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Variable screening is of fundamental importance in linear regression models when the number of
predictors far exceeds the number of observations. Multicollinearity is a common phenomenon
in high-dimensional settings, in which two or more predictor variables are highly correlated,
leading to the notorious difficulty for high-dimensional variable screening. Sure independence
screening (SIS) procedure can greatly reduce the dimensionality, but it may break down when
the predictors are highly correlated. By combing the factor modelling with SIS, the profiled
independence screening (PIS) approach was proposed. However, under a spiked population model,
the profiled predictors could not be guaranteed to be uncorrelated and PIS may therefore be
misleading. Instead of assuming either the predictors are uncorrelated as in SIS or the profiled
predictors are uncorrelated as in PIS, a more general and challenging scenario is considered in
which the predictors can be highly correlated. A so-called preconditioned PIS (PPIS) method
is proposed that produces asymptotically uncorrelated profiled predictors and thus leads to
consistent model selection results under a spiked population model. Compared with PIS, the
proposed method could handle the complex multicollinearity case, such as a spiked population
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model with a slow spectrum decay of population covariance matrix, while keeping the calculation
simple. The promising performance of the proposed PPIS method will be illustrated via extensive

simulation studies and two real examples.
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1 | INTRODUCTION

Exploring the relationship between the response and some predictors in a linear model is an important topic in statistics. Rapid advances in
computing power and other modern technologies drive big data collections across many scientific disciplines (e.g., genomics, functional magnetic
resonance imaging, tomography, finance, and chemometrics) in which the predictor dimensions are substantially larger than the sample sizes. In
these settings, the classical ordinary least squares estimate is no longer applicable, and difficulties are encountered in estimating the regression
coefficient vector in linear models. Over the last two decades, various approaches have been proposed to tackle this issue, and they are mainly
built on the premise that the number of the variables that actually contribute to the response is relatively small although the predictor dimension
is high. Various penalization methods have been proposed to simultaneously perform model selection and parameter estimation; see, for example,
the lasso (Tibshirani, 1996; Zhao & Yu, 2006), the smoothly clipped absolute deviation (Fan & Li, 2001; Fan & Peng, 2004), the elastic net (Fu
etal., 2011; Zou & Hastie, 2005), the adaptive lasso (Zou, 2006), and the adaptive elastic net (Zou & Zhang, 2009). A drawback of these methods
except lasso is that the consistency property for model selection may not be guaranteed if the predictor dimension (vastly) outnumbers the sample
size (Zhao & Yu, 2006). Furthermore, they are computationally extremely intensive for high-dimensional settings. Some recent works sought to
reduce the high dimensionality rapidly before performing a refined analysis. The sure independence screening (SIS; Fan & Lv, 2008), a dimension
reduction procedure that screens the marginal correlations to determine which variables should remain in the model, is shown to possess the
sure screening property and is computationally very simple (Fan & Lv, 2008; Fan et al., 2009; Fan & Song, 2010). Alternative screening methods
using new measures of association between each variable and the response have been proposed and carefully studied, including but not limited
to Cho and Fryzlewicz (2012), Huang, Xu, and Liang (2012), Ji and Jin (2012), G. Li, Peng, Zhang, and Zhu (2012), R. Li, Zhong, and Zhu (2012),
Wang (2012), Wang and Leng (2016), Witten and Tibshirani (2009), and Zhu, Li, Li, and Zhu (2011).
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FIGURE1 Heat maps of the absolute correlation matrices corresponding to the soft-thresholded covariance matrix estimators (Rothman et al.,
2009) using the gasoline dataset. The left panel is the absolute correlation matrix of the 401-dimensional predictors. The middle panel is that of
the profiled predictors for profiled independence screening (PIS). The right panel is that of the profiled predictors for preconditioned PIS (PPIS)

Multicollinearity is a notorious and frequently encountered phenomenon in high-dimensional data analysis (Fan et al., 2009; Yu, Jiang, & Land,
2015). It usually refers to designs in which two or more predictors are strongly correlated and typically possess a latent factor structure. For
example, the gasoline dataset that motivates this study consists of 60 samples with the octane number being the response variable and the
wavelength intensities measured at 401 points being the predictors, leading the design matrix of dimension 60 x401. We estimate the covariance
matrix of predictors by soft-thresholding (Rothman, Levina, & Zhu, 2009), and the heat map of the corresponding absolute correlation matrix is
given in the left panel of Figure 1. Each picture in Figure 1 is composed of 401 x 401 points, and each point represents the absolute value of
the element at the corresponding position of correlation matrix. The darker the colour of a point, the closer the absolute value of this element is
to one. Similarly, the lighter the colour of a point, the closer the absolute value of this element is to zero. It can be clearly observed that many
predictors are highly correlated in the first picture of Figure 1.

