ML REPRODUCIBILITY SYSTEMS: STATUS AND RESEARCH AGENDA

Anonymous authors
Paper under double-blind review

Abstract

As companies are more and more leveraging the power
of machine learning (ML), ML models, the data they were
trained on, and the training pipelines themselves, are becom-
ing increasingly important assets. Hence, a new set of tools
is being developed, which aim to help manage the ML model
lifecycle in a more structured way. As the model lifecycle in-
volves a lot of experimental back-and-forth, reproducibility is
an important aspect that such tools need to provide. However,
as model lifecycle management is an emerging field, only few
best practices on how to support reproducibility exist. This
led to a large variety of tools being developed that all have
the same goal of providing reproducibility but with major
differences in how this goal is achieved. As a result, users
are overwhelmed with having to navigate this vast tooling
landscape and having to choose a tool that best fits their needs.
This is a difficult task as the reproducibility capabilities of
different tools can vary and users need to determine them-
selves, what is supported and what functionalities would fit
their specific use case.

In this paper, our goal is to add structure to the process of
deciding on a specific tool in terms of its reproducibility capa-
bilities. We identify the most significant artifacts of the ML
model lifecycle and, based on these, propose a generic classi-
fication framework that allows to assess the reproducibility
capabilities of a specific tool and make it comparable to other
tools. To evaluate our framework, we conduct an analysis
of 12 popular ML lifecycle management tools. We study
each tool in detail and classify it according to our framework.
We then compare the tools to each other to determine what
degree of reproducibility is provided in general and where
reproducibility support is still lacking. While overall we find
that the majority of tools offers most features that are required
for full reproducibility, there still exist gaps in terms of au-
tomating reproducibility and cross-tool reproducibility. Based
on these findings, we provide a set of research challenges
which need to be addressed in order to better understand re-
producibility and to fill the gaps of current systems.

1 Introduction

As the use of machine learning (ML) is becoming ubiqui-
tous across industries, managing ML models is increasingly
important. Similar to code, ML models are important as-

sets that need to be developed, tested, deployed, and up-
dated. However, this model lifecycle significantly differs
from a traditional software development lifecycle, due to
three main reasons: 1) The lifecycle itself is a complex work-
flow, consisting of a variety of phases including data prepa-
ration, model training, and inference; 2) ML model creation
is experimentation-based, making it an ad-hoc process with
frequent jumps between the different lifecycle phases [50];
3) the different phases are connected through a tight feedback
loop, which requires to rapidly incorporate new data into de-
ployed models [45]. As aresult, existing software engineering
methodologies and best practices cannot be directly applied.

Over the past years, a large number of new lifecycle man-
agement systems have been developed to simplify the end-
to-end process [1-4,7, 8]. The aim of these systems is to
structure, orchestrate, and automate the model lifecycle while
integrating with other systems for the individual lifecycle
phases, e.g., systems for model training [16, 20,29, 34,37],
data cleaning and preparation [42,47], parameter exploration
and tuning [18,32,51], or model explainability [33,43].

One of the core focus areas of lifecycle management sys-
tems is reproducibility. Due to the complexity of the lifecycle
and various regulatory requirements, being able to reproduce
a machine learning model and its predictions in different en-
vironments is a key challenge for successfully applying ML
technology in production [50]. This challenge is amplified
as ML reproducibility not only requires to be able to exactly
reproduce a certain model but also to track the exact steps
and inputs that went into the model to explain, compare, and
reason about different models and their outputs.

To prevent an impending reproducibility crisis [23,25,49],
both research and industry have spent significant effort on try-
ing to incorporate reproducibility as a first-class citizen into
the lifecycle management systems. The outcome is a large va-
riety of different tools and platforms to support reproducibility.
As aresult, users find themselves in the situation of having
to choose one or several systems to meet the requirements of
their particular use case.

However, choosing the right system is not straightfor-
ward [17]. While on the surface, each system promises re-
producibility and tracking, the actual capabilities (and their
implementations) of different systems vary. For example,
some systems provide tracking capabilities for code and mod-
els [2,7], some support version control for input data [1, 14],
and some focus on visualizing input parameters and output

Submitted to the Journal of Systems Research (JSys)

2021

metrics [15]. The different meanings and understandings of
reproducibility add further confusion for users [39,46]. Based
on these issues, we argue for a comprehensive framework,
which allows to categorize and classify the reproducibility
capabilities of different systems.

While previous work has aimed to formalize the ideas of
reproducibility for machine learning and provide best prac-
tices [22,28,46]. these attempts did either not look at system
capabilities directly and only provide a higher-level classifi-
cation of reproducibility, or did not consider the specific tech-
nical capabilities a system needs to provide to support seam-
less and automated reproducibility of complex ML pipelines.
Other work has empirically assessed the state of reproducibil-
ity for current machine learning research [23,31,40] but the
main focus was on how reproducible work is rather than how
reproducibility is achieved.

In this work, we attempt to add structure to the reproducibil-
ity capabilities of the vast ML lifecycle management system
landscape. Our goals is to allows users to better define their
reproducibility needs and pick the appropriate system (or
combination of systems) for the task. Therefore, we devise a
framework for assessing the reproducibility capabilities of a
certain system.

The key idea of the framework is that artifact versioning
plus versioning automation is sufficient to classify the repro-
ducibility capabilities of different system. In the context of
ML, artifacts refer to anything that is an input to or an out-
put of the model lifecycle, e.g., the raw input data, training
parameters, or the trained model. Versioning refers to the
ability of keeping track of the different artifact versions that
were used throughout the model lifecycle. Automation de-
scribes, how much user effort is required to create and retrieve
specific versions of specific artifacts. Overall, this allows to
classify reproducibility ranging from “no versioning, no au-
tomation”, (no reproducibility) to “everything is versioned
and automated” (full reproducibility).

The framework then consists of two main parts: 1) a list of
artifacts, such as the training data or the input parameters to
the training algorithm, which are necessary to successfully re-
produce a model; 2) a two-dimensional classification scheme
to assess, if and how each type of artifact is versioned in a
certain tool and how much automation the tool provides to
manage versions.

We test the applicability of our framework, by conducting a
large study of the reproducibility mechanisms of 12 different
ML lifecycle management systems. Each of these systems ad-
vertises tracking and reproducibility support for models. The
goal of our study is to 1) provide an overview of the current
state-of-the-art in ML tooling for reproducibility; and 2) use
our framework to structure the reproducibility capabilities of
the different tools.

Overall, we find that reproducibility support is good among
ML lifecycle management systems in terms of versioning.
Additionally, most systems also provide a good set of au-

tomation features to ease the reproducibility of experiments
though feature-complete automation is rare. However, while
reproducibility is well supported within the bounds of a spe-
cific system, reproducibility across systems is still hard to
achieve. This is partly due to the fact that different systems
model ML projects and their corresponding reproducibility
in different ways without a common standard, which leads to
incompatibilities and diverging feature implementations.

The results of our analysis lead us to propose a research
agenda towards better understanding and providing repro-
ducibility support in modern ML systems. The proposed
research items include research problems that cover direc-
tions on how to extend our presented framework and study
to gain deeper insights into reproducibility features and how
to extend systems to improve their existing reproducibility
features further.

After introducing the necessary background on the ML
model lifecycle (§2), we make the following contributions:

* We introduce a comprehensive framework to classify the
reproducibility capabilities of ML lifecycle management
systems (§3).

