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1 Introduction

Gradient-based multilevel optimization (MLO) has gained attention as a framework for studying
numerous problems, ranging from hyperparameter optimization and meta-learning to neural archi-
tecture search and reinforcement learning. However, gradients in MLO, which are obtained by
composing best-response Jacobians via the chain rule, are notoriously difficult to implement and
memory/compute intensive. We take an initial step towards closing this gap by introducing BETTY, a
software library for large-scale MLO. At its core, we devise a novel dataflow graph for MLO, which
allows us to (1) develop efficient automatic differentiation for MLO that reduces the computational
complexity from O(d3) to O(d2), (2) incorporate systems support such as mixed-precision and
data-parallel training for scalability, and (3) facilitate implementation of MLO programs of arbitrary
complexity while allowing a modular interface for diverse algorithmic and systems design choices.
We empirically demonstrate that BETTY can be used to implement an array of MLO programs,
while also observing up to 11% increase in test accuracy, 14% decrease in GPU memory usage, and
20% decrease in training wall time over existing implementations on multiple benchmarks. We also
showcase that BETTY enables scaling MLO to models with hundreds of millions of parameters.

2 Background: Gradient-based Multilevel Optimization

Multilevel optimization [25] refers to a field of study that aims to solve a nested set of optimization
problems defined on a sequence of so-called levels, which satisfy two main criteria: A1) upper-level
problems are constrained by the optimal parameters of lower-level problems while A2) lower-level
problems are constrained by the nonoptimal parameters of upper-level problems. Formally, an n-level
MLO program can be written as:

Pn : θ∗n = argmin
θn

Cn(θn,Un,Ln;Dn) ▷ Level n problem

. . .
Pk : s.t. θ∗k = argmin

θk

Ck(θk,Uk,Lk;Dk) ▷ Level k ∈ {2, . . . , n− 1} problem

. . .
P1 : s.t. θ∗1 = argmin

θ1

C1(θ1,U1,L1;Dk) ▷ Level 1 problem

where, Pk stands for the level k problem, θk / θ∗k for corresponding nonoptimal / optimal parameters,
and Uk /Lk for the sets of constraining parameters from upper / lower level problems. Here, Dk is the
training dataset, and Ck indicates the cost function. Due to criteria A1 & A2, constraining parameters
from upper-level problems should be nonoptimal (i.e. Uk ⊆ {θk+1, · · · , θn}) while constraining
parameters from lower-level problems should be optimal (i.e. Lk ⊆ {θ∗1 , · · · , θ∗k−1}).
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In this paper, we focus in particular on gradient-based MLO, rather than zeroth-order methods like
Bayesian optimization [5], in order to efficiently scale to high-dimensional problems. Essentially,
gradient-based MLO calculates gradients of the cost function Ck(θk,Uk,Lk) with respect to the
corresponding parameter θk, with which gradient descent is performed to solve for optimal parameters
θ∗k for every problem Pk. Since optimal parameters from lower level problems (i.e. θ∗l ∈ Lk) can be
functions of θk (criterion A2), dCk

dθk
can be expanded using the chain rule as follows:

dCk
dθk

=
∂Ck
∂θk︸︷︷︸

direct gradient

+
∑

θ∗
l ∈Lk

dθ∗l
dθk︸︷︷︸

best-response Jacobian

× ∂Ck
∂θ∗l︸︷︷︸

direct gradient

(1)

While calculating direct gradients (purple) is straightforward with existing automatic differentiation
engines like PyTorch [26], a major difficulty in gradient-based MLO lies in best-response Jacobian
(blue) calculation, which will be discussed in depth in Section 3.

3 Automatic Differentiation for Multilevel Optimization

While Equation (1) serves as a mathematical basis for gradient-based multilevel optimization, how
to automatically and efficiently carry out such gradient calculation has not been extensively studied
and incorporated into a software system. In this section, we discuss the challenges in building an
automatic differentiation library for MLO, and provide solutions to address these challenges.

3.1 Dataflow Graph for Multilevel Optimization

One may observe that the best-response Jacobian term in Equation (1) is expressed with a total
derivative instead of a partial derivative. This is because θk can affect θ∗l not only through a direct
interaction, but also through multiple indirect interactions via other lower-level optimal parameters.
For example, consider the four-problem MLO program illustrated in Figure 1. Here, the parameter of
Problem 4 (θp4

) affects the optimal parameter of Problem 3 (θ∗p3
) in two different ways: 1) θp4

→ θ∗p3

and 2) θp4
→ θ∗p1

→ θ∗p3
. In general, we can expand the best-response Jacobian dθ∗

l

dθk
in Equation (1)

by applying the chain rule for all paths from θk to θ∗l as

dCk
dθk

=
∂Ck
∂θk

+
∑

θ∗
l ∈Lk

∑
q∈Qk,l

(
∂θ∗q(1)

∂θk︸ ︷︷ ︸
upper-to-lower

×

( len(q)−1∏
i=1

∂θ∗q(i+1)

∂θ∗q(i)︸ ︷︷ ︸
lower-to-upper

)
× ∂Ck

∂θ∗l

)
(2)

where Qk,l is a set of paths from θk to θ∗l , and q(i) refers to the index of the i-th problem in the path q
with the last point being θ∗l . Replacing a total derivative term in Equation (1) with a product of partial
derivative terms using the chain rule allows us to ignore indirect interactions between problems, and
only deal with direct interactions.

P4

P3

P2 P1

Figure 1: An example
dataflow graph for MLO.

