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ABSTRACT

Artificial Intelligence Generated Content (AIGC) has advanced significantly, par-
ticularly with the development of video generation models such as text-to-video
(T2V) models and image-to-video (I2V) models. However, like other AIGC types,
video generation requires robust content control. A common approach is to em-
bed watermarks, but most research has focused on images, with limited attention
given to videos. Traditional methods, which embed watermarks frame-by-frame
in a post-processing manner, often degrade video quality. In this paper, we propose
VIDEOSHIELD, a novel watermarking framework specifically designed for pop-
ular diffusion-based video generation models. Unlike post-processing methods,
VIDEOSHIELD embeds watermarks directly during video generation, eliminating
the need for additional training. To ensure video integrity, we introduce a tamper
localization feature that can detect changes both temporally (across frames) and
spatially (within individual frames). Our method maps watermark bits to template
bits, which are then used to generate watermarked noise during the denoising pro-
cess. Using DDIM Inversion, we can reverse the video to its original watermarked
noise, enabling straightforward watermark extraction. Additionally, template bits
allow precise detection for potential temporal and spatial modification. Extensive
experiments across various video models (both T2V and I2V models) demonstrate
that our method effectively extracts watermarks and detects tamper without com-
promising video quality. Furthermore, we show that this approach is applicable to
image generation models, enabling tamper detection in generated images as well.

1 INTRODUCTION

In the era of AI-Generated Content (AIGC), the generation of images (Saharia et al., 2022), au-
dios (Huang et al., 2023), and videos (Blattmann et al., 2023) has become increasingly accessible.
Among these, video generation stands out as one of the most challenging applications. Recently,
significant breakthroughs have been made in this field. With the development of diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020) and the scaling law (Kaplan et al., 2020), which shows
that increasing the model size and dataset volume enhances performance, modern AI models like
Sora (Brooks et al., 2024) are now capable of generating high-quality videos with complex motion
dynamics and extended temporal spans. However, these advancements raise serious concerns about
content control. AI-generated videos are valuable assets used in various industries, from entertain-
ment to education. Yet, they are vulnerable to unauthorized use and tampering. This underscores the
need for robust methods to regulate the origin and modification of such content. Implementing these
safeguards is crucial to ensure the integrity of creative works and protect against potential misuse.

To address these challenges, common solutions involve watermarking (Jia et al., 2021) and tamper
localization (Dong et al., 2022). Watermarking embeds invisible information in digital content for
origin verification, while tamper localization identifies altered areas within the content. However, to
the best of our knowledge, there is no existing method specifically designed for AI-generated videos.
The straightforward approach of embedding and extracting watermarks frame by frame, along with
tamper localization, presents several challenges. First, applying image watermarking techniques
to individual frames degrades overall video quality. Second, existing image tamper localization
methods can only detect spatial tampering within single frames and fail to address the temporal one,
such as frame order change. This limitation stems from the inability of image-based methods to
process frames collectively. Additionally, most current tamper localization methods are passive and
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rely on extensive training to identify tampered and original areas, which limits their effectiveness
across diverse data distributions, and inducing high overhead.

To remedy these limitations, we propose VIDEOSHIELD, a training-free watermarking framework
specifically designed for diffusion-based video models, which achieves watermark embedding in
the video generation process, and can simultaneously perform watermark extraction and tamper
localization. Inspired by recent works (Wen et al., 2023; Yang et al., 2024), we map watermark bits
to Gaussian noise, which is then denoised to generate videos. To enable both watermark extraction
and tamper localization, we introduce template bits derived from the watermark bits, which are
used to generate watermarked noise. The template bits correspond one-to-one with each pixel,
exhibiting local fragility essential for tamper localization, while the watermark bits have a one-
to-many correspondence with pixels, offering greater tolerance to distortion and ensuring robust
extraction. Using Denoising Diffusion Implicit Model (DDIM) Inversion (Song et al., 2020), the
denoised video is inverted back to its initial watermarked noise for extraction. When a video is
tampered with, both the inverted watermarked noise and template bits are disrupted. To localize the
tamper, we compare these disrupted template bits with the originals, using two modules for temporal
and spatial localization. Additionally, when performing spatial tamper localization, we employ
a Hierarchical Spatial-Temporal Refinement (HSTR) module to balance accuracy and granularity,
enhancing the overall performance.

In conclusion, our key contributions are as follows:

• We emphasize the importance of protecting content authentication and integrity for AI-generated
videos. Additionally, we analyze the limitations of directly applying existing image watermarking
and tamper localization methods, such as the degradation of video quality caused by embedding
watermarks frame by frame via post-processing, and the poor transferability of passive tamper
localization methods.

• We propose VIDEOSHIELD, a training-free video watermarking framework designed to embed
watermarks during video generation. It simultaneously enables watermark extraction and tamper
localization based on the inverted template bits through DDIM Inversion on the generated video.

• Extensive experiments demonstrate that VIDEOSHIELD effectively extracts watermarks and lo-
calizes tamper across various video generation models (T2V and I2V), without compromising
video quality. Moreover, VIDEOSHIELD can be seamlessly adapted to localize tamper in images
generated by T2I models.

2 METHODOLOGY

2.1 DESIGN PRINCIPLES

In general, we aim to utilize the embedded watermark to facilitate both subsequent watermark ex-
traction and tamper localization. However, traditional watermarking methods often embed a number
of watermark bits that are significantly smaller than the total number of pixels in the cover image to
ensure fidelity and robustness. This many-to-one relationship between pixels and bits clearly hinders
accurate localization.

In order to address the above challenges, we need a template that has a one-to-one, deterministic
relationship with the pixels and is fragile enough to be disrupted when the corresponding pixels
are tampered with. Instead of introducing a separate template image like EditGuard (Zhang et al.,
2023b) which requires extensive training, we aim to incorporate an intermediate template during the
process of watermark bits embedding, avoiding any additional overhead. Based on this consideration
and inspired by Gaussian Shading (Yang et al., 2024), we use the Gaussian noise as the carrier for
the watermark. During the transformation of the watermark bits into Gaussian noise, we introduce
template bits that can be reversibly converted from the watermark bits. On one hand, the template
bits have a one-to-one correspondence with the pixels generated by the diffusion model, which
makes them locally fragile to the spatial tamper. On the other hand, the template bits corresponding
to each frame of the video are also different, resulting in sensitivity to position. Based on the
aforementioned properties of the template bits, we can achieve both temporal and spatial tamper
localization. Next, we provide the design details.
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Figure 1: The overall framework of VIDEOSHIELD. (1) In the Watermark Embedding and Ex-
traction stage, we first map the watermark bits m to the initial Gaussian noise ZT via an intermedi-
ate set of random template bits TP , which are derived from m. The video diffusion model M then
iteratively denoises ZT , ultimately generating the video frames FR. For watermark extraction, M
uses DDIM Inversion on the tampered or distorted video frames FR to recover the inverted noise
ZT . This noise is then transformed into inverted bits IV , from which the watermark bits are ex-
tracted. (2) In the Tamper Localization stage, TP and IV are processed by a temporal module to
localize temporal tamper and restore their temporal positions. The resulting comparison bits matrix
CMP is then passed to a spatial module, which incorporates a hierarchical spatio-temporal refine-
ment (HSTR) module to enhance localization performance. Both stages are training-free and can be
applied to any diffusion-based video generation model.

2.2 OVERVIEW

The framework of VIDEOSHIELD is illustrated in Figure 1. It consists of two key stages: (1) Water-
mark Embedding and Extraction and (2) Tamper Localization. Overall, VIDEOSHIELD establishes
a reversible conversion chain consisting of watermark bits m, template bits TP , Gaussian noise ZT ,
and video frames FR to achieve watermark embedding, watermark extraction and tamper localiza-
tion. The chain can be expressed as m ⇔ TP ⇔ ZT ⇔ FR. Watermark embedding corresponds
to the rightward transformation, watermark extraction and tamper localization correspond to the left-
ward transformation. We briefly explain the rationale behind the choice of each reversible conversion
algorithm. The conversion between m ⇔ TP employs encryption and decryption algorithms, while
TP ⇔ ZT relies on truncated sampling and inverse sampling. The encryption algorithm ensures
that the template bits are completely random, and the noise generated through truncated sampling
based on these bits follows a Gaussian distribution. The conversion between ZT ⇔ FR involves
the denoising and noising processes. For noise addition, we use DDIM sampling, which guarantees
the reversibility of the process through the corresponding denoising step, known as DDIM Inversion.
Next, we explain the details of each step.

2.3 WATERMARK EMBEDDING AND EXTRACTION

Inspired by Gaussian Shading (Yang et al., 2024), we map the watermark bits to Gaussian noise to
achieve watermark embedding and use the inverted watermarked noise by DDIM Inversion on the
denoised video for watermark extraction.

