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ABSTRACT
An automated metric to evaluate dialogue quality is critical for con-
tinuously optimizing large-scale conversational agent systems such
as Alexa. Previous approaches for tackling this problem often rely on
a limited set of manually designed and/or heuristic features, which
cannot be easily scaled to a large number of domains or scenarios.
In this paper, we present Interaction-Quality-Network (IQ-Net), a
novel DNN model that allows us to predict interaction-level dialogue
quality directly from raw dialogue contents and system metadata
without human engineered NLP features. The IQ-Net architecture is
compatible with several pre-trained neural network embeddings and
architectures such as CNN, Elmo, and BERT. Through an ablation
study in Alexa, we demonstrate that several variants of IQ-Net out-
perform a baseline model with manually engineered features (3.89%
improvement in F1 score, 3.15% in accuracy, and 6.1% in precision
score), while also reduce the efforts to extend to new domains/use-
cases.
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1 INTRODUCTION
As voice-controlled intelligent conversational agents (ICAs), such
as Alexa, Siri, and Google Assistant become increasingly popular,
ICAs have become a new paradigm for accessing information. They
represent a hybrid of search and dialogue systems that conversa-
tionally interact with users to execute a wide range of actions (e.g.,
searching the Web, setting alarms, and making phone calls) [9, 31].
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These ICAs are complex systems with many components, such as
automatic speech recognition (ASR), natural language understand-
ing (NLU), language generation, and dialog management. As a
result, there are generally two categories of evaluation metrics for
ICAs [32]: (1) Component metrics which are used to measure the
quality of each individual component, such as Word Error Rate
(WER) and NLU Accuracy; (2) End-to-End (E2E) metrics that are
designed to measure the entire dialogue quality and/or user satisfac-
tion. In this paper, we focus on “online” or “automated” E2E metrics,
which are built with machine learning models that are designed to
predict user satisfaction. Defining online E2E metrics is a popular
subject of various research [10] due to its vital role in continuous
optimization of ICA systems [15].

1. Assessment: non-defect (success)
User request: play five little ducks
ICA response: Ok, playing five little ducks
User request: (after 2 mins...) play five little ducks
2. Assessment: defect, user paraphrase
User request: play three little ducks
ICA response: Sorry, I cannot find the song
User request: play five little ducks
3. Assessment: non-defect, user confirmation
User request: turn off light
ICA response: did you mean Lamp One?
User request: yeah
4. Assessment: defect, user correction and ASR error
User request: buy
ICA response: you have one item in your shopping cart
{name of the item}, do you want to buy it?
User request: bye-bye.

Table 1: Example dialogues and interaction-quality assessment.
Note that assessments are for the 1st turn in each dialogue.

Prior attempts to model online E2E metrics could be roughly
grouped into two categories: (1) Dialogue-level metrics such as
the popular PARADISE framework [39] which aims to predict
dialogue-level satisfaction ratings provided by surveyed users; Ref-
erences [8, 36] formulate dialogue interaction as a reinforcement
learning task, which aims to predict reward from dialogue history
using different variants of DNN models. (2) Turn-level (or exchange-
level) metrics such as Interaction Quality (IQ) [33] which predict
per turn dialogue quality either provided by users [13] or annotated
by human raters [34]. In particular, IQ models have gained popu-
larity recently because of publicly available benchmarks such as
the CMU Go-bus information system [34]. Various methods exist
to predict Interaction Quality, for example using Hidden Markov
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Models [38], Support Vector Machines [12, 33] and Recurrent Neu-
ral Networks [28, 29]. However, these approaches rely heavily on
dialog system internal features such as ASR confidence and SLU
Semantic Parse. While these features a very effective in a small-scale
closed-loop system, they are very unreliable in a large organization
like Alexa where many teams constantly updating various compo-
nents in parallel. For example, ASR-confidence score could have
significant shift between two ASR model versions hence will be an
unreliable input for E2E online metric, which is, in part, designed
to measure ASR’s impact to user satisfaction. Therefore, instead
of relying on system internal signals, we draw on the intuition that
human raters could reliably judge the quality of a turn by looking at
the context of the dialogue [4] (without ever needing to know what
is the ASR confidence score). Table 1 shows four example dialogues
with interaction-quality assessment by human.