To formalize the path finding problem, we develop a novel dataflow
graph for MLO. Unlike traditional dataflow graphs with no predefined
hierarchy among nodes, a dataflow graph for multilevel optimization
has two different types of directed edges stemming from criteria A1 &
A2: lower-to-upper and upper-to-lower. Each of these directed edges is
respectively depicted with green and red arrows in Figure 1. Essentially,
a lower-to-upper edge represents the directed dependency between two
optimal parameters (i.e. θ∗i → θ∗j with i < j), while an upper-to-lower
edge represents the directed dependency between nonoptimal and optimal
parameters (i.e. θi → θ∗j with i > j). Since we need to find paths from
the nonoptimal parameter θk to the optimal parameter θ∗l , the first directed
edge must be an upper-to-lower edge (red), which connects θk to some
lower-level optimal parameter. Once it reaches the optimal parameter, it
can only move through optimal parameters via lower-to-upper edges (green) in the dataflow graph.
Therefore, every valid path from θk to θ∗l will start with an upper-to-lower edge, and then reach the
destination only via lower-to-upper edges. The best-response Jacobian term for each edge in the
dataflow graph is also marked with the corresponding color in Equation (2). We implement the above
path finding mechanism with a modified depth-first search (DFS) algorithm in BETTY.
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3.2 Gradient Calculation with Best-Response Jacobians

Automatic differentiation for MLO can be realized by calculating Equation (2) for each problem Pk

(k = 1, · · · , n). However, a naive calculation of Equation (2) could be computationally onerous as
it involves multiple matrix multiplications with best-response Jacobians, of which computational
complexity is O(d3), where d is the dimension of the largest optimization problem in the MLO
program. To alleviate this issue, we observe that the rightmost term in Equation (2) is a vector, which
allows us to reduce the computational complexity of Equation (2) to O(d2) by iteratively performing
matrix-vector multiplication from right to left (or, equivalently, reverse-traversing a path q in the
dataflow graph). As such, matrix-vector multiplication between the best-response Jacobian and a
vector serves as a base operation of efficient automatic differentiation for MLO. Mathematically, this
problem can be simply written as follows:

Calculate
∂w∗(λ)

∂λ
× v (3)

Given w∗(λ) = argmin
w

C(w, λ). (4)

Two major challenges in the above problems are: 1) approximating the solution of the optimization
problem (i.e. w∗(λ)), and 2) differentiating through the (approximated) solution.

In practice, an approximation of w∗(λ) is typically achieved by unrolling a small number of gradient
steps, which can significantly reduce the computational cost [10]. Once w∗(λ) is approximated,
matrix-vector multiplication between the best-response Jacobian dw∗(λ)

dλ and a vector v is popularly
obtained by either iterative differentiation (ITD) or approximate implicit differentiation (AID) [12].
This problem has been extensively studied in bilevel optimization literature [9, 10, 23], and we direct
interested readers to the original papers, as studying these algorithms is not the focus of this paper. In
BETTY, we provide implementations of several popular ITD/AID algorithms which users can easily
plug-and-play for their MLO applications. Currently available algorithms include ITD with reverse-
mode automatic differentiation (ITD-RMAD) [9], AID with Neumann series (AID-NMN) [23], AID
with conjugate gradient (AID-CG) [29], and AID with finite difference (AID-FD) [21].

3.3 Execution of Multilevel Optimization

In MLO, optimization of each problem should be performed in a topologically reverse order, as
the upper-level optimization is constrained by the result of lower-level optimization. To ease an
MLO implementation, we also automate such an execution order with the dataflow graph developed
in Section 3.1. Specifically, let’s assume that there is a lower-to-upper edge between problems Pi

and Pj (i.e. θ∗i → θ∗j ). When the optimization process (i.e. a small number of gradient steps) of
the problem Pi is complete, it can call the problem Pj to start its one-step gradient descent update
through the lower-to-upper edge. The problem Pj waits until all lower level problems in Lj send
their calls, and then performs the one-step gradient descent update when all the calls from lower
levels are received. Hence, to achieve the full execution of gradient-based MLO, we only need to call
the one-step gradient descent processes of the lowermost problems, as the optimization processes of
upper problems will be automatically called from lower problems via lower-to-upper edges.

To summarize, automatic differentiation for MLO is accomplished by performing gradient updates of
multiple optimization problems in a topologically reverse order based on the lower-to-upper edges
(Sec. 3.3), where gradients for each problem are calculated by iteratively multiplying best-response
Jacobians obtained with ITD/AID (Sec. 3.2) while reverse-traversing the dataflow graph (Sec. 3.1).

4 Software Design

On top of the automatic differentiation technique developed in Section 3, we build an easy-to-use and
modular software library, BETTY, with various systems support for large-scale gradient-based MLO.
In detail, we break down MLO into two high-level concepts, namely 1) optimization problems and
2) hierarchical dependencies among problems, and design abstract Python classes for both of them.
The architecture of BETTY is shown in Figure 2, and the library will be released open source with an
Apache-2.0 license.

Problem Each optimization problem Pk in MLO is defined by the parameter (or module) θk, the
sets of the upper and lower constraining problems Uk & Lk, the dataset Dk, the cost function
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Figure 2: The overall software architecture for BETTY.

Ck, the optimizer, and other optimization configurations (e.g best-response Jacobian calculation
algorithm, number of unrolling steps). The Problem class is an interface where users can provide
each of the aforementioned components to define the optimization problem. In detail, each one
except for the cost function Ck and the constraining problems Uk & Lk can be provided through the
class constructor, while the cost function can be defined through a “training_step” method and the
constraining problems are automatically provided by Engine.

