
Improving language models fine-tuning with representation consistency
targets

Anonymous ACL submission

Abstract

Fine-tuning contextualized representations001
learned by pre-trained language models has002
become a standard practice in the NLP field.003
However, pre-trained representations are prone004
to degradation (also known as representation005
collapse) during fine-tuning, which leads to in-006
stability, sub-optimal performance, and weak007
generalization. In this paper, we propose a008
novel fine-tuning method that avoids represen-009
tation collapse during fine-tuning by discourag-010
ing undesirable changes of the representations.011
We show that our approach matches or exceeds012
the performance of the existing regularization-013
based fine-tuning methods across 13 language014
understanding tasks (GLUE benchmark and six015
additional datasets). We also demonstrate its016
effectiveness in low-data settings and robust-017
ness to label perturbation. Furthermore, we018
extend previous studies of representation col-019
lapse and propose several metrics to quantify it.020
Using these metrics and previously proposed021
experiments, we show that our approach ob-022
tains significant improvements in retaining the023
expressive power of representations.024

1 Introduction025

Using pre-trained representations for subsequent026

fine-tuning has been shown to significantly improve027

performance on a variety of natural language pro-028

cessing (NLP) tasks (Peters et al., 2018; Radford029

et al., 2019; Devlin et al., 2018; Dai et al., 2019;030

Yang et al., 2019; Liu et al., 2019b). Pre-trained031

representations are learned by language models on032

a large text corpus and capture a wide range of033

semantic information and general knowledge (Qiu034

et al., 2020). However, fine-tuning can lead to035

degradation of the generalizable representations,036

which subsequently results in overfitting and per-037

formance variability. Aghajanyan et al. (2020a)038

study the degradation of representations, or repre-039

sentation collapse, and define it as the failure of040

representations to generalize to out-of-distribution041

tasks (tasks not used during fine-tuning). They 042

show that fine-tuned representations which can fit 043

auxiliary tasks well are more likely to have better 044

generalization performance i.e. better performance 045

on unseen test data of the original task. Hence, re- 046

ducing representation collapse is a strong constraint 047

that helps to improve performance on the current 048

task, in addition to ensuring that representations 049

can fit auxiliary tasks. 050

Multi-task learning studies this phenomenon 051

from optimization perspective and keeps the repre- 052

sentations generic by utilizing the auxiliary tasks 053

during fine-tuning. In particular, representations 054

are fine-tuned simultaneously for multiple tasks 055

(task A and auxiliary tasks B1, . . . , Bk, different 056

tunable linear heads for each task). Multi-task 057

learning helps to ensure that sentence represen- 058

tations do not overfit to a specific target task but 059

instead contain rich information from diverse set of 060

tasks. This leads to improvement in model general- 061

ization (performance on unseen test data) for each 062

task. Although multi-task learning is known to be 063

an effective strategy for improving generalization, 064

it suffers from the dependence on auxiliary tasks 065

data which is difficult to obtain. 066

In this paper, we propose a pseudo multi-task 067

learning method that prevents representation col- 068

lapse and improves generalization performance dur- 069

ing fine-tuning, without actually requiring any aux- 070

iliary data. We implement our method as a loss 071

function-based regularization. Furthermore, we in- 072

troduce a knob which can be controlled to weaken 073

or strengthen regularization compared to multi-task 074

learning. 075

We compare our method against established reg- 076

ularization approaches which implicitly address 077

the issue of representation degradation. We show 078

that our approach consistently outperforms major 079

fine-tuning methods on seven GLUE classification 080

tasks and six additional tasks (a total of 13 tasks, 081

see Figure 1 for a summary). We observe that 082
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our approach is especially effective in limited data083

regimes (250, 500, and 1000 examples), when the084

model is most prone to overfitting and memorizing085

training data. Furthermore, we thoroughly inves-086

tigate fine-tuning under label perturbation (from087

5% to 30% label noise) and observe that our ap-088

proach is robust to incorrect labels, exceeding the089

performance of standard fine-tuning procedure and090

common baseline methods.091

Finally, we propose new metrics that reliably092

quantify representation collapse and can be com-093

puted without auxiliary task data. We observe that094

our approach is most robust to representation col-095

lapse in terms of newly proposed metrics as well096

as previously used metrics.097

Figure 1: Fine-tuning results on GLUE benchmark
across different methods (mean performance and stan-
dard deviation are shown). Our method: CAPCORT-X