While these examples demonstrate how human could easily judge
the quality of a turn using dialogue context, they are also non-trivial
cases for an ML model to predict. For example, example #1 and
#2 share similar user paraphrase structure. But example #1 is non-
defective (successful) because ICA response is relevant while #2 is
clearly defective because the ICA responded with “sorry, I cannot
. . . ”. On the other hand, while example #3 and #4 share similar
query/response structure (ICA asking for confirmation), #3 is non-
defective because user have a positive confirmation next turn while
#4 is a defect because user correction next turn. To capture such
a diverse of dialogue patterns, it is clear that we need to leverage
semantic meaning of the dialogue context. While it is possible to
manually extract features such as “paraphrasing”, “cohesion between
response and request” as proposed by Bodigutla et al. [4], the com-
plexity of open domain system like Alexa limits the efficacy for such
approach. Therefore, in this paper we present Interaction-Quality-
Network (IQ-Net), an E2E DNN model that allows us to predict
interaction-level dialogue quality directly from raw dialogue con-
tents and system metadata without human engineered NLP features.
In contrast to existing related work, we contribute to the IQ modeling
literature from the following perspectives.

• Instead of focusing on a few specific tasks and system internal
features [21, 33], IQ-Net is a generic interaction quality model
that could be used for evaluating Interaction Quality across
multiple domains and various systems;

• Unlike previous multi-domain user satisfaction evaluation
model [4], which relies on manually engineered dialogue
features that are hard to scale, IQ-net is capable of capturing a
variety of dialogue patterns and could be easily extend to new
domain/use-cases as long as we have annotated examples.

The rest of the paper is organized as follows. Section 2 reviews
existing work. Section 3 presents our methods to estimate interaction-
level dialogue quality. Section 4 presents our experimental results.
We conclude our paper in Section 5.

2 RELATED WORK
In this section, we summarize the related work on evaluation meth-
ods/metrics for the search systems and error analysis for the ICAs to
put our contributions in context.

Evaluation is a central component for information search sys-
tems [19]. For text-based information retrieval, the relevant docu-
ments/pages are annotated manually to evaluate the search system
performance. Query-based metrics such as the mean average preci-
sion (MAP) and normalized discounted cumulative gain (nDCG) [20]
are frequently used to evaluate the system performance. However, the
human annotation process is expensive and error-prone; in addition,
the user’s individual intent is commonly not taken into consider-
ation. To alleviate this issue, some research models user satisfac-
tion/behaviors to improve the evaluation of system’s performance [1]
by incorporating the following signals: 1) user behaviors includ-
ing clicks, dwell time, mouse movements, scrolling behaviors, and
abandonment [16]; 2) context-specific features such as viewport
metrics [24], touch-related features, and acoustic signals [23], 3)
query-based features, such as query refinement, query length, and
frequency in logs. While the metrics for evaluating traditional search
system might not be used directly to evaluate ICAs, some of the
metric components, such as query refinement, can be adapted to
evaluate ICAs.

Compared with text-based information retrieval, voice-based in-
formation retrieval is quite different [21, 23] because of two reasons.
First, voice-based interactions are conversational; in some scenarios,
the user expects that the search system is able to refer to the previous
interactions to understand the current request. Second, the voice
input could provide automatic speech recognition (ASR) errors to
downstream applications and affect user satisfaction negatively. Re-
search on Spoken Dialogue System (SDS) attempts to model user
satisfaction at turn level as a continuous process over time [13, 18].
An annotated and standardized corpus, such as Let’s Go Bus Informa-
tion System dataset from CMU [34], was developed for classification
and evaluation tasks regarding task success prediction, dialogue qual-
ity estimation, and emotion recognition. Based on the dataset, an
evaluation metric as Interaction Quality [10, 34] is developed with
features related to ASR, Spoken Language Understanding (SLU),
and Dialog Manager at exchange, dialog, and window level.

ICAs differ from traditional SDS in that they support personaliza-
tion and a wide range of tasks. Dialogue systems can be categorized
into three groups: task-oriented systems, conversational agents, and
interactive question answering systems [10]. ICAs are designed to
be able to handle all of these tasks; thus, it makes the evaluation of
ICAs very challenging. In addition, as the voice-only ICAs tend to
evolve to become the voice-enabled multi-modal ICAs, it become
even more complex for evaluation. A recent user study on ICAs
attempts to compare the differences regarding features [25], perfor-
mance, ASR error [17], and user experiences [3] across different
ICAs. Surveys with questionnaires [2, 5] are conducted to under-
stand functional and topical use of ICAs by individuals; however,
these studies are limited to predefined scenarios of interactions.