Abstracting an optimization problem by encapsulating module, optimizer, and data loader together
additionally allows us to implement various systems support, including mixed-precision, data-parallel
training, and gradient accumulation, within the abstract Problem class. A similar strategy has also
been adopted in popular frameworks for large-scale deep learning such as DeepSpeed [28]. Since
implementations of such systems support as well as best-response Jacobian are abstracted away, users
can easily plug-and-play different algorithmic and systems design choices via Config in a modular
fashion. The example usage of Problem is shown in Listing 1.

1 class MyProblem(Problem):
2 def training_step(self , batch):
3 # Users define the cost function here
4 return cost_fn(batch , self.module , self.other_probs , ...)
5 config = Config(type="darts", unroll_steps =10, fp16=True , gradient_accumulation =4)
6 prob = MyProblem("myproblem", config , module , optimizer , data_loader)

Listing 1: Problem class example.

Engine While Problem manages each optimization problem, Engine handles hierarchical depen-
dencies among problems in the dataflow graph. As discussed in Section 3.1, a dataflow graph for
MLO has upper-to-lower and lower-to-upper directed edges. We allow users to define two separate
graphs, one for each type of edge, using a Python dictionary, in which keys/values respectively
represent start/end nodes of the edge. When user-defined dependency graphs are provided, Engine
compiles them and finds all paths required for automatic differentiation with a modified depth-first
search algorithm. Moreover, Engine sets constraining problem sets for each problem based on the
dependency graphs, as mentioned above. Once all initialization processes are done, users can run
a full MLO program by calling Engine’s run method, which repeatedly calls the one-step gradient
descent procedure of lowermost problems. The example usage of Engine is provided in Listing 2.

1 prob1 = MyProblem1 (...)
2 prob2 = MyProblem2 (...)
3 dependency = {"u2l": {prob1: [prob2]}, "l2u": {prob1: [prob2 ]}}
4 engine = Engine(problems =[prob1 , prob2], dependencies=dependency)
5 engine.run()

Listing 2: Engine class example.

5 Experiments

To showcase the general applicability of BETTY, we implement three MLO benchmarks with
varying complexities and scales: data reweighting for class imbalance, correcting and reweighting
corrupted labels, domain adaptation for a pretraining/finetuning framework, and differentiable neural
architecture search. All the results are included in Appendix A.
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A Experiments

A.1 Data Reweighting for Class Imbalance

Many real-world datasets suffer from class imbalance due to underlying long-tailed data distributions.
Meta-Weight-Net (MWN) [33] proposes to alleviate the class imbalance issue with a data reweighting
scheme where they learn to assign higher/lower weights to data from more rare/common classes. In
detail, MWN formulates data reweighting with bilevel optimization as follows:

θ∗ = argmin
θ

Lval(w
∗(θ)) ▷ Reweighting

s.t. w∗(θ) = argmin
w

1

N

n∑
i=1

R(Li
train; θ) · Li

train(f(xi;w), yi) ▷ Classification

where w is the network parameters, Li
train is the training loss for the i-th training sample, and θ is

the MWN R’s parameters, which reweights each training sample given its training loss Li
train.

Following the original paper, we artificially inject class imbalance into the CIFAR-10 dataset by
geometrically decreasing the number of data sample for each class, as per an imbalance factor.
While the official implementation, which is built upon Torchmeta [6], only adopts ITD-RMAD for
best-response Jacobian calculation, we re-implement MWN with multiple best-response Jacobian
algorithms, which only require one-liner changes using BETTY, to study their effect on test accuracy,
memory efficiency, and training wall time. The experiment results are given in Table 1.

Algorithm IF 200 IF 100 IF 50 Memory Time

MWN (original) ITD-RMAD 68.91 75.21 80.06 2381MiB 35.8m

MWN (ours, step=1) ITD-RMAD 71.96 75.13 79.50 2381MiB 36.0m
MWN (ours, step=1) AID-CG 66.23±1.88 70.88±1.68 75.41±0.61 2435MiB 67.4m
MWN (ours, step=1) AID-NMN 66.45±1.18 70.92±1.35 75.90 ±1.73 2419MiB 67.1m
MWN (ours, step=1) AID-FD 75.45±0.63 78.11±0.43 81.15±0.25 2051MiB 28.5m
MWN (ours, step=5) AID-FD 76.56±1.19 80.45±0.73 83.11±0.54 2051MiB 65.5m

Table 1: MWN experiment results. IF denotes an imbalance factor. AID-CG/NMN/FD respectively
stand for implicit differentiation with conjugate gradient/Neumann series/finite difference.

We observe that different best-Jacobian algorithms lead to vastly different test accuracy, memory
efficiency, and training wall time. Interestingly, we notice that AID-FD with unrolling steps of both
1 and 5 consistently achieve better test accuracy (close to SoTA [36]) and memory efficiency than
other methods. This demonstrates that, while BETTY is developed to support large and general MLO
programs, it is still useful for simpler bilevel optimization tasks as well. An additional analysis on the
effect of best-response Jacobian can also be found in Appendix B.

Furthermore, to demonstrate the scalability of BETTY to large-scale MLO, we applied MWN to
sentence classification with the BERT-base model [8] with 110M parameters. Similarly, we artificially
inject class imbalance into the SST dataset, and use AID-FD as our best-response Jacobian calculation
algorithm. The experiment results are provided in Table 2.

Algorithm IF 20 IF 50 Memory

Baseline AID-FD 89.99±0.38 87.54±0.70 8319MiB

MWN (fp32) AID-FD - - Out-of-memory
MWN (fp16) AID-FD 91.06±0.09 89.79±0.65 10511MiB

Table 2: MWN+BERT experiment results. fp32 and fp16 respectively stand for full-precision and
mixed-precision training.