* We use the framework to survey 12 different systems in
terms of what reproducibility they provide and how they
are providing it (§4).

* We present a research agenda towards a better under-
standing of ML reproducibility and the requirements on
the corresponding systems (§5).

We discuss related work in §6 and conclude in §7.

2 Background

In this section we provide the necessary background on the
individual phases of the model lifecycle and explain, why
reproducibility is important in each of the phases (§2.1). We
then describe the different types of reproducibility in order
to clarify the terminology (§2.2) and to frame their distinct
properties in the context of ML projects.

2.1 The ML Model Lifecycle

The lifecycle of an ML model comprises three stages: Exper-
imentation, Development, and Operation.Each stage consists
of many individual steps and represents an iterative process,
i.e. individual steps are groups of steps and are often repeat-
edly run to explore different variations of a model. The three
main stages also have feedback loops between each other.

Experimentation. This is the initial stage where a model
is created. It involves steps such as data wrangling, feature
engineering, exploratory model building, and finally selection
of a "winner" model [48]. The last step in this stage is to

Submitted to the Journal of Systems Research (JSys)

2021

prepare the model so that it can be easily consumed by the
following stage.

During experimentation, reproducibility is of high im-
portance due to the iterative and exploratory nature of the
stage [35,50]. As data scientists repeat individual steps and
try new algorithms, parameters, and data, it is essential to
keep track of the different configurations in order to analyze
the differences between different models and to be able to
exactly recreate models that performed well [50].

Development. Once a model has been built, the next step is
to consume it. This means evaluating the suitability of the
model as part of a data-driven application (e.g. a predictive
service, a forecasting chart, etc.).This involves first scoring
the model to new scenarios (new datasets) and can be as
simple as obtaining the model (e.g. downloading it from a
model registry) and running it in the context of the application.

Reproducibility during this stage is required in order to,
first, connect the model from the experimentation stage to the
development stage and second, to keep track of the develop-
ment environment.If a high-scoring model breaks or performs
badly in the context of an application, it is important to un-
derstand the difference between the two environments and
to identify the input that led the model to produce inaccurate
results.

Operation. During the operation stage, the model and its ap-
plication are deployed to production. Similar to traditional
applications, this might involve testing on multiple environ-
ments (dev, staging, and production).Additionally, this stage
also involves monitoring of the model [19,48] to find concept
drift, performance issues, staleness, etc.

It is important to have reproducibility support during opera-
tion as application operators are often required to explain the
performance of a production model [44]. Explanations are
necessary in order to be able to debug production issues but
can also be a dictated by different regulatory requirements.
For explanations to be useful, it is crucial that individual pre-
dictions of a model can be reproduced and traced back all the
way to the experimentation stage.

In this work, our focus is on reproducibility during the
experimentation stage due to the fact that most tools support
(and focus on) this stage. We outline future research directions
on other lifecycle phases in §5.

2.2 Reproducibility, Repeatability, and Repli-
cability in ML

Reproducibility as an umbrella term is often split into three
different, more precise concepts: Reproducibility, Repeata-
bility, and Replicability [21,39]. The ACM definition of
each of these three terms, is the following (as illustrated in
Figure 1) [6]:

* Repeatability. “The measurement can be obtained with
stated precision by the same team using the same mea-

Team 1 i 3 Team 2 i 3 Team 3
¥ ®e ¥
| -
[Original Code b

Figure 1: The different types of reproducibility

surement procedure, the same measuring system, un-
der the same operating conditions, in the same location
on multiple trials. For computational experiments, this
means that a researcher can reliably repeat her own com-
putation.” This refers to reproducibility by the same team
with the same experimental setup.

Reproducibility. “The measurement can be obtained
with stated precision by a different team using the same
measurement procedure, the same measuring system,
under the same operating conditions, in the same or a
different location on multiple trials. For computational
experiments, this means that an independent group can
obtain the same result using the author’s own artifacts.”
This refers to reproducibility by a different team with the
same experimental setup.

Replicability. “The measurement can be obtained with
stated precision by a different team, a different mea-
suring system, in a different location on multiple trials.
For computational experiments, this means that an in-
dependent group can obtain the same result using ar-
tifacts which they develop completely independently.”
This refers to reproducibility by a different team with a
different experimental setup.

The above definitions require to clarify three different con-
cepts in the context of the ML model lifecycle: 1) the arti-
facts; 2) the experimental setup; and 3) the precise meaning
of “same”.

Artifacts. From the above ACM language, we can equate
“artifacts” to the distinct components of an ML project. These
include components such as the input data, the algorithm
and its parameters, the software and hardware environment,
and the outputs such as the ML model (we will introduce
a comprehensive set of artifacts as part of the framework
description in §3.1).

Experimental Setup. The setup is defined differently depend-
ing on the stage of the lifecycle, as the output of one stage
(models, model-related and general metrics) becomes the in-
put of the next one. If we consider models/metrics as input

Submitted to the Journal of Systems Research (JSys)

2021

data for the development and production stages then in all
stages there is code, data (raw/models/metrics), parameters,
environment and hardware.

Meaning of “‘same”. The word “same” is used above to qual-
ify both setup and results. Given the imprecision of the word
itself, it can be a source of subjectivity and needs to be spec-
ified further. In the case of results, it can be defined as “a
statistically sound comparison of original vs. new output”
(as employed by previous studies [41]) and also depends on
the stage of the lifecycle. For the experimentation stage, this
means obtaining models that are as performant as the origi-
nal ones. For the development and operation stages it means
obtaining performance metrics that are as good as the ones
obtained with the original data.

In the case of setup, we can objectively define equality
by considering any change in the version of a component as
the criteria for considering it different. For example, if two
executions of the same code are carried out on the same setup,
the only difference being a change in the firmware version of
the GPU being used, then this is considered replication.

Thus, we have the following definitions in the context of
the ML model lifecycle:

¢ ML Repeatability. Obtaining the same results by the
same person using the same data, code, and hardware/-
software environment. Here, results are model and met-
rics for the experimentation stage and the performance
of the model on the new data for development and oper-
ation stages.

* ML Reproducibility. Same as above but by someone
else, possibly using equally spec’d hardware (e.g., same
machine types, but not necessarily the exact same physi-
cal machine).

* ML Replicability. Same as above but by someone else
and with changes to any of data, code, hardware/software
environment.

For ML projects, the most important properties are repeata-
bility and reproducibility. While replicability is relevant, the
sensitivity of different models to their input and the environ-
ment makes replicability harder to achieve (see also §5).

3 Classification Framework

We now introduce our framework for classifying ML systems
according to their reproducibility support. The framework
consists of two core parts: 1) the project artifacts, i.e. the
components of an ML project that are needed for reproducing
an output such as a model (3.1); and 2) the reproducibility
capabilities (§3.2) that are required for a system to provide
reproducibility.

3.1 ML Project Artifacts

The project artifacts determine the set of components of an
ML project that are decisive for the output of the project and
hence, essential for achieving reproducibility. We identify 9
core components of an ML project: Code, input data, input
parameters, output data, output metrics, software dependen-
cies, system dependencies, hardware dependencies, and the
overall experiment.

Code. At each stage of the entire model lifecycle, code is at
the center of the practice. During experimentation, the focus
of our work, code describes how data is cleaned and prepared,
and which algorithms to use for model training.

Input data. Input data describes the raw data that is wran-
gled in order to produce the training, test and validation sets
required to build a model during the experimentation stage.
The raw data can be updated as new and more data becomes
available.