Variable screening under multicollinearity for high-dimensional dataset is challenging and has not been well addressed (Ke, Jin, & Fan, 2014).
Screening methods such as SIS based on marginal correlation between each predictor and the response would have nonzero probabilities of
including irrelevant variables. The profiled independence screening (PIS) approach proposed by Wang (2012) provides a computationally efficient
way for consistent variable screening. It uses profiled factor operation to eliminate the correlation between the predictors. However, the success
of PIS hinges on the condition that the profiled predictors are also uncorrelated, which may still be impossible under a spiked population model
(Baik & Silverstein, 2006; Johnstone, 2001) in the case of slow decay for eigenvalues of the population covariance matrix. With the gasoline
dataset, we again apply the soft-thresholding method to estimate the covariance matrix of the profiled predictors by PIS. The heat map of the
corresponding absolute correlation matrix is shown in the middle panel of Figure 1. Clearly, there are still many nonzero elements outside the
main diagonal of the correlation matrix, indicating that many profiled predictors are still highly correlated.

In this article, we propose a novel method called preconditioned PIS (PPIS) for high-dimensional variable screening. The major advantage
of PPIS is that it is as simple as PIS and produces asymptotically uncorrelated profiled predictors under a spiked population model. The key
of our method is the twice decorrelation of predictors: factor profiling and preconditioning. We show that the preconditioning procedure can
guarantee that the profiled predictors are asymptotically uncorrelated to each other. Preconditioning is a commonly used technique, and several
preconditioners have been proposed to deal with high-dimensional linear regressions (Jia & Rohe, 2012; Wang, Dunson, & Leng, 2016). As an
empirical evidence, the right panel of Figure 1 provides the heat map of the absolute correlation matrix corresponding to the soft-thresholded
covariance matrix estimator of the profiled predictors for PPIS using the gasoline dataset. It can be seen that the correlation matrix of the
profiled predictors for PPIS is very close to an identity matrix. Although the uncorrelated assumption for the profiled predictors is crucial for the
success of PIS in variable screening, our PPIS approach is more promising for analysing datasets with highly correlated predictors. Theoretical
justifications regarding the consistency of variable screening of PPIS are provided.

The rest of this paper is organized as follows. In the next section, we first give an introduction to factor profiling. Then, the spiked population
model is introduced. We then present our PPIS approach with theoretical justifications. Simulation studies and real data analyses are reported in
Section 3. We conclude the article in Section 4 and put the technical details to the Supporting Information.

2 | THEMETHODOLOGY AND THEORY

2.1 | Linear regression with factor profiling

Let {y;,x;} be the collected observations for the ith subject (1 < i < n), where y; € R is the response and x; = (X, ... ,X;,)) € RP is the
p-dimensional predictor vector with p > n. The relationship between y; and x; can be depicted as a simple linear regression

yi= X,-Tﬂ + €5 (1)
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where g; ~ N(0, 62) is the random noise and § = (f1, ... ,ﬂp)T € RP is the regression coefficient vector with the true value o = (fo1, ... , fop)’ € RP.
In this paper, we assume that x; and ¢; are independent and g, is sparse in the sense that most of its elements are zeros. Lety = (y4, ... ,¥,)’ €R",
X=(Xq, ... .X,)T €R™, and e = (g4, ... ,&,)7 € R" be the response vector, the design matrix, and the noise vector, respectively. The relationship
between y and X is given as
y=Xp+e. (2)
If predictors define the notationX; are uncorrelated, then SIS is expected to perform well. However, this condition is easily violated and may be
inappropriate for high-dimensional data. By employing a factor model, H. Wang (2012) proposed a factor profiling operatorQ(Z,) = In—Z,(ZITZ,)‘ile
to eliminate the correlation of predictors and apply the SIS on the profiled data. Z, € R™ is latent factor matrix of X, and d is the number of
latent factors. Then factor profiling is as follows:

QZ)y = QEZNXB+ Q(Z)e. (3)

In Equation (3), Q(Z))y is the profiled response and the columns of Q(Z))X are the profiled predictors.

2.2 | Spiked population model

We assume that the joint distribution of the design matrix X € R™? is Gaussian with zero mean and covariance matrix X, = cov (x). x € R? is the
random predictor vector. Define Z* € R™? and z* € RP respectively as

7 =x5,"% =5, ()
The covariance matrix of z* is an identity matrix obviously. Suppose that the spectral decomposition of X, is given by X, = ijﬂliuj* q"T, where
ly> ... 2, >0andu;, ... ,u, form an orthonormal basis of R?. Consider a spiked population model as follows:
li=2;+02, j=1,...d,
=wg+cl j=d+1 ...d+m, (5)
li=03, j=d+m+1,...,p,

where 11> ... > Ag>w1> ... >wn>0and 0'(2) is a positive constant. We define a subscript j of [;be a change point when|; /[;1 — o0 asp — .

Then we define d be the biggest change point that
la/lay1

————— 5 00 asp - . (6)
MaXygpjzali/ 1

Furthermore, we assume that d and m are fixed and they have true values with d, and my, respectively. Equation (6) means that the change point
disthe number of large eigenvalues of %, in the case where 4, 4, ... , 1, are decreasing and sufficiently well separated from|,, ... ,l;. Consequently,
the maximum value of [;/l;,, would be expected to happen at j = d. Under a Gaussian assumption, the design matrix X can be expressed as

X= 2 V!/l_jzjlfﬁ + E Vazauwtil, + oA, (7)

=1 k=1
where z,, ... ,z4,,, are i.id. N(O,I,) vectors. A is viewed as a noise matrix that is an n x p matrix with i.i.d. N(O, 1) entries and is independent
of z4, ..., Z4m- In the analysis presented in this paper throughout, we use Equation (7) as the model for X. Define Z, = (z, ... ,z) € R™,