Watermark embedding. We describe how to map the watermark bits to Gaussian noise to achieve
watermark embedding. First, we randomly sample watermark bits m ∈ {0, 1} and reshape it to
( f
kf
, c
kc
, h
kh

, w
kw

), where f, c, h, w are the numbers of frames and channels, height and weight of ZT ,
k∗ is the corresponding repeat factor. Then we repeat m to md with the shape of (f, c, h, w) and
encrypt md to TP with the same shape using ChaCha20 (Bernstein et al., 2008), which is a stream
cipher that takes a 256-bit key, a 96-bit nonce, and plaintext as input to produce a pseudo-random
ciphertext as output. The algorithm generates a keystream that is XORed with the plaintext for

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

encryption. To get ZT , we use truncated sampling conditioned on TP . Assume that the probability
density function and percentile function of the Gaussian distribution N (0, 1) are f(.) and ppf(.)
respectively. For every bit λ = TPq,i,j,k ∈ {0, 1} in TP , the corresponding sampled noise point is
β = ZT

q,i,j,k, where q, i, j, k represent the indices in the f, c, h, w dimensions, respectively. When
λ is 0, β samples from the truncated negative half-interval of N (0, 1), otherwise, β samples from
the truncated positive half-interval. The conditional probability distribution followed by β can be
expressed as:

p(β|λ) =
{
2f(β), ppf(λ2 ) < β ≤ ppf(λ+1

2 )

0, otherwise
. (1)

Then we can determine the probability distribution of β as:

p(β) =

1∑
λ=0

p(β|λ)p(λ) = 1

2
(p(β|0) + p(β|1)) = f(β). (2)

Therefore, β follows a standard Gaussian distribution and will not affect the subsequent denoising.
Finally, the video diffusion model M peforms iterative denoising on ZT to get the denoised latents
Z0, which are decoded as FR by the VAE decoder D.

Watermark extraction. We explain how to extract watermark bits from the generated video using
DDIM Inversion. Before watermark extraction, FR can be tampered with or distorted, resulting in
FR. We compress FR into latents Z0 through the VAE encoder E , and then use M to convert
Z0 into the noised latents ZT via DDIM Inversion. By inverse sampling based on ZT , we get the
inverted bits IV :

IVq,i,j,k =

{
0, ZT

q,i,j,k ≤ 0

1, ZT
q,i,j,k > 0

. (3)

Then we decrypt IV to md
ext for watermark extraction. Since each watermark bit mi in m is copied

kall = kf × kc × kh × kw times in the watermark repeat stage, mi actually corresponds to kall bits
in md

ext. When more than half of these kall bits are 1, the corresponding extracted bit mexti is set
to 1; otherwise it is 0. Finally, we retrieve the extracted watermark bits mext from md

ext.

2.4 TAMPER LOCALIZATION

In this section, we provide a detailed explanation of how temporal and spatial tamper localization
are achieved by comparing the inverted bits with the template bits.

2.4.1 TEMPORAL TAMPER LOCALIZATION

𝑇𝑃! 𝑇𝑃" 𝑇𝑃# 𝑇𝑃$

𝐼𝑉! 𝐼𝑉" 𝐼𝑉# 𝐼𝑉$ 𝐼𝑉! 𝐼𝑉! 𝐼𝑉! 𝐼𝑉!

𝑇𝑃! 𝑇𝑃" 𝑇𝑃# 𝑇𝑃$

𝐶𝑀𝑃! 𝐶𝑀𝑃" 𝐶𝑀𝑃# 𝐶𝑀𝑃$

𝑆(1,1) 𝑆(1,2) 𝑆(1,3) 𝑆(1,4)

Temporal Localization

Template Bits

Inverted Bits

Comparison Bits (Eq.(8))

2 1 3 -1

Original Positions (Eq.(7))
𝑀𝑎𝑥 𝑆(𝑝, 𝑞) (Eq.(6))

Copy

Figure 2: The pipeline of the temporal tamper localization module. We use the first frame (IV1)
inside the module (cyan area) as an example to show the localization process.

We focus on temporal tamper localization for the following two scenarios: (1) Temporal tamper,
including frame swapping, insertion, and dropping, alters the original sequence of frames, resulting
in semantic changes. (2) Changes in frame order prevent the inverted bits from being compared with
the corresponding template bits at their original positions, thereby hindering spatial tamper localiza-
tion. In general, our core idea is to compare the inverted bits of each frame in the reordered video
with the template bits corresponding to all frames in the original video, identifying the position with
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the highest comparison accuracy to effectively recall its original position for successful localization
and restoration. The temporal localization module’s pipeline is shown in Figure 2.

Specifically, suppose p and q represent the frame positions in the tampered and original video frames,
this module makes f copies of IVp at every position of IV . It then performs a bit-by-bit comparison
with TP , corresponding to each frame of the original video. This comparison produces the compar-
ison bits Cp,q = [IVp = TPq], which collectively form the matrix C with a shape of (f ′, f, c, h, w),
where f ′ indicates the tampered video frames. Then, it calculates the average score across the last
three dimensions to obtain the comparison score S:

S(p, q) =
1

chw

c∑
i=1

h∑
j=1

w∑
k=1

Cp,q,i,j,k. (4)

S(p, q) can be used to measure the matching degree between IVp and TPq . Based on S(p, q), we
get the position M(p) in the original video frames which has the highest matching degree by:

M(p) = argmaxq∈[1,f ]S(p, q). (5)

When a tampered frame is not part of the original video (e.g., when a new frame is inserted), there
is no corresponding original position. In such cases, we mark these positions as -1 and use ttemp to
determine whether a frame belongs to the original video. Therefore, we get the original position P
by:

P(p) =

{
M(p), S(p,M(p)) > ttemp

−1, S(p,M(p)) ≤ ttemp
. (6)

Finally, the module produces the comparison bits matrix CMP which is used for spatial tamper
localization and can be described as:

CMPp = Cp,M(p). (7)

2.4.2 SPATIAL TAMPER LOCALIZATION

The main process of spatial tamper localization is shown in Figure 3. We first introduce the main
process of spatial localization, and then introduce the HSTR module in detail.

Main process. First, we average the comparison bits matrix CMP with the shape of (f
′
, c, h, w)

across the channel dimension to obtain the initial predicted mask M ini. The channel average func-
tion CA can be expressed as:

M ini
p,j,k = CA(CMP ) =

1

c

c∑
i=1

CMPp,i,j,k. (8)

We further use HSTR to refine M ini to achieve more accurate localization performance. HSTR
processes M ini at different levels to get different level masks {M l}l=1,2,...,L, where l is level. Then
we perform an average on them to get the refined mask: Mrefined = 1

L

∑L
l=1 M

l. Finally, the VAE
decoder D converts Mrefined to the pixel space, and then applies grayscale conversion to obtain the
final extracted mask Mfinal.

Hierarchical Spatial-Temporal Refinement (HSTR). Although M ini provides an initial assess-
ment of watermark at various locations which could indicate potential tampering, its effectiveness
is limited. Each location is based on only four comparison bits in the channel dimension, increasing
the chance of ‘false positives’ and reducing accuracy. As shown in Figure 4, increasing the number
of comparison bits reduces the variance of comparison accuracy and false positive rates, and en-
hances the distinction between watermarked and original areas. Thus, HSTR aims to refine M ini by
using more comparison bits at a high level for accurate judgments. Higher-level improves localiza-
tion accuracy by gathering more adjacent comparison bits while sacrificing fine granularity, which
is in contrast to lower-level. Next, we detail the three parts of HSTR.
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Figure 3: The pipeline of the spatial tamper local-
ization module containing a Hierarchical Spatial-
Temporal Refinement (HSTR) module. Here, we
show the internal workflow of HSTR when the to-
tal hierarchical level L = 3.

Part I: Divide and Gather. In this part, we ex-
plain how to segment the entire video into sub-
regions containing different numbers of com-
parison bits based on different hierarchical lev-
els, and calculate the overall prediction accu-
racy for each region. Assuming the total hier-
archical level is L, for every l ∈ {1, 2..., L},
we divide M ini into a series of sub-regions
with the shape of (µ, µ, µ), where µ is the lo-
cal value and µ = 2l−1, indicates the num-
ber of adjacent local comparison bits gathered
in three dimensions. All the score values con-
tained in each sub-region are gathered and the
averaged value is used as the watermark pre-
diction score representing the region. A larger
l can increase the number of comparison bits
contained in the sub-region, thereby improving
the prediction accuracy. Let b(x) = (x − 1)µ + 1, the above gather and average function GA to

convert M ini with the shape of (f
′
, h, w) to Mga with the shape of ( f

′

µ , h
µ ,

w
µ ) can be described as:

Mga
p,j,k = GA(M ini

x,y,z) =
1

µ3

pµ∑
x=b(p)

jµ∑
y=b(j)

kµ∑
z=b(k)

M ini
x,y,z. (9)
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Figure 4: Comparison accuracy distributions of
different local values on the watermarked and
original videos generated by ModelScope and
Stable-Video-Diffusion. Each data point in the
figure represents the average accuracy of the sub-
region with different local values µ (µ = 2l−1),
containing different numbers of comparison bits.