Input parameters. In most cases, code and the correspond-
ing data processing and training algorithms are heavily param-
eterized, including information such as a model’s hyperpa-
rameters or the thresholds of a filtering algorithm. Parameters
evolve separately from code and thus are treated as a separate
component.

Output data. The output data of a project is any asset that is
produced by a lifecycle stage and that is required by the next
stage (or to provide functionality during the operation stage).
For the experimentation stage, output data is usually a trained
model.

Output metrics. Output metrics are relevant measurements
captured during the different stages of the lifecycle. For the
experimentation stage, metrics usually describe, how model
properties change over time. Metrics include scores such as
accuracy, recall, etc.

Software dependencies. These type of dependencies de-
scribe the direct dependencies that are required for a project
to run. If these dependencies are not present, executing a
lifecycle stage will fail. Such dependencies include necessary
software packages, e.g., for python or R.

System dependencies. This type of dependencies describes
system-related information associated to the execution of
a lifecycle stage. While these are not explicitely defined
as dependencies by a project, they can still influence the
outcome. Examples include the specific operating system,
software runtime versions, or the version of the kernel.

Hardware dependencies. These dependencies describe the
hardware platform on which the code was executed, including
information such as the specific type of GPU that was used for
training. As the specific hardware can potentially influence
the output of a project [36], it needs to be treated as a separate
component.

Experiment. The experiment describes an entire lifecycle

Submitted to the Journal of Systems Research (JSys) 2021
P Outputs ------------- ' Dependencies Fommmmmmmmmmmmmommeoooooooes ML Management System -

i Output Data § : ji :) : i

Code pro?uces § —ﬂ;:: A i

i Output Metrics i /- ‘1 version 3

depends on L""""""""""J D G i TS }

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Software Dependencies

¢ runs on

l runs on

;

i

System Dependencies §
i

i

Hardware Dependencies i
i

Experiment

Figure 2: Interactions between project artifacts

phase as a whole and is a combination of all the artifacts
as described above. While this may seem redundant, it is
important to treat the experiment as a separate artifact as it
can provide additional context for what the overall aim of
a particular combination of artifacts was, e.g., train a deep
learning model for image classification based on the ImageNet
dataset on a cluster of 10 GPUs.

Figure 2 shows how the different artifacts relate to each
other. Code is at the core, consuming both input data and
input parameters and producing output data and output met-
rics. To successfully run, the code requires a set of software
dependencies, which in turn, run on a system with a certain
configuration. At the bottom is the hardware on which the
experiment is run.

To achieve perfect reproducibility of an ML model, in-
formation about the state of all the 9 artifacts, at the time
when the original model was created, needs to be available
to users. Any one artifact can have an influence on the ex-
pected outcome, i.e. if an artifact is not kept track of properly,
reproducibility may be affected.

3.2 Reproducibility Capabilities

Given the artifacts that are required for reproducibility, the
next part of our framework defines the capabilities that are
required to utilize those artifacts for reproducibility. Our
framework is built around two core capabilities: Versioning
and Automation. Each of these capabilities has associated
actions that describe what exactly a system supports along
those two dimensions.

Versioning. Looking at the types of reproducibility as de-
scribed in §2.2, we can identify a common workflow that is
required for reproducing any output:

1. Obtain the inputs from the point in time for which the
output should be reproduced;

,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Version Repository -

Figure 3: Versioning and automation for reproducibility

2. Apply the same processing steps to the inputs using the
same algorithm and parameter/system configurations;

3. Compare the result to the previous result to verify equal-
ity of the reproduced output.

While the exact set of inputs can vary for Replicability, the
overall workflow remains the same.

At the core of the above workflow is the ability to retrieve
historic data. During the first step, the input data from the
time of the original model creation needs to be retrieved. In
the second step, the algorithms, parameters, and system con-
figurations, which were used to create the original model,
need to be retrieved. Finally, the original outputs need to be
obtained to be able to compare the reproduced model to the
original one. To be able to retrieve historic information, a sys-
tem needs to track the individual versions of this information.
Hence, versioning capabilities are a necessary requirement
for any reproducibility system.

Code versioning is a standard practice when writing soft-
ware in order to keep track of how code has changed over
time. However, for ML projects, versioning is more compli-
cated as not only code but all other relevant artifacts needs
to be tracked. Whereas code versioning is well understood
and has a rich and mature set of tools [5,9, 12], versioning
of ML project components such as input data or software
dependencies is still in its early steps.

Versioning Actions. In our framework, versioning has three
corresponding actions, which describe if and how versioning
is supported: None, snapshot-based, and version-based. None
means that versioning is not supported.

Snapshot-based means that the versions of the different arti-
facts for a single experiment are kept as part of the experiment
execution. For example, a snapshot of the input parameters is
taken before the start of the experiment, stored in a database,
and linked to the specific experiment. This snapshot can then
later be retrieved as part of the past experiment to determine
the exact parameter configuration. Snapshots, however, do
not document relationships between experiments, i.e. they
do not keep track of, how and why, parameters changed over
time.

Submitted to the Journal of Systems Research (JSys)

Version-based means that the project artifacts are kept in
full version control. Temporal changes are kept track of
through commits and the evolution of those changes is doc-
umented through the commit history and the corresponding
commit messages. Individual commits for different artifacts
are linked to experiment executions. Additionally, full version
control supports branching, merging, and reverting changes
back to a previous commit. This approach is equal to how
code is versioned in the majority of software projects.

Automation. In theory, versioning of each project artifact
is enough to achieve full reproducibility. If the versions (or
snapshots) of every artifact of an experiment are available, a
data scientist will be able to rerun the experiment and compare
the results to the original execution. However, manually
creating the correct experimental setup and retrieving the
correct versions associated with the target experiment is often
difficult, in particular for complex ML workflows. Hence, our
framework considers automation capabilities as an essential
part for providing reproducibility.

Automation refers not only to the ability to reproduce an
experiment but also the ability to create a reproducible ex-
periment. It aims to classify a system according to two main
questions:

1. How easy is it for a data scientist to replicate a previ-
ous experimental setup, rerun a certain experiment, and
compare the output to the original results?

2. How easy is it for a data scientist to create all the nec-
essary artifact versions, capture the experimental setup,
and create a bundle that allows to reproduce an experi-
ment?

A perfect reproducibility system makes it easy to both create
artifact versions and provide them as a reproducible bundle
and to consume that bundle to rerun and verify past experi-
ments.

Automation Actions. Our framework defines four main ac-
tions to describe automation capabilities: None, creation,
publishing, and fetching of an artifact version. For code arti-
facts, an additional “execute” action is defined. Again, “none”
means that no automation capabilities for a particular artifact
are supported. In contrast to the versioning dimension, the
automation actions are not mutually exclusive. It is possible
for systems to support either none, or a combination of 1, 2,
or all 3 (4 in the case of code) actions for an artifact.

Creation refers to the ability to automatically create arti-
fact versions for an experiment. Based on the system’s and
artifact’s versioning support, this could either mean that cre-
ating a snapshot or committing a new version of an artifact is
automated. This action is part of a system’s ability to create a
reproducible experiment.