X = 27:1 VazuT X = By \forzanu), . and X5 = oZA. PIS can select d consistently by the maximum eigenvalue ratio criterion (MERC; Luo

et al., 2009; Wang, 2012). Then factor profiling operator Q(Z)) is used to remove the effect of z4, ... ,zy4, as follows:
QZ)DX = QZIX+X', +X7,)
A XX, ()
From Equation (8), X;is still in the profiled data after factor profiling. And it may lead to correlated profiled predictors in the case that population
covariance matrix has eigenvalues with slow decay. Our simulation results of Examples 5 and 6 in Section 3 illustrate this phenomenon. To
overcome this issue, we propose and apply a novel preconditioned profiling operator to the data, which guarantees the resulting predictors to be

asymptotically uncorrelated. Consequently, by combining the preconditioned profiling operator and SIS, we propose a novel screening procedure
named PPIS.

2.3 | Preconditioned profiled independence screening

According to the singular value decomposition, the n x p matrix X almost surely has n positive singular values (Fan & Lv, 2008; Klema & Laub,
1980). Let py, ... , uy be the n positive singular values such that ;4 > ... > u, > O. Therefore, there exist matrices U = (uq, ... ,up) € R™" and
V= (v, ... ,\p) € RP" with UTU = VTV = |, and a diagonal matrix D = diag(yu1, ... » #n) € R™" such that

X=UDV, 9)
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where u; = (U, ... .Uy R, v;=(vy, ... ,vpi)T €Rr (i=1,...,n), and |, is the identity matrix of size n. We partition U and V respectively as
U=, :Upand V =V, : V), where Y = Uy, ... ,uy) € R U} = (Ugpr, --- Uy € R™OD V= (v, ... ,vg) € R and V) = (Vgyq, ... ,V,) €

RPX-d_Similarly, we partition the diagonal matrix D into
D O
D= ,
0 D,

where D = diag(u1, --- , #g) and Dy = diag(uas1s --- » th). Consequently, Equation (9) reduces to

X=X +Xu, (10)

where X, = U,Q V" and X;; = U;D V],
We define the preconditioned profiling operator as

F=U,D;*U", ¢, —U \U)) = Uy, D; U, (11)

By applying the preconditioned profiling operator F to Equation (2), we have Fy = FXf + Fe, which can be further reduced to
V=Xp+é, (12)

where y = U D;*UJly, X = UV, and & = U;;D;* Ule. As X and ¢ are assumed to be independent, X and & are uncorrelated. Theorem 1 below

indicates that our proposed transformation from X to X leads to uncorrelated profiled predictors asymptotically, and its proof is in the Supporting

Information.

Theorem 1. Under Conditions 1-4 in the next section, for fixed i and j, if £ = X" X, then

|6 lo .
|5.J{ =op(\/ fp_)’ 1<i<j<p,
1

Obviously, F = FQ(Z), where QZ) = I, — U U] and ZA|(ZTZ)*1AZIT = U\U[. Itis noted that U,U] is used to estimate Z (Z]Z)~*Z]. This estimator is
discussed in Xia (2007), Wang and Xia (2008), and Wang (2012). Lemma 4 in the Supporting Information of this paper promises the consistency

where &; is the (i, j) element of £

of the estimation and quantifies the accuracy under a spiked population model. On one hand, Q(?,) is a factor profiling operator that filters
out the effects of the first d factors in model (7). On the other hand, from Theorem 1, we can see that F plays a role of a preconditioner that
decorrelates the profiled predictors X .. Similar to the Puffer transformation in Jia and Rohe (2012), the proposed operator F does not change the
linear relationship in the model. It finds a proper way to “standardize” the high-dimensional profiled regressors without having to estimate its
high-dimensional inverse covariance matrix. This makes a nice contribution to the literature on variable screening under correlated designs. Our
PPIS procedure can then be obtained by applying SIS to the preconditioned and profiled data:

y=Fy=UD;'"U (h—U Uy, (13)
X =FX=U,D; U7, (I, — U UDX. (14)

More specifically, denote X = (X, ... , %)) € R™P_The PPIS procedure uses the following estimator of g; as a measure for screening:
4= (XTJ);QJ'>)71(VT5((]))J =1 ..,p. (15)
As the same assumption in Wang (2012), to embody the sorting idea of screening, it is assumed further that the predictor indices have been
appropriately relabelled so that | ;| > ... > |ﬁp| without loss of generality. A candidate model can be represented as S = {jj, ... ,j,}, which
includes the jith column of X for every j; € S, and | S| denotes the corresponding model size. The full model is S = {j : j = 1, ... ,p}, and the

true model is St = {j : fiy; # 0}. Here, a solution pathisS = {S; : k=1, ... .p} with S =@ and S, = {1, ... .k} fork =1, ... ,p. In addition, we
denote the design matrix that corresponds to model S, as X(S,) € R™X. Hence, the solution path can be used to screen the predictors directly.
The following theorem indicates that our proposed PPIS is path consistent; that is, Pr{S; € S} - 1 as n — 0. The definitions of t, s, and h in

the theorem can be found in Conditions 1 and 2 in the next section. A proof is given in the Supporting Information.