Part II: Partial Threshold Binarization. To fur-
ther differentiate between tampered and non-
tampered areas, we utilize partial threshold bi-
narization PTB for the transformation of Mga.
We statistically analyze the comparison accu-
racy distributions Awm and Aorig on water-
marked and original videos corresponding to
different levels and find the overlapping area:
Q = Awm ∩ Aorig. Suppose the predicted
value of an area in Mga is denoted as o =
Mga

p,j,k, when o ∈ Q, it is impossible to make
an effective distinction. When o ∈ A′

orig =
Aorig \ Q, it can be concluded with high con-
fidence that the area has been tampered with,
so o can be polarized to 0. For o ∈ A′

wm =
Awm \ Q, according to the same principle, o is
polarized to 1. Assuming the lower bound of
A′

wm and the upper bound of A′

orig are twm and torig respectively, Mga can be converted to Mptb

as:

Mptb
p,j,k = PTB(Mga

p,j,k) =


0, if o < twm

1, if o > torig
o, otherwise

. (10)

For practical usage, in order to determine twm and torig, we select values corresponding to specific
quantile k of Awm and Aorig to represent the distributions: [Q1−k(A), Qk(A)]. This is because
points with extremely high or low accuracy in the distribution are rare and can be considered outliers,
which do not accurately represent the overall distribution, as shown in Figure 4. Therefore, these
points can be discarded. A detailed analysis can be found in Sec. 3.4.

Part III: Repeat. Finally, we assign the prediction score of each sub-region to all positions within
that region to assess the tamper status at different locations. In order to convert the shape of Mptb to
(f

′
, h, w), each comparison bit in Mptb is repeated µ3 times and then filled into the corresponding

original sub-region to obtain M l. This operation can be expressed as R:

M l
p,j,k = R(Mptb) = Mptb

⌈ p
µ ⌉,⌈ j

µ ⌉,⌈ k
µ ⌉. (11)
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Table 1: Comparison with other baseline watermarking methods on videos generated by Mod-
elScope and Stable-Video-Diffusion, respectively. The video quality reported here is the average
of all metric values. The best results are highlighted in bold.

Method ModelScope Stable-Video-Diffusion

Bit Length ↑ Video Quality ↑ Bit Accuracy ↑ Bit Length ↑ Video Quality ↑ Bit Accuracy ↑
RivaGAN 32 0.804 0.994 32 0.836 0.989

MBRS 256 0.803 1.000 256 0.828 0.999
CIN 30 0.756 1.000 30 0.795 1.000

PIMoG 30 0.753 1.000 30 0.794 0.999
SepMark 128 0.799 0.999 128 0.819 0.998

VIDEOSHIELD 512 0.806 1.000 512 0.836 0.999

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTING

Implementation details. We select two popular open-source models as the default test models:
the text-to-video (T2V) model ModelScope (MS) (Wang et al., 2023) and the image-to-video (I2V)
model Stable-Video-Diffusion (SVD) (Blattmann et al., 2023). Videos are generated with 16 frames
in FP16 mode for both models. The resolutions of the videos generated by the MS and SVD models
are 256 and 512, respectively. We use the default sampler and text (image) guidance, with 25
inference steps and 25 inversion steps for both models. A total of 512 watermark bits are embedded
into the generated videos. To achieve this, we set kf , kc, kh, kw to 8, 1, 4, 4 for MS and 8, 1, 8, 8
for SVD. For MS, k in PTB is set to 99, while it is set to 98 for SVD. For both models, ttemp and
L are set to 0.55 and 3, respectively. For temporal tamper, we evaluate Frame Drop, Frame Insert,
and Frame Swap. For spatial tamper, we consider: Crop&Drop (default), STTN (Zeng et al., 2020),
and ProPainter (Zhou et al., 2023).

The baseline watermarking methods for comparison are: RivaGAN (Zhang et al., 2019), MBRS (Jia
et al., 2021), CIN (Ma et al., 2022), PIMoG (Fang & et al., 2022), and SepMark (Wu et al., 2023).
For baseline spatial tamper localization, we compare: MVSS-Net (Dong et al., 2022), OSN (Wu
et al., 2022), PSCC-Net (Liu et al., 2022), and HiFi-Net (Guo et al., 2023). Except for RivaGAN,
all methods are open-source and designed for images, as there is limited open-source research in the
video domain. When applied to video, the same watermark is embedded in each frame, and tamper
localization is performed frame by frame. More implementation details can be found in Appendix
D.

Datasets. For MS, we choose 50 prompts from the VBench (Huang et al., 2024) test set, covering
five categories: Animal, Human, Plant, Scenery, and Vehicles, with 10 prompts per category. For
each prompt, we generate 4 videos, resulting in a total of 50 × 4 = 200 videos for evaluation. For
SVD, we first employ a text-to-image (T2I) model, specifically Stable Diffusion 2.1 (AI, 2022), to
generate 200 images corresponding to the 200 prompts used in the MS evaluation. These images are
then used to create 200 videos for evaluation. Additionally, we gather 5 real images from each of
the 5 categories, generating a total of 5× 5× 4 = 100 videos for evaluation. Except for evaluating
spatial tamper localization with STTN and ProPainter, where we use 1/5 of the generated videos for
manual annotation (as detailed in Appendix D.3), we use all the generated videos in other cases by
default. To statistically analyze Awm and Aorig to obtain twm and torig, we further generate 100
watermarked videos and 100 original videos that are not included in the aforementioned dataset for
both MS and SVD. More details about our constructed datasets can be found in Appendix C.

Metric. For watermark extraction, we use Bit Accuracy which indicates the ratio of correctly ex-
tracted bits. To evaluate the quality of the watermarked videos, we adopt five metrics from VBench
(Huang et al., 2024): Subject Consistency, Background Consistency, Motion Smoothness, Dynamic
Degree, and Imaging Quality. For temporal localization, we measure accuracy using the formula:
Accuracy = 1

N

∑N
i=1 Pi = Oi, where Pi and Oi are the predicted position and original position of

framei, and N is the total number of test frames. For spatial localization, following Dong et al.
(2022); Liu et al. (2022), we evaluate using F1, Precision, Recall, AUC, and IoU metrics computed
between the final extracted mask Mfinal and the ground truth mask Mgt. When specific metrics
are not reported, we default to presenting the average values of these metrics.

3.2 MAIN RESULTS
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Table 3: Baseline comparison results of spatial tamper localization on different tamper types. All
evaluation metrics are better when higher. * represents an outlier and has no practical meaning.
Because we find that HiFi-Net correspondence predicts every frame of the video as tampered, so the
Recall value is higher.

Method STTN ProPainter Crop&Drop

F1 Precision Recall AUC IoU Average F1 Precision Recall AUC IoU Average F1 Precision Recall AUC IoU Average

ModelScope

MVSS-Net 0.125 0.333 0.106 0.550 0.102 0.243 0.012 0.114 0.008 0.502 0.008 0.129 0.291 0.350 0.296 0.474 0.248 0.332
OSN 0.137 0.390 0.120 0.539 0.108 0.259 0.069 0.153 0.078 0.506 0.047 0.171 0.321 0.383 0.365 0.522 0.258 0.370

PSCC-Net 0.521 0.504 0.805 0.588 0.385 0.561 0.442 0.415 0.730 0.515 0.320 0.484 0.529 0.499 0.603 0.539 0.477 0.529
HiFi-Net 0.003 0.211 0.001 0.497 0.001 0.143 0.532 0.391 0.999* 0.500 0.391 0.563 0.423 0.308 0.975* 0.491 0.306 0.501

VIDEOSHIELD 0.893 0.918 0.888 0.911 0.822 0.886 0.909 0.910 0.917 0.921 0.841 0.900 0.911 0.888 0.942 0.946 0.841 0.906
Stable-Video-Diffusion

MVSS-Net 0.126 0.417 0.101 0.540 0.096 0.256 0.041 0.172 0.030 0.505 0.027 0.155 0.460 0.464 0.490 0.566 0.401 0.476
OSN 0.213 0.278 0.234 0.542 0.155 0.284 0.152 0.244 0.173 0.498 0.101 0.234 0.351 0.396 0.437 0.572 0.252 0.402

PSCC-Net 0.405 0.377 0.732 0.526 0.290 0.466 0.385 0.318 0.757 0.496 0.272 0.446 0.501 0.409 0.738 0.571 0.372 0.518
HiFi-Net 0.000 0.126 0.000 0.499 0.000 0.125 0.365 0.344 0.492 0.515 0.234 0.390 0.221 0.325 0.224 0.485 0.133 0.278

VIDEOSHIELD 0.759 0.772 0.820 0.824 0.643 0.764 0.764 0.768 0.829 0.828 0.649 0.767 0.743 0.701 0.888 0.843 0.632 0.761

Original     Tampered         GT              Ours              PSCC             OSN        MVSS-Net    HiFi-Net Original     Tampered         GT              Ours              PSCC             OSN        MVSS-Net    HiFi-Net
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Figure 5: Some visual examples comparison of different spatial localization methods.

Watermark extraction. As shown in Table 1, compared to the baseline methods, VIDEOSHIELD
offers several significant advantages. First, VIDEOSHIELD embeds substantially more bits which
are essential for high-capacity applications. Additionally, VIDEOSHIELD achieves comparable Bit
Accuracy to the other methods, proving its effectiveness. Furthermore, the watermarked videos
generated by VIDEOSHIELD exhibit noticeably higher video quality because it does not require any
post-processing which often degrades video quality.