Publishing describes, whether a system allows data scien-
tists to make artifact versions available so that they can be
shared with others. Our framework does not consider whether

2021
Table 1: The classification framework
Artifact Versioning Automation
Code NorSorV N or (C and/or P and/or F
and/or E)
Input Data NorSorV N or (C and/or P and/or F)
Input Parameters NorSorV N or (C and/or P and/or F)
Output Data
Output Metrics
Software Deps.
System Deps.
Hardware Deps.
Experiment

artifacts are available publicly or require certain access cre-
dentials as long as they can be shared through some means
that do not require to manually copy and transfer them. Again,
this action is part of supporting the creation of reproducible
experiments.

Fetching is the ability of a system to automatically retrieve
previously published artifacts and use them when reproducing
an experiment. If fetching is supported for an artifact, data
scientists do not have to deal with picking and retrieving the
right version themselves. This action is part of consuming a
reproducible experiment.

Execution is a special action, only referring to code artifacts.
As the actual experiment workflow is specified in code, code
not only needs to be fetched but also executed in order to
reproduce an experiment. All other artifacts do not require to
(and cannot) be executed. Again, this action is also required
to support consumable reproducible experiments.

Framework Summary. Combining the artifacts and the re-
producibility capabilities yields the classification framework
as summarized in Table 1. In the versioning dimension, N
stands for None, whereas S and V describe snapshot-based
and versioning-based version support, respectively. Along the
automation dimension, C, P, F, and E are creation, publishing,
fetching, and execution of artifacts, respectively.

4 System Evaluation

We now present our evaluation of the different systems. We
first introduce how we generated the list of systems to evalu-
ate (§4.1) and then use our framework to classify the systems
according to their reproducibility capabilities (§4.2).

4.1 The Systems

Compiling a list of systems for analysis is challenging due
to the large number of existing machine learning systems.
To create our list of systems for classification and make it as
complete as possible, we follow the methodology as described
below.

Submitted to the Journal of Systems Research (JSys)

2021

Table 2: List of evaluated tools

Name Website Version
ClearML https://clear.ml/ 17.04
Dessa Atlas https://www.atlas.dessa.com/ 0.1.1
Determined AI https://determined.ai/ 0.14.3
Dolt https://www.dolthub.com/ 0.24.2
DVC https://dvc.org/ 2.0.13
Kubeflow https://www.kubeflow.org/ 1.3.0
MLflow https://mlflow.org/ 1.17.0
Pachyderm https://www.pachyderm.com/ 1.11.7
Polyaxon https://polyaxon.com/ 1.9.5
Qri https://qri.io/ 0.9.13
Quilt https://open.quiltdata.com/ 3.4.0
TensorBoard https://www. tensorflow.org/ 2.5.0
tensorboard

As a starting point we used a recently published list of over
200 machine learning systems, which aims to cover the entire
ML tooling landscape [26]. As the list is still being updated,
we took a snapshot of the list on 08/21/20 to fix the base set
of systems. The snapshotted list consists of 212 systems in
total.

As the base list covers any system related to machine learn-
ing, we needed to filter the list to extract only systems that
offer some form of reproducibility support. For that, we
manually looked at the website and documentation for each
individual system and searched for mentions of keywords that
indicate, whether the system provides some form of repro-

LEINT3

ducibility. If capabilities such as “tracking”, “reproducibility”,
“provenance”, “versioning”, etc. were mentioned, we included
the tool in the list of reproducibility tools.

The initial filtering step reduced the list of systems to 43.
To get a list of usable systems, we further filtered the 43
systems, removing any systems that are proprietary, inactive,
only provide hosted solutions, or mention reproducibility as
a planned feature in the future. This resulted in the final
list of 12 systems as summarized in Table 2. We make the
complete list of systems with filtered systems and the reason
for filtering highlighted available as part of the supplemental
materials.

4.2 Framework-based Classification

Next, we study the different tools by classifying their ca-
pabilities using our framework. To identify the versioning
and automation capabilities for each artifact, we use infor-
mation available through the system’s official documentation.
However, the documentation alone is often not sufficient to
determine all relevant operational details of a system. Hence,
in addition, we also create single-node test deployments for
the individual system and observe them in action, specifically
trying to trigger the different reproducibility capabilities for
the different types of artifacts.

The results are summarized in Table 3 and our full analysis,
with the reasoning behind the individual classifications is also
made available as part of the supplemental materials. Table 3,
each system has two rows, the first row for its versioning
capabilities and the second row for its automation support.
Based on the results, we make 7 key observations.

Observation 1: Three types of systems. The first observa-
tion is that there are three main types of systems: project
management systems (ClearML, Dessa Atlas, Determined Al,
Kubeflow, MLflow, Pachyderm, Polyaxon), data versioning
systems (Dolt, DVC, Qri, Quilt), and visualization systems
(TensorBoard). Each class of systems has a different objective,
which is reflected in their capabilities.

The aim of project management systems is to provide ways
for organizing and managing the entire or significant parts of
the model lifecycle. Hence their capabilities are broad and
mostly cover all dimensions. Data versioning systems focus
on versioning input data. As input data can be large, ver-
sioning it is difficult and requires specific methods to achieve
versioning in an efficient way. As can be seen in Table 3,
the capabilities of data versioning systems are mostly placed
around input and output data. However, some provide addi-
tional capabilities to support experiment management. The
main goal of visualization systems is to provide a flexible way
of tracking and visualizing experiment input parameters and
output metrics.

The above observation means that to achieve full repro-
ducibility for ML projects, the use of a project management
system is required. If stronger forms of data versioning and
more flexible ways of visualizing results is needed, project
management systems can be paired with data versioning and
visualization systems.

Observation 2: Full versioning is rare. When looking at
the system capabilities, we can see that snapshotting is the
dominant form of keeping track of project artifacts whereas
full versioning is rare. Instead of systems allowing to keep
track of individual artifacts with full version control (commit,
branch, merge, etc.), they mostly store the current value of an
artifact at the time of an experiment as a snapshot.

We believe that the main reason for this is that for smaller
data, the majority of tools assume that it is already kept in a
version control systems (mostly git) so separate version con-
trol capabilities would be redundant. Additionally, snapshot-
ting is sufficient to keep track of the artifacts of an experiment
while being much simpler to implement than fully-fledged
version control. On the other hand, versioning large data is
a less well understood problem and as data is becoming as
(or even more) valuable as code, new solutions are created to
offer data versioning support.

To achieve reproducibility, snapshotting is sufficient. If the
state of each artifact at the time of an experiment is known, the
experiment can be reproduced. However, as we will discuss
in §5, versioning can be useful to enable other capabilities,

https://clear.ml/
https://www.atlas.dessa.com/
https://determined.ai/
https://www.dolthub.com/
https://dvc.org/
https://www.kubeflow.org/
https://mlflow.org/
https://www.pachyderm.com/
https://polyaxon.com/
https://qri.io/
https://open.quiltdata.com/
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard

Submitted to the Journal of Systems Research (JSys) 2021
Table 3: Framework-based reproducibility tool classification
Name Code Input Input Output Output Software System Hardware Experi-
Data Params Data Metrics Deps Deps Deps ment
ClearML S S S S S S S N S
C/P/IE C/P/IF C/P/IF C/P/F C/P/F C/P/F P/F N C/P/F
Dessa Atlas S S S S S S S N S
C/P/FIE C/P/F C/P/F C/P/F C/P/F P/F P/F N C/P/F
Determined Al S S S S S S S N S
C/P/FIE C/P/F C/P/F C/P/F C/P/F P/F P/F N C/P/F
Dolt N v N A\ N N N N N
N C/P/F N C/P/F N N N N N
DVC S \'% S \% S N N N v
C/P/F C/P/IF C/P/IF C/P/F C/P/F N N N C/P/F
Kubeflow S S S S S S S N S
C/P/E C/P/F C/P C/P/F P/F P/F P/F N C/P/F
ML flow S S S S S S S N S
C/P/FIE C/P/F C/P/F C/P/F C/P/F F F N C/P/F
Pachyderm S \Y S v N S S N S
C/P/IF C/P/IF C/P/IF C/P/F N P/F P/F N C/p
Polyaxon S S S S S S S N S
C/P/IE C/P/F C/P/F C/P/F C/P/IF P/F P/F N C/P/F
Qri S S N S N N N N N
C/P/FIE C/P/F N C/P/F N N N N N
Quilt N S N S N N N N N
N C/P/F N C/P/F N N N N N
TensorBoard N N S N S N N N N
N N C/P/F N C/P/F N N N N

e.g., , reasoning about why a certain change was made to an
artifact.