Theorem 2. Under Conditions 1-4 in the next section, ifd =d g

A s—t |
maxlﬂ,—ﬁoj|=0p<n7v\/$) asn— oo, (16)

1<j<p

s—t o s—t
where n~ T v\/"%’ =max{n 7,/ €L},

In practice, we use the following Bayesian information criterion (BIC)-type criterion to estimate the value of |Sy|, which is used in Wang (2012).

More specifically, we choose the model such that the following score is minimized:

BIC*(S) = logRSS (S) + (n~t
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where RSS (S) is the residual sum of squares. In this paper, we consider the situation that g is highly sparse, and we assume that the value of | St |

is less than the number of samples n. For every candidate model S, we use the simple least square estimate

ASR® = X(SOTXSN XSOy, (18)
to compute the RSS (S) in Equation (17) as
RSS (S = lly = X(S0 AS)"II%, (19)
and
BIC* (Sk) = logRSS (S0) + (0™t logp)| S log n. (20)
Therefore, the estimate of |S;] is
|S7| = argmin BIC (&), (21)
and the estimate of g in Equation (2) is e
BED® = XSpT XS XSy (22)

2.4 | Conditions and assumptions

We use ¢; and G to denote positive constants independent of the sample size n and the dimensionality p in this paper throughout. For an arbitrary
matrix A € R4>%, denote the Frobenius norm matrix A as ||A|| 2 = tr(ATA) = tr(AAT). Lete; = (0, ..., 1, ... ,0)T be a unit vector in R? with the jth
element being 1 and O elsewhere,j=1, ... ,p.

Due to a significant impact of &'s tail behaviour on the screening performance, Wang and Leng (2016) used a g-exponential tail condition
as a characterization of different distribution families. The tail condition is useful for the theoretical proofs in this paper and presented in the

following definition.

Definition 1. A zero mean distribution 7 is said to have a g-exponential tail, if any N > 1 independent random variables €; ~ F satisfy that
for any a € RN with ||a|, = 1, the following inequality holds:

N
Pr<lza;£;I > r> <exp (1-4a(») (23)

i=1

for any ¢ > 0 and some function q(-).

In this paper, we assume thate; ~ N(O, 5 2. As shown in Wang and Leng (2016), with the classical bound on the Gaussian tail, the Gaussian
distribution admits a square-exponential tail in that q(z) = 22/2. The following conditions are necessary in the theoretical proofs for the theorems

in this paper.

Condition 1: There exists a specification for model (7), such that the vectorsz; (i= 1, ... ,d+m) are i.i.d. N(O, I,) vectors and A is an n x p matrix
with i.i.d. N(O, 1) entries and is independent of z, ... ,z.m. Furthermore, we assume that the eigenvalues of the covariance matrix
%, are satisfied for Equation (5). Especially, ag in Equation (5) is some positive constant, and there are constants 0 <t <s <1,
¢ > 0,c, >0, and c; > 0 such that

Ai<n, Ay >crf, andw, <. (24)

Condition 2: The true model size |S7| is fixed, whereas the sample size n — co. Moreover, we assume that logp = g ' for some ¢ > 0 and
O<h<1

Condition 3: The random error ¢ in model (2) is normally distributed with mean zero and standard deviation ¢ and is independent of X.

Condition 4: The transformed z* in Equation (4) has a spherically symmetric distribution, and there exist some ¢ > 1 and C; > O such
that Pr{in(p~1Z*Z*T) > c5 or Ayn(p~1Z*Z*T) < 1/cs} < €7G", where Ama (1) and Ay () are the largest and smallest nonzero

eigenvalues of a matrix, respectively.

It is noteworthy that (a) in Condition 1, s and t control the maximum value of eigenvalue ratio. When s = 1 and t = O, the setting of eigenvalues
of the population covariance matrix in Condition 1 degenerates to a setting of a factor model. Condition 1 allows slow spectrum decay of the
population covariance matrix so that it is weaker than assumption A2 in Wang (2012). Condition 2 is similar to assumption A3 in Wang (2012)
in that it allows the predictor dimension to be much larger than the sample size. (b) Condition 3 gives the tail behaviour of &, and its Gaussian
tail can be bounded by Equation (23). (c) Condition 4 is the same as assumption A1 in Wang and Leng (2016). It is similar to but weaker than
the concentration property in Fan and Lv (2008). The proof in Fan and Lv (2008) can be directly applied to show that Condition 4 is true for the