As shown above, default full-precision training fails due to the CUDA out-of-memory error, while
mixed-precision training, which only requires a one-line change in Config, avoids this issue while
also providing consistent improvements in test accuracy compared to the BERT baseline. This
demonstrates that our system features are indeed effective in scaling MLO to large models. We
include more analyses on our systems support in Appendix C.
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A.2 Correcting & Reweighting Corrupted Labels

Another common pathology in real-world data science is the issue of label corruption, stemming
from noisy data preparation processes (e.g. Amazon MTurk). One prominent example of this is
in weak supervision [30], where users create labels for large training sets by leveraging multiple
weak/noisy labeling sources such as heuristics and knowledge bases. Due to the nature of weak
supervision, generated labels are generally noisy, and consequently lead to a significant performance
degradation. In this example, we aim to mitigate this issue by 1) correcting and 2) reweighting
potentially corrupted labels. More concretely, this problem can be formulated as an extended bilevel
optimization problem, as, unlike the MWN example, we have two optimization problems—correcting
and reweighting—in the upper level, as opposed to one. The mathematical formulation of this MLO
program is as follows:

θ∗ = argmin
θ

Lval(w
∗(θ, α)), α∗ = argmin

α
L′
val(w

∗(θ, α)) ▷ RWT & CRT

s.t. w∗(θ, α) = argmin
w

1

N

n∑
i=1

R(Li
train; θ) · Li

train(f(xi;w), g(xi, yi;α)) ▷ Classification

where, α is the parameter for the label correction network g, and L′
val is augmented with the

classification loss of the correction network in addition to that of the main classification network f on
the clean validation set.

We test our framework on the WRENCH benchmark [40], which contains multiple weak supervision
datasets. In detail, we use a 2-layer MLP as our classifier, AID-FD as our best-response Jacobian
algorithm, and Snorkel Data Programming [30] as our weak supervision algorithm for generating
training labels. The experiment results are provided in Table 3.

TREC AGNews IMDB SemEval ChemProt YouTube

Snorkel 57.52±0.18 62.00±0.07 71.03±0.55 71.00±0.00 51.54±0.41 77.44±0.22

Baseline 53.88±1.83 80.74±0.20 72.26±0.81 71.50±0.44 54.47±0.78 88.16±1.56
+RWT 57.56±1.41 82.79±0.10 77.18±0.13 77.23±3.38 65.33±0.72 91.60±0.75
+RWT&CRT 66.76±1.31 83.16±0.20 77.80±0.26 84.34±1.43 67.69±1.17 91.52±0.66

Table 3: Wrench Results. RWT stands for reweighting and CRT for correction

We observe that simultaneously applying label correction and reweighting significantly improves
the test accuracy over the baseline and the reweighting-only scheme in almost all tasks. Thanks to
BETTY, adding label correction in the upper-level on top of the existing reweighting scheme only
requires defining one more Problem class, and accordingly updating the problem dependency in
Engine (code examples can be found in Appendix D).

A.3 Domain Adaptation for Pretraining & Finetuning

Pretraining/finetuning paradigms are increasingly adopted with recent advances in self-supervised
learning [8, 14]. However, the data for pretraining are oftentimes from a different distribution than
the data for finetuning, which could potentially cause negative transfer. Thus, domain adaptation
emerges as a natural solution to mitigate this issue. As a domain adaptation strategy, [27] proposes to
combine data reweighting with a pretraining/finetuning framework to automatically decrease/increase
the weight of pretraining samples that cause negative/positive transfer. In contrast with the above two
benchmarks, this problem can be formulated as trilevel optimization as follows:

θ∗ = argmin
θ

LFT (v
∗(w∗(θ))) ▷ Reweighting

s.t. v∗(w∗(θ)) = argmin
v

(
LFT (v) + λ∥v − w∗(θ)∥22

)
▷ Finetuning

w∗(θ) = argmin
w

1

N

n∑
i=1

R(xi; θ) · Li
PT (w) ▷ Pretraining

where xi / Li
PT stands for the i-th pretraining sample/loss, R for networks that reweight importance

for each pretraining sample xi, and λ for the proximal regularization parameter. Additionally, w, v,
and θ are respectively parameters for pretraining, finetuning, and reweighting networks.
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We conduct an experiment on the OfficeHome dataset [37] that consists of 15,500 images from 65
classes and 4 domains: Art (Ar), Clipart (Cl), Product (Pr), and Real World (RW). Specifically, we
randomly choose 2 domains and use one of them as a pretraining task and the other as a finetuning
task. ResNet-18 [15] is used for all pretraining/finetuning/reweighting networks, and AID-FT with an
unrolling step of 1 is used as our best-response Jacobian algorithm. Following [2], the finetuning and
the reweighting stages share the same training dataset. We adopted a normal pretraining/finetuning
framework without the reweighting stage as our baseline, and the result is presented in Table 4.

Algorithm Cl→Ar Ar→Pr Pr→Rw Rw→Cl Memory Time

Baseline N/A 65.43±0.36 87.62±0.33 77.43±0.41 68.76±0.13 3.8GiB 290s

+ RWT AID-FD 67.76±0.83 88.53±0.42 78.58±0.17 69.75±0.43 8.2GiB 869s
Table 4: Domain Adaptation for Pretraining & Finetuning results. Reported numbers are classification
accuracy on the target domain (right of arrow), after pretraining on the source domain (left of arrow).
We note that Baseline is a two-layer, and Baseline + Reweight a three-layer, MLO program.