Observation 3: Almost no support for automatic depen-
dency discovery. From Table 3 we can see that most project
management systems provide snapshotting support for soft-
ware and system dependencies. In most cases, this is done
through running the pipeline steps as containers and then
recording information on which container image was used
for a particular step. Additionally, for software dependencies,

several systems also provide other ways of snapshotting, e.g.,
, through conda environments or a requirements. txt file to
capture python packages.

However, there is little to no support for automatically cap-
turing any software/system dependencies. While systems
capture information on dependencies (e.g. in the form of
a container image), they do not capture the dependencies
themselves. The only exception we found is ClearML, which
records all python packages that were required for an experi-

Submitted to the Journal of Systems Research (JSys)

2021

ment run.

This does not affect the ability to reproduce an experiment
as the information on which dependencies are required is still
available. However, automating dependency discovery and
assisting users in creating container images or other depen-
dency collections could be useful to ease burden on users.
This especially applies to system dependencies as software
dependencies are often already managed by the users while
system dependencies are “just there”.

Observation 4: No hardware dependency tracking. The
fourth observation is that none of the systems provide any
capabilities to record hardware dependencies, i.e. on which
platform the code was run or which specific devices (e.g.,
GPUs or TPUs) and device models were used. While some
systems keep information on whether a GPU was required or,
if it is a scheduled system, on which worker a pipeline task
was executed, we did not find any capabilities to keep track
of which specific hardware was used.

At first sight, tracking hardware dependencies seems less
relevant for reproducibility. Data scientists are usually less
concerned about on which platform their code will be running.
However, hardware can influence the outcome of an ML ex-
periment [36] and hence, tracking hardware dependencies is
an important feature that can help to improve reproducibil-
ity. Such capabilities should be incorporated into existing
systems.

Observation 5: Limited system interoperability. As men-
tioned in §3.1, our classification framework treats an ML
experiment as a separate artifact, which can be versioned,
published, and fetched. However, when trying to classify sys-
tems in terms of their experiment versioning and automation
support, we realized that “experiment tracking” can cover a
broad spectrum of capabilities, which can support different
types of reproducibility.

One one end of the spectrum is the ability to create and
execute a copy of an experiment in the same environment and
using the same system through which the original experiment
was run. This makes it very easy and convenient to reproduce
an experiment but requires to have access to the original
environment. On the other end of the spectrum is the ability
to export experiments to a different environment, prepare
the environment, and then rerun it. This is usually harder to
achieve as environments can differ and experiments are often
created packaged for execution through a specific system.

Due to this difficulty, most system we studied are on the
former end of the spectrum in terms of experiment versioning
and automation support. While some allow to download
experiments as bundles or packages, others allow to clone
or copy experiments for immediate re-execution (with the
ability to edit parameters). If users have access to the system,
reproducibility becomes easy. However, this also highlights
an important problem, i.e. that of interoperability between
systems. There is no easy way to copy an experiment to a

different system and reproduce it there. Such a task would
either require to manually retrieve all experiment artifacts and
prepare the experiment for a different environment or set up
the system. Both options are tedious and the latter might not
even be possible. Hence, more work is necessary to allow
more seamless interactions between the systems.

Observation 6: Systems are similar but different. As can
be seen from Table 3, most systems within a class of systems
support the same capabilities. For the way these capabilities
are supported, we identified some common themes across
the different systems. For example, managing software and
system dependencies through container images is common or
allowing to track input and output data through some form
of artifact logging API is supported by several of the project
management systems.

However, while systems show similarities in some dimen-
sions, they can also differ significantly for other capabilities.
For example, one obvious difference is the target environ-
ment of the (project management) systems. While some are
targeted at more generic environments, systems like Kube-
flow, Pachyderm, and Polyaxon are solely build for Cloud
native, Kubernetes-based setups. Another difference is how
systems manage model outputs. While some do not distin-
guish between model or other output data, other systems (e.g.
ClearML, Determined Al, or MLflow) provide more function-
alities to manage produced models. Other differences include
input parameter tracking (various degrees of automated track-
ing support), the assumption whether git is present or not, and
the way, experiments are abstracted (as the project directory,
experiment checkpoints, or just at a logical level).

This observation shows that our framework is able to cap-
ture the essential capabilities for reproducibility. Despite the
differences of the systems, our framework is able to abstract
them to a comparable representation that shows their similari-
ties at a higher level. It also confirms the previous observation
that, due to the differences, system interoperability is difficult
and hinders reproducibility across systems.

Observation 7: Reproducibility support is good but clas-
sification is messy. Overall, our findings show that project
management systems have good reproducibility support as
they provide snapshotting capabilities and automation around
those for (almost) all project artifacts. Additionally, more spe-
cialized tools for data and metrics tracking can be combined
with project management systems to enhance the base capa-
bilities and provide more functionality to users. For example,
Determined Al already relies on TensorBoard by default for
visualizing output metrics.

On the other hand, we found that classification of the ca-
pabilities is difficult and even messy at times. This is due to
the fact that there are currently no standardized definitions
around what exactly an artifact comprises and what exactly
a certain automation capability needs to provide. Hence, we
often encountered ambiguities and needed to resolve them

Submitted to the Journal of Systems Research (JSys)

2021

using our best judgement (see “Definitions and Clarifications”
in the supplemental material). We hope that this work can pro-
vide a starting point for discussion around what specifically
constitutes reproducibility in the context of the ML model
lifecycle and to develop clear concepts and definitions around
the various requirements to provide full reproducibility.

5 Research Agenda

Our framework and system analysis is an initial step towards
better understanding the system requirements to achieve repro-
ducibility in the ML model lifecycle. However, it still leaves a
plethora of open questions that need to be answered to achieve
a truly reproducible lifecycle. In this section, we suggest pos-
sible research directions, which we deem important to build
better reproducibility systems. First, we discuss, how our
current system analysis needs to be deepened to gain a bet-
ter understanding of the different system capabilities (§5.1).
Then, we introduce extensions that need to be added to our
framework to capture all aspects of ML reproducibility (§5.2).
Finally, we present current gaps in the tooling landscape that
need to be filled to improve reproducibility support (§5.3).

5.1 Deeper Tool Analysis

We propose three main research directions to gain a better
understanding of the reproducibility capabilities of current
systems: User Experience (UX), Performance, and Bench-
marking.

