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ABSTRACT

To mitigate climate change, the share of renewable energies in power production
needs to be increased. Renewables introduce new challenges to power grids re-
garding the dynamic stability due to decentralization, reduced inertia and volatility
in production. However, dynamic stability simulations are intractable and exceed-
ingly expensive for large grids. Graph Neural Networks (GNNs) are a promising
method to reduce the computational effort of analyzing dynamic stability of power
grids. We provide new datasets of dynamic stability of synthetic power grids and
find that GNNs are surprisingly effective at predicting highly non-linear targets
from topological information only. We show that large GNNs trained on our rich
dataset outperform GNNs from previous work, as well as several baseline models
based on handcrafted features. Furthermore, we use GNNs to demonstrate the
accurate identification of particularly vulnerable nodes in power grids, so called
troublemakers. Lastly, we find that GNNs trained on small grids generate accu-
rate predictions for on a large synthetic model of the Texan power grid, which
illustrates the potential real-world applications of the presented approach.

1 INTRODUCTION

Adaption to and mitigation of climate change jointly influence the future of power grids: 1)
Mitigation of climate change requires power grids to be carbon-neutral, with the bulk of power
supplied by solar and wind generators. These are more decentralized and as opposed to conventional
turbine generators they have no intrinsic ability to respond to power imbalances and frequency
deviations. Furthermore, the production of renewables is more volatile. Renewable energies will
have to start contributing to the dynamical stability of the system (Milano et al., 2018; Christensen
et al., 2020) in the future, requiring a new understanding of the complex synchronisation dynamics
of power grids. 2) A higher global mean temperature increases the likelihood as well as the intensity
of extreme weather events such as hurricanes or heatwaves (Field et al., 2012; Pörtner et al., 2022)
which result in great challenges to power grids. Building sustainable grids as well as increasing the
resilience of existing power grids towards novel threats are challenging tasks on their own. Tackling
climate change in the power grid sector calls for a solution to both at the same time and requires
new methods to investigate aspects of dynamic stability.

Power grids are complex networks, consisting of nodes that represent different producers and
consumers, as well as edges that represent power lines and power transformers. In contrast to many
other networks, the interaction of nodes through the edges is governed by physical equations, the
power flow. Their emergent properties can be highly unintuitive. For example, the Braess paradox
describes the phenomenon that adding lines to a power grid may reduce its stability ((Witthaut &
Timme, 2012; Schäfer et al., 2022)). Such effects can be non-local, i.e. the parts of the grid with
decreased stability might be far away from the added line. Similarly, failures of a line in one part
of the network can lead to overloads far away. Our work deals with the challenge of predicting the
ability of the grid to dynamically recover after localized faults perturbed the system.

Classically, the dynamical actors are connected to the highest voltage level, the transmission grid.
Transmission grid operators routinely simulate potential faults in the current state of the power grid,
to assess its real time dynamic resilience. The possible faults are called contingencies in this context.
Even though such simulations do not explicitly model the lower voltage layers of the grid, they are
already compute bound. Hence, not all contingencies of interest can be tested for. As distributed re-
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newable generation is typically connected at lower grid levels, this problem will become more acute
as renewables start playing a larger role in the grids dynamics. Conducting high-fidelity simulations
of the whole hierarchy of the power grid and exploring all states will not be feasible (Liemann et al.,
2021). For future power grids, knowledge of how to design robust dynamics is required. This has
led to a renewed interdisciplinary interest in understanding the collective dynamics of power grids
(Brummitt et al., 2013), with a particular focus on the robustness of the self-organized synchro-
nization mechanism underpinning the stable power flow (Rohden et al., 2012; Motter et al., 2013;
Dörfler et al., 2013) by physicists and control mathematicians Witthaut et al. (2022).

Synchronization refers to the fact that a stable power flow requires all generators to establish a joint
frequency. It is self-organized in the sense that this is achieved without further communication or an
external signal. To understand which structural features impact the self-organized synchronization
mechanism, it has proven fruitful to take a probabilistic view (Menck et al., 2014; Hellmann et al.,
2016). Probabilistic approaches are well established in the context of static power flow analysis
(Borkowska, 1974). In the dynamic context, considering the probability of systemic failure follow-
ing a random fault effectively averages over the various contingencies. Such probabilities are thus
well suited to reveal structural features that enhance the system robustness or vulnerability. This ap-
proach has been highly successful in identifying particularly vulnerable grid regions (Menck et al.,
2014; Schultz et al., 2014a; Nitzbon et al., 2017) and revealing general mechanisms of desynchro-
nization (Hellmann et al., 2020). Probabilistic stability assessments recently gained more attention
in the engineering community as well (Liu & Zhang, 2017; Liu et al., 2019; Liemann et al., 2021).

Given the need for probabilistic analysis, and the computational cost of explicit simulations, we
apply Graph Neural Networks (GNNs) to directly predict probabilistic measures from the system
structure. Such GNNs could be used to select critical configurations for which a more detailed
assessment should be carried out. Moreover, the analysis of the decision process of ML-models
might lead to new unknown relations between dynamical properties and the topology of grids.
Such insights may ultimately inform the design and development of power grids. Since datasets of
probabilistic stability in power grids of sufficient size do not exist yet, we introduce new datasets,
that consist of synthetic models of power grids and statistical results of dynamical simulations. We
simulated datasets of increasing complexity to get closer to reality step by step. There are 10,000
small grids, 10,000 medium-sized grids and for evaluation purposes one large grid based on a
synthetic Texan power grid model.

Related work on power grid property prediction Since power grids have an underlying graph
structure, the recent development of graph representation learning (Bronstein et al., 2021; Hamilton,
2020) introduces promising methods to use machine learning in the context of power grids. There
is a number of applications using GNNs for different power flow-related tasks (Donon et al., 2019;
Kim et al., 2019; Bolz et al., 2019; Retiére et al., 2020; Wang et al., 2020; Owerko et al., 2020;
Gama et al., 2020; Misyris et al., 2020; Liu et al., 2021; Bush et al., 2021; Liu et al., 2020; Jhun
et al., 2022) and to predict transient dynamics in microgrids (Yu et al., 2022). In (Nauck et al., 2022)
small GNNs are used to predict the dynamic stability on small datasets. The authors demonstrate
the general feasibility of the approach, but do not compare to conventional baselines. We add such
baselines and introduce datasets that have ten times as many grids. This allows us to train GNNs
with much higher capacity to achieve higher predictive power.