2 Representation Consistency Targets098

In this section, we first discuss representation col-099

lapse and how it is connected to generalization per-100

formance of the fine-tuned model. We show that101

multi-task learning can alleviate the issue of repre-102

sentation collapse if we have access to real auxil-103

iary task data. In the absence of real auxiliary task104

data, we formulate a pseudo multi-task learning ob-105

jective. Finally, we prove that this peudo multi-task106

learning objective can be reduced a tractable loss107

function in terms of pre-trained representations,108

fine-tuned representations and a knob controlling109

the strength of regularization.110

During fine-tuning, language models lose am-111

ple information content of the pre-trained repre-112

sentations, and, hence, fine-tuned representations113

become focused on the specific task. Aghajanyan114

et al. (2020a) define this phenenon as representa-115

tion collapse and measure it with probing experi-116

ments, when fine-tuned representations are frozen117

and a linear layer is trained to fit them to auxil-118

iary tasks. In such experiments, better performance119

on auxiliary tasks indicates less degree of repre- 120

sentation collapse, and, interestingly, better gen- 121

eralization on the original fine-tuning task. Thus, 122

representation collapse can be viewed as a form of 123

overfitting and controlling it is a sensible method 124

of regularizing the training procedure. 125

A natural direction to reduce representation col- 126

lapse would be to simultaneously fine-tune the rep- 127

resentations for task A and auxiliary tasks Bi’s. 128

This is a well-known multi-task learning objective: 129

min
lin

∑
(x,y)∈IA

lA(lin(ffin(x)), y)+ 130

λ
t∑
i=1

min
lin

∑
(x,y)∈IBi

lBi(lin(ffin(x)), y) (1) 131

where lin is any linear function, lT is a loss func- 132

tion for task T , IT is the set of labeled samples 133

for task T and ffin is the embedding function of 134

the model being finetuned1. It prevents overfitting 135

of representations to a single task and improves 136

generalization performance of the finetuned model. 137

However, a drawback of multi-task learning is that 138

it is dependent on the auxiliary tasks data (IBi) 139

which is often not available. 140

In this paper, we present a method inspired by 141

pseudo multi-task learning, which targets repre- 142

sentation collapse based on pseudo auxiliary tasks. 143

That is, we want to optimize loss function in equa- 144

tion 1 and benefit from multi-task learning, yet 145

without depending on real auxiliary task data (IBi). 146

Our choice of auxiliary tasks is based on the 147

following observation: pre-trained representations 148

can fit most of the available natural language tasks 149

using a linear head. Suppose the pre-trained repre- 150

sentation function (defined by the language model) 151

fpre : I → Rd maps the inputs in I to a d- 152

dimensional space. For a regression task T 2 with 153

labeled samples IT = {(x1, y1), . . . , (xN , yN )}, 154

fitting a linear model on the pre-trained represen- 155

tations for a task T is equivalent to finding op- 156

timal linear head weights w ∈ Rd, b ∈ R s.t. 157

wT fpre(x) + b approximates the labeling function 158

y i.e. yi ≈ wT fpre(xi) + b. 159

Pseudo auxiliary task: Each pseudo-task B
′
i is 160

defined by a linear function (wi ∈ Rd, bi ∈ R) on 161

pre-trained embeddings, it has the labeling function 162

1In a standard multi-task learning, λ = 1 but we can easily
extend it to use multi-task learning as a regularizer.