Gaussian distribution.
2.5 | Detecting the biggest change point d

In essence, the true value dy of the biggest change point d is unknown in real practice, and it has to be estimated based on data. Under a spiked
population model, we propose a novel method named as maximum modified eigenvalue ratio criterion (MMERC), which is more stable than the
commonly used MERC. And we also provide a theoretical justification by showing that the consistent estimator of dy can be obtained by using
MMERC. Recall that y1 > p2 > ... > u, > O be the nonzero singular values of X from Equation (9). The MERC finds the estimator of do by
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2

d= argisr[rsl%fl :T’ (25)
i+1
During our finite sample simulation study, we found interestingly that for a given dataset, the MERC estimator d could substantially vary when
we repeat the experiment with different subsampling data from the same dataset. To illustrate this phenomenon, we use the gasoline dataset
introduced in Section 1. Each time, we use Monte Carlo sampling (Xu, Liang, & Du, 2004) without replacement to select s = 48 observations
randomly from the 60 samples of gasoline dataset to form a design matrix X©® € R*?, and we let ;41(5) > ;4(25) > .2 ﬂf) > 0 be the nonzero
singular values of X© . We then use MERC to get d of X©. We repeat this process 100 times, and the possible values for d are solely 1 and 4 with
frequencies being 26 and 74, respectively. Here, the chosen s is 80% of the total number of samples, and it is large enough to report different ds
in this illustration.
To obtain a stable estimator of d,, we propose the following MMERC estimator of d,:
. in?
dy=arg max : (26)

1<i<n-1 (i + D)y 12+1.

The following theorem provides a theoretical justification for our proposed MMERC, and the proof is provided in the Supporting Information.
To compare the performance with MERC, we conduct the same finite sample simulation study on the basis of the gasoline dataset using our
proposed MMERC. Interestingly, all the 100 repetitions yield the same estimate (i.e., dj) being 4. The theorem below proves that MMERC is a

consistent ratio, and its proof can be found in the Supporting Information.
Theorem 3. Under Conditions 1-4, Pr{dy =do} » 1asn - .

According to Theorem 3, do can be estimated consistently by MMERC. Therefore, we use MMERC to detect the change point d and focus on
the decorrelated performance of PPIS via all the simulation studies and real examples in the next section.

3 | NUMERICAL STUDIES

To evaluate the finite sample performance of the proposed method, we compare the proposed PPIS with SIS, PIS, and high-dimensional ordinary
least squares projection (HOLP) via six simulation experiments and two real examples. HOLP is a screening method that uses a preconditioner to
guarantee the sure screening property and give a consistent variable screening without strong correlation assumptions (Wang & Leng, 2016). For
each method, we (a) compute the solution path, (b) use the simple least squares estimator in Equation (18) to evaluate the estimation accuracy of

variable screening, and (c) use the BIC-type criterion in Section 2.5 to select the model size.

3.1 | Simulation study

In Examples 1-3, we follow the settings in Fan and Lv (2008), Wang (2012), and Tibshirani (1996) and set n = 100 or 300, p = 1,000. Example
4 discusses the situation of collinear among predictors. Examples 5 and 6 discuss spiked population models. The results are evaluated over 100
replications in all of the six examples.

Example 1 —
Y = PXa) + PXa) + BX3) — 3P\ 0X@) + e,
where £ ~ N(O,1,), and (%, ... ,x;,)] are generated from a multivariate normal distribution N(0, L) independently fori =1, ... ,n.

The population covariance matrix £ = (2,~,-)Jf’k:1 satisfiesX; =1 (j=1, ... ,pandZ; = @ (j# k), except Z,4 =54 = V’E (j,k # 4), and
consequently, x4, is marginally uncorrelated with y at the population level. Here, # = 5 and ¢ = 0.5,0.95 are used to investigate
the performance of the four variable screening methods.

Example 2 —
Yy = PXay + PXo) + BX@) — 3P\ox @t fXs) + &,

with the population covariance matrix of X being described in Example 1 except that X5 = 55 = O for any j # 5, that is, x5 is
relevant in model whereas it is uncorrelated with any other predictors.

Example 3 We set d = 3, and the latent factor U, € R%i = 1, ... ,n) is generated from a three-dimensional normal random vector. A sample
of predictors x € RP is then simulated as x; = BU,; +X;, where B = (b ) € R, by ~ N(O, 1), and % follows a p-dimensional normal
distribution with E(;) = 0 and cov (¥;,, Xj,) = 0.95l1-121, Here, y; is simulated according to y; = 3xj; + 1.5%2 + 2x3 + €;. Finally, ;
is generated according to £;= UT ap+ &;, where ag = 0.85,(37%/2,3-%/23-1/2)T € R3, and the variance of ¢;is 52 = 0.36¢52. Given
X= (X1, ... .xy7 and fo = (3,1.5,2), 62 s particularly selected so that the signal-to-noise ratio, var (Xf )/o?, is 1, 2, or 5. For this
example, the PIS fails to select the true model, whereas the assumption that the columns of Xis uncorrelated is not satisfied.

Example 4 —
Y = BXq) + BX2) + BXz) — 3By OX 4y X5 + &,

with the population covariance matrix of X being described in Example 2 except that x¢ = 0.8x(5) + €4, Where ex~ N(O, 52). Here,
X5y and x ¢, are collinear, but x) is a noise variable in this example. We set ¢, = 0.05,0.1,0.2, n = 100, p = 1,000, and ¢ = 0.95.
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Example 5 A spiked population model in Equation (7) is considered in this simulation study. We set n = 200, p = 1,000, d = 3, m = 40,
and 502 =1 andz eR"(j=1,....d +m)is generated from an n-dimensional standard normal random vector. The design matrix
X € R™? is then simulated as

d d+m )
X=X zibl+ Y nwiozp]+ % (27)
=1 j=d+1
where b; = (by) € RP<Y, by ~ N©,1),%x = (X, ... %), and X; follows a p-dimensional normal distribution in that E(x;) = 0 and
cov (X ,%,) = I, Here, y; is simulated according to y; = 3x;, + 3x;; + 3%3 + ¢;. Finally, & ~ N(O, 62). Given X = (xq, ... ,%)T and
fo = (3,3,3), 62 is particularly selected so that the signal-to-noise ratio var (Xg)/c? = 5.