Our main contributions are: We introduce new datasets of probabilistic dynamic stability of
synthetic power grids. The new datasets have 10 times the size of previously published ones and
include a Texan power grid model to map the path towards real-world applications. We also observe
a relevant new class of nodes in the dataset: So-called troublemakers, at which perturbations are
strongly amplified. Such nodes may be dangerous to hardware and the overall grid stability. Their
identification constitutes an additional task. We train strong baselines and benchmark models to
evaluate the difficulty of all tasks. Our results demonstrate i) that the larger dataset allows to train
more powerful GNNs, (ii) which outperform the baselines, and (iii) transfer from the new datasets
to a real-sized power grid. The general approach is visualized in Figure 1.
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Figure 1: We generate new datasets of the dynamic stability of power grids, based on synthetic
power grids (A) and statistics of dynamical simulations (B). Then, GNN models are trained to pre-
dict the dynamic stability of the synthetic grids (C) and evaluated on a Texan power grid model (D).

2 GENERATION OF THE DATASETS

Structure and modeling of power grids Viewed as networks power grids have distinctive topo-
logical properties. Power grids are sparsely connected. The degree distribution has a local maximum
at very small degrees (e.g. ≈ 2.3), an exponentially decaying tail and a mean of ≈ 2.8 (Schultz et al.,
2014b). Hence, most nodes are only connected to a small number of neighbours though a few highly
connected nodes typically do exist.

The study of non-linear self-organizing processes in power grids, specifically the interplay of syn-
chrony and active power flows has been an active topic in the research of complex power grids
(Witthaut et al., 2022). Synchrony is crucial for power grids as a stable power flow is only possible
if all generators operate at the same frequency. At the same time the ever present fluctuations in
demand have to be compensated by locally varying the frequency. The interplay between energy
balance and frequency throughout the grid is self-organized as it happens without further communi-
cation between the nodes or some central entity. The relevant timescale of this process is seconds,
and we will analyze the capability of the grid to regain synchrony following a localized fault.

Power grids as dynamical systems A full scale analysis that can treat high-fidelity models of
real systems is currently out of reach for several reasons. These include that real world data does
not exist or is not accessible, synthetically generating large numbers of realistic grids is challenging,
and that large dynamical models can not be simulated fast enough with current software (Liemann
et al., 2021). These problems force trade-offs on us, most notably reducing the details of the
intrinsic behaviors of dynamical actors to that of inertial oscillators. This leads to the Kuramoto
model Kuramoto (1975), a paradigmatic model for synchronization studies (Kuramoto, 2005;
Rodrigues et al., 2016), which was introduced for power grids in (Bergen & Hill, 1981). This model
strikes a careful balance of capturing the key dynamics that govern synchronization in real power
grids while remaining computationally - and to some degree analytically - tractable. It is thus highly
useful for understanding the relationship between grid structure and synchronization, but it should
not be taken to be a fully adequate model of the grid by itself. Any future treatment of dynamic
stability based on more accurate models will also have to solve the challenging sub-problem of the
impact of topology on synchrony that we consider here, thus we see this work as a first step.

In an ideal AC grid, the nodes voltage is given by a 50 or 60Hz sine curve. Writing ϕi for the
deviation of the phase of the local AC voltage from an arbitrary reference signal, the instantaneous
power flow on line i, j (Pij) is given in terms of the line parameter K by Pij = K sin(ϕi − ϕj).
The normalized time derivative 1

2π ϕ̇i provides the local frequency deviation from the reference
frequency. The two most important dynamical processes that establish synchrony and a stable power
flow are I) inertia, i.e. the change of local frequency as a result of absorbing a local power imbalance
Mϕ̈i = ∆Pi, and II) droop control, the local change of injected power due to frequency deviation
P droop
i = −αϕ̇i.

In order to extract the impact of topology as cleanly as possible we assume homogeneous inertia
constant M , droop parameter α and line parameters K. The dynamical equations for the self-
organized synchronization and stabilization of the active power flow are then given by conservation
of energy. Let P d

i denote the power injected/consumed at node i and Aij the adjacency matrix:

∆Pi = P d
i + P droop

i −
∑
j

AijPij (1)

Mϕ̈1 = P d
i − αϕ̇i −K

∑
j

Aijsin(ϕi − ϕj) (2)

3



Synchronous operation requires 0 = ϕ̈i = ϕ̇i. The fixed point equation P d
i = K

∑
j Aijsin(ϕ

∗
i −

ϕ∗
j ) is the power flow equation on a grid with topology given by the adjacency matrix A.

Quantifying dynamic stability of power grids We quantify dynamic stability with the single-
node basin stability (SNBS) (Menck et al., 2014). This measure is widely used in the study of
synchronization phenomena. As mentioned in the introduction, it is probabilistic, i.e. defined as the
probability that the system recovers following a perturbation by a random fault.

In the dynamical systems community this perturbation is typically modeled by a distribution of
initial conditions of the post fault system. For every node i we choose a distribution of initial
conditions ρi corresponding to contingencies localized at that node. Then the SNBS at node i is the
probability that the entire system returns to the fixed point from an initial condition drawn from ρi.
Call p(y|x) the probability of y given the initial condition x. For a distribution of initial conditions
ρ(x) we write p(y|x ∼ ρ) =

∫
p(y|x)ρ(x) for the compound distribution. Then we have:

SNBSi = p
(
ϕ(∞) = ϕ∗ | (ϕ(0), ϕ̇(0)) ∼ ρi

)
(3)

This probability can be estimated as the outcome of a Bernoulli experiment. Here we simulate
10,000 trajectories per node to minimize statistical errors. The underlying simulations to generate
the datasets are feasible for anyone with some domain knowledge, but the composition of entire
datasets require significant amounts of computational resources. For the datasets with 20,000 grids
and the Texan power grid, the simulations take roughly 700,000 CPU hours. Thus an important
contribution is to publish a full dataset to enable groups that have less computational resources
to work on this important problem. The goal of our work is the usage of GNNs to replace these
expensive simulations. To that end, we train GNNs to learn the graph function (P,A) → SNBS
where Pi is a featurized version of P d

i

2.1 NEW TROUBLEMAKER DEFINITION

The condition in the SNBS is not sufficient to ensure stable grid operation at all times. If the transient
trajectory after the perturbation violates operational bounds, machines in the system switch off to
protect themselves, potentially triggering failure cascades and large blackouts. This motivates the
definition of survivability (Hellmann et al., 2016), the probability that the system stays within these
bounds after a fault. In our dataset, we observed that there are some nodes for which the transient
reaction is vastly larger than the initial perturbation. We define the maximum frequency deviation
(MFD) of the whole system from an initial condition as

MFDi

(
ϕ(0), ϕ̇(0)

)
= max

t,j

∣∣∣ϕ̇j(t)
∣∣∣ . (4)

We consider nodes as safe if they have a very small probability γ that the MFD is larger than a
critical threshold β following a fault, other nodes are troublemakers (TM)

TMi =

{
0 if p

(
MFDi < β | (ϕ(0), ϕ̇(0)) ∼ ρi

)
> 1− γ

1 otherwise.
(5)

The minimum size that can be chosen for the rare event rate γ is determined by the statistical error
of the estimator of the probability, see Appendix A.5.