Our trilevel optimization framework achieves consistent improvements over the baseline for every
task combination at the cost of additional memory usage and wall time, which demonstrates the
empirical usefulness of multilevel optimization beyond a two-level hierarchy. Finally, we provide
an example of (a simplified version of) the code for this experiment in Appendix D to showcase the
usability of our library for a general MLO program.

A.4 Differentiable Neural Architecture Search

A neural network architecture plays a significant role in deep learning research. However, the search
space of neural architectures is so large that manual search is almost impossible. To overcome this
issue, DARTS [21] proposes an efficient gradient-based neural architecture search method based on
the bilevel optimization formulation:

α∗ = argmin
α

Lval(w
∗(α), α) ▷ Architecture Search

s.t. w∗(α) = argmin
w

Ltrain(w;α) ▷ Classification

where α is the architecture weight and w is the network weight. The original paper uses implicit
differentiation with finite difference as its best-response Jacobian algorithm to solve the above MLO
program.

We follow the training configurations from the original paper’s CIFAR-10 experiment, with a few
minor changes. While the original paper performs a finite difference method on the initial network
weights, we perform it on the unrolled network weights. This is because we view their best-response
Jacobian calculation from the implicit differentiation perspective, where the second-order derivative
is calculated based on the unrolled weight. This allows us to unroll the lower-level optimization for
more than one step as opposed to strict one-step unrolled gradient descent of the original paper. A
similar idea was also proposed in iDARTS [41]. Specifically, we re-implement DARTS with implicit
differentiation and finite difference using 1 and 3 unrolling steps. The results are provided in Table 5.

Algorithm Test Acc. Parameters Memory Wall Time

Random Search Random 96.71% 3.2M N/A N/A
DARTS (original) AID-FD∗ 97.24% 3.3M 10493MiB 25.4h

DARTS (ours, step=1) AID-FD 97.39% 3.8M 10485MiB 23.6h
DARTS (ours, step=3) AID-FD 97.22% 3.2M 10485MiB 28.5h

Table 5: DARTS re-implementation results. AID-FD refers to implicit differentiation with a finite
difference method, and ∗ indicates the difference in the implementation of AID-FD explained above.

Our re-implementation with different unrolling steps achieves a similar performance as the original
paper. We also notice that our re-implementation achieves slightly less GPU memory usage and wall
time. This is because the original implementation calculates gradients for the architecture weights
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(upper-level parameters) while running lower-level optimization, while ours only calculates gradients
of the parameters for the corresponding optimization stage.

B Design Choice Analysis

In this section, we visually compare the convergence speed of different best-response Jacobian
algorithms with the loss convergence graphs on the synthetic hyperparameter optimization task and
the data reweighting task (Section 5.1). Specifically, we analyze the convergence speed in terms of
both 1) the number of steps and 2) training time, as the per-step computational cost differs for each
algorithm.

B.1 Synthetic Hyperparameter Optimization

Following [12], we constructed a synthetic hyperparameter optimization task where we optimize the
weight decay value for every parameter in simple binary logistic regression. Mathematically, this
problem can be formulated as bilevel optimization as follows:

λ∗ = argmin
λ

sigmoid(yuxT
uw

∗)

w∗ = argmin
w

sigmoid(ylxT
l w

∗) +
1

2
wT diag(λ)w

where, (xl, yl) and (xu, yu) are repsectively the training datasets for the lower-(and upper-)level
problems, with x ∈ Rn×d and y ∈ Rn×1. Here, n is the number of training data in each dataset and d
is the dimension of the feature vector. w ∈ Rd×1 is the logistic regression parameter, and λ ∈ Rd×1

is the hyperparameter (i.e. the per-parameter weight decay value).

Given the above setup, we compared four different best-reponse Jacobian algorithms: 1) ITD-RMAD,
2) AID-FD, 3) AID-CG, and 4) AID-Neumann. For the fair comparison, we fixed the unrolling step
to 100 for all algorithms. The experiment result is presented below:

Figure 3: Convergence analysis of different best-response Jacobian algorithms on the synthetic
hyperparameter optimization task

As shown in Figure 3, AID-CG achieves the fastest convergence both in terms of training steps and
training time. However, AID-FD achieves the fastest per-step computation time as it is the only
algorithms that doesn’t require the explicit calculation of the second-order derivative (i.e. Hessian).
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B.2 Data Reweighting

To study how different best-response Jacobian algorithms perform on more complex tasks, we
repeated the above experiment on the data reweighting task from Section 5.1. Again, for the fair
comparison, we used the same unrolling step of 1 for all algorithms. The experiment result is provided
in Figure 4.

Figure 4: Convergence analysis of different best-response Jacobian algorithms on the data reweighting
task

.

Unlike in the synthetic hyperparameter optimization task, AID-FD achieves the fastest convergence
in terms of training steps and training time as well as the best final validation accuracy. As AID-
FD doesn’t require any second-order derivative calculation, it also achieves the minimal per-step
computation cost.

Above two experiments follow the no free lunch theorem: the optimal design choice can vary for
different tasks without golden rules. However, thanks to the modular interface for switching between
different design choices (in Config), only minimal programming efforts would be needed with
BETTY, expediting the research cycle.
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C Systems Support

In this section, we perform additional analyses on the memory saving effects of our system features
with two benchmarks: (1) differentiable neural architecture search and (2) data reweighting for class
imbalance.

C.1 Differentiable Neural Architecture Search

Baseline + mixed-precision

GPU Memory Usage 9867MiB 5759MiB

Table 6: GPU memory usage analysis for DARTS.

