to assess scalability with respect to data and model size.

In this paper, we aim to elucidate the design space of TTA model with respect to training data,
model architecture, implementation, capacity, objective functions during training, and sampling
methods during inference. In a controlled scenario and with a vast sweep over factors, we offer
insights on the contribution of each factor. In addition to elucidating the design space of TTA
models, our best configuration produces a model – namely Elucidated Text-to-Audio (ETTA) –
that significantly improves over open-sourced baselines on both AudioCaps (Kim et al., 2019) and
MusicCaps (Agostinelli et al., 2023) benchmarks with a single model.

Recent research has shown that scaling dataset size, combined with a careful data filtering strategy,
can yield sizeable improvements on benchmarks in other domains (Radford et al., 2019; Betker et al.,
2023). Comparatively, the datasets used in TTA are generally much smaller, and their captions of
varying quality, thus posing a challenge to scaling datasets (Liu et al., 2023b; Huang et al., 2023c). In
order to circumvent these challenges, we introduce a large-scale and high-quality dataset of synthetic
captions, and show that it is possible to leverage synthetic captions to obtain significant improvements.

While Transformers (Vaswani, 2017) have become the de facto architecture choice in many domains,
sometimes their efficiency and stability, specially in larger models, are severely impaired by imple-
mentation details related to numerical precision and weight initialization. 1 We improve on several

1E.g., see https://unsloth.ai/blog/gemma-bugs for the importance of implementation details.
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implementation details of the Diffusion Transformer (DiT) (Peebles & Xie, 2023) in the area of TTA
generation, and provide insights on which details are important for improving benchmark scores.

In tandem, current trends have shown the benefits of scaling model size (OpenAI, 2024; Chung et al.,
2024; Radford et al., 2019), including better performance on benchmarks and the appearance of
emergent capabilities. While increasing capacity overall can yield improvements, it is important
to strategically allocate capacity in a way that is Pareto optimal, maximizing scores and alleviating
inference costs. In addition to increasing the decoder’s capacity, the community has compared CLAP
(Wu et al., 2023) and T5-based (Raffel et al., 2020; Chung et al., 2024) text encoders (Liu et al.,
2023b; Ghosal et al., 2023; Liu et al., 2024), but the results seem mixed and strongly dependent on
the data and decoder capacity at hand. We show in our experiments that, although improvements can
be obtained by scaling model size, some strategies for increasing capacity yield better returns than
others.

Finally, the diffusion model literature (Ho et al., 2020; Song et al., 2021) includes a wide range of
training and sampling methods on the shelf (Kingma et al., 2021; Salimans & Ho, 2022; Lipman et al.,
2022; Ho & Salimans, 2022; Karras et al., 2022; Tong et al., 2023; Karras et al., 2024). Through
comprehensive experiments across various training objectives and sampling methods, we determine
the most effective training method for our setting. In addition, we provide deeper insights into how to
optimally select the sampling method for the best results by drawing Pareto curves across various
evaluation metrics.

We summarize our contributions below:

• We introduce a large-scale and high-quality synthetic caption dataset called AF-Synthetic,
and show that it can significantly improve text-to-audio generation quality on benchmarks.

• We ablate on major design choices in the text-to-audio space, and elucidate the importance
of each component with respect to improving scores on benchmarks with an emphasis on
data, architectural design, training objectives, and sampling methods.

• We introduce an improved implementation of diffusion transformer (DiT) for text-to-audio.
• We present ETTA, the state-of-the-art text-to-audio model trained on publicly available

datasets. ETTA is also comparable with models trained on much larger proprietary data.
• We showcase ETTA’s improved ability to generate creative audio following complex and

imaginative captions.

2 RELATED WORKS

Diffusion and Flow Matching Based Models Diffusion models (Ho et al., 2020; Song et al., 2021;
Kong et al., 2021; Kingma et al., 2021; Dhariwal & Nichol, 2021) are a type of deep generative
models that learn the data distribution with optional conditions (e.g. text-to-X generation). They learn
a reverse stochastic process that gradually transforms the Gaussian noise into clean data. The training
objective of diffusion models is to predict the score function, i.e. the gradient of the log-likelihood
with respect to data, via a neural network. Alternatively, some flow matching models predict the
vector field related to the optimal transport between distributions (Lipman et al., 2022; Tong et al.,
2023). These models can also be trained in the latent space (Rombach et al., 2022; Liu et al., 2023b)
for better efficiency, scalability, and quality. Appendix B includes the mathematical details.

Text-to-Audio Models There are two main streams of text-to-audio (TTA) models (including
both audio and music generation) in the research community. One line of work uses diffusion and
flow matching-based models. These works proposed numerous architectural and training designs for
audio generation (Liu et al., 2023b; Ghosal et al., 2023; Huang et al., 2023c;a; Liu et al., 2024; Kong
et al., 2024b; Xue et al., 2024; Haji-Ali et al., 2024; Hai et al., 2024; Vyas et al., 2023) and music
generation (Melechovsky et al., 2023; Huang et al., 2023b; Evans et al.; 2024a;b; Lam et al., 2024;
Schneider et al., 2024; Lan et al., 2024; Li et al., 2024b;a; Fei et al., 2024). However, there is no
systematic study on their design choices, and a main challenge is that the design space has too many
variables to investigate. Our work falls in this category and aims at conducting the first systematic
study on the design space of diffusion and flow matching based TTA models, and we choose to use
the latest Stable Audio Open (Evans et al., 2024b) as our base model to investigate. Another line of
research focuses on the language model approach and uses next token prediction to train a language
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model on discrete token representation of audio (Kreuk et al., 2022; Borsos et al., 2023; Agostinelli
et al., 2023; Copet et al., 2024). These works are orthogonal to our study.

Audio-Caption Datasets AudioSet (Gemmeke et al., 2017) pioneered large-scale audio-text dataset
with labels for about 2M audio segments. AudioCaps (Kim et al., 2019) and MusicCaps (Agostinelli
et al., 2023) are subsets of AudioSet with high-quality human-annotated captions. They are among
the most common benchmarks for text-to-audio and text-to-music generation. With the rapid progress
in large language models (LLMs) in recent years, LLM-enhanced audio-caption datasets such as
WavCaps (Mei et al., 2024) and Laion-630K (Wu et al., 2023) were proposed, enabling large-scale
audio-language models including TTA and other tasks. However, the captions can be noisy as the
caption generation process does not depend on the audio signals. In the domain of TTA, recent works
have used different collections of audio-caption pairs (mostly by combining existing datasets) in
order to train powerful TTA models. Examples include TangoPromptBank (Ghosal et al., 2023),
AudioLDM (Liu et al., 2024), and Make-an-Audio (Huang et al., 2023c). However, these works
mostly constitute combination and/or augmentation of existing data.

Synthetic Data for Improved TTA Very recently, several concurrent works have studied using
audio captioning models to generate synthetic captions of unlabeled audio. This leads to more
accurate audio-caption pairs that could be used to train better TTA models. In detail, Sound-VECaps
(Yuan et al., 2024) uses CogVLM (Wang et al., 2023) to generate visual descriptions and EnClap
(Kim et al., 2024) to generate sound descriptions, and then use ChatGPT to condense into captions.
This approach does not apply to audio data without video, and the captions may contain excessive
visual information that does not exist in audio. GenAU (Haji-Ali et al., 2024) is trained on captions
generated with AutoCap (Haji-Ali et al., 2024). However, this dataset is not open-sourced, and
so we could not evaluate its quality. Tango-AF is trained on AF-AudioSet (Kong et al., 2024b)
generated with Audio Flamingo (Kong et al., 2024a). It has very high quality, but is very small in
scale. All these studies demonstrate synthetic captions could lead to significant improvement of TTA
generation quality. Inspired by these pioneering studies, we propose a larger synthetic dataset of
captions leveraging an audio language model followed by filtering that ensures high quality captions.

3 METHODOLOGY

In Section 3.1, we introduce our method for building a large-scale, high-quality synthetic dataset
used to train our TTA models. In Section 3.2, we describe our ETTA model, including architectural
design, training objectives, and training methods of the variational autoencoder (VAE) and latent
diffusion model (LDM). In Section 3.3, we describe the sampling algorithms that we will study in
our experiments.

3.1 AF-SYNTHETIC

Inspired by the recent success of synthetic captions in the text-to-image domain (Betker et al., 2023;
Nguyen et al., 2024), we aim to build a large-scale and high-quality synthetic captions dataset for
better text-to-audio models. While there are several in-the-wild datasets with paired text and audio
data, they have certain limitations that we aim to overcome. Captions in WavCaps (Mei et al., 2024)
and Laion-630K (Wu et al., 2023) are noisy because they are produced from text metadata only, not
considering the actual audio. Sound-VECaps does not apply to audio data without video, and the
captions may contain excessive visual information that does not exist in audio. AutoCap (Haji-Ali
et al., 2024) and AF-AudioSet (Kong et al., 2024b) are closest to our approach; however, AutoCap is
not open-sourced, and AF-AudioSet is small in scale.

We follow and improve the caption synthesis pipeline from AF-AudioSet. We use Audio Flamingo
(Kong et al., 2024a) to generate ten captions for each audio sample and store the caption c with the
highest CLAP similarity cos(CLAPaudio(a),CLAPtext(c)) to the audio a (Wu et al., 2023). We
discard the caption if the similarity is below 0.45, the optimal threshold according to AF-AudioSet
(Kong et al., 2024b). In addition, there are challenges when applying this pipeline to larger-scale
synthesis (beyond AudioSet), such as extremely long, homogeneous, or low-quality audio. To address
these challenges, we caption each non-overlapping ten-second segment to obtain as many captions
as possible. We then use keywords, e.g. “noisy”, “low quality”, or “unknown sounds”, to detect
low-quality audio. Finally, we also sub-sample long audio segments except for music and speech.

3
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Table 1: Overview of our proposed AF-Synthetic dataset compared to existing synthetic captions
datasets. AF-Synthetic improves the caption generation pipeline in AF-Audioset, and applies it to a
variety of datasets, leading to a large-scale and high-quality synthetic dataset of captions. It is the
first million-size synthetic captions dataset with strong audio-caption correlations (1.35M captions
with CLAP similarity ≥ 0.45). † After CLAP-similarity filtering. ‡ Dataset not open-sourced.