For choosing the critical threshold β consider, that the outer limits for frequency deviations for
the European grid are +2Hz or −3Hz. For our model we chose the symmetric critical threshold
∼ 2.4Hz, corresponding to a maximum deviation of the angular velocity of |ϕ̇| < 15 =: β, both
for simplicity and comparability to previous work. We tune the distribution of initial conditions to
focus on the worst offenders, settling on ρi confined to ±0.4Hz, corresponding to an amplification
by a factor of 2.4Hz

0.4Hz = 6. More details are given in Appendix A.5. The observation of large ampli-
fications and the target function are both of practical importance and novel as far as we are aware.
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2.2 MODELING OF THE TEXAN POWER GRID

To take a further step towards real-world applications, we evaluate the performance of our GNN
models by analyzing the dynamic stability of a real-sized synthetic power grid. Real power grid
data are not available due to security reasons and calculating an entire SNBS assessment of the fully
parameterized synthetic model by Birchfield appears not to be feasible due to the computational
effort (Liemann et al., 2021). We chose a synthetic model derived from the Texan power grid
topology, introduced by Birchfield et al. (2017). The synthetic Texan power grid model consists of
1,910 nodes after removing 90 nodes that are not relevant for the dispatching.

We use the same modelling approach as for the other grids, i.e we use only the topological
properties. As a consequence, we only investigate the potential applicability of GNNs to real-sized
grids and can not make any statements about the real-world Texan power grid. Even after applying
the simplifications, the simulations are already very expensive due to the large number of nodes. To
manage the computational cost of simulating dynamic stability of such a large grid, we reduce the
number of simulated perturbations from 10,000 to 1,000. Nonetheless, the simulation of that grid
takes 127,000 CPU hours. Computing less perturbations results in an increased standard error of
approximately ±0.031 for the SNBS estimates.

2.3 STRUCTURE OF THE DATASETS

To generate the datasets, we closely follow the methods in Nauck et al. (2022) and extend their work
by computing 10 times as many grids. To investigate different topological properties of differently
sized grids, we generate two datasets with either 20 or 100 nodes per grid, referred to as dataset20
and dataset100. To enable the training of complex models, both datasets consist of 10,000 graphs.
Additionally, one large synthetic Texan grid is provided for testing out-of-sample performance, see
Section 2.2.

For every grid two input features are given, namely the adjacency matrix A ∈ {0, 1}N×N represent-
ing the topology and a binary feature vector P d

i ∈ {−1, 1}N , specifying the power injection/demand
at the nodes, cf. Equation (1). Here N is the number of nodes. Likewise, for every grid two target
vectors are given, SNBS ∈ [0, 1]

N , see Section 2, and the TM ∈ {0, 1}N . The TM class is derived
from the maximum frequency deviation MFD ∈ [0,∞]

N , which is also available in the dataset, see
Section 2.1. Details regarding the modeling strategy are provided in Appendix A.4. Examples of
the grids of dataset20, dataset100 and the Texan power grid as well as the distributions of SNBS
(characterized by multiple modes) and the troublemaker nodes TM (imbalanced binary classification
task derived from the MFD) are given in Figure 2. Even though the same modelling approach is
used, there are significant variations that are entirely caused by different topologies and grid sizes.
Interestingly, the SNBS distribution of Texan power grid has a third mode which is challenging
for prediction tasks. Overall, the power grid datasets consist of the adjacency matrix encoding the
topology, the binary injected power P per node as input features, and nodal SNBS and MFD.

3 PREDICTING DYNAMIC STABILITY OF POWER GRIDS USING GNNS

In this section, we predict the dynamic stability on the new datasets using GNNs. We start by
introducing the experimental setup, followed by the prediction of SNBS on the two grid sizes
as well as analyzing out-of-distribution capabilities from small to large grids. Subsequently, we
establish the advantages of our large dataset in comparison to previous work. Afterwards, we
evaluate the GNNs trained on our datasets on the Texan power grid as a larger, more realistic
test-case. Lastly, we identify troublemakers.

3.1 EXPERIMENTAL SETUP

We train GNNs on a nodal prediction tasks, using regression for SNBS, and regression with thresh-
olding as well as classification for TM (visualized in Figure 3). As input the GNNs are given an
adjacency matrix and the power injection/demand at the nodes, cf. Section 2.3. We split the datasets
in training, validation and testing sets (70:15:15). The validation set is used for the hyperparameter
optimization, we report the performance on the test set. To minimize the effect of initializations we
use 5 different initializations per model and compute average performances using the three best.
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Figure 2: Examples of power grids in the datasets with 20 nodes (top left) and 100 nodes (top
center) and the Texan power grid model (top right). Blue color denotes sources and the orange
sinks. Below, the histograms of SNBS and the maximum frequency deviations (logarithmic scale)
are shown. At the bottom, the share of troublemakers (TM) is shown, where green represent stable
nodes and purple troublemakers (TM).

To evaluate the robustness of the GNNs, we analyze the performance of different models based on
several GNN-architectures: GNNs with ARMA filters by Bianchi et al. (2021), Graph Convolutional
Networks (GCN) by Kipf & Welling (2017), SAmple and aggreGatE (SAGE) by Hamilton et al.
(2017) and Topology Adaptive Graph Convolution (TAG) by Du et al. (2017). We refer to the models
by ArmaNet, GCNNet, SAGENet and TAGNet. We conduct hyperparameter studies to optimize the
model structure regarding number of layers, number of channels and layer-specific parameters using
dataset20. Afterwards, we optimize learning rate, batch size, scheduler for dataset20 and dataset100
separately. Details on the hyperparameter study and the models are given in Appendix A.7.

Baseline models To better assess the GNN performance, we set up several baseline models.
Schultz et al. (2014a) were the first to attempt predicting nodal dynamic stability of power grids us-
ing a logistic regression of common network measures and hand-crafted features. For the first base-
lines, we set up similar linear regression models with the following input features: degree, average-
neigbor-degree, clustering-coefficient, current-flow-betweenness-centrality, closeness-centrality and
the injected power P d. Additionally, we use more complex Multilayer perceptrons (MLPs) trained
on the same features as baselines. We investigate the performance of two differently sized MLPs.
MLP1 has one hidden layer with 35 units per hidden layer, resulting in 1,541 parameters and MLP2
consists of 6 hidden layers and 500 hidden units per layer leading to 1,507,001 parameters. We
conducted hyperparameter studies to optimize the batch sizes and learning rates.