Currently, there is limited research on building automatic metrics
for evaluating ICAs’ performances. Jiang et al. [21] built separate
models for evaluating user satisfaction on five domains, including
Chat, Device Control, Communication, Location, Calendar, and
Weather. The models consider several types of features, including
user-system interactions, click features, request features, response
features, and acoustic features. This work automated the online eval-
uation for ICAs. However, the work did not consider the variability
of interface and interaction; in addition, its scope is limited to ICAs
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on mobile devices and several specific scenarios/domains. Bodigutla
et al. [4] introduces a Response Quality annotation schema, which
showed high correlation with explicit turn level user satisfaction rat-
ings. This paper developed a method for evaluating user satisfaction
at turn level in multi-domain conversations users for ICA using five
features: user request rephrasing, cohesion between response and
request, aggregate topic popularity, unactionable user request, and
the diversity of topics in a session. The turn-level user satisfaction
rating is further used as feature to improve dialogue-level satisfac-
tion estimation. Other current research on evaluation of ICAs more
focuses on user satisfaction estimation and goal success prediction,
which are more suitable for dialog-level or task-level evaluation due
to the dialogue style of interactions [15, 22, 30]. A user’s frustration
in the middle of a task or a dialogue might not be captured. The ap-
proach also often lacks interpretability in term of the root causes of
user frustration. Finally, it is not obvious how one should define task
and session boundaries for ICAs [30]; thus, it is critical to evaluate
ICAs at turn level.

The complexity of ICAs’ components makes it difficult to de-
termine which component causes an error or user frustration. Re-
searchers have studied system errors in search and dialogue systems.
For ICAs, the error root causes can be categorized into groups [31,
32], including ASR errors, NLU errors, unsupported system actions,
no language generation, back-end failures, endpoint errors, and un-
interpretable inputs. These errors can be the root causes of user
reformulating their queries [27, 31].

3 METHODOLOGY
In this section, we present IQ-Net: a DNN model for estimating
interaction-level dialogue quality. First, we introduce the overall
architecture and training procedure of IQ-Net. Then, we explain how
we represent the dialogue context in details. Next, we introduce the
system metadata used in the IQ-Net.

3.1 IQ-Net
The IQ-Net model is presented in Figure 1. IQ-Net includes two
major components: (1) dialogue context representations and (2) a
list of features derived from system metadata.

For modeling dialogue context, we consider user’s request text
plus response text of ICA in the consecutive turns. As showed in
Figure 1, the dialogue context representation part takes current turn
request and response (𝑈1 and 𝑅1), and more requests from following
turns (𝑈2,𝑈3, ...) as inputs. For simplicity, we only consider the
next one turn request; thus, the inputs can be represented as <

𝑈1, 𝑅1,𝑈2 >. We will support more following turns in future work.
We assume < 𝑈1, 𝑅1 > captures the relevancy between user request
and Alexa response and < 𝑈1,𝑈2 > captures patterns from user’s
repeat/dialog behavior.

We map the word indicies of𝑈1, 𝑅1, and𝑈2 into a fixed dimension
of vectors through pre-trained word embeddings [11, 26]. The word
embedding representation of 𝑈1, 𝑅1, and 𝑈2 all go through sentence
encoder 𝐸, which can be pre-trained by individual datasets. We use
both CNN encoder 𝐸𝐶𝑁𝑁 and BERT encoder 𝐸𝐵𝐸𝑅𝑇 as sentence
encoders in our experiments for comparisons. We concatenate the
hidden representations of ℎ𝑈1 and ℎ𝑅1 , ℎ𝑈1 and ℎ𝑈2 accordingly. The

Figure 1: IQ-Net Architecture Diagram. The model consid-
ers the information of current turn utterance (𝑈𝑡 ), response
(𝑅𝑡 ), next turn utterance (𝑈𝑡+1). Semantic encoding layers share
weights. Position encoders are shared among (𝑈𝑡 ) and (𝑈𝑡+1).
Note that in this diagram, we use BERT encoder as an example.
For IQ-Net(CNN), we replace the BERT encoder with an CNN
encoder.

concatenate results for each part followed by a feed-forward network
and activation function.