Dataset Generation Model Filtering Method # Hours # Captions

TangoPromptBank Collected None 3.5K 1.21M
Sound-VECapsA CogVLM + EnClap Removing visual-only data 14.3K 1.66M

Sound-VECapsA-0.45† CogVLM + EnClap CLAP ≥ 0.45 448 161K
AutoCap‡ AutoCap Removing music or speech 8.7K 761K

AF-AudioSet Audio Flamingo CLAP ≥ 0.45 255 161K
AF-Synthetic (ours) Audio Flamingo CLAP ≥ 0.45 and others 3.6K 1.35M

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Sound-VECapsA

Sound-VECapsA-0.45

AF-AudioSet

AF-Synthetic (ours)

1.66M captions

161K captions

161K captions

1.35M captions

Distribution of CLAP similarities between audio and captions

Figure 1: Distributions of CLAP similarities
cos(CLAPaudio(a),CLAPtext(c)) between au-
dio a and caption c in existing datasets and our
AF-Synthetic. Empirically, we consider a CLAP
score of 0.4 as meaningful correlation, 0.45
stronger, and below 0.3 as weak. AF-Synthetic
has >1M strongly correlated audio-caption pairs.

0.6 0.7 0.8 0.9

GT=AudioCaps

GT=MusicCaps

Distribution of {max-sim(AFSynthetic, t) : t GT}

Figure 2: Distributions of max-similarity be-
tween AF-Synthetic and real datasets. The max-
similarity is measured with max-sim(X, c) =
maxx∈X cos(CLAPtext(x),CLAPtext(c)).
Results indicate AF-Synthetic captions are
quite different from AudioCaps and MusicCaps
because most max-sim scores are below 0.9.

With this strategy, we are able to generate 1.35M high-quality captions using audio from AudioCaps
(Kim et al., 2019), AudioSet (Gemmeke et al., 2017), VGGSound (Chen et al., 2020), WavCaps (Mei
et al., 2024), and Laion-630K (Wu et al., 2023). 2 We name our synthetic dataset AF-Synthetic.

Table 1 summarizes the comparison between AF-Synthetic and existing synthetic datasets. Our
dataset is both large-scale (over 1M captions) and high-quality (CLAP ≥ 0.45). We further apply
our CLAP-similarity filtering to Sound-VECapsA (denoted as Sound-VECapsA-0.45) and find that
over 90% of the captions are rejected. Figure 1 displays the distributions of CLAP similarities. Our
AF-Synthetic is over 8× larger than Sound-VECapsA-0.45 and AF-AudioSet, and has systematically
higher CLAP similarities (about 3.8% absolute improvement on the median) than these two datasets.

We then investigate the distributions of CLAP-similarity scores between our synthetic captions and
AudioCaps and MusicCaps, two benchmarks we will use to evaluate our TTA. For each caption c
in AudioCaps or MusicCaps, we find its most similar caption x from AF-Synthetic via the max-
similarity max-sim(X, c) = maxx∈X cos(CLAPtext(x),CLAPtext(c)). We plot the distributions
of max-sim in Table 2. We find AF-Synthetic has captions that are more similar to MusicCaps
than AudioCaps, possibly due to caption lengths. We also find most max-sim scores are less than
0.9, indicating AF-Synthetic captions are quite different from these two datasets. We display some
examples of most similar caption pairs in Appendix C.2. In summary:

AF-Synthetic is the first million-size synthetic caption dataset with strong audio correlations.

3.2 ETTA

Our TTA model, dubbed Elucidated Text-To-Audio (ETTA), is built upon the LDM (Rombach et al.,
2022) paradigm and its application to audio generation. First, a variational autoencoder (VAE)
(Kingma & Welling, 2014) is trained to compress waveform into a compact latent space. Once the
VAE is trained, we freeze it and train a latent generative model in the VAE latent space. See Appendix

2Our dataset has no overlap with MusicCaps (Agostinelli et al., 2023), which is also derived from AudioSet.
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B for mathematical details. We conduct our experiments based on the stable-audio-tools
library,3 which provides the most recent practices in building TTA models.

ETTA-VAE For training the VAE, we adopt a 44kHz stereo Audio-VAE with 156M parameters
using the same default configuration used in stable-audio-tools with a latent frame rate of
21.5Hz. We refer to (Evans et al., 2024b) and Appendix B for details. The Audio-VAE is trained
from scratch on our large-scale collection of publicly available datasets (see Table 14). In terms of
quality, our Audio-VAE matches or exceeds Stable Audio Open, as shown in Table 24 and Table 25. 4

ETTA-LDM Next, we train a text-conditional latent generative model for TTA synthesis. The
latent model can be either a diffusion model (Ho et al., 2020; Song et al., 2021; Salimans & Ho, 2022)
or a flow matching model (Lipman et al., 2022; Tong et al., 2023). We parameterize our model using
the Diffusion Transformer (DiT) (Peebles & Xie, 2023) architecture based on Evans et al. (2024b)
and Lan et al. (2024), with 24 layers, 24 heads, and a width of 1536 as the default choices. We
condition our model on the outputs of the T5-base (Raffel et al., 2020) text encoder, which outputs
embeddings for variable-length text. In our experiments, we also explore other common choices and
combinations of different text encoders – including T5-based (Raffel et al., 2020; Chung et al., 2024)
and CLAP models (Wu et al., 2023) – to study the effect of this component.

ETTA-DiT Finally, we provide several key improvements to the DiT implementation in Evans
et al. (2024b), and call our implementation ETTA-DiT. Through experiments, we find that solely
replacing their architecture with ETTA-DiT leads to improved training losses and evaluation results.
Our improvements include:

1) Adaptive layer normalization (AdaLN):5 We switch from prepending to AdaLN timestep embed-
ding and apply AdaLN to self-attention, cross-attention, and feed-forward layer inputs. The AdaLN
parameters are initialized with scale = 1 and bias = 0 so that AdaLN does not modulate the feature
at initialization. When applying AdaLN, we enforce FP32, use torch.autocast for numerical
precision, use a bias term for the linear layer, and use unbounded gating (i.e. no sigmoid).

2) Final layers: We initialize the final projection layer of DiT to output zeros. This matches the mean
of the VAE latent distribution, and therefore leads to improved stability and convergence rate. We
also use AdaLN in the final projection layer.

3) Other changes: We use the tanh approximation mode of the GELU activation (Hendrycks &
Gimpel, 2016). We use rotary position embedding (RoPE) (Su et al., 2024) in the self-attention
layer, with rope base = 16384 to inject relative positional information. We apply dropout with
pdropout = 0.1 for all modules to enhance robustness in parameter estimation.

3.3 TRAINING OBJECTIVE AND SAMPLING

Training For the diffusion model training objective, we use the v-prediction loss function (Salimans
& Ho, 2022). For the flow matching training objective, we use the optimal transport conditional flow
matching (OT-CFM) loss function (Lipman et al., 2022; Tong et al., 2023). We refer to Appendix B
for details of these methods. Prior works also found sampling t more often on intermediate steps
leads to better results (Esser et al., 2024; Lan et al., 2024). We follow their approach and sample t
from a logit-normal distribution, in practice t ∼ σ(N (0, 1)), when training ETTA with OT-CFM.

Sampling We consider Euler and 2nd-order Heun (Karras et al., 2022) methods for solving the
ODE parameterized by ETTA. We conduct an extensive sweep over hyperparameters focusing on
two major design choices: the number of function evaluations (NFE) and the classifier-free guidance
(CFG) (Ho & Salimans, 2022) scale wcfg. We draw Pareto curves across benchmark datasets and
metrics to discover the optimal choice for ETTA. In addition, we also explore the effectiveness of a
recently proposed guidance method, autoguidance (Karras et al., 2024), in TTA applications.

3https://github.com/Stability-AI/stable-audio-tools commit id: 7311840
4Since our dataset includes speech data, it is noticeably better in reconstructing speech signals.
5In our preliminary study using stable-audio-tools with its vanilla implementation, switching from

prepending to AdaLN resulted in worse results.
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4 EXPERIMENTS

Our experiments thoroughly evaluate our framework ETTA on benchmark datasets (AudioCaps and
MusicCaps). We start with a systematic comparison to elucidate the design space of TTA in four
major aspects: 1) training data, 2) training objectives, 3) architectural design and model sizes, and
4) sampling methods. Furthermore, we show ETTA’s improved ability to generate creative audio
following complex and imaginative captions, a task that is more challenging than current benchmarks.
In our commitment to fully elucidate all aspects of our investigation, we also document the additional
directions we explored, including numerous additional ablations (in Appendix D) and mixed or
negative results (in Appendix E). We train all models using 8 A100 GPUs.

4.1 TRAINING DATA

We train ETTA on four different training datasets to assess TTA quality: AudioCaps (50K captions),
AF-AudioSet (161K captions), TangoPromptBank (1.21M captions), and our AF-Synthetic (1.35M
captions). We fix audio length to 10 seconds and sampling rate to 44.1kHz in all these datasets.

4.2 TRAINING OBJECTIVE AND SAMPLING

Audio VAE We train a 44.1kHz stereo Audio-VAE based on stable-audio-tools with our
collection of unlabeled and public audio datasets (Table 14). We train the Audio-VAE for 2.8M steps,
with a total batch size of 64 with 1.5 seconds per sample. We train with full precision (FP32) to
make the waveform compression model as accurate as possible. The latent dimension is 64 and the
frame rate is 21.5 Hz.

Training Objective and Architecture We train ETTA-LDM with ETTA-DiT as the backbone.
We use the T5-base text embedding with max length=512 truncation to accommodate longer
captions in AF-Synthetic.6 We train with both v-diffusion and OT-CFM objectives, where we
additionally apply logit-normal t-sampling for OT-CFM (see Section 3.3). Our final model is trained
for 1M steps with a learning rate of 10−4 and total batch size of 128 with 10 seconds per sample.
For ablation studies, we train each model for 250k steps unless otherwise stated. We use BF16
mixed-precision training (Micikevicius et al., 2017) and flash-attention 2 (Dao et al., 2022)
to maximize training throughput.

Sampling For diffusion models, following (Evans et al., 2024b) we use the dpmpp-3m-sde
sampler 7 and CFG scale wcfg = 7. For OT-CFM models, we compare between Euler and 2nd-order
Heun samplers and draw Pareto curves for each method with respect to the number of function
evaluations (NFEs) and CFG scale. After this extensive sweep, we choose Euler sampling with NFE
= 100, wcfg = 3.5 for main results, and wcfg = 3 for ablation studies unless otherwise stated.