Metrics for evaluation To analyze the performance, we use the coefficient of determination (R2-
score) for regression and F2-score for classification. F2-score is a modified F-score giving more
weight to recall and less to the precision in the calculation of the score. In case of identifying
vulnerabilities of power grids it is more important to identify all critical states, even if this increases
the number of false positives. The details of computing the metrics are provided in Appendix A.6.

3.2 PREDICTION OF SNBS

GNNs can accurately predict SNBS In our first set of benchmark experiments, the goal is to
predict SNBS with high accuracy, as measured by the coefficient of determination R2. The key
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Figure 3: Prediction of nodal outputs SNBS and TM using GNNs. The inputs are the adjacency
matrix A and the injected power P d. The prediction is purely based on the structure and topology
of the grid and does not consider individual faults.

result is the surprisingly high performance of GNNs across all datasets, see the first two columns
in Table 1. R2 reaches values above 82 % for dataset20 and above 88 % for dataset100. SNBS
is a highly nonlinear property and the obtained performance exceeds expectations. The predictive
performance captures not only the general trend but the modalities in the data as well (cf. Figure 4).
Interestingly the previously published Ar-bench (Nauck et al., 2022) performs worse than the
MLPs, but the larger GNNs outperform all baselines.

Table 1: Results of predicting SNBS represented by R2 score in %. Each column represents the eval-
uation on a different test set, e.g. tr20ev20 denotes that the models are trained and evaluated using
dataset20. Additionally, we analyze the out-of-distribution capabilities by evaluating the models on
different datasets without retraining, e.g. we train a model on dataset20 and evaluate it on dataset100
and refer to this by tr20ev100. Besides the performance of the GNNs, we show the performance of
a linear regression and Multilayer perceptrons using hand-crafted features as baselines.

model tr20ev20 tr100ev100 tr20ev100 tr20evTexas tr100evTexas
Ar-bench 51.82 ± 2.388 60.34 ± 0.299 38.80 ± 1.327 38.55 ± 5.897 55.22 ± 6.349

ArmaNet 80.63 ± 0.848 87.47 ± 0.073 66.75 ± 1.500 60.54 ± 5.622 73.47 ± 2.786

GCNNet 70.64 ± 0.262 75.49 ± 0.276 59.46 ± 0.450 2.27 ± 6.210 -46.02 ± 1.575

SAGENet 65.46 ± 0.208 75.57 ± 0.228 52.27 ± 0.784 33.47 ± 0.509 55.38 ± 1.390

TAGNet 82.49 ± 0.455 88.22 ± 0.135 66.10 ± 0.508 62.69 ± 2.029 84.41 ± 0.947

linreg 41.75 36.29 5.98 -11.39 -22.62
MLP1 58.47 ± 0.149 63.59 ± 0.051 28.49 ± 1.493 -34.52 ± 17.934 19.79 ± 8.659

MLP2 58.20 ± 0.0422 65.52 ± 0.038 19.65 ± 2.109 5.81 ±10.58 58.46 ± 0.480

Figure 4: SNBS over predicted output of the ArmaNet model for tr20ev20 (trained on dataset20
and evaluated on dataset20), tr100ev100 and tr20ev100. The diagonal represents a perfect model
(R2 = 1), the banded region indicates predictions which are accurate up to an error of ±0.1.

GNNs generalize from dataset20 to dataset100 Note that, as reviewed in the introduction, the
dynamical properties of the power grid are non-linear and non-local. Our perturbations are localized,
but the probabilistic measures look at the whole system response. Thus it is a priori unclear how
well we can expect the models to generalize from smaller grids to larger ones. Training on small
grids without loss of generalization and predictive power would be a huge advantage to scale to real
power grids. To evaluate the potential of our datasets and GNN models to that end, we apply an
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out-of distribution task by training the models on dataset20 and evaluating the performance without
any further training on dataset100. The third column in Table 1 (tr20ev100) show that all GNNs
generalize well and are able to predict SNBS with R2 exceeding 66 %. We would like to emphasize
the significance of that finding. Given sufficient size and complexity in the source dataset, GNNs
can robustly predict highly nonlinear stability metrics for grids several times larger than the source.
We did not expect grids of size 20 to be large enough to contain enough relevant structures to
generalize to larger grids. Generalizing from small, numerically solvable grids to large grids is key
for real world application. The computational cost of the dynamic simulations grows faster than
linearly with the size of the grids, so computational time can be saved when training models on
smaller networks or sections of real-sized grids. In comparison to the baselines, the generalization
capabilities of the new GNN models are much better.

Training on more data increases the performance of all models General Machine Learning
convention assumes that larger dataset size allows to train larger models to higher performance. In
this section, we investigate the influence of the size of the training set to show the relevance of the
larger datasets. We train the models on the smaller dataset introduced in Nauck et al. (2022) after
specifically optimizing the learning rate for the analysis of the smaller training set. Our experiments
show that training on less data results in lower performance, see Figure 5. Instead of peak values
of R2 of 82.49 %, we only obtain 74.77 % for dataset20 and only 83.92 % instead of 88.22 %
for dataset100. The results of all models are given in Appendix A.9. Comparing the performance
differences on dataset20 and dataset100, the improvements are larger for dataset20. A reasonable
explanation is the total number of nodes used for the training.
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Figure 5: Comparison of the performance based on the size of the training set using 800 or 7,000
grids. Training on our larger dataset improves performance on all models. The 800 grids used for
the training follow Nauck et al. (2022) and all models are evaluated on the newly introduced test set.

Predicting SNBS on a Texan power grid model using the previously trained models Using
GNNs for SNBS prediction becomes feasible, if they can be trained on relatively simple datasets
and still perform well on large, complex grids. As an example of a large and complex grid, we use
a Texan power grid model and evaluate the models previously trained on dataset20 and dataset100.
The benchmark models achieve surprisingly high performance with R2 values (above 84 %) and
GCN as a sole exception, see the colums tr20evTexas and tr100evTexas in Table 1. Details on the
poor performance of the GCN is given in Appendix A.10. Hence, the approach of training models
on grids which are smaller by more than one order of magnitude is feasible. We want to emphasize
that one successful attempt of a real-sized power grid should illustrate the general potential of this
approach, but we still consider the hard evidence to be the generalization from 20 to 100. The
performance is significantly better for the models trained on dataset100. We hypothesize that the
repetition of geometrical structures more prevalent in dataset100 is useful for even larger grids.
Grids of size 20 might still be to small to generalize to large grids, but the size 100 might actually
be sufficient for many applications.