Example 6 With a spiked population model, we consider the endogeneity problem in this simulation study, which means that the residual might
be correlated with the predictor. We use the spiked population model, which is described in Example 5 except that ¢; is generated
according to g;= Z’:{" z + &, where & ~ N(0,0.36¢%). Given X = (x4, ... ,x,) T and 4, = (3,3,3), 62 is particularly selected so that
the signal-to-noise ratio var (Xgo)/c%= 5.

For each method and simulation setting, the following measures are adopted to evaluate the performance of variable screening (Cho &
Fryzlewicz, 2012): the number of false negatives (FNs; i.e., the number of relevant variables incorrectly identified as irrelevant), the number of false
positives (FPs; i.e., the number of irrelevant variables incorrectly identified as relevant), and the L2 distance ||8, — | g . Tables 1--4 summarize the
averaged FN, averaged FP, averaged L2, and total number of times that a specific relevant variable is being correctly selected over 100 repetitions.

Under the multicollinearity settings in Example 1 (see Table 1), both SIS and HOLP perform poorly when the sample size is small. In particular,
we find that SIS always and HOLP often miss the relevant variable x4,. These are not surprising observations for SIS because x 4, has no marginal
correlation with y, although SIS is a method based on marginal correlation estimation. Therefore, increment of the sample size does not improve
the performance of SIS. Performance of HOLP improves when the sample size increases. Among the four methods under consideration, PIS and
PPIS have satisfactory performance. In particularly, PPIS has the best performance under all the settings being considered in the sense that it

TABLE1 Averaged FN, FP,
Methods FN FP FN+FP L2 FF
n 2 ethods X o Xy Xw X FN + FP, and L2 and the total

Example1 n=100 0.5 SIS 304 010 314 16893 43 22 31 O number of times for each
HOLP 204 031 2.35 11449 52 58 54 32 relevant variable being
PIS 027 003 0.0 1528 94 94 94 91 selected for Examples 1 and 2
PPIS 021 009 0.30 1191 94 98 94 93
0.95 SIS 343 048 391 28610 18 22 17 O
HoLP 225 004 229 21510 49 51 50 25
PIS 045 007 052 4325 91 91 87 86
PPIS 034 008 042 3343 92 93 92 89
n=300 05 SIS 192 249 441 15218 73 61 74 O
HOLP 026 143 169 2642 99 96 97 82
PIS 006 032 038 609 100 99 99 96
PPIS 005 027 032 453 100 99 99 97
0.95 SIS 275 118 393 27675 47 41 37 0
HOLP 031 027 058 4099 94 95 95 85
PIS 013 020 033 2370 98 100 98 91
PPIS 013 012 025 1900 99 98 97 93
Example2 n=100 05 SIS 385 0 385 18453 5 5 5 0 100
HOLP 230 076 306 12509 54 54 54 30 78
PIS 032 062 094 1698 91 92 94 94 97
PPIS 015 069  0.84 965 97 96 98 96 98
0.95 SIS 400 0O 400 28880 O O O O 100
HOLP 199 049 248 20582 56 55 58 32 100
PIS 409 009 418 31311 1 1 0 8 O
PPIS 081 042 123 6282 76 74 76 93 100
n=300 05 SIS 216 183 399 15601 66 57 61 0O 100
HOLP 024 117 141 2991 98 100 99 79 100
PIS 008 052 0.0 981 100 100 99 93 100
PPIS 005 032 037 712 100 100 100 95 100
0.95 SIS 398 002 400 28856 1 O 1 0O 100
HOLP 036 035 071 4388 93 93 94 84 100
PIS 071 105 176 4667 80 78 73 98 100
PPIS 015 012 027 1934 97 98 97 93 100

Abbreviations: FN, false negative; FP, false positive; HOLP, high-dimensional ordinary least squares projection; PIS,
profiled independence screening; PPIS, preconditioned PIS; SIS, sure independence screening.
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TABLE2 Averaged FN, FP, FN + FP, and L2 and the X 2
total number of times for each relevant variable n varXfy)/o;  Methods N FP EN+FP L2 v %o Xe

being selected for Example 3 n =100 1 SIS 245 060 305 3027 23 15 17
HOLP 168 0.80 248 2566 44 46 42

PIS 176 114 290 3049 44 45 35

PPIS 173 1.04 277 27.37 41 44 42

2 sls 214 052 266 2182 38 20 28
HOLP 125 101 226 2473 58 57 60

PIS 163 160 323 2803 48 44 45

PPIS 1.37 116 253 2428 51 55 57

5 sls 192 057 249 1709 54 22 32
HOLP 075 093 168 1158 77 77 71

PIS 129 163 292 1641 61 62 48

PPIS 083 1.05 188 1277 74 75 68

n =300 1 sls 223 112 335 2255 40 18 19
HOLP 152 253 405 2399 59 52 37

PIS 138 221 359 4354 56 51 55

PPIS 145 224 369 2188 61 52 42

2 sls 178 144 322 1911 59 33 30
HOLP 069 134 203 1426 82 79 70

PIS 112 245 357 2169 72 58 58

PPIS 0.66 134 200 1547 83 79 72

5 sls 137 197 334 1555 71 39 53
HOLP 017 085 102 677 99 92 92

PIS 091 286 377 1289 77 66 66

PPIS 018 093 111 657 96 95 91

Abbreviations: FN, false negative; FP, false positive; HOLP, high-dimensional ordinary least
squares projection; PIS, profiled independence screening; PPIS, preconditioned PIS; SIS, sure
independence screening.