Table 2: Results of temporal tamper lo-
calization.

Model Accuracy↑
Frame Swap Frame Insert Frame Drop Average

MS 1.000 1.000 1.000 1.000
SVD 0.935 0.937 0.936 0.936

Tamper localization. The temporal tamper localization
results of VIDEOSHIELD are presented in Table 2. Note
that we are the first to localize temporal tamper in videos,
so there is no baseline to compare with. We observe that
VIDEOSHIELD demonstrates effective localization capa-
bilities for three different types of temporal tamper. For
spatial tamper localization, we compare VIDEOSHIELD
against four baseline methods, with the results presented in Table 3. VIDEOSHIELD demonstrates
effectiveness across three distinct forms of spatial tamper. In contrast, the baseline methods struggle
to localize tamper in the generated videos, underscoring their lack of generalization when applied to
videos or other datasets with distributions different from those used during training. Visual examples
of tamper localization for different methods are shown in Figure 5.

The results of VIDEOSHIELD on videos generated by SVD on real conditional images are shown in
Table 4, which further confirms the effectiveness of our method.

Table 4: Performance on SVD’s generated videos conditioned on different types of images.
Conditional Image Video Quality Bit Accuracy Spatial Localization Temporal Localization

STTN ProPainter Crop&Drop Frame Swap Frame Insert Frame Drop

Generated 0.836 0.999 0.764 0.767 0.761 0.935 0.937 0.936
Real 0.865 0.999 0.785 0.790 0.755 0.962 0.971 0.965
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3.3 ABLATION STUDY

Importance of PTB in HSTR and impact of the quantile k in PTB. As shown in Table 5, when
PTB is not used, the localization performance is greatly reduced, confirming PTB’s importance.
In addition, consistent with our previous analysis, the effect is better when k is not 100, that is,
when the entire distribution is not used to obtain twm and torig. Specifically, when k is set to 99 for
ModelScope and 98 for Stable-Video-Diffusion, the performance is best, which is also our default
setting. Please refer to Appendix F for the ranges of Awm and Aorig obtained with different k
values, along with a more detailed analysis.

Table 5: Spatial tamper localization per-
formance under different k in PTB.
None means without the PTB module.

Model k

None 97 98 99 100

MS 0.857 0.902 0.902 0.906 0.887
SVD 0.689 0.757 0.761 0.756 0.714

Impact of the total hierarchical level L of HSTR. We
explore the optimal hierarchical level L and delve into
the importance of HSTR module. As shown in Figure 6,
when L is set to 3, both ModelScope and Stable-Video-
Diffusion achieve the highest average across all metrics,
indicating optimal performance in spatial tamper local-
ization. Additionally, we observe that increasing L con-
sistently enhances Precision; however, once it surpasses
a certain threshold, Recall begins to decline (3 for Mod-
elScope and 2 for Stable-Video-Diffusion). We posit that when the level exceeds this threshold,
it heightens the accuracy of judgment for the entire area. Consequently, all positions within this
area are uniformly classified, which reduces the granularity of the judgment and adversely impacts
Recall. The visual spatial tamper localization results of different L are provided in Appendix G.1
(Figure 14).
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Figure 6: The line chart depicting the variation
of different metrics of spatial tamper localiza-
tions as hierarchical level L changes.
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Figure 7: Comparison of watermark extraction
accuracy across different methods under vari-
ous distortions.

Impact of different inference and inversion configurations. Through our experiments, we find
that VIDEOSHIELD achieves satisfactory results in both watermark extraction and tamper localiza-
tion across various inference and inversion settings, with detailed results available in Appendix E.
For Stable-Video-Diffusion, increasing the inference steps and reducing image guidance enhance
the performance of tamper localization. This improvement likely arises from these settings en-
abling the model to generate higher-quality dynamic videos, which facilitates better integration of
the corresponding template bits into the generated videos for effective tamper localization. For a
comprehensive analysis and visualization of the results, please refer to Appendix G.3.

3.4 GENERALITY

Results on other video models. We test VIDEOSHIELD’s effectiveness on two other popular video
models: the T2V model ZeroScope (ZS) (Face & cerspense, 2023), and the I2V model I2VGen-XL
(I2VGen) (Zhang et al., 2023a). The implementation details can be found in Appendix D.4 and the
results are shown in Table 6. It can be seen that VIDEOSHIELD can also achieve effective watermark
extraction and tamper localization on both models. However, regarding the tamper localization,
VIDEOSHIELD with Stable-Video-Diffusion exhibits a certain gap in performance compared with
the other three models. We find that this is due to the lower quality of the generated videos (see
Appendix G.3), which leads to the watermark bits not integrating well with the generated videos to
achieve better tamper localization. More detailed analysis and visual results of this section can be
found in Appendix G.2.
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Table 6: Results on other video models beyond
MS and SVD in terms of three test dimensions.

Dimension MS SVD ZS I2VGen

Watermark 1.000 0.999 1.000 0.999
Temporal 1.000 0.936 1.000 0.983

Spatial 0.906 0.761 0.900 0.867

Table 7: Tamper localization results on different
versions of Stable Diffusion.

Version F1 Precision Recall AUC IoU Average

1.4 0.947 0.921 0.976 0.947 0.901 0.938
1.5 0.947 0.921 0.977 0.947 0.902 0.939
2.1 0.938 0.946 0.934 0.935 0.887 0.928

Table 8: Spatial tamper localization performance under different spatial distortions. In this context,
‘w/o’ refers to using twm and torig derived from the clean watermarked videos, while ‘w/’ indicates
that various distortions are introduced during the distribution testing, leading to adjustments in twm

and torig.
Model Adjustment MPEG-4 Frame Average G Noise G Blur Median Blur S&P Noise Resize Brightness Average Clean

MS w/o 0.838 0.641 0.559 0.644 0.737 0.537 0.797 0.622 0.672 0.906
w 0.801 0.774 0.641 0.787 0.799 0.610 0.809 0.701 0.740 0.806

SVD w/o 0.659 0.614 0.521 0.587 0.683 0.551 0.681 0.630 0.616 0.761
w 0.675 0.731 0.547 0.686 0.716 0.604 0.713 0.676 0.669 0.708

Spatial tamper localization on images generated by T2I models. VIDEOSHIELD can be flexi-
bly adapted to T2I models for the purpose of image spatial tamper localization. We test it on three
different versions of the Stable Diffusion model: 1.4, 1.5, and 2.1. The implementation details can
be found in Appendix D.4 and the specific test results are presented in Table 7. It is observed that
VIDEOSHIELD achieves high performance in tamper localization, further validating the effective-
ness of our approach. We provide some visual localization results in Appendix G.2.

3.5 ROBUSTNESS

In this section, we further test VIDEOSHIELD’s performance of watermark extraction and spatial
tamper localization in the face of different distortions to verify its robustness, and the results are
shown in Figure 7 and Table 8, respectively. For detailed configurations of the distortions, please
refer to Appendix D.5.

Watermark extraction. As illustrated in Figure 7, our method demonstrates significantly greater
robustness compared to all baseline approaches across almost all types of distortions, achieving an
average accuracy of 0.983 on MS and 0.955 on SVD, respectively.

Spatial tamper localization. Our tests show that the performance of spatial tamper localization
decreases when tampered videos are subjected to further distortions. We attribute this decline to
two main factors. First, distortion can be seen as a type of tamper, causing more regions to be
classified as tampered and reducing precision. Second, distortions affect Awm in PTB, making
the threshold calculated from clean watermarked videos less effective for distinguishing tampered
regions in distorted videos. To address this, we introduce random distortions when testing Awm,
which allows us to adjust twm and torig accordingly. As shown in Table 8, while adjusting the
threshold reduces localization performance for clean tampered videos, it significantly improves ro-
bustness against various distortions. We also find that setting L as 4 instead of 3 for SVD enhances
robustness, as discussed in Appendix F. This demonstrates the flexibility of our method, allowing
for multiple thresholds and L values in practical tamper localization applications.

4 CONCLUSION

In this paper, we propose VIDEOSHIELD, a training-free video watermarking framework that em-
beds watermarks during video generation, and achieves watermark extraction and tamper localiza-
tion during detection. We map the watermark bits to watermarked Gaussian noise for sampling and
innovatively introduce template bits during the mapping process. Through DDIM Inversion, the gen-
erated video can be converted into template bits, which are then used for both watermark extraction
and tamper localization. Extensive experiments demonstrate the effectiveness of VIDEOSHIELD in
both tasks and its adaptability across various video and image generation models.
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A BACKGROUND

A.1 DIFFUSION-BASED VIDEO GENERATION MODELS

Diffusion Models (DMs) were first introduced in (Sohl-Dickstein et al., 2015), where the original
data is gradually diffused into noise, and the model learns the reverse process. Denoising Diffusion
Probabilistic Models (DDPMs(Ho et al., 2020)) improved DMs by framing the reverse process as
denoising, streamlining the training and generation phases. Denoising Diffusion Implicit Models
(DDIMs (Song et al., 2020)) further enhanced DDPMs, offering faster sample generation with high
quality. Due to the deterministic and non-Markovian process, DDIMs allow for nearly reversible
noising and denoising. Leveraging DDIM Inversion for image reconstruction is a key feature of our
method. To reduce memory usage and speed up training and inference, Latent Diffusion Models
(LDMs (Rombach et al., 2022)) use a Variational Autoencoder (VAE) to compress data into a latent
space for noise processing, driving the advancement of diffusion-based models.