3.3 IDENTIFICATION OF TROUBLEMAKERS

In this section we introduce a further benchmark tasks, namely to classify nodes into two categories,
stable nodes or troublemakers as defined in Section 2.1. As noted in Equation (5), this target is
essentially a thresholded version of the maximum frequency deviation (MFD). Thus, we can either
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directly train the classification task, or we can regress the MFD estimator and then threshold. Both
strategies work and depending on the model different approaches seem to be best, see Table 2.
The overall performance is very high, so the prediction of TM is feasible. In the main section,
we only show the F2-score and the better performing baselines. Appendix A.11 contains the full
results including different performance indicators. The GNNs ArmaNet and TAGNet outperform
the baselines and especially TAGNet achieves a good performance.

Table 2: F2-score in % for TM prediction. The column type shows if classification (C) or regression
(R) is used for training. For regression, thresholding at 1 is applied to compute the F2-score. For
MLP2, training on dataset100 was successful with only one of the five seeds. We report that result
as over-estimation of a strong baseline.

model type tr20ev20 tr100ev100 tr20ev100 tr20evTexas tr100evTexas
ArmaNet C 86.85 ± 0.503 95.75 ± 0.049 84.94 ± 4.050 82.43 ± 1.747 85.14 ± 1.335

TAGNet C 89.78 ± 0.079 96.36 ± 0.063 88.77 ± 0.309 82.78 ± 2.122 92.00 ± 1.585

ArmaNet R 81.68 ± 0.509 88.29 ± 5.898 91.49 ± 0.740 87.15 ± 2.922 91.86 ± 1.058

TAGNet R 84.55 ± 1.136 95.13 ± 0.316 90.20 ± 1.624 90.18 ± 1.645 95.48 ± 0.562

linreg R 72.69 91.51 91.32 73.22 93.75
MLP1 R 74.33 ± 0.074 91.60 ± 0.006 81.60 ± 2.155 75.17 ± 2.837 41.96 ± 16.52

MLP2 R 74.38 ± 0.036 91.61 77.46 ±7.020 68.89 ± 5.248 93.75

3.4 BENEFITS OF USING GNNS TO PREDICT DYNAMIC STABILITY

As the experiments above show, GNNs are suitable for the analysis of the dynamic stability, both
in terms of computational effort and predictive power. The performance exceeded our expectations.
For SNBS and the best model (TAGNet) roughly 95 % of the estimations differ only by 0.1 from
the target values for tr100ev100 and tr100evTexas. This corresponds to the banded region shown in
Figure 4. The threshold of 0.1 can be motivated by considering the distributions in Figure 2, because
the modes are separated by 0.1. To achieve a similar accuracy by conducting dynamical simulations
with Monte-Carlo sampling, 100 perturbations per node are needed, which is a significant reduction
to 10,000 perturbations we used for the generation of the datasets. With 100 perturbations, the
computation for one grid of size 100 takes roughly 30 minutes and for the Texan grid 530 days using
one CPU. Evaluating the GNNs takes less than one second per grid. Hence using GNNs is more than
1,800 times faster for grids of size 100 and 4,6 ×107 times faster for the synthetic Texan power grid.
This demonstrates the potential of analyzing a large number of different configurations using GNNs.
Furthermore, we show the successful prediction of TM, which can motivate future applications.

4 CONCLUSION AND OUTLOOK

In this work, we analyze the probabilistic dynamic stability of synthetic power grids using GNNs.
We generate new datasets that are 10 times larger than previous ones to enable the training of high
capacity GNNs. Our benchmark results significantly improve over previous work and show that
highly nonlinear SNBS can be predicted at surprisingly high accuracy by using more complex
models and training on our larger dataset. We show that the models trained on our datasets can
be used for prediction on a real-world-sized Texan power grid model. The results indicate the
potential benefits of machine learning in this important domain. We expect the datasets to attract
attention by research groups working on complexity science and non-linear dynamics as well.
Furthermore, we introduce a new method to identify troublemakers in power grids and and show
their successful prediction. Besides further improving the performance, future work might try to
explain the decision process of GNNs to generate new insights on the relation of topology and
stability. Encouraged by our results, we will continue to extend our datasets with increasingly more
complex and realistic grids, aiming at real power grids. All data and code will be published upon
publication (see Appendix A.1). Given sufficient computational resources, the code can easily be
adapted to generate more training data, or to simulate grids of different sizes. For reviewing, the
SNBS training is provided in a zip container at: https://drive.google.com/drive/f
olders/19hHqgup12xypYnS0ceEDaZRhqdqUG7gi?usp=sharing. The open access
enables the community to develop new methods to analyze future renewable power grids.

9

https://drive.google.com/drive/folders/19hHqgup12xypYnS0ceEDaZRhqdqUG7gi?usp=sharing
https://drive.google.com/drive/folders/19hHqgup12xypYnS0ceEDaZRhqdqUG7gi?usp=sharing


REFERENCES

A.R. Bergen and D.J. Hill. A Structure Preserving Model for Power System Stability Analysis.
IEEE Transactions on Power Apparatus and Systems, PAS-100(1):25–35, January 1981. ISSN
0018-9510. doi: 10.1109/TPAS.1981.316883. Conference Name: IEEE Transactions on Power
Apparatus and Systems.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh approach to
numerical computing. SIAM Review, 2017. ISSN 00361445. doi: 10.1137/141000671. eprint:
1411.1607.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph Neural Net-
works with Convolutional ARMA Filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–1, 2021. ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3054830. Conference
Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

Adam Birchfield. ACTIVSg2000: 2000-bus synthetic grid on footprint of Texas, visited on Nov. 1,
2021. URL https://electricgrids.engr.tamu.edu/electric-grid-test-c
ases/activsg2000/.

Adam B. Birchfield, Ti Xu, Kathleen M. Gegner, Komal S. Shetye, and Thomas J. Overbye. Grid
Structural Characteristics as Validation Criteria for Synthetic Networks. IEEE Transactions on
Power Systems, 32(4):3258–3265, July 2017. ISSN 1558-0679. doi: 10.1109/TPWRS.2016.261
6385. Conference Name: IEEE Transactions on Power Systems.

Valentin Bolz, Johannes Rueß, and Andreas Zell. Power Flow Approximation Based on Graph
Convolutional Networks. In 2019 18th IEEE International Conference On Machine Learning
And Applications (ICMLA), pp. 1679–1686, December 2019. doi: 10.1109/ICMLA.2019.00274.