4.3 RESULTS

Metrics We use a collection of established objective metrics for systematic evaluation. 1) Fréchet
distance (FD) measures the distributional gap between generated and ground truth audios using
features extracted from an audio classifier. We consider three classifiers: VGGish (FDV ), commonly
referred to as Fréchet Audio Distance (FAD) (Kilgour et al., 2018)), Openl3 (Cramer et al., 2019)
(FDO), and PANNs (Kong et al., 2020) (FDP ). 2) Kullback–Leibler divergence (KL) is an instance-
level metric that measures the difference between the posterior distributions of audio events for the
ground truth and generated audio samples. This metric helps assess how close the generated audio
aligns with the ground truth on the single-sample level. We report KL using PaSST (Koutini et al.,
2022) (KLS) and PANNs (KLP ). 3) Inception Score (IS) evaluates the diversity and specificity of
the generated samples without requiring ground truth. IS is calculated from the entropy of instance
posteriors and the entropy of marginal posteriors, where a higher score reflects both better diversity
and sharper class predictions. We use PANNs for IS (ISP ). 4) Finally, CLAP score measures the
cosine similarity between text and audio embeddings, which indicates the correlation between the
generated sample and the given prompt. For extensive evaluation, we use two CLAP models: CLL

6Our reproduction of Stable Audio Open using AF-Synthetic dataset also uses the same max length=512
for a fair comparison.

7Implementation available in https://github.com/crowsonkb/k-diffusion

6

https://github.com/crowsonkb/k-diffusion


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Main results of ETTA compared to SOTA baselines on AudioCaps. FT-AC-m: fine-tuned on
AudioCaps training set for m iterations. ⋆ From their original papers. † Uses proprietary data.

Model FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Audiobox (Vyas et al., 2023)⋆† 1.10 – 10.14 – 1.19 11.90 0.70 –
Audiobox Sound (Vyas et al., 2023)⋆† 0.77 – 8.30 – 1.15 12.70 0.71 –
Make-An-Audio (Huang et al., 2023c)⋆ 1.61 – 18.32 — 1.61 7.29 – –
Make-An-Audio 2 (Huang et al., 2023a)⋆ 1.27 – 11.75 – 1.32 11.16 – –
AudioLDM-L-Full (Liu et al., 2023b) 1.96 – 23.31 – 1.59 8.13 0.43 –
AudioLDM2 (Liu et al., 2024) 2.09 156.64 26.44 1.81 1.79 8.14 0.50 0.36
AudioLDM2-large (Liu et al., 2024)⋆ 1.89 170.31 32.50 1.57 1.54 8.55 0.45 –
AudioLDM2-large (Liu et al., 2024) 2.02 158.05 26.18 1.68 1.64 8.55 0.53 0.37
TANGO-Full-FT-AC (Ghosal et al., 2023)⋆ 2.19 – 18.47 1.20 1.15 8.80 0.56 –
TANGO-AF&AC-FT-AC (Kong et al., 2024b)⋆ 2.54 – 17.19 – – 11.04 0.53 –
TANGO2 (Majumder et al., 2024)⋆ 2.69 – – – 1.12 9.09 – –
GenAU-L (Haji-Ali et al., 2024)⋆ 1.21 – 16.51 – – 11.75 – –
Stable Audio Open (Evans et al., 2024b)⋆ – 78.24 – 2.14 – – – –
Stable Audio Open (Evans et al., 2024b) 3.60 105.88 38.27 2.23 2.32 12.09 0.35 0.34
ETTA 2.32 79.93 13.29 1.20 1.41 14.32 0.56 0.43
ETTA-FT-AC-50k 1.69 61.42 11.32 1.10 1.27 15.06 0.61 0.43
ETTA-FT-AC-100k 1.52 60.00 9.90 1.11 1.24 13.87 0.61 0.42

Table 3: Main results of ETTA compared to SOTA baselines on MusicCaps. FT-AC-m: fine-tuned
on AudioCaps training set for m iterations. ⋆ From their original papers. † Uses proprietary and/or
licensed data.

Model FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Jen-1 (Li et al., 2024b)⋆† 2.0 – – – 1.29 – – –
QA-MDT (Li et al., 2024a)⋆† 1.65 – – – 1.31 2.80 – –
FluxMusic (Fei et al., 2024)⋆† 1.43 – – – 1.25 2.98 – –
MusicGen-medium (Copet et al., 2024)⋆ 3.4 – – 1.23 1.22 – – –
AudioLDM-M (Liu et al., 2023b)⋆ 3.20 – – 1.29 – – – –
AudioLDM2 (Liu et al., 2024)⋆ 3.13 – – 1.20 1.20 – – –
AudioLDM2 (Liu et al., 2024) 4.04 198.45 21.39 1.19 1.57 2.48 0.45 0.45
AudioLDM2-large (Liu et al., 2024) 2.93 190.16 16.34 1.00 1.40 2.59 0.48 0.47
TANGO-AF (Kong et al., 2024b) 2.21 270.32 22.69 0.94 1.26 2.79 0.51 0.43
Stable Audio Open (Evans et al., 2024b) 3.51 127.20 36.42 1.32 1.56 2.93 0.48 0.49
ETTA 1.87 97.54 9.75 0.77 1.03 3.33 0.50 0.53
ETTA-FT-AC-50k 1.81 89.72 11.57 0.87 1.11 2.82 0.50 0.52
ETTA-FT-AC-100k 2.23 91.48 13.48 1.01 1.17 2.61 0.50 0.51

for LAION’s 630k-best checkpoint (Wu et al., 2023) following Vyas et al. (2023), and CLM for
MS-CLAP 2023 version (Elizalde et al., 2023) .

Main Results Tables 2 and 3 present our main results on AudioCaps and MusicCaps, respectively.
Overall, ETTA shows significant improvements compared to Stable Audio Open (the base model)
for both benchmarks with a single model. Compared to other works, ETTA shows competitive
KL scores and exceptionally high ISP for both general sounds and music, demonstrating improved
diversity and clarity of the generated samples. FDV on AudioCaps is competitive with AudioLDM
and TANGO series, but considerably higher than recent models such as GenAU. FDV on MusicCaps
is signifitcantly better than previous models using public datasets and comparable to music specialist
models (Li et al., 2024a;b; Fei et al., 2024) that use proprietary data. Since FDO can measure stereo
audio, Stable Audio Open and ETTA are noticeably better than previous mono models. Both CLL

and CLM show a preference towards ETTA, where our improvements on CLM is more salient.

We then fine-tune ETTA on the AudioCaps training set (FT-AC) for 50k and 100k additional steps.
We find ETTA can quickly adapt to the target distribution via fine-tuning. Table 2 shows that ETTA
keeps approximating the target distribution with better FDP < 10, which is close to Audiobox Sound
(Vyas et al., 2023) trained on proprietary dataset. It is noteworthy that this also comes at a cost of
shifting to the target distribution as evidenced by Table 3, where ETTA-FT-AC-100k starts to show
noticeable degradation for music generation. In summary, our results show that:

ETTA is the SOTA text-to-audio and text-to-music generation model using only publicly available
data. It is also comparable to models trained with proprietary and/or licensed data.

Design Improvements Tables 4 and 5 summarize important design choices that lead to significant
improvements. First, we reproduce Stable Audio Open using AF-Synthetic without other modification
(+AF-Synthetic). Results show noticeable improvements from training data. Then, we switch the DiT
implementation to ours (+ETTA-DiT). Results again show significant improvements in most objective
scores especially on music data. Next, we switch the training method from diffusion to OT-CFM
(+OT-CFM) with conventional uniform timestep sampling (t ∼ U(0, 1)). We observe improvements
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Table 4: Improvements by adding each of the major design choice of ETTA (evaluated on AudioCaps).

Ablation FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Stable Audio Open 3.60 105.88 38.27 2.23 2.32 12.09 0.35 0.34
+ AF-Synthetic 2.49 86.13 18.50 1.58 1.74 14.96 0.47 0.40
+ ETTA-DiT 2.66 90.26 16.43 1.29 1.47 14.49 0.53 0.42
+ OT-CFM, t ∼ U(0, 1) 2.33 78.81 13.59 1.36 1.50 12.34 0.52 0.40
+ t ∼ σ(N (0, 1)) 2.30 81.23 13.01 1.29 1.50 12.42 0.52 0.41

Table 5: Improvements by adding each of the major design choice of ETTA (evaluated on MusicCaps).

Ablation FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Stable Audio Open 3.51 127.20 36.42 1.32 1.56 2.93 0.48 0.49
+ AF-Synthetic 3.20 103.59 14.59 1.00 1.20 3.19 0.50 0.52
+ ETTA-DiT 2.34 98.19 12.48 0.82 1.06 3.30 0.50 0.52
+ OT-CFM, t ∼ U(0, 1) 2.19 100.17 12.77 0.86 1.07 2.81 0.51 0.52
+ t ∼ σ(N (0, 1)) 2.08 96.46 12.15 0.88 1.08 2.93 0.51 0.52

in most FD scores on audio data but decrease in IS scores. Empirically, we find OT-CFM is more
stable to train, more consistent in quality, and more robust under fewer sampling steps in agreement
with previous works. Finally, we adopt logit-normal t-sampling (t ∼ σ(N (0, 1))) (Esser et al., 2024)
and find it improves FD and IS. Therefore, we conclude:

Our AF-Synthetic leads to the most significant improvements in ETTA. Our improved ETTA-DiT,
the OT-CFM objective, and logit-normal t-sampling lead to further improvements.

Table 6: Ablation study on the results of ETTA trained on different datasets (evaluated on AudioCaps).

Dataset (million captions) FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
AudioCaps (0.05) 3.00 71.84 12.21 1.19 1.30 10.07 0.58 0.40
TangoPromptBank (1.21) 2.40 57.80 17.85 1.58 1.72 9.30 0.51 0.36
AF-AudioSet (0.16) 2.23 91.81 11.35 1.26 1.41 13.22 0.55 0.42
AF-Synthetic (1.35) 2.30 81.23 13.01 1.29 1.50 12.42 0.52 0.41

Table 7: Ablation study on the results of ETTA trained on different datasets (evaluated on MusicCaps).