The final outputs from the dialogue context representations will
combine with all other features derived from system metadata to pre-
dict a defect/non-defect outcome for the interaction-level dialogue
quality of the first turn:

𝑝 (Defect = 𝑡𝑟𝑢𝑒 | < 𝑈𝑡 , 𝑅𝑡 ,𝑈𝑡+1 >, 𝑓𝑀 ) (1)

𝑓𝑀 represents a list of meta-data features (described in Section 3.3).
The objective function for the overall task is

𝐿Θ =
∑

(𝑈𝑡 ,𝑅𝑡 ,𝑈𝑡+1)
𝑙 (𝐹 (𝑈𝑡 , 𝑅𝑡 ,𝑈𝑡+1, 𝑓𝑀 ), 𝑦) (2)

whereas 𝐹 () is a function that represents IQ-Net. 𝑙 is the standard
cross entropy loss. 𝑦 is the ground-truth label.

3.2 Dialogue Context Representations
Here, we explain in details that the dialogue context are represented

with < 𝑈1,𝑈2 > modeling and < 𝑈1, 𝑅1 > modeling.

3.2.1 < 𝑈1,𝑈2 > Modeling. < 𝑈1,𝑈2 > pair contains user’s dia-
log behavior/patterns. For example, ICA users tend to re-express the
same intention with follow-up requests after an unsuccessful attempt
from the previous request. We refer to the follow-up request as a
“rephrase” of the previous request. Identifying rephrasing pattern
between requests pair can help discovering defect/frictions.
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In addition to the rephrasing behavior between two consecutive
user requests, the user can also express the confirm or deny intention
in a follow-up request, as shown in Table 2.

Example 1: confirm
User request: Alexa, add paper to my cart
Alexa response: Do you mean paper towel?
User request: Yes.
Example 2: deny
User request: Alexa, add paper to my cart
Alexa response: Do you mean paper towel?
User request: No. add A4 paper to my cart.

Table 2: < 𝑈1,𝑈2 > confirm/deny examples.

Such patterns existing in < 𝑈1,𝑈2 > reflect user’s real intention
through the corresponding repeat/confirm/deny behaviors, which
can be learned in the proposed IQ-Net.

3.2.2 < 𝑈1, 𝑅1 > Modeling. The semantic relevance of ICA’s
response and user’s request can be an effective feature for defect pre-
dictions. When an ICA responds to a user’s request with an irrelevant
answer, the metric should capture this as defective. However, it is
difficult to discover such a defect when the ICA provides a complete
but incorrect response, and user chooses to abandon the interaction
without rephrasing the request. The relevance between the request
and the response text can potentially help with defect identification.

The IQ-Net takes user request and response text (𝑈1 and 𝑅1) as
inputs, similar to < 𝑈1,𝑈2 > modeling. We adopt the frequently used
“Siamese” architecture [6] to measure request-response similarities
in the projected space as showed in the Figure 1.

3.3 System Metadata
Table 3 introduces our signals and features of system’s metadata
for evaluating ICAs. We adopt several signals, such as termination
and barge-in, to reflect the user’s implicit feedback/action. Then, we
introduce generic features, such as user domain/intent information
from NLU outputs, and some system action types.

Feature Symbol Feature Type
[User interruption]
barge-in 𝑓𝐵𝐼 {0, 1} binary values
termination 𝑓𝑇𝑀 {0, 1} binary values
gap time 𝑓𝐺𝑇 continuous values
[User intent]
intent 𝑓𝑈 𝐼 categorical feature
domain 𝑓𝑈𝐷 categorical feature
[System Action]
dialog status 𝑓𝐷𝑆 categorical feature
promptID 𝑓𝑃𝐼 {0, 1} binary values
SLU score bin 𝑓𝑆𝐵 categorical feature

Table 3: Feature List Derived from System Metadata.

(a) barge-in

(b) termination

Figure 2: User interruption signals

3.3.1 User Interruption Signals. User Barge-in: Barge-in is
a frequently used feature for evaluation in SDS [4, 10, 34]. When
a customer interrupts a follow-up request while ICA is respond-
ing or playing, the turn will be labeled as a barge-in. As shown in
Figure 2(a), we build a rule-based barge-in model. When (1) ICA
is talking or playing, (2) the delay between the previous utterance
and the current one is less than a certain period of time (e.g., 45
seconds), and (3) the user intent is not in the intents set {“Vol-
umeUp”,“VolumeDown”,“SetVolume”}, we label the current turn
barge-in value 𝑓𝐵𝐼 = 1; otherwise, 𝑓𝐵𝐼 = 0.