Barbara Borkowska. Probabilistic Load Flow. IEEE Transactions on Power Apparatus and Systems,
PAS-93(3):752–759, May 1974. ISSN 0018-9510. doi: 10.1109/TPAS.1974.293973. Conference
Name: IEEE Transactions on Power Apparatus and Systems.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep Learning:
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Hans-Otto Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegrı́a,
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A APPENDIX

This section includes additional information to generate the datasets, reproduce the presented results
and additional results that are not already shown in the main section.

We start by providing information on the availability of the datasets and the used software, before
providing more details regarding the modeling for the dataset generations. Subsequently, details
regarding the training, the evaluation as well as the hyperparameter study are provided. Afterwards
additional results are shown.

A.1 AVAILABILITY OF THE DATASETS

The new datasets and full code for the training, evaluation and generation of the figures will be
published upon publication on Zenodo and GitHub and it will be licensed under CC-BY 4.0 to
enable the community to contribute to this challenge.

A.2 SOFTWARE FOR GENERATING THE DATASETS

Julia is used for the simulations Bezanson et al. (2017) and the dynamic simulations rely on the
package DifferentialEquations.jl Rackauckas & Nie (2017). For simulating more realistic power
grids in future work we recommend the additional use of NetworkDynamics.jl Lindner et al. (2021)
and PowerDynamics.jl Plietzsch et al. (2021).

A.3 SOFTWARE FOR TRAINING

The training is implemented in Pytorch (Paszke et al., 2019). For the graph handling and graph
convolutional layers we rely on the additional library PyTorch Geometric (Fey & Lenssen, 2019).
We use the SGD-optimizer and as loss function we use the mean squared error 1. Furthermore ray
(Moritz et al., 2018) is used for parallelizing the hyperparameter study.

A.4 MODELLING DETAILS OF GENERATING THE DATASETES

In the detail of the modeling and the size of the dataset we attempt to strike a balance between
relevance to real-world applications, computational tractability and conceptual simplicity. Therefore
we employ the following criteria: (i) generate synthetic network topologies that mimic real world
power grids; (ii) model the main dynamics of self-organised power flow and synchronization; (iii)
minimize statistical and numerical errors with highly accurate simulations; (iv) to study out-of
distribution tasks and scale effects, consider grid sizes of different orders of magnitude.

The most important simplifications in comparison to real-world power grids are homogeneous edges,
fixed magnitudes of sources/sinks and modeling all nodes by the swing equation. In contrast to our
modeling, real power grid lines have different properties and there are more complex models for
generators and loads. However, previous studies have shown that many interesting observations are
still possible under our assumptions Nitzbon et al. (2017).

To investigate different topological properties of differently sized grids, we generate two datasets
with either 20 or 100 nodes per grid, referred to as dataset20 and dataset100. To enable the training
of complex models, both datasets consist of 10,000 graphs. Additionally, probabilistic dynamic
stability values of a synthetic model of the Texan power grids are provided for evaluation purposes.

Modeling of the power grids This section covers the precise modeling of power grids used for
the dataset generation and may be skipped. To generate realistic topologies we use the package
SyntheticNetworks(Schultz et al., 2014b; Schultz, 2020). The sources and sinks are assigned
randomly. For the dynamic simulations all nodes are represented by the 2nd-order-Kuramoto model
(Kuramoto, 2005; Rodrigues et al., 2016), which is also called swing equation, see eq. (1). Using
homogeneous coupling strength (K) can be interpreted as considering power grids that only have
one type of power line and comparable distances between all nodes. This assumption is justifiable,

1corresponds to MSELoss in Pytorch
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Figure 6: Identification of troublemakers based on trajectories. There are three spaces: blue for
the space of perturbations, green for the safe-space and purple for the trouble-space. The dashed
trajectory stays within the initial space of the perturbations, the dotted line leaves that space, but
stays below the trouble-threshold and the solid line represents a trouble-maker-trajectory.

because in real power grids longer lines are built stronger, so the actual coupling does not scale as
much with the length.

To estimate SNBS we rely on the approach presented in Nauck et al. (2022): “[F]or every node
in a graph, M = 10, 000 samples of perturbations per node are constructed by sampling a phase
and frequency deviation from a uniform distribution with (ϕ, ϕ̇) ∈ [−π, π] × [−15, 15] and adding
them to the synchronized state. Each such single-node perturbation serves as an initial condition
of a dynamic simulation of our power grid model, [cf. Equation (1)]. At t = 500 the integration
is terminated and the outcome of the Bernoulli trial is derived from the final state. A simulation
outcome is referred to as stable if at all nodes ϕ̇i < 0.1. Otherwise it is referred to as unstable. The
classification threshold of 0.1 is chosen accounting for minor deviations due to numerical noise and
slow convergence rates within a finite time-horizon.”

To ensure the reliability of our results we try to minimize numerical and statistical errors: For
the dynamical simulations a higher order Runge-Kutta methods with adaptive time stepping and
low error tolerances is used. For the Monte-Carlo sampling, 10,000 simulations per node result in
standard errors for our probabilistic measure SNBS of less than ±0.01.

Furthermore, we want to provide some numbers regarding the simulation time. The computation
of a single perturbation in case of dataset20 takes .056 seconds, in case of dataset100 0.189 seconds
and in case of the Texan power grid 239.97 seconds.

A.5 IDENTIFICATION OF TROUBLEMAKERS

The idea is illustrated in Figure 6. The critical threshold is motivated by the real-world power
grids. When certain operational bounds are violated, machines in the system switch of, potentially
triggering failure cascades and large blackouts. Thus, there is a discontinuous difference between
perturbations that attain a maximum deviation above the critical threshold and those that don’t. The
maximum limits for frequency deviations for the European grid are +2Hz or −3Hz. For our model
we chose the symmetric critical threshold ∼ 2.4Hz, corresponding to a maximum deviation of the
angular velocity of |ϕ̇| < 15, both for simplicity and comparability to previous work.

Selection of perturbations for the identification of troublemakers If perturbations are amplified
by more than a factor of 6, the desired space is left and we consider the trajectories as troublesome.
If that occurs for at least one perturbation applied at a node, we consider that node a troublemaker,
because such a strong amplification is a danger for safe grid operation. For the analysis of TM,
we only consider perturbations within (ϕ̇) ∈ [−2.5, 2.5]. This reduces the minimum number of
analyzed perturbations per node to 1,595 for dataset20, 1,569 for dataset100 and 129 for the Texan
power grid. As mentioned in Section 2.1, the probability of rare events depends on the estimator and
on the number of samples used for the estimation. As a consequence for dataset20 and dataset100
the rare even rate is γ ≈ 0.0013 and for the Texan grid γ ≈ 0.015. These values are derived from
the Agresti-Coull approximation of a binomial confidence interval.