Dataset (million captions) FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
AudioCaps (0.05) 12.50 209.73 59.90 2.58 2.78 1.95 0.25 0.34
TangoPromptBank (1.21) 3.60 95.93 21.58 1.05 1.50 1.96 0.45 0.42
AF-AudioSet (0.16) 2.00 95.76 10.88 1.03 1.15 3.33 0.53 0.51
AF-Synthetic (1.35) 2.08 96.46 12.15 0.88 1.08 2.93 0.51 0.52

Scalability with Data We assess the scalability of TTA models with respect to training data in
Tables 37 and 7. First, AudioCaps lacks in quantity: while it shows the best KL scores and CLL on
AudioCaps, ETTA trained on AudioCaps significaly underperforms on MusicCaps. TangoPrompt-
Bank is simillar to AF-Synthetic in quantity:8 while it scored the best FDO on AudioCaps, other
metrics such as KL and IS are much worse. The degradation is especially noticeable for CL scores on
MusicCaps, suggesting that the quality of their music captions is not as good as AF-Synthetic. AF-
AudioSet contains high-quality synthetic captions: it is competitive with AF-Synthetic, emphasizing
the importance of data quality.9 10 The results highlight that AF-Synthetic is a powerful dataset that
is comprehensive in both quantity and quality. As such, we conclude:

Both training data sizes and quality have positive effect on the results, where quality matters more.

8In practice, we used 2.33M audio-caption pairs for TangoPromptBank due to repetitive captions for multiple
10-second segments in a long audio.

9Empirically, we find ETTA trained with AF-AudioSet reaches the optimal training loss at around 250k
iterations, whereas the training loss of ETTA trained with AF-Synthetic keeps reducing after 1M iterations.

10AF-AudioSet results are close to AF-Synthetic results possibly because AudioCaps and MusicCaps are
subsets of AudioSet. Training on non-AudioSet samples in AF-Synthetic might be not as useful on these two
specific benchmarks.
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Table 8: Ablation study on the results of ETTA with different depths, widths, and kernel sizes
(evaluated on AudioCaps). The classifier-free guidance wcfg = 1. ⋆ Our best model choice.

Model Size(B) FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
depth = 4 0.38 7.25 103.35 36.46 2.15 2.39 4.88 0.33 0.30
depth = 12 0.81 6.07 93.13 29.48 2.05 2.28 5.73 0.36 0.32
depth = 24⋆ 1.44 5.81 89.61 28.46 2.00 2.22 5.65 0.37 0.32
depth = 36 2.08 5.85 82.60 27.08 1.95 2.18 5.87 0.38 0.32
width = 384 0.28 7.33 100.58 35.97 2.14 2.43 4.99 0.33 0.30
width = 768 0.52 6.44 93.74 31.03 2.04 2.29 5.49 0.36 0.32
width = 1536⋆ 1.44 5.81 89.61 28.46 2.00 2.22 5.65 0.37 0.32
kconvFF = 1⋆ 1.44 5.81 89.61 28.46 2.00 2.22 5.65 0.37 0.32
kconvFF = 3 2.35 5.96 82.49 28.72 2.04 2.28 5.84 0.36 0.31

Scalability with Model Size Table 8 provides the summary of scaling behavior of ETTA with
respect to its model size. We explore different depths, widths, and the convolutional feed-forward
layer kernel sizes (kconvFF) of ETTA-DiT. We use wcfg = 1 to eliminate the effect of CFG.

As expected, most metrics show consistent improvements as we grow depth or width of ETTA-DiT.
We find the 1.44B model with depth=24 and width=1536 leads to the optimal result. FDV starts
to saturate at depth=36. On the other hand, increasing kconvFF brings marginal improvements,
suggesting that allocating the model capacity to self-attention parameters is more important. We also
provide results using wcfg = 3 in Table 17 in Appendix D, and the conclusion is similar. In summary,

In TTA tasks, increasing model size is helpful via increasing depth and width of DiT’s self-attention
block. However, increasing the kernel size of the convolutional feed-forward layer is not helpful.
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Figure 3: The effect of different sampling methods on the generation quality of ETTA on AudioCaps
and MusicCaps. We investigate both Euler and Heun solvers. NFE: number of function evaluations.
CFG: classifier-free guidance scale. See full results for other metrics in Figure 4 in Appendix D.

Choice of Sampler and its Impact on Metrics Figure 3 and Figure 4 in the Appendix present
a comprehensive analysis of the impact of sampler choices. The results reveal several key insights:
1) All metrics improve as the number of function evaluations (NFE) increases, as expected. 2) At
lower NFE, the Heun sampler is noticeably better than Euler; as NFE increases, they converge to
similar results. 3) FD behaves like a convex function with respect to the CFG scale, indicating that
FD penalizes low diversity caused by CFG’s over-emphasis on text condition. 4) Metrics such as
KL, IS, and CL show continuous improvement with higher CFG scales, suggesting their preference
for accuracy over diversity. Therefore, one should be cautious when selecting the CFG scale, as
optimizing for these metrics alone may lead to a trade-off between diversity and accuracy. Detailed
results on the choices of sampler and NFE are provided in Table 18 in Appendix D. In summary:

Heun’s sampler is better than Euler at lower NFE. wcfg = 3.5 provides the best overall metrics,
and one should be cautious that a higher CFG scale potentially leads to lower diversity.

Table 9: Subjective Evaluation Result of Creative Audio Generation with 95% Confidence Interval.

Model AudioLDM2 TANGO2 Stable Audio Open ETTA (ours)

OVL↑ 3.95± 0.05 3.82± 0.05 3.94± 0.05 3.99± 0.05
REL↑ 3.79± 0.06 3.94± 0.05 3.95± 0.05 4.05± 0.05

Creative Audio Generation We test ETTA’s abilities to generate creative audio and music samples
that do not exist in the real world, especially for complex and imaginative captions. We ask ChatGPT

9
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to generate hard captions that require blending and transformation of various sound elements towards
creative audio. See Table 19 for the imaginative captions. We generate 20 samples for each model
and invite human listeners to measure 5-scale rating of 1) OVL: an overall quality of sample without
seeing captions, and 2) REL: a relevance of the sample to the provided caption. Each model is
tested in isolation. Table 31 shows that ETTA significantly improves its ability to follow the complex
captions as measured by the REL score (p < 0.05 from Wilcoxon signed-rank test). We strongly
encourage the readers to listen to the audio samples in the demo page (Appendix A). Therefore, we
claim:

ETTA shows an improved ability to generate audio that follows complex and imaginative captions.

5 DISCUSSION AND LIMITATIONS

Table 10: Study on potentially mode-collapsed ETTA and its evaluation results. FT-MC-m: fine-tuned
on MusicCaps train split for m iterations. Evaluation is done on the MusicCaps test split.

Model FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
ETTA 1.80 101.11 11.31 0.80 1.04 2.57 0.49 0.53
ETTA-FT-MC-4k 1.26 76.91 9.08 0.78 1.00 2.89 0.50 0.50
ETTA-FT-MC-40k 1.38 83.66 9.32 0.79 0.96 2.85 0.49 0.48

Limitation of Objective Metrics Our main results (Table 2) show that ETTA trained on AF-
Synthetic can quickly adapt to a target dataset with a few samples and achieve better objective metrics.
While this is encouraging, we find potential mode-collapse when fine-tuning ETTA on MusicCaps
train split (2.6k samples in the train split of AudioSet). 11 12 We fine-tune ETTA for up to 40k
additional steps (∼ 2000 epochs) before the loss diverges, and evaluate on the test split. The results
are in Table 10. We observe that the potentially mode-collapsed model produces impressive scores:
especially, the FD and IS scores are much better. This aligns with Lan et al. (2024), which states
optimizing for a single metric such as FD does not represent the overall quality and therefore should
be discouraged. We believe that it is important to evaluate TTA models by incorporating as many
objective metrics and datasets as possible to have a more comprehensive understanding of the model.
We also believe it is necessary to develop novel evaluation metrics for defects like mode collapse.

A potentially mode-collapsed model could still yield nice-looking evaluation numbers. Therefore,
we believe it is necessary to develop novel evaluation metrics for mode collapse and other defects.

Future work While this work aims to elucidate the design space of TTA with large-scale experi-
ments, there are still several unexplored problems. We plan to study these in our future work.

1) Data Augmentation To isolate the effect of data scaling, we use AF-Synthetic and other datasets
without any data augmentation. Because of this, the diversity of text captions and audio may be
limited. Previous works (Melechovsky et al., 2023; Liu et al., 2023b; 2024; Huang et al., 2023c;a)
reported improvements with data augmentation, such as caption rephrasing and audio re-mixing. We
plan to design scalable methods for a systematical study on the effect of data augmentation.

2) Challenges in Evaluating TTA The research community has yet to reach a consensus on
which attributes are effectively captured by current evaluation metrics for TTA models. Evaluating
TTA is particularly challenging due to confounding factors like differences in model accuracy,
diversity, choice of waveform decoder, and more. For example, we empirically find that the CFG
scale that yields the best quantitative metrics may not align with human preferences. Designing
evaluation methods that accurately reflect both the accuracy and diversity of TTA models, in a
way that corresponds with human perception, remains a difficult problem. We hope that our work
will stimulate discussion and serve as a reference point for developing a standardized approach to
evaluating TTA models.

11We listened to numerous samples of ETTA-FT-MC-40k and found there is low diversity for same caption.
12Train-test split is from https://www.kaggle.com/datasets/googleai/musiccaps
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A DEMO PAGE LINK

The link to our demo page is
https://anonymous.4open.science/r/etta_demo-72C4/index.md

B MATHEMATICAL BACKGROUND

Let pdata be the data distribution and X ∼ pdata be N i.i.d. training samples drawn from the data
distribution. In (unconditional) audio synthesis, we assume pdata is on [−1, 1]L where L = 441000
is a fixed length for 10 seconds of audio at 44.1kHz sampling rate. A generative model on X aims to
model pθ(x) ≈ pdata(x) and draw samples from it. In text-to-audio synthesis, each sample x = (a, c)
is composed of an audio a ∈ [−1, 1]L and a corresponding caption c in the natural language space.
In this case, we aim to model pθ(a|c) and draw samples conditioned on a given caption c. For
conciseness, we introduce all the mathematical background in the unconditional setting, and these
can be translated into the conditional setting by conditioning all distributions on c.

B.1 VARIATIONAL AUTO ENCODERS

Variational auto encoders (VAEs) (Kingma & Welling, 2014) include an encoder E and a decoder D.
E aims to encode a sample x into a lower-dimensional space, and D aims to reconstruct E(x) to the
original space with minimal information loss. The training loss is

LVAE = Ex∼X [R(D(E(x)), x) + KL(qE(z|x) ∥ N (0, I))],

where R is a reconstruction loss that measures the distance between the original sample x and
the reconstructed sample D(E(x)). qE(z|x) is the approximate posterior distribution of the latent
variable z given x using E, and the KL divergence loss measures how close the posterior distribution
is to the prior N (0, I).