C.2 Data Reweighting for Class Imbalance

In this experiment, we use ResNet50 [15] instead of ResNet30, to better study the memory reduction
from our system features, when the larger model is used. Importantly, we also test the data-parallel
training feature in addition to the mixed-precision training feature.

Baseline + mixed-precision + data-parallel (2 GPUs)

GPU Memory Usage 6817MiB 4397MiB 3185/3077MiB (GPU0/1)

Table 7: GPU memory usage analysis for MWN with ResNet-50.

As shown above, we observe more reduction in memory usage as we add more system features.
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D Code Example

Here, we provide simplified code for our experiments from Section A. Note that every experiment
shares a similar code structure when implemented with BETTY.

D.1 Data Reweighting for Class Imbalance

1 train_loader , valid_loader = setup_dataloader ()
2 rwt_module , rwt_optimizer = setup_reweight ()
3 cls_module , cls_optimizer , cls_scheduler = setup_classifier ()
4

5 # Level 2
6 class Reweight(ImplicitProblem):
7 def training_step(self , batch):
8 inputs , labels = batch
9 outputs = self.classifier(inputs)

10 return F.cross_entropy(outputs , labels)
11

12 # Level 1
13 class Classifier(ImplicitProblem):
14 def training_step(self , batch):
15 inputs , labels = batch
16 outputs = self.module(inputs)
17 loss = F.cross_entropy(outputs , labels , reduction="none")
18 loss_reshape = torch.reshape(loss , (-1, 1))
19 # Reweighting
20 weight = self.reweight(loss_reshape.detach ())
21 return torch.mean(weight * loss_reshape)
22

23 upper_config = Config(type="darts", retain_graph=True)
24 lower_config = Config(type="default", unroll_steps =5)
25

26 reweight = Reweight(name="reweight",
27 config=upper_config ,
28 module=rwt_module ,
29 optimizer=rwt_optimizer ,
30 train_data_loader=valid_loader)
31 classifier = Classifier(name="classifier",
32 config=lower_config ,
33 module=cls_module ,
34 optimizer=cls_optimizer ,
35 scheduler=cls_scheduler ,
36 train_data_loader=train_loader)
37

38 probs = [reweight , classifier]
39 u2l = {reweight: [classifier ]}
40 l2u = {classifier: [reweight ]}
41 depends = {"l2u": l2u , "u2l": u2l}
42

43 engine = Engine(problems=probs , dependencies=depends)
44 engine.run()

Listing 3: Simplified code of “Data Reweighting for Class Imbalance”
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D.2 Correcting & Reweighting Corrupted Labels

1 train_loader , valid_loader = setup_dataloader ()
2 rwt_module , rwt_optimizer = setup_reweight ()
3 crt_module , crt_optimizer = setup_correct ()
4 cls_module , cls_optimizer , cls_scheduler = setup_classifier ()
5

6 # Level 2
7 class Correct(ImplicitProblem):
8 def training_step(self , batch):
9 inputs , labels = batch

10 outputs = self.classifier(inputs)
11 return F.cross_entropy(outputs , labels)
12

13 # Level 2
14 class Reweight(ImplicitProblem):
15 def training_step(self , batch):
16 inputs , labels = batch
17 outputs = self.classifier(inputs)
18 return F.cross_entropy(outputs , labels)
19

20 # Level 1
21 class Classifier(ImplicitProblem):
22 def training_step(self , batch):
23 inputs , labels = batch
24 outputs = self.module(inputs)
25 # Correcting
26 new_labels = self.correct(outputs , labels)
27 log_softmax = F.log_softmax(outputs , dim=-1)
28 loss = torch.sum(-log_softmax * new_labels , dim=-1)
29 loss_reshape = torch.reshape(loss , (-1, 1))
30 # Reweighting
31 weight = self.reweight(loss_reshape.detach ())
32 return torch.mean(weight * loss_reshape)
33

34 upper_config = Config(type="darts", retain_graph=True)
35 lower_config = Config(type="default", unroll_steps =5)
36

37 correct = Correct(name="correct",
38 config=upper_config ,
39 module=crt_module ,
40 optimizer=crt_optimizer ,
41 train_data_loader=valid_loader)
42 reweight = Reweight(name="reweight",
43 config=upper_config ,
44 module=rwt_module ,
45 optimizer=rwt_optimizer ,
46 train_data_loader=valid_loader)
47 classifier = Classifier(name="classifier",
48 config=lower_config ,
49 module=cls_module ,
50 optimizer=cls_optimizer ,
51 scheduler=cls_scheduler ,
52 train_data_loader=train_loader)
53

54 probs = [correct , reweight , classifier]
55 u2l = {correct: [classifier], reweight: [classifier ]}
56 l2u = {classifier: [correct , reweight ]}
57 depends = {"l2u": l2u , "u2l": u2l}
58

59 engine = Engine(problems=probs , dependencies=depends)
60 engine.run()

Listing 4: Simplified code of “Correcting & Reweighting Corrupted Labels”
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D.3 Domain Adaptation for Pretraining & Finetuning

1 # Get module , optimizer , lr_scheduler , data loader for each problem
2 pt_module , pt_optimizer , pt_scheduler , pt_loader = setup_pretrain ()
3 ft_module , ft_optimizer , ft_scheduler , ft_loader = setup_finetune ()
4 rw_module , rw_optimizer , rw_scheduler , rw_loader = setup_reweight ()
5

6 # Level 1
7 class Pretrain(ImplicitProblem):
8 def training_step(self , batch):
9 inputs , targets = batch