User Experience. In this work, our system analysis was
solely focused on whether and how a certain system sup-
ports a certain reproducibility capability, as defined by our
framework. As shown in §4, often, many systems offer the
same or a similar set of capabilities. However, these systems
are still different as they made different design choices in
terms of, e.g., how projects are specified, how artifacts are
tracked, or how information is displayed. While these choices
do not necessarily influence the capabilities, they can have a
big impact on a user’s experience when operating the system.
Hence, an important question is: How easy is it for a data
scientist to create a reproducible experiment with a specific
tool and how easy is it to reproduce this experiment?
Answering this question requires to conduct a user study of
the different systems. Such a study would consist of two parts:
1) define a specific ML task that needs to be achieved by a
user. For example, this could be to build a classifier for some
task with a certain accuracy target; 2) reproduce the resulting
model. This should be done by the same user who created the
initial model to evaluate the repeatbility, and by a different
user to evaluate reproducibility. Measuring, how fast users
can achieve those tasks will provide a better understanding of
what design choices help to improve reproducibility.
Conducting such a study comes with several challenges.
First, a task needs to be defined that is both specific, requires

10

a reasonably complex workflow, and stresses the system in
terms of its experimentation capabilities by requiring many
iterations. Additionally, the previous ML expertise of the
participants can heavily influence the outcome, which needs
to be taken into consideration. Finally, it is not clear how the
replicability support of a system should be evaluated as part of
such a study, i.e. how should the changes that are introduced
to the experimentation process be defined. The outcome of
the study can help to understand what features are more/less
important for reproducibility and what features may still be
missing.

Performance. Another aspect that we have not addressed in
this work is the performance of the different systems. While a
UX study helps to evaluate the features of a system, a perfor-
mance study evaluates the implementation of these features.
As shown in §4, the same features can be implemented in a
variety of ways, which affects the performance and efficiency
of a system. As data is becoming larger and pipelines are
getting more and more complex, having performant, resource-
efficient, and scalable implementations of the different fea-
tures will become necessary to keep operating the systems.
The research question in this case is: How costly in terms
of resources and processing overhead is it to support repro-
ducibility in the ML model lifecycle?

This questions requires a detailed performance analysis of
the different ML reproducibility systems. The analysis needs
to evaluate the different versioning and automation features
of a system for each of the project artifacts. This includes
a variety of tasks such as evaluating how long it takes to
version/snapshot an artifact for different backend stores, the
overhead this adds on the end-to-end pipeline, how much
storage is required by a version/snapshot, how long it takes to
retrieve past data, how long it takes to setup and rerun a past
experiment, and many more.

The main challenge of such a study is to collect a repre-
sentative set of workloads that is able to both stress each
individual feature/artifact combination and evaluate the sys-
tem as a whole. Additional difficulty is added as, similar to
the UX case, not only the creation of reproducible artifacts but
also the reproduction of those artifacts needs to be considered.
The results will help to find, understand, and improve current
bottlenecks in ML reproducibility systems.

Benchmarking. The above two questions naturally lead to
the next research direction: Creating a benchmark for ML
reproducibility. Questions of feature support and perfor-
mance are traditionally answered by standardized bench-
marks, which allow to compare different systems using a
well-defined set of tasks. The results of the benchmark de-
termine, which features are supported by a system and how
efficiently the tasks can be executed. The same concept can
be applied to ML reproducibility systems, which leads to the
question: How can a reproducibility benchmark be defined,
in general and for ML reproducibility in particular?

Submitted to the Journal of Systems Research (JSys)

2021

Creating a reproducibility benchmark requires to identify a
set of representative workloads and corresponding parameters
to configure the benchmark. This is similar to the above de-
scribed UX and performance studies but goes a step further as
it combines the two and requires to standardize the workloads.
Hence, the outcome of the UX study and the performance
study can be seen as necessary steps towards a reproducibility
benchmark. Overall, having such a benchmark would tremen-
dously help researchers and developers to better and more
systematically understand the reproducibility capabilities of
ML systems, and help users, to compare different solutions
and pick the most suitable one for their needs.

5.2 Framework Extensions

The framework presented in this paper has several limitations
as it does not consider a variety of aspects of the ML lifecycle.
We propose two main extensions to the framework: Cover the
entire lifecycle and consider scalability.

Entire Lifecycle. So far, we have focused on understand-
ing reproducibility for the experimentation phase of the ML
lifecycle. However, reproducibility is also required during
the development and operation phases (§2.1). Hence, these
phases need to be included in the framework to get a com-
plete picture of how different systems support reproducibility
end-to-end. The main question that needs to be answered in
this case is: What framework additions are required to assess
its reproducibility capabilities for the entire ML lifecycle?

The answer to this questions requires two main steps. First,
any additional artifacts that are added by the development and
operation phases need to be identified. For example, during
operation, the incoming requests against the trained model
would need to be tracked in order to reproduce the individ-
ual predictions the model made. Second, new automation
capabilities that are introduced by the other phases need to
be added to the framework such as automatic deployment of
newly trained models or even online (re-)training of deployed
models.

A major challenge for this extension is to gain a deeper un-
derstanding of the entire end-to-end lifecycle to clearly define,
what new artifacts and automation needs to be added. This is
difficult as the discipline of MLOps itself is still developing
and best practices are still being identified and experience
frequent changes. Hence, the framework extensions need to
be flexible enough to allow for changes while still trying to
capture the additions at a fundamental level.

Scalability. Another aspect not captured by the current frame-
work is the scalability of the reproducibility capabilities. This
refers to the ability of a system to reproduce artifacts that
have been created as part of a distributed pipeline, e.g., where
different pipeline steps where executed on different hosts and
individual steps, such as training, were run in parallel on a
cluster. While a system might be able to capture the pipeline
in general, it may not be able to recreate the distributed envi-

11

ronment used for executing the pipeline. The research ques-
tion in this case becomes: What framework additions are
required to assess the scalability of the reproducibility capa-
bilities of a system?

Answering this question again requires to understand two
main aspects of the system: 1) How does the system enable a
data scientist to create scalable pipelines; and 2) How does
the system enable a user to reproduce these scalable pipelines.
Creation likely will require to add new capabilities to the
framework, e.g., how can users define pipelines and how
is the execution of these pipelines automated on different
environments. Reproduction also will require additions such
as new artifacts for the cluster configuration/dependencies
and if and how a distributed environment can be retrieved and
set up automatically.

5.3 Missing Capabilities

We identify two main missing capabilities, that ML repro-
ducibilty systems could benefit from: Reasoning and Sen-
sitivity. Additionally, we also introduce the need for more
standardization in managing ML porjects.

Reasoning. For all types of ML reproducibility, it is necessary
to be able to rerun an experiment and compare its outcome to
the original experiment. However, if something fails during
the rerun or the outcomes are not identical, data scientists
are often facing the difficult task of identifying what failed
and why and why the outputs do not match. Reasoning ca-
pabilities help data scientists with this task by pointing to
differences in the setup, providing explanations of the origi-
nal experiment’s intentions, and streamlining the comparison
process. This direction poses two main questions: What rea-
soning capabilities are required for reproducibility and how
can they be achieved in a system?

One example for systems that offer reasoning capabilities
are notebooks such as Jupyter. Notebooks showcase the orig-
inal intentions of the data scientist through comments and
explanations, which are part of the pipeline execution. While
this approach is useful to understand the individual steps, it
does not provide guidance in case a step fails or does not
produce the desired output. To support this, additional ca-
pabilities are likely required, e.g., capturing the provenance
for each individual artifact and explanations of the individual
artifact changes.