Stable Audio Open’s VAE (Evans et al., 2024b) is trained with a combination of below losses:

1. A stereo sum and difference multi-resolution STFT loss (Steinmetz & Reiss, 2020; Steinmetz
et al., 2021) that computes distances in the spectrogram space with different resolutions:

LMRSTFT(x, x̂) =

m∑
i=1

(
∥stfti(x)− stfti(x̂)∥F

∥stfti(x)∥F
+

1

T

∥∥∥∥log stfti(x)

stfti(x̂)

∥∥∥∥
1

)
,

LStereoMRSTFT(x, x̂) = LMRSTFT(xsum, x̂sum) + LMRSTFT(xdiff, x̂diff),

where T is the number of STFT frames and each stfti is the STFT transformation with i-th
resolution, xsum = xleft + xright, and xdiff = xleft − xright.

2. An adversarial hinge loss and feature matching loss from Encodec (Défossez et al., 2023):

Ladv(x̂, x) =

K∑
k=1

[max(0, 1−Dk(x)) + max(0, 1 +Dk(x̂))] ,

Lfeat(x, x̂) =
1

KL

K∑
k=1

L∑
l=1

∥Dl
k(x)−Dl

k(x̂)∥1
mean(∥Dl

k(x)∥1)
,

where Dl
k is the l-th layer of k-th discriminator Dk.

3. The KL divergence loss:
KL(qE(z|x) ∥ N (0, I)).

The VAE is trained using randomly chunked unlabeled audio data without captions.
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B.2 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Song et al., 2021) include two processes:

1. A fixed Markov chain diffusion process

dx = f(x, t)dt+ g(t)dw,

where x represents data, t ∈ [0, 1] represents time, f is the drift term, g is the diffusion term,
and dw is the standard Brownian motion.

2. A learned Markov chain reverse process

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄,

where dw̄ is the reverse Brownian motion.

A neural network sθ(x, t) is used to substitute the score function ∇x log pt(x) and therefore trained
to approximate the true score function ∇x log q(x|x0) at time t, leading to training objective

Et∼U(0,1),x0∼pdata,xt∼q(xt|x0)∥sθ(xt, t)−∇xt
log q(xt|x0)∥2,

where we could write xt in terms of noise ϵt ∼ N (0, I) : xt =
√
αtx0+

√
1− αtϵt for a pre-defined

schedule αt, and ∇xt
log q(xt|x0) = −ϵt/

√
1− αt. For this reason, the standard loss function is

called the ϵ-prediction.

One can predict other quantities to train diffusion models as well. One example is the x-diffusion,
where we train a network to predict x̂t = (xt−

√
1− αtϵt)/

√
αt. Another example is the v-diffusion

(Salimans & Ho, 2022), where the network predicts v̂t =
√
αtϵt −

√
1− αtx0.

B.3 OPTIMAL TRANSPORT CONDITIONAL FLOW MATCHING

Optimal Transport Conditional Flow Matching (OT-CFM) (Lipman et al., 2022; Tong et al., 2023) is
an alternative method to train diffusion models via flow matching. Instead of predicting ϵ it directly
predicts the vector field f(x, t)− g(t)2∇x log pt(x), leading to the following loss function:

LOTCFM = Et∼U(0,1),x0∼pdata,xt∼q(xt|x0)

∥∥vθ(xt, t)−
(
f(xt, t)− g(t)2∇xt

log q(xt|x0)
)∥∥2 .

B.4 LATENT DIFFUSION MODELS

Latent diffusion models (LDMs) (Rombach et al., 2022; Liu et al., 2023b) combine VAE with
diffusion models, training the diffusion models within the latent space of the VAE. In this approach,
the VAE’s latent variable z serves as the target for generation. Rather than directly modeling pdata,
LDMs model the pushforward distribution E#pdata, utilizing the frozen encoder and decoder from
the VAE to transition between the original data space and the latent space.

B.5 CLASSIFIER-FREE GUIDANCE

Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) adjusts the balance between diversity
and quality in generative models by over-emphasizing conditioning. The model is trained both
conditionally and unconditionally by randomly replacing the condition c with a null embedding ∅.
During sampling, the guided output is given by:

vθ(xt, t|c) = vθ(xt, t) + wcfg · (vθ(xt, t|c)− vθ(xt, t)),

where wcfg is a guidance scale. wcfg = 1 disables guidance and wcfg > 1 amplifies the conditioning.
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C DATASET DETAILS

C.1 AF-SYNTHETIC DETAILS

Table 11 provides a detailed breakdown of sources of data from which each audio-caption dataset is
built. Compared to previous datasets, AF-Synthetic include diverse data source to construct synthetic
captions, which enables strong generalization to numerous audio types when training TTA model.

Table 11: Detailed breakdown of our proposed AF-Synthetic dataset compared to existing datasets.

Dataset Total Number of captions
Hours Total AudioCaps AudioSet Laion-630K WavCaps VGGSound

TangoPromptBank 3.5K 1.21M 45K 108K - 1.05M -
Sound-VECapsA 14.3K 1.66M - 1.66M - - -

AutoCap 8.7K 761K - 339K 295K - 127K
AF-AudioSet 255 161K - 161K - - -
AF-Synthetic 3.6K 1.35M 33K 165K 282K 783K 92K

We use Laion-CLAP’s 630k-best checkpoint to compute CLAP similarity (Wu et al., 2023). We
use the following keywords to filter low-quality audio samples:

ambiguous, artifact, background noise, broken up, buzzing, choppy, clipping, compromised,

crackling, deficient, distant, distorted, dropout, echo, faint, faulty, feedback, flawed,

fluctuating, fuzzy, garbled, gibberish, glitch, hissing, imprecise, inadequate, inaudible,

incoherent, indistinct, inferior, insufficient, interference, irregular, irrelevant, lacking,

low quality, low volume, low-quality, mediocre, misheard, misinterpretation, muffled, murmur,

noise, noisy, off-mic, overlapping speech, overmodulated, poor, popping, reverberation,

scrambled, second-rate, sibilance, skipped, skipping, static, suboptimal, substandard,

uncertain, unclear, undermodulated, unintelligible, unknown sounds, unreliable, unsatisfactory,

unspecific, vague.

C.2 MOST SIMILAR AF-SYNTHETIC CAPTIONS TO AUDIOCAPS AND MUSICCAPS

In Table 12 and Table 13 we show some captions from AudioCaps or MusicCaps and their most
similar captions from AF-Synthetic. These examples, together with Figure 2, demonstrate that AF-
Synthetic captions are quite different from these two datasets, which further proves the generalization
ability of our ETTA that is only trained on AF-Synthetic.

Table 12: Examples of captions from AudioCaps and their most similar caption from AF-Synthetic.

AudioCaps caption Most similar AF-Synthetic caption
An airplane engine running. The audio primarily features the continuous roar of an aircraft engine, with a high-pitched whoosh, swoosh,

or swish sound also present.
Multiple cars are racing, speeding
and roaring in the distance.

The audio features the distinct sounds of a race car and other racing vehicles. The race car engine is the
dominant sound throughout the audio, while the other racing vehicles can be heard intermittently.

A consistent, loud mechanical mo-
tor.

The audio features an aircraft engine, which produces a loud, continuous, mechanical sound. The wind
sound is also audible throughout the audio.

A small tool motor buzzes and an
adult male speaks.

The audio features a man speaking intermittently, with the sound of an electric shaver running throughout.
There are also instances of a high-pitched beeping sound.

A mid-size motor vehicle engine is
idling.

The audio primarily consists of the sound of a large truck engine idling, with occasional engine revving
sounds. There is also a high frequency, random-frequency content present throughout the audio.

Insect noises with people talking. The audio features a child speaking, with the sound of insects and background noise throughout. There’s
also a brief sound of a buzzing, repetitive cricket.

A very short spray and then silence
after that.

The audio contains the sound of a spark and a hiss, which are often heard when a spark is created in a gas
or a fluid.

Multiple dogs bark, people speak. The audio features a dog barking and yipping, along with the sound of a television playing in the background.
There’s also a conversation happening, with a woman speaking at certain intervals. Additionally, there are
instances of a human voice and laughter.
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Table 13: Examples of captions from AudioCaps and their most similar caption from AF-Synthetic.

MusicCaps caption Most similar AF-Synthetic caption
The low quality recording features a ballad song that contains sustained strings, mellow piano
melody and soft female vocal singing over it. It sounds sad and soulful, like something you
would hear at Sunday services.

The audio features a calming piano melody
and soft vocals.

A male voice is singing a melody with changing tempos while snipping his fingers rhythmically.
The recording sounds like it has been recorded in an empty room. This song may be playing,
practicing snipping and singing along.

The audio features a male voice, which is
singing a catchy melody with a folk style.

This song contains digital drums playing a simple groove along with two guitars. ne strumming
chords along with the snare the other one playing a melody on top. An e-bass is playing the
footnote while a piano is playing a major and minor chord progression. A trumpet is playing
a loud melody alongside the guitar. All the instruments sound flat and are being played by a
keyboard. There are little bongo hits in the background panned to the left side of the speakers.
Apart from the music you can hear eating sounds and a stomach rumbling. This song may be
playing for an advertisement.

The audio features a synth, drums, and a guitar.
The synth is playing a repetitive melody, the
drums are playing a beat, and the guitar is
strumming chords.

This clip is three tracks playing consecutively. The first one is an electric guitar lead harmony
with a groovy bass line, followed by white noise and then a female vocalisation to a vivacious
melody with a keyboard harmony, slick drumming, funky bass lines and male backup. The
three songs are unrelated and unsynced.

The audio contains a distorted rock song, play-
ing on top of acoustic drums. There are also
sounds of a crowd and clapping, which con-
tribute to the overall energetic and lively feel
of the music.

A male singer sings this groovy melody. The song is a techno dance song with a groovy bass
line, strong drumming rhythm and a keyboard accompaniment. The song is so groovy and
serves as a dance track for the dancing children. The audio quality is very poor with high gains
and hissing noise.

The audio features a strong bass and electronic
drum beats, which are characteristic of this
genre. There’s also the sound of a female voice
singing, which adds a unique element to the
overall sound.

Someone is playing a high pitched melody on a steel drum. The file is of poor audio-quality. The audio features a steelpan being played to
music.

Low fidelity audio from a live performance featuring a solo direct input acoustic guitar strum-
ming airy, suspended open chords. Also present are occasional ambient sounds, perhaps papers
being shuffled.