TABLE3 Averaged FN, FP, FN + FP, and L2 and

Method FN FP FN + FP L2
the total number of times for each relevant o ethods o Yo X KXo Xe  X®

variable and the noise variable x, being selected 005 5I5 427 027 4.54 305.67 0 0 0 0 73 %7
for Example 4 HOLP 2.17 0.60 277 21482 57 57 54 33 82 43
PIS 405 005 410 31307 O 0 1 94 0 o©
PPIS 0.96 0.73 1.69 7945 77 77 74 93 83 62
01 SIS 405 005 410 29196 O O O 0 95 5
HOLP 2.07 042 249 21849 54 58 59 27 95 28
PIS 403 003 406 31295 0 1 0 96 0 O
PPIS 0.75 0.60 1.35 65.66 80 81 78 89 97 52
02 SIS 401 001 402 28939 0 o o 0o 99 1
HOLP 212 027 2.39 21793 52 54 54 28 100
PIS 406 0.06 4.12 316.28 1 1 1 9 0 0
PPIS 0.80 0.26 1.06 6650 76 74 77 93 100 15

Abbreviations: FN, false negative; FP, false positive; HOLP, high-dimensional ordinary least
squares projection; PIS, profiled independence screening; PPIS, preconditioned PIS; SIS, sure
independence screening.

generally has the smallest averaged FNs, FPs, and L2s and the largest hit rates for individual relevant variables. This supports our theory that
PPIS is more suitable for variable screening for high-dimensional models under multicollinearity.

For Example 2 (see Table 1), it is noted that X, is uncorrelated with other predictors and can therefore be successfully selected by SIS.
However, SIS still poorly misses those relevant variables under the multicollinearity issue. Similar to those observations in Example 1, HOLP
still does not perform satisfactorily especially for small-sample settings. PIS performs satisfactorily when ¢ = 0.5. However, it has the worst
performance when ¢ = 0.95 and the sample sizes are small. Again, our proposed PPIS yields the best performance under all settings being
considered in Example 2. It is noteworthy that PPIS is also more suitable to cope with situations in which some of the true variables are marginally
uncorrelated with y in the linear model.

For Example 3 (see Table 2), it should be noticed that the profiled predictors produced by PIS are correlated. Therefore, both SIS and PIS are
inferior to PPIS and HOLP. As PPIS can produce uncorrelated profiled predictors by the alliance between preconditioning and factor profiling, it
performs satisfactorily. For all the methods being considered, it is noteworthy that the larger the signal-to-noise ratio, the better the performance.

The results of Example 4 are listed in Table 3. It can be seen that PPIS has the least FN + FP and the best performance for important variable

screening in every situation. It is noteworthy that PPIS can select x 5, and reject x¢, more successfully when o, is larger.
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TABLE4 Averaged FN, FP, FN + FP, and L2 and the total
Methods FN FP FN+FP L2 P ,
ethods X Yo Xe number of times for each relevant variable being selected for

Example 5 SIS 217 058 275 2363 26 28 29 Examples 5 and 6
HOLP 021 032 053 225 89 95 95
PIS 103 129 232 1082 65 69 63
PPIS 026 036 062 283 86 94 94
Example 6 SIS 228 048 276 2544 21 26 25
HOLP 063 022 085 682 8 76 79
PIS 199 095 294 2125 30 31 40
PPIS 066 034 100 706 83 76 75

Abbreviations: FN, false negative; FP, false positive; HOLP, high-dimensional
ordinary least squares projection; PIS, profiled independence screening; PPIS,
preconditioned PIS; SIS, sure independence screening.

Dataset Method RMSEP Selected wavelengths (selected times) IﬁeBil;EtgtaIAs\é(Iegcatg:dlii,\r/lnSeEF;’o?'eticcf?’ga\;vggtee:sgtgsths' and
Corn dataset SIS 0.2916 2,478 (64).

HOLP 0.0003 1,906 (37), 1,908 (100), 2,108 (100)

PIS 0.2562 1,416 (33), 1,418 (69), 1,420 (52)

PPIS 0.0003 1,906 (38), 1,908 (100), 2,108 (100)
Gasoline dataset SIS 0.6477 1208 (97)

HOLP 0.4059 1,218 (84), 1,224 (58)

PIS 1.0796 1,218 (36)

PPIS 0.3836 1,218 (86), 1,224 (31), 1,414 (35), 1,416 (56)

Note. Predictors that are selected more than 30 times are listed. Abbreviations: HOLP,
high-dimensional ordinary least squares projection; PIS, profiled independence screen-
ing; PPIS, preconditioned PIS; RMSEP, root-mean-square prediction error; SIS, sure
independence screening.