Recent popular video generation models are mostly built on LDMs, with Sora (Brooks et al., 2024)
marking a major shift in the field. Before Sora, models like ModelScope (Wang et al., 2023) and
Stable-Video-Diffusion (Blattmann et al., 2023), compress each frame of a video into the latent space
using 2D VAEs and employ a U-Net architecture to learn denoising across both spatial and temporal
dimensions. However, this approach leads to videos with poor temporal consistency, limited motion
range, and shorter durations, while it is also difficult to scale the U-Net to achieve better perfor-
mance. After Sora, models like Vidu (Bao et al., 2024) and KLING (Kuaishou Large Model Team,
2024) adopt 3D VAEs, which compress the entire video into a series of 3D spacetime patches. This
enables the model to naturally capture both spatial and temporal relationships. These models use
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the more scalable Diffusion Transformer (DiT) (Peebles & Xie, 2023) architecture, allowing for the
generation of longer, higher-quality videos with smoother motions and better temporal consistency.

A.2 WATERMARKING

Watermarking methods can be divided into two main categories: post-processing and in-generation.
Post-processing watermarking typically uses an encoder-noise layer-decoder training architecture.
The encoder embeds invisible watermarks and the decoder extracts them after distortions are added
to the noise layer. Various works introduce specific distortions for different types of robustness:
MBRS (Jia et al., 2021) simulates JPEG artifacts, PIMoG (Fang & et al., 2022) targets physical dis-
tortions, SepMark (Wu et al., 2023) addresses Deepfake-induced distortions, and Robust-Wide (Hu
et al., 2024) handles semantic-level changes. While most post-processing methods focus on images,
RivaGAN (Zhang et al., 2019) and DVMark (Luo et al., 2023) extend them to videos by using 3D
convolutions. In-generation watermarking, which embeds watermarks during content creation, is
the focus of this paper and is primarily designed for diffusion models. Tree-Ring (Wen et al., 2023)
and Gaussian Shading (Yang et al., 2024) can be classified into this category and show strong ro-
bustness. Specifically, Tree-Ring embeds multi-ring shaped watermarks in the initial Gaussian noise
to achieve 0-bit watermarking, while Gaussian Shading (Yang et al., 2024) embeds multi-bits into
the noise. They both adopt DDIM Inversion to acquire the watermarked noise for watermark extrac-
tion. However, to our best knowledge, there is currently no in-generation watermarking designed
for video generation models.

A.3 TAMPER LOCALIZATION

Current tamper localization methods can be divided into two categories: proactive detection and
passive detection. Most existing methods fall under passive detection, such as MVSS-Net (Dong
et al., 2022) and PSCC-Net (Liu et al., 2022), which learn the boundary features between tam-
pered and original areas by training on tampered data. However, these methods often exhibit poor
generalization, making it challenging to transfer effectively across datasets with different distribu-
tions. Proactive detection is an alternative approach to tamper localization, which involves embed-
ding additional information into the content to enable tamper localization and is adopted in our
work. Recently proposed methods like EditGuard (Zhang et al., 2023b) and V2A-Mark (Zhang
et al., 2024) fall within this category and share similar functionalities with our approach. Their
core concept involves embedding both watermark bits and template images into images or videos
by post-processing, enabling simultaneous copyright detection and tamper localization. However,
these methods require extensive training, and their post-processing nature can lead to resource con-
sumption and degradation of image or video quality. Unfortunately, we cannot use these methods as
baselines for comparison due to the lack of open-source access to their models.

B RELATIONSHIP WITH GAUSSIAN SHADING

VIDEOSHIELD is not a straightforward extension of Gaussian Shading (GS) (Yang et al., 2024) to
the video modality. The distinct contributions of our work are outlined as follows:

1. The Core Role of Template Bits. Template bits form the cornerstone of our framework, a
concept entirely absent in GS. These bits establish a seamless, training-free connection between
watermark embedding, extraction, and tamper localization. Furthermore, template bits are highly
versatile, applicable to both images and videos, and adaptable to other modalities. This plug-and-
play capability paves the way for multifunctional watermarking solutions, making the framework
flexible and widely applicable.

2. GS as One Implementation Method Among Others. While GS provides one method to im-
plement template bits, it is not the only option. For example, PRC (Gunn et al., 2024) also serves
as an alternative implementation. Specifically, PRC employs pseudorandom error-correcting code
(PRC) to transform watermark bits into pseudo-random bits that correspond one-to-one with the
content. These pseudo-random bits can then be used as template bits. PRC further combines the
absolute values of randomly sampled Gaussian noise with the signs of the template bits, embedding
the watermark effectively.
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3. Innovations in the Video Modality. Our work introduces the novel concept of temporal tamper
localization, addressing challenges that traditional methods cannot resolve. Additionally, leverag-
ing the unique characteristics of video data, we propose two innovative techniques, Hierarchical
Spatial-Temporal Refinement (HSTR) and Partial Threshold Binarization (PTB), which sub-
stantially enhance the robustness of spatial tamper localization. These contributions close critical
gaps in tamper localization for video modalities, setting a foundation for more robust and versatile
watermarking frameworks.

C DATASETS

C.1 PROMPTS USED FOR T2V MODELS

The five categories of prompts we used for video generation are as follows.

Animal

“a red panda eating leaves”

“a squirrel eating nuts”

“a cute pomeranian dog playing with a soccer ball”

“curious cat sitting and looking around”

“wild rabbit in a green meadow”

“underwater footage of an octopus in a coral reef”

“hedgehog crossing road in forest”

“shark swimming in the sea”

“an african penguin walking on a beach”

“a tortoise covered with algae”

Human

“a boy covering a rose flower with a dome glass”

“boy sitting on grass petting a dog”

“a child playing with water”

“couple dancing slow dance with sun glare”

“elderly man lifting kettlebell”

“young dancer practicing at home”

“a man in a hoodie and woman with a red bandana talking to “each other and smiling”

“a woman fighter in her cosplay costume”

“a happy kid playing the ukulele”

“a person walking on a wet wooden bridge”

Plant

“plant with blooming flowers”

“close up view of a white christmas tree”

“dropping flower petals on a wooden bowl”

“a close up shot of gypsophila flower”

“a stack of dried leaves burning in a forest”

“drone footage of a tree on farm field”
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“shot of a palm tree swaying with the wind”

“candle wax dripping on flower petals”

“forest trees and a medieval castle at sunset”

“a mossy fountain and green plants in a botanical garden”

Scenery

“scenery of a relaxing beach”

“fireworks display in the sky at night”

“waterfalls in between mountain”

“exotic view of a riverfront city”

“scenic video of sunset”

“view of houses with bush fence under a blue and cloudy sky”

“boat sailing in the ocean”

“view of golden domed church”

“a blooming cherry blossom tree under a blue sky with white clouds”

“aerial view of a palace”

Vehicles

“a helicopter flying under blue sky”

“red vehicle driving on field”

“aerial view of a train passing by a bridge”

“red bus in a rainy city”

“an airplane in the sky”

“helicopter landing on the street”

“boat sailing in the middle of the ocean”

“video of a kayak boat in a river”

“traffic on busy city street”

“slow motion footage of a racing car”

C.2 REAL IMAGES USED FOR I2V MODELS

We present 25 real images used by the I2V model in Figure 8.

D MORE IMPLEMENTATION DETAILS

D.1 VIDEO QUALITY METRICS CALCULATION DETAILS

We present the formulas for calculating the five video quality metrics from VBench (Huang et al.,
2024)—Subject Consistency, Background Consistency, Motion Smoothness, Dynamic Degree, and
Imaging Quality. Further details are available in the original paper.

Subject Consistency. Subject Consistency is acquired by calculating the DINO (Caron et al.,
2021) feature similarity across frames:

Ssubject =
1

T − 1

T∑
t=2

1

2
(⟨d1 · dt⟩+ ⟨dt−1 · dt⟩) , (12)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Ve
hi

cl
es

   
   

   
   

   
 S

ce
ne

ry
   

   
   

   
   

   
Pl

an
t  

   
   

   
   

   
H

um
an

   
   

   
   

   
 A

ni
m

al
 

Figure 8: Real images of five categories used for Image-to-Video models.
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where di is the DINO image feature of the ith frame, normalized to unit length, and ⟨·⟩ is the dot
product operation for calculating cosine similarity.

Background Consistency. Background Consistency evaluates the temporal consistency of the
background scenes by calculating CLIP (Radford et al., 2021) feature similarity across frames:

Sbackground =
1

T − 1

T∑
t=2

1

2
(⟨c1 · ct⟩+ ⟨ct−1 · ct⟩) , (13)

where ci represents the CLIP image feature of the ith frame, normalized to unit length.