User Termination: We define a user termination as when a cus-
tomer expresses a terminating intent. As shown in Figure 2(b), our
termination detection is rule-based. If the user’s intent is a terminat-
ing action (e.g., StopIntent, ExitAppIntent), the delay between the
previous utterance, and the current one is less than a certain period
of time (e.g., 45 seconds), we have the termination value 𝑓𝑇𝑀 = 1;
otherwise, 𝑓𝑇𝑀 = 0.

Gap Time: The gap time between two requests is an important
indicator for a user interruption. We use the time differences as a
feature, which is represented as 𝑓𝐺𝑇 .

3.3.2 User Intent Signals. An NLU component allows ICAs to
produce interpretations for an input sentence. The NLU component
accepts recognized speech inputs and produces intents, domains, and
slots for the input utterance to support the user request [7, 37]. We
use the domain and intent outputs from NLU as signals to reflect the
user’s intention. We cover over dozens of domains and thousands of
intents, and use them as categorical features. We use 𝑓𝑈𝐷 as domain
features and 𝑓𝑈 𝐼 as intent features.
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3.3.3 System Action Signals. Dialog Status: Dialog Man-
agement (DM) is a key component of spoken language interactions
with ICAs. It makes user inputs actionable by asking appropriate
questions to help customers achieve a goal. DM can detect when a
valid task completes or if there is trouble in the dialog and it records
this information. Following previous work on dialog acts model-
ing [35], we use DM status values as system action signals for defect
detection. Compared with the work [21], we focus on more generic
DM status categories here:

• SUCCESS: The ICA is able to act and deliver what it thinks
the user wants (not ground truth).

• IN_PROGRESS: The ICA is in the process of executing on a
task or is prompting for additional information.

• USER_ABANDONED: The user abandons an in-progress
dialog, either explicitly or implicitly.

• INVALID: The Spoken Language Understanding (SLU) could
interpret the utterance, but the ICA cannot handle it. For ex-
ample, the input may express a task that is unactionable due to
user dependencies (e.g. account linking for music purchases),
or is currently unsupported.

• ICA_ABANDONED: The SLU stops trying / ICA reaches
the MAX number of turns.

• FAULT: The ASR encounters some internal errors, the NLU
service fails, or the app fails.

We represent the DM status as categorical feature 𝑓𝐷𝑆 .
System Prompts: promptID is a free form system status code

provided by ICA speechlets to indicate whether a speechlet can
handle the request. For example, when the ICA responds “Sorry,
I’m not sure”, the promptID is “NotUnderstood”. promptIDs can be
categorized and mapped to different types of frictions such as SLU
frictions, errors or retries, coverage gaps, unsupported use cases and
user actions required. We convert the promptID into a binary feature;
if the promptID is mapped to any friction type, the feature value
𝑓𝑃𝐼 = 1, otherwise 𝑓𝑃𝐼 = 0.

SLU Score Bin: The SLU score represents the confidence of
what the SLU understoods as the desired intent/slot output for the
utterance. The SLU score bin is a categorical feature to group the
confidence score into high/medium/low bins. Comparing to volatile
features such as “ASR confidence” or “Entity resolution score”, SLU
score bin a stable feature that has low variation over-time. Hence,
we use it as a feature, which is represented as 𝑓𝑆𝐵 .

4 EXPERIMENTS
In this section, we discuss our experimental results. First, we present
the IQ-Net model’s performance with different encoders (CNN and
BERT) and compare it with our baseline method. Then, we conduct
an ablation study to understand the importance of each feature. Also,
we conduct additional analysis over specific examples.

4.1 Datasets
We collect an annotated turn-level user perceived defect dataset for
experiments by following the same annotation workflow as described
in [4, 31]. We randomly sampled data for annotation. The dataset
contains hundreds of thousands of samples.

The two examples for the first-turn with 𝑙𝑎𝑏𝑒𝑙 = 1 and 𝑙𝑎𝑏𝑒𝑙 = 0
are as follows.

Defect = 1 Example:
User request: Do I have any appointments today?
ICA response: Appointment is [definition of appointment]
User request: Tell me my appointments today
Defect = 0 Example:
User request: Turn on the lights
ICA response: Ok
User request: Thank you

4.2 Main Results
Table 4 illustrates the result of IQ-Net with two different encoders,
including CNN and BERT, compared with result from baseline.