For Examples 5 and 6 (see Table 4), both SIS and PIS perform poorly in the two examples. Under the spiked population model with slow
spectrum decay of population covariance matrix, PIS could not always guarantee to obtain uncorrelated profiled predictors, and therefore, some
relevant variables are missing in the model. Even worse, as described in Example 6, if there is an endogeneity problem in the model, and SIS and
PIS will be misleading. Both PPIS and HOLP perform better than PIS and SIS in the two examples.

3.2 | Application to real data

In this section, we apply SIS, HOLP, PIS, and PPIS to analyse two near-infrared (NIR) spectral datasets. NIR spectra are an important type of data
in chemometrics. It is of great challenge to select important predictors for NIR spectrum research. It is well-known that the predictors of NIR
spectral datasets are always high dimensional and high correlated. This character coincides with our proposed approach and other compared
methods to distinguish their different performance as big as possible. Therefore, to obtain the comprehensive performance of our proposed

method, we use two NIR spectral datasets to report the study results. Below are brief descriptions of the two datasets:

Corn dataset The corn dataset consists of 80 samples, downloaded from http://software.eigenvector.com/data/index.html. The response
variable is the corn moisture values, and the predictors are the wavelength intensities at 700 points ranging from 1,100 to
2,498 nm at 2-nm intervals. The design matrix is of dimension 80 x 700.

Gasoline dataset The gasoline dataset (Kalivas, 1997) is a NIR spectral dataset with NIR spectra and octane numbers of 60 gasoline samples.

The NIR spectra were measured from 900 to 1,700 nm in 2-nm intervals, giving 401 wavelengths (variables).

For each dataset, we used Monte Carlo sampling without replacement to select 80% of the original samples as the training dataset and the rest
20% samples as the testing dataset. SIS, HOLP, PIS, and PPIS are used to select the best model on the basis of the training dataset. This process is
repeated independently 100 times. The prediction accuracies of these methods are measured by the root-mean-square prediction error (RMSEP)
on the basis of the testing data with size, say N. Here, the RMSEP is computed as \/Z,N:1 (v; =¥)% /N, where ys are the observations of the
response variable in the testing dataset, whereas ¥;s are the predicted values of y:s for any selected model. In essence, we did not know the real
model of real data. And we could not say which predictor is the true variable. In this paper, we use RMSEP to represent the performance of
prediction. And we think the best model must have the smallest RMSEP.

The results of the two real examples are summarized in Table 5. Here, we report in Table 5 those predictors that are selected more than
30 times and their selected times. It is observed that PPIS produces the smallest RMSEPs in both datasets. It is interesting to note that the
selected predictors and RMSEPs are similar for PPIS and HOLP in both two datasets. In particular, the selected predictors of PPIS and HOLP have
important chemical meaning in the corn dataset. Briefly, the 1,906-, 1,908-, and 2,108-nm wavelengths are in the region of water absorption and
the combination of the O-H areas, which can be regarded as an important predictor for the response variable (i.e., corn moisture; Huang et al.,
2012). For the gasoline dataset, 1,218- and 1,224-nm wavelengths are in the spectral region, which are the most useful for the determination of
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paraffin and isoparaffin concentrations, and they could be correlated to the response variable (i.e., octane number; Maggard, 1994). In conclusion,
we observe that PPIS is a reliable variable screening procedure for high-dimensional datasets with a multicollinearity issue. Most importantly, it
gives the smallest prediction errors and produces more reasonable results for the two NIR spectral datasets.

4 | CONCLUSION

In this article, we propose a so-called PPIS approach for selecting variables for high-dimensional linear regression models with highly correlated
predictors. Our proposed simple preconditioning and factor profiling procedures are shown to successfully remove the multicollinearity among
the (profiled) predictors. According to our simulation studies, although the famous PIS may perform satisfactorily for situations in which the
correlations are low among the predictors, it may not be useful for heavy multicollinearity situations, as its profiled predictors may still be
correlated. Compared with PIS and other existing approaches, our proposed PPIS performs very well when the predictors are highly correlated
in high-dimensional settings. The good performance of the PPIS in the two real data analyses also indicates that our proposed method could be a
very good alternative for variable screening task for datasets with high-dimensional and highly correlated predictors.

One may be sceptical if the profiled predictors from PIS are still correlated and preconditioning is good enough to decorrelate the predictors:
Is it necessary for PPIS to use both the factor profiling and preconditioning to achieve the uncorrelated predictors asymptotically? To indicate
why factor profiling is still necessary, we consider in the simulation studies of Examples 1 and 2, which were adopted in Fan and Lv (2008) and
Cho and Fryzlewicz (2012). It is noteworthy to point out that in both examples, a relevant variable in the model has no marginal correlation with
the response variable. As aresult, SIS and HOLP are unable to select the true variables correctly, whereas the sorting of SIS or HOLP depends on
the marginal correlation between each predictor and the response variable. This interesting phenomenon is due to the latent factor structure of
the predictors, and the factor profiling can successfully eliminate the effect from the latent factor structure. This is indeed the main difference

between our method and other preconditioning methods.
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