Motion Smoothness. Motion Smoothness is evaluated by the frame-by-frame motion prior to
video frame interpolation models (Li et al., 2023). Specifically, given a generated video consisting
of frames [f0, f1, f2, f3, f4, ..., f2n−2, f2n−1, f2n], the odd-number frames are manually dropped to
obtain a lower-frame-rate video [f0, f2, f4, ..., f2n−2, f2n], and video frame interpolation (Li et al.,
2023) is used to infer the dropped frames [f̂1, f̂3, ..., f̂2n−1]. Then the Mean Absolute Error (MAE)
between the reconstructed frames and the original dropped frames is computed and normalized into
[0, 1], with a larger number implying smoother motion.

Dynamic Degree. Dynamic Degree is designed to assess the extent to which models tend to gener-
ate non-static videos. RAFT (Teed & Deng, 2020) is used to estimate optical flow strengths between
consecutive frames of a generated video. Then the average of the largest 5% optical flows (consider-
ing the movement of small objects in the video) is taken as the basis to determine whether the video
is static. The final dynamic degree score is calculated by measuring the proportion of non-static
videos generated by the model.

Imaging Quality. Imaging Quality is measured by the MUSIQ (Ke et al., 2021) image quality
predictor trained on the SPAQ (Fang et al., 2020) dataset, which is capable of handling variable-
sized aspect ratios and resolutions. The frame-wise score is linearly normalized to [0, 1] by dividing
100, and the final score is then calculated by averaging the frame-wise scores across the entire video
sequence.

D.2 TEMPORAL TAMPER

We consider three temporal tamper methods: Frame Drop, Frame Insert, and Frame Swap. The first
two types of tamper result in changes to both the total number of frames and their order, while the
latter only alters the frame order.

• Frame Drop involves randomly selecting a position and removing the entire frame at that
location.

• Frame Insert involves choosing a random location and inserting an additional frame, either
by selecting the adjacent frame or generating a new one with Gaussian noise.

• Frame Swap involves selecting two frames at random and swapping their positions.

In our experiments, for the first two tamper methods, we randomly choose a location and execute
the corresponding operation: Op(framep), where p ∼ {1, . . . , f} and Op ∈ {Drop, Insert}. For
Frame Insert, the inserted frame is randomly selected from the adjacent frame or generated with
Gaussian noise. For Frame Swap, we start from a designated position and swap the frame at that
position with the adjacent frame at regular intervals: Swap(framep, framep+1), where p = 2 + 4k

and k ∼ {0, 1, 2, . . . , ⌊ f−3
4 ⌋}.

D.3 SPATIAL TAMPER

We consider two types of spatial tamper on generated videos: Crop&Drop and Inpainting.
Crop&Drop involves randomly cropping a portion of the video content (ratio = 0.5) and flipping
the remaining part, or randomly dropping a portion of the content (ratio = 0.5) and flipping that part.
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Crop&Drop simulates outpainting (background changes) and inpainting (subject changes), respec-
tively, making it useful for large-scale tamper localization tests on all generated videos. To make the
tests more reflective of real-world application scenarios, we also manually mask the main objects
in some videos and use inpainting models for tamper. Specifically, we employ STTN (Zeng et al.,
2020) and ProPainter (Zhou et al., 2023), two video inpainting models capable of removing objects
from the masked locations, thereby achieving video tamper.

D.4 GENERALITY TEST

ZeroScope. We generate 200 videos at a resolution of 256 using the prompts from ModelScope for
watermark evaluation, following the same approach. Default sampling settings are applied, with 50
inference and inversion steps, configuring kf , kc, kh, kw to 8, 1, 4, 4 to embed 512 bits. For tamper
localization, we select 40 videos and consider all temporal tamper types along with the Crop&Drop
spatial tamper on generated videos, as described in Sec. D.3. For the thresholds twm, torig, and the
hierarchical level L, we use the same settings as ModelScope.

I2VGen-XL. We generate 200 videos at a resolution of 512 using images generated by Stable Dif-
fusion 2.1 for watermark evaluation, following the same approach with Stable-Video-Diffusion. De-
fault sampling settings are applied, with 50 inference and inversion steps, configuring kf , kc, kh, kw
to 8, 1, 8, 8 to embed 512 bits. For tamper localization, we select 40 videos and consider all tem-
poral tamper types along with the Crop&Drop spatial tamper on generated videos, as described in
Sec. D.3. For the thresholds twm, torig, and the hierarchical level L, we use the same settings as
Stable-Video-Diffusion.

Three Versions of Stable Diffusion. We randomly sample 500 prompts from the Stable-
Diffusion-Prompts dataset1 to generate 500 images at a resolution of 512. Default sampling con-
figurations are applied with 50 inference and inversion steps. For spatial tamper localization, we
consider the Crop&Drop method. Specifically, for Crop, the areas outside the cropped region are
turned black, and for Drop, the removed parts are replaced with black. For the thresholds twm, torig,
and the hierarchical level L, we use the same values as in ModelScope.

D.5 DISTORTIONS FOR TESTING ROBUSTNESS

Watermark extraction. We consider the following distortions: three video distortions—MPEG-
4, Frame Average (N = 3), and Frame Swap (p = 0.25)—and eight image distortions applied to
each video frame: Gaussian Noise (σ = 0.1), Gaussian Blur (r = 4), Median Blur (k = 7), Salt
and Pepper Noise (p = 0.1), Random Crop (0.5), Random Drop (0.5), Resize (0.3), and Brightness
(factor = 6).

Spatial tamper localization. We consider the following distortions: MPEG-4, Frame Average
(N = 3), Gaussian Noise (σ = 0.1), Gaussian Blur (r = 4), Median Blur (k = 7), Salt and Pepper
Noise (p = 0.1), Random Crop (0.5), Random Drop (0.5), Resize (0.3), and Brightness (factor = 6).

E MORE EXPERIMENTAL RESULTS

E.1 VIDEO QUALITY

Objective metrics. We provide the specific metric values of video quality in Table 9. As shown in
the table, the watermarking method with post-processing causes more significant degradation to the
videos in terms of Dynamic Degree and Imaging Quality. However, for Background Consistency
and Motion Smoothness, videos with post-processing sometimes show a slight increase in range.
We believe this is due to the watermark embedding introducing some blurring to the video, resulting
in better smoothness, which leads to a slight “anomalous” increase in continuity metrics.

1https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
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Table 9: Specific metric values for video quality assessment.
Method Subject Consistency Background Consistency Motion Smoothness Dynamic Degree Imaging Quality

ModelScope

RivaGAN 0.922 0.951 0.960 0.540 0.648
MBRS 0.923 0.951 0.961 0.540 0.643

CIN 0.922 0.964 0.971 0.520 0.402
PIMoG 0.920 0.960 0.972 0.510 0.405

SepMark 0.919 0.952 0.961 0.520 0.646
VideoShield 0.923 0.954 0.961 0.545 0.648

Stable-Video-Diffusion

RivaGAN 0.938 0.968 0.957 0.710 0.607
MBRS 0.938 0.968 0.960 0.693 0.584

CIN 0.937 0.973 0.965 0.672 0.431
PIMoG 0.936 0.971 0.965 0.672 0.427

SepMark 0.936 0.968 0.959 0.650 0.585
VideoShield 0.939 0.968 0.957 0.710 0.607

User study. We further conduct a user study to perform a subjective comparison of video quality.
We randomly select 10 videos from each of the 200 videos generated by MS and SVD. After wa-
termarking these videos by different methods, we distribute the watermarked videos to 24 distinct
users with the instruction: “Please choose the video that you consider to have the highest quality,
based on Subject Consistency, Background Consistency, Motion Smoothness, Dynamic Degree, and
Imaging Quality.”

The results are shown in Table 10. As observed, VIDEOSHIELD receives the most votes for both MS
and SVD, followed closely by RivaGAN with a slight gap, while MBRS also garners relatively high
votes. Conversely, CIN, PIMoG, and SepMark receive very few votes, indicating more significant
visible degradation in video quality.

Table 10: Subjective evaluation results for video quality comparison.
Method RivaGAN MBRS CIN PIMoG SepMark VIDEOSHIELD

MS 78 59 3 2 6 92
SVD 82 51 1 0 8 98

E.2 WATERMARK ROBUSTNESS

The detailed watermark extraction accuracy of various watermarking methods under different dis-
tortions is provided in Table 11, offering a comprehensive comparison of their performance across
multiple scenarios.