The audio features the sustained, mellow
strumming of a nylon string guitar in free time.
There are also high pitched, thin strings being
plucked.

The instrumental music features an ensemble that resembles the orchestra. The melody is being
played by a brass section while strings provide harmonic accompaniment. At the end of the
music excerpt one can hear a double bass playing a long note and then a percussive noise.

The audio features a variety of strings and
brass instruments playing a fast melody.

C.3 TRAINING DATA FOR ETTA-VAE

Table 14 shows the training data of our ETTA-VAE.
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Table 14: Datasets used for training ETTA-VAE.

Dataset URL

HiFi-TTS https://www.openslr.org/109/
MSP-PODCAST-Publish-1.9 https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html
SIWIS https://datashare.ed.ac.uk/handle/10283/2353
Spanish-HQ https://openslr.org/72/
TTS-Portuguese-Corpus https://github.com/Edresson/TTS-Portuguese-Corpus
VCTK https://datashare.ed.ac.uk/handle/10283/3443
css10 https://github.com/Kyubyong/css10
indic-languages-tts-iiit-h http://festvox.org/databases/iiit_voices/
l2arctic https://psi.engr.tamu.edu/l2-arctic-corpus/
CREMA-D https://github.com/CheyneyComputerScience/CREMA-D
emov-db https://github.com/numediart/EmoV-DB
jl-corpus https://github.com/tli725/JL-Corpus
ravdess https://www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-speech-audio
tess https://www.kaggle.com/datasets/ejlok1/toronto-emotional-speech-set-tess
AudioSet https://research.google.com/audioset/download.html
LAION-audio https://github.com/LAION-AI/audio-dataset
Clotho-AQA https://zenodo.org/records/6473207
Clotho-v2 https://github.com/audio-captioning/clotho-dataset/tree/master
CochlScene https://github.com/cochlearai/cochlscene
DCASE17Task4 https://dcase.community/challenge2017/task-large-scale-sound-event-detection-results
ESC-50 https://github.com/karolpiczak/ESC-50
FMA https://github.com/mdeff/fma
FSD50k https://zenodo.org/records/4060432
GTZAN https://www.tensorflow.org/datasets/catalog/gtzan
IEMOCAP http://sail.usc.edu/iemocap/
MACS https://zenodo.org/records/5114771
MELD https://github.com/declare-lab/MELD
MU-LLAMA https://github.com/shansongliu/MU-LLaMA?tab=readme-ov-file
MagnaTagATune https://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
Medley-solos-DB https://zenodo.org/records/3464194
Music-AVQA https://gewu-lab.github.io/MUSIC-AVQA/
MusicNet https://www.kaggle.com/datasets/imsparsh/musicnet-dataset
NSynth https://magenta.tensorflow.org/datasets/nsynth
NonSpeech7k https://zenodo.org/records/6967442
OMGEmotion https://www2.informatik.uni-hamburg.de/wtm/OMG-EmotionChallenge/
OpenAQA https://github.com/YuanGongND/ltu?tab=readme-ov-file#openaqa-ltu-and-openasqa-ltu-as-dataset
SONYC-UST https://zenodo.org/records/3966543
SoundDescs https://github.com/akoepke/audio-retrieval-benchmark
UrbanSound8K https://urbansounddataset.weebly.com/urbansound8k.html
VocalSound https://github.com/YuanGongND/vocalsound
WavText5K https://github.com/microsoft/WavText5K
AudioCaps https://github.com/cdjkim/audiocaps
chime-home https://code.soundsoftware.ac.uk/projects/chime-home-dataset-annotation-and-baseline-evaluation-code
common-accent https://huggingface.co/datasets/DTU54DL/common-accent
maestro-v3 https://magenta.tensorflow.org/datasets/maestro
mtg-jamendo https://github.com/MTG/mtg-jamendo-dataset
MUSDB-HQ https://zenodo.org/records/3338373

D ADDITIONAL ABLATION STUDY ON ETTA-DIT

Table 15 and 16 show additional ablation study of our architectural design and model capacity from
ETTA-DiT. We discuss three additional setups we explored: setting a RoPE frequency base, the use
of dropout, and the model size scalability assessment while CFG is turned on.

Table 15: Ablation study on the effect of other architectural designs of ETTA on generation quality
(evaluated on AudioCaps).

Ablation FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
ETTA 2.30 81.23 13.01 1.29 1.50 12.42 0.52 0.41
ETTA + rope base = 512 2.25 79.49 12.64 1.32 1.51 12.45 0.52 0.41
ETTA + pdropout = 0.0 2.30 76.30 13.04 1.28 1.50 12.27 0.53 0.41

Table 16: Ablation study on the effect of other architectural designs of ETTA on generation quality
(evaluated on MusicCaps).

Ablation FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
ETTA 2.08 96.46 12.15 0.88 1.08 2.93 0.51 0.52
ETTA + rope base = 512 2.08 95.04 12.11 0.84 1.08 2.94 0.51 0.52
ETTA + pdropout = 0.0 2.01 88.74 11.75 0.75 1.10 2.97 0.51 0.51

RoPE frequency base We decide to use rope base=16384 which can be considered as
significantly “longer” than the length ETTA would usually be exposed to (up to 512 for text token
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embedding, and 215 for the VAE latent window). This design is inspired by recent trends in LLM
where applying longer rope base during training helps improving extrapolation to longer sequence
generation. Considering usual I/O length of ETTA, we also tried using shorter rope base=512.
We find that the early training loss is slightly better but the difference in objective metrics is small,
mostly within an expected margin of error. While the shorter rope base may have been sufficient,
our final model uses the longer one towards scalability to longer text and audio window beyond what
we have explored in this work.

Different RoPE frequency base does not affect the results significantly. However, we conjecture
longer value can help for models with longer window.

Dropout Although turning off dropout pdropout = 0.0 yields slightly better benchmark scores
(FD scores and KLS , for example) measured at 250k training steps, we decide to use pdropout = 0.1
for the final model where we speculate that it may provide improved generalization and enhance
robustness in parameter estimation, leading to a more robust model in real-world captions beyond
benchmark datasets. We do not draw a conclusion that turning off dropout is better or worse in this
work, and it remains to be seen if it would help or not as we scale data and model further.

Dropout does not affect the overall results significantly. We speculate that adding dropout could
enhance robustness in parameter estimation as we scale the TTA models.

Table 17: Ablation study on the results of ETTA with different depths, widths, and kernel sizes
(evaluated on AudioCaps). The classifier-free guidance wcfg = 3. ⋆ Our best model choice.

Model Size(B) FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
depth = 4 0.38 3.09 81.71 15.81 1.41 1.55 11.35 0.50 0.40
depth = 12 0.81 2.72 83.62 13.88 1.36 1.54 12.52 0.52 0.41
depth = 24⋆ 1.44 2.30 81.23 13.01 1.29 1.50 12.42 0.52 0.41
depth = 36 2.08 2.61 75.51 12.37 1.30 1.49 12.24 0.52 0.40
width = 384 0.28 3.37 76.01 16.08 1.40 1.59 11.31 0.49 0.39
width = 768 0.52 2.72 77.97 14.32 1.33 1.55 12.62 0.51 0.40
width = 1536⋆ 1.44 2.30 81.23 13.01 1.29 1.50 12.42 0.52 0.41
kconvFF = 1⋆ 1.44 2.30 81.23 13.01 1.29 1.50 12.42 0.52 0.41
kconvFF = 3 2.35 2.67 78.74 13.87 1.38 1.56 11.71 0.49 0.40

Scalability with Model Size while CFG turned on Table 17 shows additional result on the model
size scaling experiment using wcfg = 3. Compared to Table 8, the difference of metrics between
model of different sizes is smaller. This suggests that while the quality of model grows with its total
size, small models can also generate high-quality samples with CFG at a cost of having potentially
lower diversity.

Classifier-free guidance helps smaller models to be closer to large models in objective metrics.
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Table 18: Results on choice of sampler and number of sampling steps using AudioCaps test set. We
used the main ETTA model trained for 1M steps and wcfg = 3.

Sampler Steps NFE FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Heun 100 199 2.40 79.60 12.09 1.20 1.41 13.57 0.55 0.42
Heun 50 99 2.31 79.24 12.00 1.19 1.41 13.61 0.55 0.43
Heun 25 49 2.38 80.06 12.20 1.18 1.40 13.64 0.55 0.43
Heun 10 19 2.38 85.27 12.22 1.21 1.40 13.23 0.55 0.43
Heun 5 9 2.72 97.45 13.27 1.27 1.43 12.22 0.52 0.42
Euler 200 200 2.35 79.77 12.26 1.19 1.41 13.56 0.55 0.43
Euler 100 100 2.32 80.67 12.10 1.18 1.42 13.90 0.55 0.43
Euler 50 50 2.36 81.49 11.83 1.18 1.39 13.45 0.55 0.43
Euler 20 20 2.44 90.85 12.36 1.19 1.39 13.15 0.54 0.42
Euler 10 10 3.11 112.65 14.74 1.31 1.43 11.46 0.50 0.42
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Figure 4: The effect of different sampling methods on the generation quality of ETTA on AudioCaps
and MusicCaps. We investigate both Euler and Heun solvers. NFE: number of function evaluations.
CFG: classifier-free guidance scale.

Full results on the sampling methods Table 18 and Figure 4 show the full results on the effect of
sampling methods, including the solver, number of function evaluations, and classifier-free guidance.

Heun sampler is better than Euler at lower NFE under all metrics. Increasing wcfg improves most
objective metrics (KL, IS, and CL) except for FD.

Creative captions Table 19 contains the creative captions for subjective evaluation.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 19: List of imaginative captions used to generate creative audio.

Caption

A hip-hop track using sounds from a construction site—hammering nails as the beat, drilling sounds as scratches, and metal clanks as
rhythm accents.

A saxophone that sounds like meowing of cat.

A techno song where all the electronic sounds are generated from kitchen noises—blender whirs, toaster pops, and the sizzle of cooking.

Dogs barking, birds chirping, and electronic dance music.

Dog barks a beautiful and fast-paced folk melody while several cats sing chords while meowing.

A time-lapse of a city evolving over a thousand years, represented through shifting musical genres blending seamlessly from ancient to
futuristic sounds.

An underwater city where buildings hum melodies as currents pass through them, accompanied by the distant drumming of bioluminescent
sea creatures.

A factory machinery that screams in metallic agony.