A.6 EVALUATION OF THE PERFORMANCE USING DIFFERENT METRICS

For the regression, we use the coefficient of determination: R2 = 1 − mse(y,t)
mse(tmean,t)

, where mse

denotes the mean squared error, y the output of the model, t the target value and tmean the mean of
all considered targets of the test dataset. R2 captures the mean square error relative to a null model
that predicts the mean of the test-dataset for all points. The R2-score is used to measure the portion
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of explained variance in a dataset. By design, a model that predicts the mean of SNBS per grids has
R2 = 0.

For the classification, we use F2-score which is based on recall and precision. The recall is defined
by: Recall = TP

TP+FN , where TP denotes true positives and FN false negatives. The precision
is defined by: precision = TP

TP+FP . This leads to the F2-score which is defined by: F − 2 =
5×precision×recall
4×precision+recall .

A.7 HYPERPARAMETER OPTIMIZATION

We conduct hyperparameter studies in two steps. First, we optimize model properties such as the
number of layers and channels as well as layer-specific parameters e.g. the number of stacks and
internal layers in case of ArmaNets. For this optimization we use dataset20 and the SNBS task
only. For all models we investigated the influence of different numbers of layers and the numbers
of channel between multiple layers. We limit the model size to just above four million parameters,
so we did not investigate the full presented space, but limited for example the number of channels
when adding more layers. The resulting models have the following properties: ArmaNet has 3 layers
and 189,048 parameters. GCNNet has 7 layers and 523,020 parameters. SAGENet has 8 layers and
728,869 parameters. TAGNet has 13 layers and 415,320 parameters.

Afterwards we optimize the learning rate, batch size and scheduler of the best models for dataset20
and dataset100 and the tasks SNBS/TM separately. Hence, our models are not optimized to perform
well at the out-of distribution task. The best model from (Nauck et al., 2022) referred to as Ar-
bench, is used as another baseline. It is a GNN model consisting of 1,050 parameters and based on
2 Arma-layers. The only adjustment to that model is the removal of the fully connected layer after
the second Arma-Convolution and before applying the Sigmoid-layer, which improves the training.

A.8 DETAILS OF THE TRAINING OF THE BENCHMARK MODELS

To reproduce the obtained results, more information regarding the training is provided in this section.
Detailed information on the training as well as the computation time is shown in Table 3. In case
of dataset20, a scheduler is not applied, in case of dataset100, schedulers are used for Ar-bench
(stepLR), GCNNet (ReduceLROnPlateau). The default validation and test set batch size is 150.
The validation and test batchsize for Ar-bench and ArmaNet3 is 500 in case of dataset20 and 100
for dataset100. The number of trained epochs differs, because the training is terminated in case of
significant overfitting. Furthermore, different batch sizes have significant impact on the simulation
time. Most of the training success occurs within the first 100 epochs, afterwards the improvements
are relatively small.

Table 3: Properties of training models and regarding the training time, we train 5 seeds in parallel
using one nVidia V100.

name number of epochs training time train batch size learning rate
dataset 20 100 20

(hours)
100
(days)

20 100 20 100

Ar-
bench

1,000 800 26 4 200 12 0.914 .300

ArmaNet 1,500 1,000 46 6 228 27 3.00 3.00
GCNNet 1,000 1000 29 5 19 79 .307 .286
SAGENet 300 1000 9 5 19 16 1.10 1.23
TAGNet 400 800 11 4 52 52 0.193 .483

A.9 DETAILED RESULTS OF TRAINING ON A SMALLER DATASET

To investigate the influence of available training data and to connect with previous work, we train
all models on only 800 grids, from Nauck et al. (2022). The results are shown in Table 4.
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Table 4: Performance after training on smaller training set. All models are trained on the same
800 grids as in Nauck et al. (2022), but evaluated on the newly introduced test set. The results are
represented by R2 score in %.

model tr20ev20 tr100ev100 tr20ev100
Ar-bench 46.54 ± 2.378 59.73 ± 0.886 31.75 ± 1.204

ArmaNet 70.35 ± 1.226 83.92 ± 0.263 55.84 ± 0.598

GCNNet 49.59 ± 0.513 61.18 ± 1.663 36.08 ± 0.625

SAGENet 50.15 ± 0.255 60.98 ± 0.279 39.89 ± 0.089

TAGNet 74.77 ± 0.370 82.21 ± 0.017 60.31 ± 0.732

A.10 POOR PERFORMANCE OF GCN WHEN APPLYING TO THE TEXAN POWER GRID

The GCN model is not able to predict the dynamic stability for the Texan power grid. To understand
this behaviour, we compare it to the ArmaNet model at the out-of-distribution task from dataset20
and dataset100 to predict SNBS of the Texan power grid. The scatter plots are shown in Figure 7.
We can clearly see that the model is not able to predict lower values of SNBS correctly. The limited
output of the GCNNet results in a bad performance in case of the distribution of the Texan power
grid that has three modes. As a consequence, a model that predicts the mean of the distribution
would achieve better performance. Furthermore, we provide the scatter plots of the GCNNet for the
three tasks dataset20, dataset100 and tr20ev100 in Figure 8, that can be compared to Figure 4.

Figure 7: SNBS over predicted output of the Arma and GCN models for the out-of-distribution task
to predict SNBS of the Texan power grid. The diagonal represents a perfect model (R2 = 1), the
banded region indicates prediction errors ≤ 0.1. To account for the small number of nodes, a lower
transparency is used in comparison to Figures 4 and 8.

A.11 PERFORMANCE OF IDENTIFYING TROUBLEMAKERS

In the following sections we show the full results of predicting the troublemakers using classification
and regression setup. We use the previously introduced GNN models (see section 3.1). For each
regression and classification task we conduct another hyperparameter study to optimize the learning
rates. The same inputs are used: adjacency matrix A, nodal power input P .
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Figure 8: SNBS over predicted output of the GCNNet model for tr20ev20, tr100ev100 and
tr20ev100. The diagonal represents a perfect model (R2 = 1), the band indicates the region for
accurate predictions based on a threshold of 0.1.

A.11.1 CLASSIFICATION SETUP

For the classification setup, we report the F2-score in Table 5 and the recall in Table 6. The GNNs
outperform the baselines in all tasks and especially TAGNet achieves a good performance. TAGNet
achieves recalls of more than 93 % throughout all tasks, including the out-of-distribution generaliza-
tions, while still keeping F2-score above 82 %. For identifying troublemakers, a thresholded variant
of the ’semi-analytic lower bound for survivability´ (Hellmann et al., 2016) is used as a further
baseline. This bound can be directly computed from the input data and hence requires no training.