Sensitivity. Another step towards better reproducibility sup-
port in the field of ML (and in general) is a better under-
standing of what aspects matter the most to achieve accurate
reproducibility. While our framework tries to capture the
most important input artifacts, we do not yet understand, how
important each of these artifacts is individually and how it
influences reproducibility. A good example for this is hard-
ware dependencies. As shown in §4, no framework provides
a way of capturing hardware dependencies. This is because
it is difficult to capture hardware dependencies but also, be-

Submitted to the Journal of Systems Research (JSys)

2021

cause the general understanding is that, e.g., input data is
much more important for accurate reproducibility. While this
seems intuitive, there is no systematic way of quantifying the
influence of hardware or input data on the output and hence
an important question is: How sensitive are the reproduced
outputs to the different input-related artifacts?

Answering this question requires a sensitivity analysis. For
each input artifact, a range of values needs to be defined
and for each of those values, the output and the difference
to the original output needs to be measured. This will offer
an insight into which artifacts are most important and need
to be precisely kept track off and which ones, if any, are less
important and might not need to be tracked at all. We envision
atool, similar to git bisect [10], could be used for this task.

A major challenge for such a sensitivity analysis is how
to define the value ranges for different artifacts. While some
artifacts, e.g., hyperparameters, can be easily captured in
ranges, it is less clear for others, e.g., software dependencies
or input data. It becomes even trickier if a model output has a
large number of software/system dependencies as even across
those dependencies, some might be more or less important.
While not straightforward, a sensitivity analysis can provide
valuable insight into which artifacts require more attention to
offer better, more accurate reproducibility.

Standardization. One of the main findings of our classifi-
cation is that systems provide good reproducibility support
as part of their own functionalities but cross-system repro-
ducibility is still hard to achieve. This is due to the variety of
ways in which systems define and manage projects. This can
make it hard for a team to reproduce another team’s results if
they each choose a different management system to organize
their projects. Having to deploy another system just to be
able to reproduce someone else’s results can be prohibitive
and hinder reproducibility (and specifically replicability as
defined in §2.2).

As a consequence, standards are needed in this area to
facilitate the exchange of projects and allow seamless im-
port/export from/to different system. While there is some
effort in defining common conventions (e.g. through Miflow
projects [11] and MLflow models [13]) there is currently no
universally accepted standard that would allow to easily ex-
change data between different system. The community needs
to come together to drive this effort to ensure that in the future,
sharing and reproducing different ML experiments becomes
a commodity.

6 Related Work

Recent efforts have analyzed published articles in the field of
Al and ML [23,27,31,40], with the goal of assessing the re-
producibility of articles published in this area. In general, this
body of work analyzes a set of articles in order to extract a list
of features for each paper, obtaining a dataset that is analyzed

12

and for which statistical descriptors are presented. Further
analysis can be done, such as the one presented in [40], where
correlations between these features for each article, such as
how much readability is affected by availability of code, are
analyzed. General guidelines associated to what ML plat-
forms can provide to support reproducibility is outlined. Our
analysis focuses on systems and experiments rather than ar-
ticle content, and does not go into identifying relationships
between features, although we mention what follow up analy-
sis could be done in this regard (see §5).

In addition to analyzing the state of the art by looking at
published articles, existing work has surveyed existing ML
tools with the goal of evaluating their reproducibility capa-
bilities, mostly from the point of view of users. These have
been both qualitative [30,38] and quantitative [24, 28] evalua-
tions. Specifically for the latter, existing work has proposed
frameworks for systematically quantifying the reproducibility
features of ML tools. The main difference between the present
work and these previous efforts is our focus on quantifying
the degree to which the two fundamental features involved
in reproducibility (versioning and automation) are supported
by these tools. In addition, we provide a research agenda
towards a better understanding of reproducibility systems for
ML and improving their utility for end users.

7 Conclusion

In this paper, we attempted to better understand the require-
ments of reproducibility for ML applications and assess the
reproducibility support of existing ML lifecycle management
systems. We proposed an evaluation framework based on the
two core reproducibility principles of versioning and automa-
tion to classify the reproducibility capabilities of ML systems.
Using this framework, we carried out an in-depth study of 12
popular ML systems.

Our findings reveal that most systems have comprehen-
sive support for reproducibility but there are still gaps, such
as missing hardware dependency tracking, automatic depen-
dency discovery, and better cross-system reproducibility. We
outlined a research agenda for filling these gaps and improv-
ing our understanding of ML reproducibility in general. We
hope that the community can work together towards these
goals and help make reproducibility for ML applications a
seamless process for data scientists.

References

[1] DVC - Open-source Version Control System for Ma-
chine Learning Projects. https://dvc.org/, 2020.

[2] MLflow — An Open Source Platform for the Machine
Learning Lifecycle. https://mlflow.org/, 2020.

https://dvc.org/
https://mlflow.org/

Submitted to the Journal of Systems Research (JSys)

2021

[3] Pachyderm — Engineered to Make Data Science Explain-

able. Repeatable. Scalable. https://www.pachyderm.

com/, 2020.

[4] Polyaxon — Reproduce, Automate, Scale Your Data Sci-
ence. https://polyaxon.com/, 2020.

[5] Apache Subversion. https://bit.1ly/3pWeaWw, 2021.

[6] Artifact Review and Badging.
//www.acm.org/publications/policies/
artifact-review-and-badging-current, 2021.

https:

[7] Atlas: Self-Hosted Machine Learning Platform. https:
//github.com/dessa-oss/atlas, 2021.

[8] Determined AI — Distributed Deep Learning and
Hyperparameter Tuning Platform. https://www.
determined.ai/, 2021.

[9] git. https://git-scm.com/, 2021.
[10] git-bisect. https://bit.1ly/3GBphKx, 2021.

[11] https://mlflow.org/docs/latest/projects.html. https://
mlflow.org/docs/latest/projects.html, 2021.

[12] Mercurial.
2021.

https://www.mercurial-scm.org/,

[13] MLflow Models. https://mlflow.org/docs/
latest/models.html, 2021.

[14]
[15]

QRI. https://qri.io/, 2021.

TensorBoard: TensorFlow’s Visualization Toolkit.
https://www.tensorflow.org/tensorboard, 2021.

[16] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: A System for
Large-Scale Machine Learning. In /2th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI’16), pages 265-283, 2016.

[17] Leonel Aguilar Melgar, David Dao, Shaoduo Gan, Nez-
ihe M Giirel, Nora Hollenstein, Jiawei Jiang, Bojan Kar-
las, Thomas Lemmin, Tian Li, Yang Li, et al. Ease.ML:
A Lifecycle Management System for Machine Learning.
In 11th Annual Conference on Innovative Data Systems

Research (CIDR’21), 2021.

[18] James Bergstra, Daniel Yamins, and David Cox. Making
a Science of Model Search: Hyperparameter Optimiza-
tion in Hundreds of Dimensions for Vision Architec-
tures. In 30th International Conference on Machine

Learning (ICML’13), 2013.

13

[19] Eugen Cepoi and Liping Peng. Runway - Model Life-
cycle Management at Netflix. In 2020 USENIX Con-
ference on Operational Machine Learning (OpML’20),
2020.

[20] Frangois Chollet et al. Keras. https://github.com/

fchollet/keras, 2015.

[21] Christian Collberg and Todd A. Proebsting. Repeata-
bility in computer systems research. Commun. ACM,

59(3), 2016.