A lullaby sung by robotic voices, accompanied by the gentle hum of electric currents and the soft beeping of machines.

A soundscape with a choir of alarm siren from an ambulance car but to produce a lush and calm choir composition with sustained chords.

The sound of ocean waves where each crash is infused with a musical chord, and the calls of seagulls are transformed into flute melodies.

Mechanical flowers blooming at dawn, each petal unfolding with a soft chime, orchestrated with the gentle ticking of gears.

The sound of a meteor shower where each falling star emits a unique musical note, creating a celestial symphony in the night sky.

A clock shop where the ticking and chiming of various timepieces synchronize into a complex polyrhythmic composition.

An enchanted library where each book opened releases sounds of its story—adventure tales bring drum beats, romances evoke violin strains.

A rainstorm where each raindrop hitting different surfaces produces unique musical pitches, forming an unpredictable symphony.

A carnival where the laughter of children and carousel music intertwine, and the sound of games and rides blend into a festive overture.

A futuristic rainforest where holographic animals emit digital soundscapes, and virtual raindrops produce glitchy electronic rhythms.

An echo inside a cave where droplets of water create a cascading xylophone melody, and bats’ echolocation forms ambient harmonies.

A steampunk cityscape where steam engines puff in rhythm, and metallic gears turning produce mechanical melodies.

E MIXED OR NEGATIVE RESULTS

In this section, we document additional directions we explored when building ETTA inspired by
previous work, but resulted in mixed or worse results in our study. Our goal is not to claim that the
methods described below don’t work; again, we aim to provide a holistic understanding of design
choices commonly found in the TTA literature and speculate that these have been ineffective specific
to our experimental setup. We believe that below methods we explored hold the potential to improve
results further in future work.

Table 20: Results on pretraining with the audio inpainting task vs. training from scratch. In either
case, ETTA is trained on the TTA task for 250k steps.

Dataset Pretrain FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑

AudioCaps ✓ 3.04 90.77 12.90 1.40 1.54 11.87 0.49 0.40
✗ 2.30 81.23 13.01 1.29 1.50 12.42 0.52 0.41

MusicCaps ✓ 1.80 81.19 10.87 0.91 1.10 3.03 0.51 0.50
✗ 2.08 96.46 12.15 0.88 1.08 2.93 0.51 0.52

Pretraining TTA with audio inpainting This experiment is inspired by SpeechFlow (Liu et al.,
2023a) that presented improvement of various speech tasks (e.g., Text-to-Speech (TTS)) by pretraining
the flow matching model with an inpainting task using unlabeled data.

We follow the masking method in (Liu et al., 2023a) and concatenate the masked feature with the
noisy input. Note that we do not feed the masked feature to cross-attention input, so the cross-attention
parameters are not activated during pretraining. We pretrain the model with this inpainting task for
700k steps. Then, we reset the first input projection layer of DiT and optimizer, and switch to the
main TTA task starting from the pretrained weight. We observe that the training loss starts much
lower for the pretrained model.
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Table 20 summarizes the benchmark results with or without the inpainting as pretraining task. We find
that the result is mixed where AudioCaps result worsened and some MusicCaps metrics improved
such as FD and IS. We speculate that the pretrained weight focuses more on the music signal because
of our unlabeled audio collection has a higher proportion of music compared to speech. We also
conjecture that the result would be different if we use the masked feautre to the cross-attention input
in pretraining stage instead of concatenation.

Pretraining with the audio inpainting task produces mixed results, possibly due to data imbalance
or sub-optimal implementation details.

While the current experimental setup did not bring positive result, we believe that introducing multiple
tasks into a single model will enable a generalist model. We leave exploring alternative ways to ingest
the inpainting task into better TTA to future work.

Table 21: Effects of different text encoders in ETTA (evaluated on AudioCaps). We initialize the
model weights from a checkpoint that is pretrained on the audio inpainting task for 700k steps. We
then train each model on the TTA task for 300k steps.

EncT5 Encclap FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
T5-base ✗ 2.85 91.81 12.93 1.42 1.57 12.57 0.49 0.40
T5-base ✓ 3.08 85.40 12.87 1.42 1.58 11.91 0.48 0.39
T5-large ✗ 6.10 213.71 16.80 1.61 1.63 11.91 0.45 0.36
T5-large ✓ 7.05 219.93 18.73 1.67 1.74 9.44 0.43 0.35
FLAN-T5-base ✗ 2.43 80.67 13.01 1.50 1.61 13.26 0.48 0.40
FLAN-T5-base ✓ 2.95 84.08 13.51 1.50 1.62 11.37 0.47 0.39
FLAN-T5-large ✗ 3.53 103.15 15.94 1.63 1.70 10.60 0.45 0.38
FLAN-T5-large ✓ 3.19 81.64 13.28 1.52 1.63 11.80 0.47 0.39

Choice of Text Encoder Many previous works have implemented different text encoders for TTA,
but the results are mixed. Researchers have experimented with various models such as BERT, T5,
and CLAP to find the optimal text encoder for improving TTA result (Liu et al., 2023b; 2024; Ghosal
et al., 2023; Melechovsky et al., 2023; Majumder et al., 2024; Huang et al., 2023c;a). We also explore
the text encoder choice in a controlled environment, where we train multiple models with different
text encoders. We consider T5-base, T5-large, FLAN-T5-base, and FLAN-T5-large. In
addition, we experiment with a dual text encoder setup (Huang et al., 2023a; Liu et al., 2024; Haji-Ali
et al., 2024) by using CLAP as additional global text embedding. We use a different CLAP checkpoint
(LAION’s music audioset epoch 15 esc 90.14) to the benchmark CLAP models (CLL and
CLM ) to rule out a possibility of inflated result from the same representation. In this experiment, we
start training with a pretrained weight from the inpainting task for 700k training steps, 13 and trained
each model with different text encoder for 300k steps.

Table 21 summarizes the result on different text encoder choices evaluated on AudioCaps. Unfor-
tunately, we were not able to discover noticeably better choice compared to others. Nevertheless,
we find interesting observations: 1) FLAN-T5-base scores relatively better than T5-base for
FDV and FDO, but the opposite can be observed for other metrics such as KLS . 2) for our setup, we
have not found strong evidence that dual text encoder with CLAP is better; it worsened most metrics
except for FLAN-T5-large. 3) larger T5 encoder may not necessarily be better in improving
results, where base model generally scored better metrics than large model. T5-large showed
surprisingly worse result compared to others for two independent training runs (with or without
CLAP). While this seems counter-intuitive, it also suggests that the optimal choice of text encoder
would depend on other factors such as training dataset and the main TTA model capacity at hand.

No single text encoder consistently outperformed others. The effectiveness of text encoders seems
to depend on specific metrics and setup. Larger text encoders do not always lead to better results.

13We launched this experiment based on the preliminary observation of the lower training loss. We speculate
that the observation would not change if we train the models from scratch.
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Table 22: Results on AutoGuidance (evaluated on AudioCaps). We use our best 1.44B ETTA model
(trained for 1M steps). Modelag denotes the bad model used for AutoGuidance. Same: same 1.44B
model architecture as ETTA. XS: the smallest 0.28B model using width=384.

Modelag (steps) wcfg wag FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
– 1 – 5.42 93.03 25.33 1.77 2.00 6.41 0.42 0.34
XS (50k) 1 2 2.52 86.14 14.51 1.63 1.73 9.10 0.51 0.38
XS (50k) 3 2 2.22 80.24 12.15 1.20 1.41 13.64 0.55 0.43
XS (100k) 1 2 2.81 83.52 14.19 1.63 1.72 8.54 0.50 0.38
XS (100k) 3 2 2.92 94.08 14.15 1.37 1.49 13.83 0.55 0.42
Same (100k) 1 2 3.77 91.79 16.49 1.58 1.78 7.63 0.48 0.37
Same (100k) 3 2 3.64 81.85 12.72 1.27 1.50 13.80 0.56 0.42
– 3 – 2.32 80.67 12.10 1.18 1.42 13.90 0.55 0.43

Table 23: Results on AutoGuidance (evaluated on MusicCaps). We use our best 1.44B ETTA model
(trained for 1M steps). We report the results using the best combination according to Table 22.

Modelag wcfg wag FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
– 1 – 3.29 101.15 19.89 1.28 1.43 2.21 0.42 0.46
XS (50k) 1 2 2.55 104.43 13.17 1.12 1.32 2.59 0.48 0.49
XS (50k) 3 2 1.90 97.63 9.83 0.78 1.03 3.19 0.50 0.53
– 3 – 1.85 98.19 9.82 0.78 1.03 3.18 0.50 0.53

Autoguidance Recently, (Karras et al., 2024) showed that the improvement in perceptual quality of
CFG stems from its ability to eliminate unlikely outlier samples, but it may reduce diversity from
over-emphasis. They proposed a new way of guiding the model, called autoguidance, that uses a
bad version of the same model (either by under-training and/or with smaller model) that increases
diversity while ensuring high-quality output as follows (omitting the condition c for brevity):

vθ(xt, t) = vθag(xt, t) + wag · (vθ(xt, t)− vθag(xt, t)),

where θag denotes a bad model and wag is the scale for autoguidance. Same as CFG, wag = 1
disables the guidance and wag > 1 amplifies the main model’s prediction.

We conducted experiments applying autoguidance to evaluate its effectiveness to our TTA setup. The
results are in Tables 22 and 23. From our grid search of wag from 1 to 2.5 with 0.25 interval, wag = 2
provided the best possible metrics.

Subjectively, we observed that while autoguidance could produce more diverse audio samples
corroborating (Karras et al., 2024), but these samples sometimes lacked realism. We find that the
method is sensitive to the choice of the bad model and its guidance scale wag. In terms of improving
benchmark results, despite our best efforts and various combinations including different bad models
(either under-trained versions or smaller models) and guidance scales, we were unable to identify a
setup that clearly outperforms plain CFG with wcfg = 3. Similar benchmark metrics could only be
achieved by combining both CFG and autoguidance, but at an increased cost with 2x NFE.

We conjecture that our search space may have been incomplete. However, we do observe noticeable
increase in diversity from autoguidnace where the same ETTA checkpoint can sometimes generate
even more “interesting” samples, so we believe autoguidance holds its potential towards creativity.
We leave exploring recently proposed methods for sampling from the model for better TTA results in
future work.