Table 11: Specific extraction accuracy of various watermarking methods under different distortions.
Method MPEG-4 Frame Average Frame Swap Gaussian Noise Gaussian Blur Median Blur Salt and Pepper Noise Random Crop Random Drop Resize Brightness Average

ModelScope

RivaGAN 0.963 0.974 0.993 0.870 0.825 0.978 0.809 0.977 0.992 0.984 0.791 0.923
MBRS 0.996 1.000 1.000 0.714 0.501 0.500 0.669 0.776 0.974 0.603 0.822 0.778

CIN 0.785 1.000 1.000 0.899 0.499 0.783 0.842 1.000 1.000 0.900 0.973 0.880
PIMoG 0.903 1.000 1.000 0.577 0.817 0.987 0.566 0.959 0.990 0.991 0.957 0.886

SepMark 0.999 0.999 0.998 0.977 0.709 0.805 0.978 0.985 0.999 0.954 0.840 0.931
VIDEOSHIELD 0.999 0.996 1.000 0.946 0.994 0.999 0.907 0.996 1.000 0.999 0.990 0.984

Stable-Video-Diffusion

RivaGAN 0.949 0.922 0.989 0.667 0.791 0.967 0.747 0.968 0.987 0.973 0.829 0.890
MBRS 0.961 0.999 0.999 0.580 0.498 0.584 0.637 0.778 0.974 0.633 0.897 0.776

CIN 0.798 1.000 1.000 0.663 0.504 0.782 0.881 1.000 1.000 0.872 0.997 0.863
PIMoG 0.949 0.999 0.999 0.541 0.755 0.979 0.593 0.952 0.986 0.981 0.909 0.877

SepMark 0.986 0.998 0.998 0.809 0.727 0.859 0.928 0.986 0.998 0.936 0.934 0.924
VIDEOSHIELD 0.984 0.986 0.999 0.768 0.972 0.995 0.897 0.974 0.998 0.995 0.984 0.959

E.3 IMPACT OF DIFFERENT INFERENCE AND INVERSION CONFIGURATIONS

We provide the detailed results under different inference and inversion configurations in Table 12.

E.4 WATERMARK EXTRACTION FROM SPATIAL TAMPERED VIDEOS

We evaluate the accuracy of watermark extraction after the video undergoes spatial tampering. As
shown in Table 13, even after various types of spatial tampering, the watermark extraction accuracy
remains close to 100%, demonstrating its effectiveness in supporting forensics after video tampering.
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Table 12: Results of different configurations in terms of three test dimensions. Since Stable-Video-
Diffusion cannot generate high-quality video using a non-default scheduler, we omit this part of the
test. Gray cells denote the default setting.

Dimension
ModelScope

Inference Step Inversion Step Text Guidance Scheduler

10 25 50 10 25 50 6 9 12 DDIM UniPC PNDM DEIS DPM

Watermark 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998
Temporal 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.981

Spatial 0.906 0.906 0.904 0.895 0.906 0.909 0.907 0.906 0.902 0.906 0.902 0.907 0.902 0.786

Dimension
Stable-Video-Diffusion

Inference Step Inversion Step Image Guidance Scheduler

10 25 50 10 25 50 2 3 4 Euler - - - -

Watermark 0.997 0.999 0.999 0.999 0.999 0.999 0.997 0.999 0.985 0.999 - - - -
Temporal 0.929 0.936 0.969 0.934 0.936 0.937 0.972 0.936 0.866 0.936 - - - -

Spatial 0.730 0.761 0.783 0.761 0.761 0.763 0.810 0.761 0.718 0.761 - - - -

Table 13: Watermark extraction accuracy on spatial tampered videos.
Model STTN ProPainter Crop&Drop

MS 0.975 0.971 0.997
SVD 0.976 0.975 0.982

E.5 ROBUSTNESS AGAINST MORE DISTORTIONS

To further evaluate the resilience of VIDEOSHIELD, we test its robustness against a range of video
compression methods (including extreme compression) and color adjustments, as shown in Table 14.
For video compression, the typical CRF (Constant Rate Factor) range is 18–28, where 18 corre-
sponds to higher video quality and 28 to lower quality. The results show that only under extreme
compression conditions (CRF > 28) do the watermark extraction and localization performance for
both MS and SVD start to degrade significantly. However, adjusting the threshold substantially
improves spatial localization performance. At this point, the video quality is already severely de-
graded, making the performance drop reasonable. For color adjustments, VIDEOSHIELD shows
strong robustness, maintaining high performance in both watermark extraction and tamper localiza-
tion. Overall, VIDEOSHIELD demonstrates good robustness, making it suitable for most real-world
scenarios.

Table 14: Performance under more spatial distortions. As discussed in Sec. 3.5, ‘w/o’ refers to
using twm and torig derived from the clean watermarked videos, while ‘w/’ indicates that various
distortions are introduced during the distribution testing, leading to adjustments in twm and torig.
Hue=0.5 is the max factor we can configure.

Dimension Model Clean H.264 (CRF) Hue=0.5
18 23 28 33 38

Watermark MS 1.000 0.999 0.999 0.997 0.978 0.907 1.000
SVD 0.999 0.988 0.980 0.961 0.933 0.888 0.993

Spatial

MS w/o 0.906 0.861 0.826 0.746 0.639 0.555 0.842
MS w/ 0.806 0.814 0.812 0.788 0.720 0.627 0.815

SVD w/o 0.761 0.667 0.635 0.607 0.577 0.547 0.684
SVD w/ 0.708 0.718 0.699 0.664 0.639 0.605 0.724

E.6 COMPARISON WITH EDITGUARD

We conduct comprehensive experiments to compare VIDEOSHIELD with EditGuard (Zhang et al.,
2023b), a recently open-sourced proactive tamper localization model known for its outstanding
performance. Our evaluation encompasses both videos and images generated by various models.
Specifically, we employ the default spatial tamper method, Crop&Drop, to create 200 tampered
videos for each video generation model and 500 tampered images for each image generation model.
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As shown in Table 15, VIDEOSHIELD outperforms EditGuard on five models, with the exception of
SVD and I2VGen. The relatively lower performance on SVD, in particular, is discussed in Appendix
G.3, where we attribute this to the quality of the generated content.

Table 15: Comparison of spatial tamper localization performance between VIDEOSHIELD and Ed-
itGuard on videos and images generated by various models. SD stands for Stable Diffusion. The
table presents the average values of five metrics: F1, Precision, Recall, AUC, and IoU.

Method Video Image

MS SVD ZS I2VGen SD 1.4 SD 1.5 SD 2.1

EditGuard 0.890 0.886 0.880 0.882 0.885 0.885 0.885
VIDEOSHIELD 0.906 0.761 0.900 0.867 0.938 0.939 0.928

E.7 COMPUTATION OVERHEAD

Results. We provide the computation overhead of VIDEOSHIELD in Table 16. The primary GPU
memory usage and runtime overhead are concentrated in the DDIM inversion stage. However, as
shown in the table for step = 10 and step = 25, reducing the number of inversion steps can sig-
nificantly decrease the runtime, with only a slight sacrifice in performance as shown in Table 12.

Table 16: Computational overhead of VIDEOSHIELD in terms of GPU memory usage and runtime,
evaluated on a single NVIDIA RTX A6000 GPU (49 GB) in FP16 mode. The average runtime of
different stages is reported based on 50 generated videos, with the batch size set to 1. “Step” refers
to the inversion step, while “Watermark,” “Spatial,” and “Temporal” indicate the average runtime of
watermark extraction, spatial tamper localization, and temporal tamper localization, respectively.

Model #Params Resolution GPU (GB) Runtime (s)

Step=10 Step=25 Watermark Spatial Temporal

MS 1.83B 256 3.77 1.2408 3.0617 0.0011 0.0019 0.0004
SVD 2.25B 512 5.32 4.3214 10.2027 0.0023 0.0019 0.0004
ZS 1.83B 256 3.77 1.2430 3.0492 0.0011 0.0019 0.0004

I2VGen 2.48B 512 5.99 4.6700 11.1526 0.0023 0.0019 0.0004

Potential speed-up methods. In practice, the number of inversion steps required for diffusion
model inversion aligns best with the number of inference steps. Existing distillation techniques can
effectively reduce the inference steps of diffusion models, thereby substantially lowering the infer-
ence cost of VIDEOSHIELD. To explore potential efficiency improvements, we conduct experiments
on SD 1.5 and SD 1.5 Turbo (the distilled version of SD 1.5) for image tamper localization, with the
results summarized in Table 17. These experiments show that distillation techniques significantly
reduce the number of required inversion steps while maintaining comparable localization perfor-
mance. This suggests that similar distillation techniques can be adapted for video diffusion models,
offering a promising approach to significantly reduce the computational overhead of VIDEOSHIELD.

Table 17: Comparison of inversion runtime reduction in the SD 1.5 Turbo model without compro-
mising the performance of VIDEOSHIELD. SD 1.5 Turbo is a distilled version of SD 1.5, which
enables image generation in significantly fewer steps, potentially even a single step.

Model Step Runtime (s) Spatial Localization

SD1.5 10 0.3146 0.912
SD1.5 Turbo 2 0.0874 0.909

F MORE ANALYSIS

Different distributions based on k in PTB. Table 18 shows that when k is set to 100, there
are a few outliers, leading to a wider statistical distribution range. For example, in ModelScope
with µ = 2, when k = 100, Awm and Aorig range from [0.28, 1.00] and [0.06, 0.84], respectively;
whereas for k = 99, Awm and Aorig are [0.56, 0.93] and [0.28, 0.68], respectively. Clearly, k = 100
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significantly increases the overlap compared to k = 99, and the thresholds (twm and torig) obtained
may cause many points to become indistinguishable, thereby reducing localization performance.

Table 18: The specific distribution of the watermarked and the original videos corresponding to dif-
ferent values of k in PTB. We bold the distribution range used for calculating the default thresholds
twm and torig.