10 outs = self.module(inputs)
11 loss_raw = F.cross_entropy(outs , targets , reduction="none")
12

13 logit = self.reweight(inputs)
14 weight = torch.sigmoid(logit)
15 return torch.mean(loss_raw * weight)
16

17 # Level 2
18 class Finetune(ImplicitProblem):
19 def training_step(self , batch):
20 inputs , targets = batch
21 outs = self.module(inputs)
22 loss = F.cross_entropy(outs , targets , reduction="none")
23 loss = torch.mean(ce_loss)
24 # Proximal regularization
25 for (n1, p1), p2 in zip(self.module.named_parameters (), self.

pretrain.module.parameters ()):
26 lam = 0 if "fc" in n1 else args.lam
27 loss += lam * (p1 - p2).pow (2).sum()
28 return loss
29

30 # Level 3
31 class Reweight(ImplicitProblem):
32 def training_step(self , batch):
33 inputs , targets = batch
34 outs = self.finetune(inputs)
35 return F.cross_entropy(outs , targets)
36

37 # Define optimization configurations
38 reweight_config = Config(type="darts", step=1, retain_graph=True)
39 finetune_config = Config(type="default", step =1)
40 pretrain_config = Config(type="default", step =1)
41

42 pretrain = Pretrain("pretrain", pt_config , pt_module , pt_optimizer
43 pt_scheduler , pt_loader)
44 finetune = Finetune("finetune", ft_config , ft_module , ft_optimizer
45 ft_scheduler , ft_loader)
46 reweight = Reweight("reweight", rw_config , rw_module , rw_optimizer
47 rw_scheduler , rw_loader)
48

49 probs = [reweight , finetune , pretrain]
50 u2l = {reweight: [pretrain ]}
51 l2u = {pretrain: [finetune], finetune: [reweight ]}
52 depends = {"u2l": u2l , "l2u": l2u}
53 engine = Engine(problems=probs , dependencies=depends)
54 engine.run()

Listing 5: Simplified code of “Domain Adaptation for Pretraining & Finetuning”
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D.4 Differentiable Neural Architecture Search

1 train_loader , valid_loader = setup_dataloader ()
2 arch_module , arch_optimizer = setup_architecture ()
3 cls_module , cls_optimizer , cls_scheduler = setup_classifier ()
4

5 # Level 2
6 class Architecture(ImplicitProblem):
7 def training_step(self , batch):
8 x, target = batch
9 alphas = self.module ()

10 return self.classifier.module.loss(x, alphas , target)
11

12 # Level 1
13 class Classifier(ImplicitProblem):
14 def training_step(self , batch):
15 x, target = batch
16 alphas = self.architecture ()
17 return self.module.loss(x, alphas , target)
18

19 arch_config = Config(type="darts",
20 step=1,
21 retain_graph=True ,
22 first_order=True)
23 cls_config = Config(type="default")
24

25 architecture = Architecture(name="architecture",
26 config=arch_config ,
27 module=arch_module ,
28 optimizer=arch_optimizer ,
29 train_data_loader=valid_loader)
30 classifier = Classifier(name="classifier",
31 config=cls_config ,
32 module=cls_module ,
33 optimizer=cls_optimizer ,
34 scheduler=cls_scheduler ,
35 train_data_loader=train_loader)
36

37 probs = [architecture , classifier]
38 u2l = {architecture: [classifier ]}
39 l2u = {classifier: [architecture ]}
40 depends = {"l2u": l2u , "u2l": u2l}
41

42 engine = Engine(problems=probs , dependencies=depends)
43 engine.run()

Listing 6: Simplified code of “Differentiable Neural Architecture Search”
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E Experiment Details

In this section, we provide further training details (e.g. hyperparameters) of each experiment.

E.1 Data Reweighting for Class Imbalance

Dataset We reuse the long-tailed CIFAR-10 dataset from the original paper [33] as our inner-level
training dataset. More specifically, the imbalance factor is defined as the ratio between the number
of training samples from the most common class and the most rare class. The number of training
samples of other classes are defined by geometrically interpolating the number of training samples
from the most common class and the most rare class. We randomly select 100 samples from the
validation set to construct the upper-level (or meta) training dataset, and use the rest of it as the
validation dataset, on which classification accuracy is reported in the main text.

Meta-Weight-Network We adopt a MLP with one hidden layer of 100 neurons (i.e. 1-100-1) as
our Meta-Weight-Network (MWN). It is trained with the Adam optimizer [19] whose learning rate is
set to 0.00001 throughout the whole training procedure, momentum values to (0.9, 0.999), and weight
decay value to 0. MWN is trained for 10,000 iterations and learning rate is fixed throughout training.

Classification Network Following the original MWN work [33], we use ResNet32 [15] as our
classification network. It is trained with the SGD optimizer whose initial learning rate is set to
0.1, momentum value to 0.9, and weight decay value to 0.0005. Training is performed for 10,000
iterations, and we decay the learning rate by a factor of 10 on the iterations of 5,000 and 7,500.

E.2 Correcting & Reweighting Corrupted Labels

Dataset We directly use TREC, AGNews, IMDB, SemEval, ChemProt, YouTube text classification
datasets from the Wrench benchmark [40]. More specifically, we use the training split of each dataset
for training the classification network, and the validation split for training the correcting and the
reweighting networks. Test accuracy is measured on the test split.

Correct Network Our correct network takes the penultimate activation from the classification
network, and outputs soft labels through the linear layer and the softmax layer. These new soft
labels are interpolated with the original labels via the reweighting scheme which is achieved with
2-layer MLP. As our reweighting network, the correct network is trained with Adam optimizer whose
learning rate is set to 0.00001, momentum values to (0.9, 0.999), and weight decay value to 0.