AutoGuidance increases diversity but does not consistently outperform CFG in objective metrics.
It shows potential for diversity, though its effectiveness is sensitive to model and scale choices.
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F VOCODER/AUTOENCODER RECONSTRUCTION RESULTS

Table 24 and 25 show objective results of our VAE we used (ETTA-VAE) in this work. Our 44kHz
stereo VAE is identical to the one used in Stable Audio Open (Evans et al., 2024b), but trained from
scratch using our large-scale unlabeled audio collection based on public datasets. We also attach
BigVGAN-v2 (Lee et al., 2023), the state-of-the-art mel spectrogram vocoder in 44kHz mono, as a
reference of waveform reconstruction quality from the models.

Despite being 4x lower in latent frame rate (21.5Hz) compared to conventional mel spectrogram
vocoder (86Hz), ETTA-VAE shows competitive reconstruction quality. It matches the quality of
Stable Audio Open-VAE on music data (MUSDB18-HQ (Rafii et al., 2017)) and outperforms on
speech data (LibriTTS (Zen et al., 2019)), because our dataset contains considerably high portion of
speech signals.

Our ETTA-VAE matches or exceeds the reconstruction quality of Stable Audio Open’s VAE. This
is because we use larger-scale public audio datasets.

Table 24: Comparison of waveform vocoder/auto-encoder on LibriTTS (dev-clean and dev-other).

Model Framerate PESQ↑ UTMOS↑ ViSQOL↑ M-STFT↓ SI-SDR↑
Ground Truth - 4.64 3.86 4.73 – –
BigVGAN-v2 86 Hz 4.14 3.73 4.69 0.71 -7.86
Stable Audio Open-VAE 21.5 Hz 2.75 3.13 4.31 1.00 7.15
ETTA-VAE 21.5 Hz 3.18 3.76 4.37 0.79 9.92

Table 25: Comparison of waveform vocoder/autoencoder on MUSDB18-HQ test set.

Model Framerate ViSQOL↑ M-STFT↓ SI-SDR↑
Ground Truth - 4.73 – –
BigVGAN-v2 86 Hz 4.63 0.94 -22.06
Stable Audio Open-VAE 21.5 Hz 4.25 1.00 9.34
ETTA-VAE 21.5 Hz 4.27 0.95 10.59
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G SUPPLEMENTAL RESULTS

Table 26: Improvements by adding each of the major design choice of ETTA with wcfg = 1 (evaluated
on AudioCaps).

Ablation FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Stable Audio Open 7.20 127.82 47.10 3.14 3.13 6.81 0.18 0.24
+ AF-Synthetic 5.19 125.33 37.40 2.45 2.69 5.37 0.28 0.29
+ ETTA-DiT 4.73 92.31 28.20 2.07 2.19 6.04 0.37 0.33
+ OT-CFM, t ∼ U(0, 1) 5.81 89.44 30.39 2.03 2.26 5.48 0.37 0.31
+ t ∼ σ(N (0, 1)) 5.80 89.60 28.46 1.99 2.21 5.64 0.37 0.32

Table 27: Improvements by adding each of the major design choice of ETTA with wcfg = 1 (evaluated
on MusicCaps).

Ablation FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Stable Audio Open 3.54 119.54 39.96 1.81 2.11 3.19 0.34 0.41
+ AF-Synthetic 3.89 127.90 26.22 1.57 1.73 2.37 0.39 0.43
+ ETTA-DiT 3.07 100.53 20.48 1.38 1.50 2.21 0.42 0.45
+ OT-CFM, t ∼ U(0, 1) 3.29 98.84 22.16 1.35 1.49 2.10 0.42 0.45
+ t ∼ σ(N (0, 1)) 3.31 92.30 21.59 1.41 1.51 2.20 0.41 0.45

Table 28: Ablation study on the results of ETTA trained on different datasets with wcfg = 1 (evaluated
on AudioCaps).

Dataset (million captions) FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
AudioCaps (0.05) 4.97 95.99 22.60 1.49 1.63 6.73 0.48 0.35
TangoPromptBank (1.21) 6.17 77.07 33.44 2.39 2.72 4.64 0.29 0.27
AF-AudioSet (0.16) 5.49 108.31 25.06 1.81 2.01 6.32 0.42 0.34
AF-Synthetic (1.35) 5.80 89.60 28.46 1.99 2.21 5.64 0.37 0.32
+1M steps (ETTA) (1.35) 5.42 93.03 25.33 1.77 2.00 6.41 0.42 0.34

Table 29: Ablation study on the results of ETTA trained on different datasets with wcfg = 1 (evaluated
on MusicCaps).

Dataset (million captions) FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
AudioCaps (0.05) 18.24 279.44 76.14 3.20 3.63 2.047 0.12 0.27
TangoPromptBank (1.21) 3.72 86.17 24.72 1.73 2.02 2.27 0.35 0.38
AF-AudioSet (0.16) 3.54 107.00 21.40 1.45 1.52 2.36 0.40 0.44
AF-Synthetic (1.35) 3.31 92.30 21.59 1.41 1.51 2.20 0.41 0.44
+1M steps (ETTA) (1.35) 3.29 101.15 19.88 1.28 1.42 2.21 0.42 0.46

Table 30: Subjective Evaluation Result on AudioCaps test set with 95% Confidence Interval. OVL
means the overall audio quality disregarding the caption, and REL means the relevance between
audio and caption.

Model Ground Truth AudioLDM2-Large TANGO2 Stable Audio Open ETTA (ours) ETTA-FT-AC-100k (ours)

OVL↑ 3.43 ± 0.11 3.00 ± 0.11 3.08 ± 0.10 3.29 ± 0.11 3.43 ± 0.11 3.26 ± 0.10
REL↑ 3.62 ± 0.10 3.11 ± 0.10 3.66 ± 0.09 3.15 ± 0.11 3.68 ± 0.10 3.77 ± 0.10

Table 31: Subjective Evaluation Result on MusicCaps test set with 95% Confidence Interval. OVL
means the overall audio quality disregarding the caption, and REL means the relevance between
audio and caption.

Model Ground Truth AudioLDM2-Large TANGO-AF Stable Audio Open ETTA (ours)

OVL↑ 3.88 ± 0.10 3.25 ± 0.10 3.38 ± 0.09 3.92 ± 0.10 3.53 ± 0.10
REL↑ 3.90 ± 0.10 3.15 ± 0.10 3.31 ± 0.10 3.35 ± 0.11 3.57 ± 0.10
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Table 32: Additional Results on training strategies (evaluated on AudioCaps).

Ablation FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Stable Audio Open 3.60 105.88 38.27 2.23 2.32 12.09 0.35 0.34
+ AF-Synthetic 2.49 86.13 18.50 1.58 1.74 14.96 0.47 0.40
+ ETTA-DiT 2.66 90.26 16.43 1.29 1.47 14.49 0.53 0.42
+ Min-SNR-γ (γ = 5) 3.80 100.86 18.00 1.36 1.56 13.85 0.52 0.40

Table 33: Additional Results on training strategies (evaluated on MusicCaps).

Ablation FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
Stable Audio Open 3.51 127.20 36.42 1.32 1.56 2.93 0.48 0.49
+ AF-Synthetic 3.20 103.59 14.59 1.00 1.20 3.19 0.50 0.52
+ ETTA-DiT 2.34 98.19 12.48 0.82 1.06 3.30 0.50 0.52
+ Min-SNR-γ (γ = 5) 2.48 97.44 13.04 0.89 1.12 3.66 0.50 0.50

Table 34: Additional Results on Guidance on Limited Interval (evaluated on AudioCaps).

Modelag (steps) wcfg wag FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
– 1 – 5.42 93.03 25.33 1.77 2.00 6.41 0.42 0.34
XS (50k) 3 2 2.22 80.24 12.15 1.20 1.41 13.64 0.55 0.43

+ CFG @ [0, 0.6] 3 2 2.78 89.18 11.74 1.44 1.59 10.59 0.54 0.40
– 3 – 2.32 80.67 12.10 1.18 1.42 13.90 0.55 0.43

+ CFG @ [0, 0.6] 3 – 4.61 93.28 16.13 1.45 1.66 8.35 0.48 0.38

Table 35: Additional Results on Guidance on Limited Interval (evaluated on MusicCaps).

Modelag wcfg wag FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
– 1 – 3.29 101.15 19.89 1.28 1.43 2.21 0.42 0.46
XS (50k) 3 2 1.90 97.63 9.83 0.78 1.03 3.19 0.50 0.53

+ CFG @ [0, 0.6] 3 2 2.31 102.66 11.40 1.02 1.26 2.79 0.49 0.50
– 3 – 1.85 98.19 9.82 0.78 1.03 3.18 0.50 0.53

+ CFG @ [0, 0.6] 3 – 2.88 100.18 16.43 1.12 1.27 2.37 0.44 0.48

Table 36: Main results of ETTA compared to SOTA baselines (evaluated on SongDescriber).

Model FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
AudioLDM2 3.40 335.37 16.02 0.74 0.78 1.93 0.42 0.45
AudioLDM2-large 2.51 324.38 10.50 0.67 0.75 1.95 0.44 0.48
TANGO-AF 3.37 233.32 21.49 0.79 0.88 1.96 0.43 0.44
Stable Audio Open 2.66 129.88 34.76 0.99 1.01 2.19 0.42 0.47
ETTA 2.57 100.32 9.45 0.74 0.74 2.13 0.44 0.53

Table 37: Ablation study on the results of ETTA trained on different datasets with wcfg = 1 (evaluated
on SongDescriber).

Dataset (million captions) FDV ↓ FDO ↓ FDP ↓ KLS ↓ KLP ↓ ISP ↑ CLL ↑ CLM ↑
AF-AudioSet (0.16) 3.73 125.16 12.97 1.03 0.89 2.36 0.41 0.50
AF-Synthetic (1.35) 3.06 104.16 10.29 0.80 0.76 2.06 0.43 0.51

28


	Introduction
	Related Works
	Methodology
	AF-Synthetic
	ETTA
	Training objective and Sampling

	Experiments
	Training Data
	Training Objective and Sampling
	Results

	Discussion and Limitations
	Demo Page link
	Mathematical Background
	Variational Auto Encoders
	Diffusion Models
	Optimal Transport Conditional Flow Matching
	Latent Diffusion Models
	Classifier-Free Guidance

	Dataset Details
	AF-Synthetic Details
	Most Similar AF-Synthetic Captions to AudioCaps and MusicCaps
	Training Data for ETTA-VAE

	Additional Ablation Study on ETTA-DiT
	Mixed or Negative Results
	Vocoder/Autoencoder Reconstruction Results
	Supplemental Results