Distribution Local Value ModelScope Stable-Video-Diffusion

97 98 99 100 97 98 99 100

Awm

1 [0.25, 1.00] [0.25, 1.00] [0.25, 1.00] [0.00, 1.00] [0.25, 1.00] [0.00, 1.00] [0.00, 1.00] [0.00, 1.00]
2 [0.62, 0.90] [0.59, 0.93] [0.56, 0.93] [0.28, 1.00] [0.40, 0.81] [0.37, 0.81] [0.34, 0.84] [0.12, 1.00]
4 [0.69, 0.85] [0.68, 0.86] [0.66, 0.88] [0.55, 0.96] [0.48, 0.73] [0.47, 0.74] [0.46. 0.76] [0.38, 0.87]

Aorig

1 [0.00, 1.00] [0.00, 1.00] [0.00, 1.00] [0.00, 1.00] [0.00, 1.00] [0.00, 1.00] [0.00, 1.00] [0.00, 1.00]
2 [0.34, 0.65] [0.31, 0.68] [0.28, 0.68] [0.06, 0.84] [0.34, 0.65] [0.31, 0.68] [0.28, 0.71] [0.12, 0.87]
4 [0.44, 0.55] [0.43, 0.56] [0.42, 0.57] [0.37, 0.62] [0.44, 0.55] [0.43, 0.56] [0.42, 0.57] [0.36, 0.63]

Accuracy distributions of different local values for seven Models. As shown in Figure 9, we
observe two key points: (1) The higher the comparison accuracy distribution of a model, the better
its spatial tamper localization performance. (2) The distributions for models of the same type (T2V,
I2V, and T2I) are similar. These conclusions are consistent with the results presented in Table 6 and
Table 7.
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Figure 9: Comparison accuracy distributions of different local values on the watermarked and orig-
inal videos generated by seven models.

The relationship between VIDEOSHIELD’s performance and model’s inversion accuracy. We
further test the average inversion accuracy of the four video generation models we test. As men-
tioned before, the performance of VIDEOSHIELD on different models varies. Since the method
is based on DDIM Inversion, we speculate that this difference is related to the inversion accuracy
of the model itself and conduct corresponding tests. Figure 10 shows the relationship between
VIDEOSHIELD’s performance and average inversion accuracy. It can be seen that the performance
of our method is positively correlated with inversion accuracy. The higher inversion accuracy is, the
better the performance of our method is.

The relationship between VIDEOSHIELD’s performance and different resolutions. We further
investigate the performance of VIDEOSHIELD on videos with different resolutions. Since ZeroScope
is trained on videos of various resolutions, we choose it to generate videos at different resolutions
for this analysis. As shown in Table 19, VIDEOSHIELD ’s spatial tamper localization performance
improves as the resolution increases. We believe this is because higher video resolutions capture
more details and provide better quality, allowing the template bits to better integrate into the gen-
erated video. This, in turn, enhances the inversion accuracy, leading to improved spatial tamper
localization performance.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.65 0.70 0.75 0.80
Inversion Acc

0.999

0.999

0.999

1.000

1.000

1.000

Ac
c

Watermark
Stable-Video-Diffusion
I2VGen-XL
ZeroScope
ModelScope

0.65 0.70 0.75 0.80
Inversion Acc

0.940

0.950

0.960

0.970

0.980

0.990

1.000

Av
er

ag
e

Temporal Tampering Localization
Stable-Video-Diffusion
I2VGen-XL
ZeroScope
ModelScope

0.65 0.70 0.75 0.80
Inversion Acc

0.760

0.780

0.800

0.820

0.840

0.860

0.880

0.900

Av
er

ag
e

Spatial Tampering Localization
Stable-Video-Diffusion
I2VGen-XL
ZeroScope
ModelScope

Figure 10: The relationship between inversion accuracy and VIDEOSHIELD’s performance in three
dimensions. The inversion acc refers to the average accuracy of all points in the comparison bits
matrix Cmp.

Table 19: Performance on videos generated by ZeroScope with different resolutions.
Resolution 256 320 384 448

Watermark 1.000 1.000 1.000 1.000
Temporal 1.000 1.000 1.000 1.000

Spatial 0.900 0.918 0.941 0.948

Importance of adjusting twm&torig of PTB and L of HSTR, when performing spatial tamper
localization on distorted tampered videos. As shown in Figure 11, when distortion is added to
the watermarked video, its distribution Awm shifts towards Aorig, reducing the distinction between
tampered and original regions. To mitigate the impact of this shift, we can readjust twm and torig
derived from Awm and Aorig. As depicted in Figure 13, adjusting the threshold effectively enhances
the robustness of spatial tamper localization against various distortions, although it slightly reduces
performance on clean tampered videos. Additionally, as shown in Figure 12, we re-test the spatial
tamper localization performance corresponding to different L values under distortion scenarios using
adjusted thresholds. We find that for Stable-Video-Diffusion, using a larger L = 4 for tampered
videos with added distortions yields better results. We believe this is because the inversion accuracy
of Stable-Video-Diffusion is inherently low; thus, after adding distortions, more comparison bits are
needed for a more accurate assessment, which enhances robustness.
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Figure 11: Comparison accuracy distributions A of
different local values µ on the original, watermarked
and distorted watermarked videos.
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Figure 12: The line chart depicting the vari-
ation of spatial tamper localization perfor-
mance as hierarchical level L changes on
clean and distorted watermarked videos.

G MORE VISUAL EXAMPLES

G.1 MAIN RESULTS

Spatial tamper localization results under different hierarchical level L. See Figure 14.
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Figure 13: Spatial localization performance against distortions using clean and distortion threshold.
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Figure 14: Some visual examples of spatial tamper localization with different hierarchical level L.

More spatial tamper localization results on videos generated by ModelScope and Stable-Video-
Diffusion for different types of spatial tamper. See Figure 15, Figure 16, Figure 17 and Fig-
ure 18.

Original         Tampered               GT                 Pred     Original         Tampered               GT                 Pred

Figure 15: Some visual spatial tamper localization results on videos generated by ModelScope with
STTN tamper.
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Original         Tampered               GT                 Pred Original         Tampered               GT                 Pred

Figure 16: Some visual spatial tamper localization results on videos generated by ModelScope with
ProPainter tamper.

Original         Tampered               GT                 Pred Original         Tampered               GT                 Pred

Figure 17: Some visual spatial tamper localization results on videos generated by Stable-Video-
Diffusion with STTN tamper.

G.2 GENERALITY

Spatial tamper localization results on videos generated by other video models. See Figure 19
and Figure 20.

Spatial tamper localization results on images generated by different T2I models. See Fig-
ure 21.

G.3 FAILURE CASES OF STABLE-VIDEO-DIFFUSION

Limitations of the video model restrict localization performance. As shown in Figure 22 and
Figure 23, the residual image indicates that the content in the areas where spatial tamper localiza-
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Original         Tampered               GT                 Pred Original         Tampered               GT                 Pred

Figure 18: Some visual spatial tamper localization results on videos generated by Stable-Video-
Diffusion with ProPainter tamper.

Original         Tampered               GT                 Pred Original         Tampered               GT                 Pred

Figure 19: Some visual spatial tamper localization results on videos generated by ZeroScope with
Crop&Drop tamper.

tion fails (highlighted by the white regions of the predicted mask, which are not actually tampered)
closely resembles that of the conditional image (represented by the black areas in the residual).
Consequently, the noise corresponding to the template bits in these regions has not been effectively
denoised, resulting in content that is merely a replica of the conditional image. The inverted bits ob-
tained through inversion clearly do not match the original template bits, leading to the entire region
being classified as tampered and ultimately reducing localization accuracy. Thus, this limitation
stems from the model itself, which struggles to generate a video where the overall content can move
seamlessly.

Enhancing localization performance by improving video quality through sampling configura-
tion adjustments. As shown in Figure 24, adjusting the sampling configuration allows the model
to generate more original content in the video instead of merely copying from the conditional im-
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Original         Tampered               GT                 Pred Original         Tampered               GT                 Pred

Figure 20: Some visual spatial tamper localization results on videos generated by I2VGen-XL with
Crop&Drop tamper.

ages. This not only enhances video quality but also enables better integration of the noise corre-
sponding to the template bits with the relevant video content. Consequently, this leads to improved
reconstruction through inversion, resulting in better localization performance when compared to the
original template bits.
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Figure 21: Some spatial tamper localization results on images generated by different versions of
Stable Diffusion with Crop&Drop tamper.
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Conditional Image

Original Residual Tampered GT Pred

Figure 22: Examples of poor spatial tamper localization on videos generated using Stable-Video-
Diffusion. “Residual” refers to the difference obtained by subtracting the frames of the video from
the conditional image.

Conditional Image

Original Residual Tampered GT Pred

Figure 23: Examples of poor spatial tamper localization on videos generated using Stable-Video-
Diffusion.
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Figure 24: Some videos generated by Stable-Video-Diffusion based on different sampling config-
urations, along with the corresponding spatial tamper localization results. Each row, from left to
right, represents frames 1, 6, 11, and 16 of the generated video. For the original, tampered, residual,
and predicted images, the first to third rows correspond to: default settings, Inference Step = 50, and
Image Guidance = 2, respectively.
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