Reweighting Network For our reweighting network, we reuse Meta-Weight-Net from the “Data
Reweighting for Class Imbalance” experiment, follow all the training details.

Classification Network As our classification network, we adopt a 2-layer MLP with the hidden
size of 100. The classification network is trained for 30,000 iterations with the SGD optimizer whose
learning rate is set to 0.003, momentum to 0.9, and weight decay to 0.0001. Learning rate is decayed
to 0 with the cosine annealing schedule during training.

E.3 Domain Adaptation for Pretraining & Finetuning

Dataset We split each domain of the OfficeHome dataset [37] into training/validation/test datasets
with a ratio of 5:3:2. The pretraining network is trained on the training set of the source domain.
Finetuning and reweighting networks are both trained on the training set of the target domain
following the strategy proposed in [2]. The final performance is measured by the classification
accuracy of the finetuning network on the test dataset of the target domain.

Pretraining Network We use ResNet18 [15] pretrained on the ImageNet dataset [7] for our
pretraining network. Following the popular transfer learning strategy, we split the network into two
parts, namely the feature (or convolutional layer) part and the classifier (or fully-connected layer) part,
and each part is trained with different learning rates. Specifically, learning rates for the feature and the
classifier parts are respectively set to 0.001 and 0.0001 with the Adam optimizer. They share the same
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weight decay value of 0.0005 and momentum values of (0.9, 0.999). Furthermore, we encourage
the network weight to stay close to the pretrained weight by introducing the additional proximal
regularization with the regularization value of 0.001. Training is performed for 1,000 iterations, and
the learning rate is decayed by a factor of 10 on the iterations of 400 and 800.

Finetuning Network The same architecture and optimization configurations as the pretraining net-
work are used for the finetuning network. The proximal regularization parameter, which encourages
the finetuning network parameter to stay close to the pretraining network parameter, is set to 0.007.

Reweighting Network The same architecture and optimization configurations as the pretraining
network are used for the reweighting network, except that no proximal regularization is applied to the
reweighting network.

E.4 Differentiable Neural Architecture Search

Dataset Follwing the original paper [21], we use the first half of the CIFAR-10 training dataset
as our inner-level training dataset (i.e. classification network) and the other half as the outer-level
training dataset (i.e. architecture network). Training accuracy reported in the main text is measured
on the CIFAR-10 validation dataset.

Architecture Network We adopt the same architecture search space as in the original paper [21]
with 8 operations, and 7 nodes per convolutional cell. The architecture parameters are initialized to
zero to ensure equal softmax values, and trained with the Adam optimizer [19] whose learning rate
is fixed to 0.0003, momentum values to (0.5, 0.999), and weight decay value to 0.001 throughout
training. Training is performed for 50 epochs.

Classification Network Given the above architecture parameters, we set our classification network
to have 8 cells and the initial number of channels to be 16. The network is trained with the SGD
optimizer whose initial learning rate is set to 0.025, momentum to 0.9, and weight decay value to
0.0003. Training is performed for 50 epochs, and the learning rate is decayed following the cosine
annealing schedule without restart to the minimum learning rate of 0.001 by the end of training.

F Related Work

Bilevel & Multilevel Optimization There are a myriad of machine learning applications that
are built upon bilevel optimization (BLO), the simplest case of multilevel optimization with a two-
level hierarchy. For example, neural architecture search [21, 41], hyperparameter optimization [10,
23, 24], reinforcement learning [17, 20], data valuation [31, 38], meta learning [9, 29], and label
correction [42] are formulated as BLO. In addition to applying BLO to machine learning tasks, a
variety of optimization techniques [4, 12, 18, 22] have been developed for solving BLO.

Following the popularity of BLO, MLO with more than a two-level hierarchy has also attracted
increasing attention recently [27, 34, 35, 39]. In general, these works construct complex multi-stage
ML pipelines, and optimize the pipelines in an end-to-end fashion with MLO. For instance, [11]
constructs the pipeline of (data generation)–(architecture search)–(classification) and [16] of (data
reweighting)–(finetuning)–(pretraining), all of which are solved with MLO. Furthermore, [32] study
gradient-based methods for solving MLO with theoretical guarantees.

Multilevel Optimization Software There are several software libraries that are frequently used
for implementing MLO programs. Most notably, JAXopt [3] proposes an efficient and modular
approach for AID by leveraging JAX’s native autodiff of the optimality conditions. Despite its
easy-to-use programming interface for AID, it fails to support combining the chain rule with AID
as in Equation (2), because it overrides the default behavior of JAX’s automatic differentiation,
which takes care of the chain rule. Therefore, it cannot be used for implementing MLO beyond a
two-level hierarchy without major changes in the source code and the software design. Alternatively,
higher [13] provides two major primitives of making 1) stateful PyTorch modules stateless and 2)
PyTorch optimizers differentiable to ease the implementation of AID/ITD. However, users still need
to manually implement complicated internal mechanisms of these algorithms as well as the chain
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rule with the provided primitives. Torchmeta [6] also provides similar functionalities as higher, but
it requires users to use its own stateless modules implemented in the library rather than patching
general modules as in higher. Thus, it lacks the support for user’s custom modules, limiting its
applicability. learn2learn [1] focuses on supporting meta learning. However, since meta-learning is
strictly a bilevel problem, extending it beyond a two-level hierarchy is not straightforward. Finally,
most existing libraries do not have systems support, such as data-parallel training, that could mitigate
memory/compute bottlenecks.
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