Table 5: TM prediction: F2-score in %. For MLP2, training on dataset100 was successful with only
one of the five seeds. We report that result as over-estimation of a strong baseline. (*) Since the
semi-analytic baseline does not require training, its performance is directly evaluated on the test set.

model tr20ev20 tr100ev100 tr20ev100 tr20evTexas tr100evTexas
Ar-bench 74.31 ± 0.230 88.29 ± 0.331 77.08 ± 0.989 78.49 ± 0.790 83.33 ± 1.856

ArmaNet 86.85 ± 0.503 95.75 ± 0.049 84.94 ± 4.050 82.43 ± 1.747 85.14 ± 1.335

TAGNet 89.78 ± 0.079 96.36 ± 0.063 88.77 ± 0.309 82.78 ± 2.122 92.00 ± 1.585

log 44.74 73.47 5.59 21.66 55.81
MLP1 58.06 ± 1.451 79.61 ± 0.001 72.68 ± 6.142 49.52 ± 9.990 86.02 ± 0.000

MLP2 69.43 ± 0.724 91.60 41.11 ± 7.200 32.16 ± 12.338 73.22
semi-analytic 22.86* 38.53* 38.53* 15.73* 15.73*

Table 6: TM prediction: recall in %. In case of MLP2, the training on dataset100 was successful
with only two of the five seeds. We only report that result as over-estimation of a strong baseline.

model tr20 tr100
ev20 ev100 evTexas ev100 evTexas

Ar-bench 86.30 ± 0.727 92.56 ± 0.798 83.33 ± 0.983 98.69 ± 0.654 98.04± 0.000

ArmaNet 88.85 ± 1.019 96.85 ± 0.272 86.74 ± 5.455 90.20 ± 2.264 98.69 ± 0.654

TAGNet 93.84 ± 0.039 97.16 ± 0.120 96.10 ± 0.590 99.35 ± 0.654 100.00 ± 0.000

logreg 86.69 91.82 95.32 89.04 94.12
MLP1 76.44 ± 0.312 90.70 ± 0.000 68.98 ± 6.874 44.44 ± 9.628 94.12 ± 0.000

MLP2 75.85 ± 0.513 89.86 36.08 ± 6.902 28.10 ± 11.563 68.63
semi-analytic 92.70* 97.77* 98.04* 97.77* 98.04*

A.11.2 REGRESSION SETUP

Besides introducing two classes for predicting troublemakers, it is also possible to directly predict
the maximum frequency deviation per node (fig. 2). The results are shown in table 7. The predictions
of the regression can be complemented by applying a thresholding afterwards to categorize nodes
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as troublemakers. After applying the thresholding, the results can again be evaluated using F2-score
(table 8) and recall table 9.

Table 7: Results of predicting maxiumum frequency devations represented by R2 score in %. In
case of MLP2, the training on dataset100 was successful with only two of the five seeds. We only
report the best result as over-estimation of a strong baseline.

model tr20ev20 tr100ev100 tr20ev100 tr20evTexas tr100evTexas
Ar-bench 87.45± 0.132 92.73 ± 0.132 89.21 ± 0.226 77.76± 0.614 82.45 ± 1.302

ArmaNet 96.59 ± 0.074 97.70± 0.096 95.70 ± 0.150 86.73 ± 1.432 90.70 ± 1.216

TAGNet 96.30 ± 0.258 97.99 ± 0.062 93.68± 0.270 81.88 ± 0.477 84.81 ± 0.790

linreg 83.87 87.77 86.60 80.85 78.12
MLP1 90.55 ± 0.025 92.54 ± 0.228 82.21 ± 1.256 54.64 ± 16.32 52.71 ± 17.46

MLP2 89.95 ± 0.144 92.30 81.85 ± 1.454 60.83 ± 7.764 83.82

Table 8: Results of predicting troublemakers using regression and thresholding represented by F2-
score in %. In case of MLP2, the training on dataset100 was successful with only two of the five
seeds. We only report the best result as over-estimation of a strong baseline.

model tr20ev20 tr100ev100 tr20ev100 tr20evTexas tr100evTexas
Ar-bench 44.49 ± 0.018 78.66 ± 1.639 58.28 ± 1.302 85.24 ± 0.176 89.15 ±1.150

ArmaNet 81.68 ± 0.509 88.29 ± 5.898 91.49 ± 0.740 87.15 ± 2.922 91.86 ± 1.058

TAGNet 84.55 ± 1.136 95.13 ± 0.316 90.20 ± 1.624 90.18 ± 1.645 95.48 ± 0.562

linreg 72.69 91.51 91.32 73.22 93.75
MLP1 74.33 ± 0.074 91.60 ± 0.006 81.60 ± 2.155 75.17 ± 2.837 41.96 ± 16.52

MLP2 74.38 ± 0.036 91.61 77.46 ±7.020 68.89 ± 5.248 93.75

Table 9: Results of predicting troublemakers using regression and thresholding represented by recall
in %. In case of MLP2, the training on dataset100 was successful with only two of the five seeds.
We only report the best result as over-estimation of a strong baseline.

model tr20ev20 tr100ev100 tr20ev100 tr20evTexas tr100evTexas
Ar-bench 39.85 ± 1.792 75.28 ± 1.892 53.29 ± 1.476 87.58 ± 0.654 93.46 ± 1.307

ArmaNet 78.80 ± 0.557 86. 37 ±6.948 91.60 ± 1.033 88.89 ± 3.458 95.42 ± 0.654

TAGNet 82.65 ± 1.337 94.47 ± 0.433 91.66 ± 2.38 94.77 ± 1.729 96.73 ± 0.654

linreg 70.55 89.75 68.63 89.54 94.12
MLP1 69.89 ± 0.079 89.87 ± 0.011 79.80 ± 3.995 86.93 ±7.190 47.06 ± 24.49

MLP2 69.93 ± 0.039 89.88 73.68 ± 7.778 64.05 ± 5.584 94.12

20


	Introduction
	Generation of the datasets
	New troublemaker definition
	Modeling of the Texan power grid 
	Structure of the datasets 

	Predicting dynamic stability of power grids using GNNs
	Experimental setup
	Prediction of SNBS
	Identification of troublemakers
	Benefits of using GNNs to predict dynamic stability

	Conclusion and Outlook
	Appendix
	Availability of the datasets
	Software for generating the datasets
	Software for training
	Modelling details of generating the datasetes
	Identification of troublemakers
	Evaluation of the performance using different metrics
	Hyperparameter optimization
	Details of the training of the benchmark models
	Detailed results of training on a smaller dataset
	Poor performance of GCN when applying to the Texan power grid
	Performance of identifying troublemakers
	Classification setup
	Regression setup