[22] Odd Erik Gundersen, Yolanda Gil, and David W Aha.
On Reproducible Al: Towards Reproducible Research,
Open Science, and Digital Scholarship in Al Publica-

tions. Al Magazine, 39(3), 2018.

[23] Odd Erik Gundersen and Sigbjgrn Kjensmo. State of the
Art: Reproducibility in Artificial Intelligence. In 32nd
AAAI Conference on Artificial Intelligence (AAAI'1S8),

2018.

[24] Odd Erik Gundersen, Saeid Shamsaliei, and
Richard Juul Isdahl. = Do Machine Learning Plat-
forms Provide Out-of-the-box Reproducibility? Future

Generation Computer Systems, 126, 2022.

[25] Matthew Hutson. Aurtificial Intelligence Faces Repro-

ducibility Crisis. Science, 359(6377):725-726, 2018.

[26] Chip Huyen. What I Learned from Looking at 200
Machine Learning Tools. https://huyenchip.com/

2020/06/22/mlops.html, 2020.

[27] S. Idowu, D. Striiber, and T. Berger. Asset manage-
ment in machine learning: A survey. 2021 IEEE/ACM
43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages

51-60, 2021.

[28] Richard Isdahl and Odd Erik Gundersen. Out-of-the-
Box Reproducibility: A Survey of Machine Learn-
ing Platforms. In I5th International Conference on

eScience (eScience’19), 2019.

[29] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional Ar-
chitecture for Fast Feature Embedding. arXiv preprint

arXiv:1408.5093, 2014.

[30] Anton Khritankov, Nikita Pershin, Nikita Ukhov, and
Artem Ukhov. Mldev: Data science experiment automa-

tion and reproducibility software, 2021.

[31] Brian Lee, Andrew Jackson, Tom Madams, Seth Troisi,
and Derek Jones. Minigo: A Case Study in Reproducing
Reinforcement Learning Researcs. In Reproducibility

in ML Workshop @ ICLR’19, 2019.

https://www.pachyderm.com/
https://www.pachyderm.com/
https://polyaxon.com/
https://bit.ly/3pWeaWw
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/dessa-oss/atlas
https://github.com/dessa-oss/atlas
https://www.determined.ai/
https://www.determined.ai/
https://git-scm.com/
https://bit.ly/3GBphKx
https://mlflow.org/docs/latest/projects.html
https://mlflow.org/docs/latest/projects.html
https://www.mercurial-scm.org/
https://mlflow.org/docs/latest/models.html
https://mlflow.org/docs/latest/models.html
https://qri.io/
https://www.tensorflow.org/tensorboard
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://huyenchip.com/2020/06/22/mlops.html
https://huyenchip.com/2020/06/22/mlops.html

Submitted to the Journal of Systems Research (JSys)

2021

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E Gonzalez, and Ion Stoica. Tune: A
Research Platform for Distributed Model Selection and
Training. arXiv preprint arXiv:1807.05118, 2018.

Scott M Lundberg and Su-In Lee. A Unified Ap-
proach to Interpreting Model Predictions. In 317st
Conference on Neural Information Processing Systems
(NeurlPS’17). 2017.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan
Sparks, Shivaram Venkataraman, Davies Liu, Jeremy
Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh,
Matei Zaharia, and Ameet Talwalkar. MLIlib: Machine
Learning in Apache Spark. J. Mach. Learn. Res.
(JMLR), 17(1):1235-1241, 2016.

Hui Miao, Amit Chavan, and Amol Deshpande. Provdb:
Lifecycle management of collaborative analysis work-
flows. In 2nd Workshop on Human-In-the-Loop Data
Analytics HILDA’17, 2017.

Prabhat Nagarajan, Garrett Warnell, and Peter Stone.
Deterministic implementations for reproducibility in
deep reinforcement learning. arXiv preprint
arXiv:1809.05676, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An Imperative Style, High-
performance Deep Learning Library. In Advances in
Neural Information Processing Systems (NeurIPS’19),
pages 8026-8037, 2019.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv
Sinha, Vincent Lariviere, Alina Beygelzimer, Florence
d’Alche Buc, Emily Fox, and Hugo Larochelle. Im-
proving reproducibility in machine learning research(a
report from the neurips 2019 reproducibility program).
Journal of Machine Learning Research, 22(164):1-20,
2021.

Hans E. Plesser. Reproducibility vs. Replicability: A
Brief History of a Confused Terminology. Frontiers in
Neuroinformatics, 11:76, 2018.

Edward Raff. A Step Toward Quantifying Indepen-
dently Reproducible Machine Learning Research. In
Advances in Neural Information Processing Systems
(NeurIPS’19), 2019.

14

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

Edward Raff. A step toward quantifying independently
reproducible machine learning research. In 33rd Inter-
national Conference on Neural Information Processing
Systems (NeurIPS’19), 2019.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. Snorkel:
Rapid training data creation with weak supervision. In
Proceedings of the VLDB Endowment (PVLDB), vol-
ume 11, pages 269-282, 2017.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. "Why Should I Trust You?": Explaining the
Predictions of Any Classifier. In 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD’16), 2016.

Vinay Sridhar, Sriram Subramanian, Dulcardo Arteaga,
Swaminathan Sundararaman, Drew Roselli, and Nisha
Talagala. Model Governance: Reducing the Anarchy
of Production ML. In 2018 USENIX Annual Technical
Conference (ATC’18), 2018.

Nisha Talagala. Why MLOps (and not just ML) is your
Business’ New Competitive Frontier. https://bit.
ly/2NWecmvX, 2018.

Rachael Tatman, Jake VanderPlas, and Sohier Dane.
A Practical Taxonomy of Reproducibility for Machine
Learning Research. In Reproducibility in ML Workshop
@ ICML’18, 2018.

Trifacta. Wrangler. https://www.trifacta.com/
products/wrangler-editions/#wrangler, 2020.

Manasi Vartak and Samuel Madden. ModelDB: Oppor-
tunities and Challenges in Managing Machine Learning
Models. IEEE Data Eng. Bull., 41(4), 2018.

Pete Warden. The Machine Learning Reproducibil-
ity Crisis. https://petewarden.com/2018/03/19/
the-machine-learning-reproducibility-crisis/,
2018.

Matei Zaharia, Andrew Chen, Aaron Davidson, Ali
Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
et al. Accelerating the Machine Learning Lifecycle with
MLflow. IEEE Data Eng. Bull., 41(4):39-45, 2018.

Jinan Zhou, Andrey Velichkevich, Kirill Prosvirov,
Anubhav Garg, Yuji Oshima, and Debo Dutta. Katib: A
Distributed General AutoML Platform on Kubernetes.
In 2019 USENIX Conference on Operational Machine
Learning (OpML’19), 2019.

https://bit.ly/2NWcmvX
https://bit.ly/2NWcmvX
https://www.trifacta.com/products/wrangler-editions/#wrangler
https://www.trifacta.com/products/wrangler-editions/#wrangler
https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/
https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/

	Introduction
	Background
	The ML Model Lifecycle
	Reproducibility, Repeatability, and Replicability in ML

	Classification Framework
	ML Project Artifacts
	Reproducibility Capabilities

	System Evaluation
	The Systems
	Framework-based Classification

	Research Agenda
	Deeper Tool Analysis
	Framework Extensions
	Missing Capabilities

	Related Work
	Conclusion