Perf(%) Accuracy F1 Recall Precision
Baseline
meta_data only 82.54 74.30 75.48 73.16
+ < 𝑈1,𝑈2 > +0.27 +0.64 +1.36 -0.03
+ < 𝑈1, 𝑅1 > +0.22 +0.57 +1.3 -0.11
+ < 𝑈1, 𝑅1,𝑈2 > +0.08 +0.73 +2.56 -0.92
IQ-Net (CNN)
+ < 𝑈1,𝑈2 > +0.35 +1.21 +3.41 -0.75
+ < 𝑈1, 𝑅1 > +1.82 +2.39 +1.43 +3.31
+ < 𝑈1, 𝑅1,𝑈2 > +2.63 +3.74 +3.28 +4.18
IQ-Net (BERT)
+ < 𝑈1,𝑈2 > +0.82 +1.09 +0.71 +1.44
+ < 𝑈1, 𝑅1 > +2.69 +3.83 +3.38 +4.25
+ < 𝑈1, 𝑅1,𝑈2 > +3.23 +4.62 +4.14 +5.18

Table 4: Results. Baseline: The baseline method is a Gradi-
ent Boosting Decision Tree (GBDT) [14] with the same features
mentioned in Section 3. IQ-Net(CNN): our proposed method
with CNN encoder. IQ-Net(BERT): our proposed method with
BERT encoder.

As shown in Table 4, the IQ-Net (with either CNN encoder or
BERT encoder) has better performance than the baseline method.
IQ-Net (BERT) outperforms the baseline method of meta-data only
with an improvement of 3.23% in accuracy, 4.62% in F1 score, and
5.18% in precision, and it outperforms the baseline method with full
features with an improvement of 3.15% in accuracy, 3.89% in F1
score, and 6.1% in precision.

4.3 Ablation Study
Ablation for different features: We perform ablation experiments
over the list of features used in IQ-Net(BERT) to better understand
their relative importance. In Table 5, we show how much degraded
the overall model performance is when we remove each specific fea-
ture. In particular, removing the context representation of 𝑓<𝑈1,𝑅1,𝑈2>

will impact the overall performance the most, the decrease of accu-
racy is -3.237%, F1 score is -4.615%.

4.4 Case Analysis
As shown in Table 4, using both < 𝑈1,𝑈2 > and < 𝑈1, 𝑅1 > as
context helps the IQ-Net have better performance than considering
only one of the signals. We look into examples where the former can
make a correct prediction while the latter fails to do so. For the defect
= 1 example below, the predicted probability score of the second
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Perf(%) Accuracy F1 Recall Precision
IQ-Net(BERT) 85.77 78.92 79.62 78.34
−𝑓<𝑈1,𝑈2> -0.542 -0.792 -0.758 -0.824
−𝑓<𝑈1,𝑅1> -2.412 -3.530 -3.423 -3.632
−𝑓<𝑈1,𝑅1,𝑈2> -3.237 -4.615 -4.131 -5.076
−𝑓𝐵𝐼 0.018 0.050 0.139 -0.036
−𝑓𝑇𝑀 -0.195 -0.076 0.727 -0.836
−𝑓𝐺𝑇 -0.888 -1.752 -3.255 -0.243
−𝑓𝑈 𝐼 0.466 0.306 -1.172 1.787
−𝑓𝑈𝐷 -0.265 -0.215 0.445 -0.842
−𝑓𝐷𝑆 -0.350 -0.523 -0.547 -0.500
−𝑓𝑃𝐼 -0.074 -0.064 0.107 -0.228
−𝑓𝑆𝐵 -0.209 -0.221 0.109 -0.537

Table 5: Results of IQ-Net(BERT) on Feature Ablation.

turn being a rephrase of the first turn is 0.432 and the predicted
relevance score between the request-response pair is 0.906. Thus,
the defect example will not be easily captured if only considering
one of the < 𝑈1,𝑈2 > or < 𝑈1, 𝑅1 > pairs as context. However, the
overall IQ-Net can detect it as a defect by considering both at the
same time.

Defect = 1 Example:
User request: where is university located?
ICA response: University, Hillsborough County, ...
User request: where is yale university

5 CONCLUSION
In this paper, we propose to build an automated metric to evalu-
ate dialogue quality at turn level for ICAs. We propose an IQ-Net
model with end-to-end tuned from raw dialogue context and system
metadata that allows us to predict interaction level dialogue quality.
Experimental results show that our methods outperform the baseline
method and work well across different domains as well as various
intents. We conduct an ablation study on individual features to under-
stand the contribution of each feature on model’s prediction ability.
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