2for classification problem with k classes, this corre-
sponds to existence of w1, . . . wk ∈ Rd, b1, . . . , bk s.t.
softmax(wT

1 fprex + b1, . . . , w
T
k fpre(x) + bk) approxi-

mates the labeling function.
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x→ wTi fpre(x)+ bi for an input x and pre-trained163

representation function fpre(·).164

Since pseudo auxiliary tasks are regression tasks,165

a natural choice for the loss function is the ℓ2 loss166

function i.e. l
B

′
i
(a, b) = ||a − b||22. Let I be the167

set of unlabeled inputs for psuedo tasks, then the168

second term in equation 1 is equal to the following:169

λ

t∑
i=1

min
lin

∑
x∈I

||lin(ffin(x))− wTi fpre(x)− bi||22

(2)

170

We ignore the first term (loss for task A, LA) as171

this does not change in our reduction.172

Knob to control the strength of regularization:173

equation 2 biases the fine-tuned representations174

towards a linear transformation of pre-trained rep-175

resentations. For instance, if fine-tuned represen-176

tations are a linear shift of the pre-trained repre-177

sentations, then the regularization loss is zero (see178

Section A for futher discussion). In order to allow179

some freedom to the fine-tuning process, we intro-180

duce a knob in form of a function family Ψ. Rather181

than using a linear head, we allow a potentially non-182

linear head ψ ∈ Ψ on fine-tuned embeddings to fit183

the auxiliary tasks defined above. Thus, the gener-184

alized pseudo multi-task loss becomes L̂aux =185

λ ·
T∑
i=1

min
ψ∈Ψ

∑
x∈I

(ψ(ffin(x))− wTi fpre(x)− bi)
2186

The main challenge in using the above regulariza-187

tion objective is in selecting the suitable distribu-188

tion for pseudo auxiliary tasks and the resulting189

intractable loss function with infinite number of190

terms. We show (in Appendix A) that under some191

mild assumptions, this can be reduced to a tractable192

problem with closed form solution.193

Theorem 1. If for each pseudo auxiliary task B
′
i ,194

the linear weight wi ∈ N(0, Id), the bias bi ∈195

N(0, 1) are standard Gaussian random variables,196

and Ψ is of the form {wTϕ(·) + b | ϕ ∈ Φ}, then197

L̂aux = λ · T ·min
ϕ∈Φ

∑
x∈I

||fpre(x)− ϕ(ffin(x))||22198

Regularization Loss: Based on Theorem 1, we use199

the following regularization loss in our finetuning200

for task A201

L̂reg = λ ·min
ϕ∈Φ

∑
x∈I

||fpre(x)−ϕ(ffin(x))||22 (3)202

where I are the inputs to pseudo-tasks, fpre and203

ffin are embedding functions and Φ is a class of204

functions (selected before finetuning) defining the 205

strength of regularization. Our proposed method 206

capacity-based consolidation of representations 207

(CAPCORT) has the following objective: 208

Ltotal = LA + L̂reg (4) 209

where LA standard loss (e.g. cross entropy loss for 210

classification) for task A and L̂reg is the regulariza- 211

tion loss defined above. 212

Choosing the right representation Normally, 213

sentence-level representations are obtained from 214

the final encoder blocks of a transformer model. 215

However, it may be more beneficial to use repre- 216

sentations from the lower layers. In fact, Zhang 217

et al. (2020) show that re-initializing weights of the 218

top layers of encoder improves fine-tuning perfor- 219

mance, suggesting that representation consistency 220

may not be desirable for the top layers. Thus, we 221

consider a variant of regularization that uses repre- 222

sentations from the intermediate layers of encoder. 223

Figure 2: Illustration of CAPCORT. Pre-trained model
parameters are non-trainable (frozen), function ϕ con-
trols the amount of structural changes in representations.
3 Related Work 224

Optimization Methods: Optimizer, learning rate, 225

and use of bias correction are known to play an im- 226

portant role in stabilizing fine-tuning (Zhang et al., 227

2020; Mosbach et al., 2020a). We use the corrected 228

fine-tuning strategy as our baseline and follow the 229

improved optimization practices for all methods. 230

Training for a large number of iterations with a 231

lower learning rate has also been shown to enhance 232

performance. Substantially longer training is out of 233

the scope of this paper due to resources constraints 234

but can be viewed as a complementary technique 235

to the proposed approaches. Re-initialization of the 236

top few layers improves performance in a few-shot 237

learning setting (Zhang et al., 2020). 238

Methods anchored at pre-trained model: Weight 239

Consolidation and Elastic Weight Consolidation 240

regularize the fine-tuning process by encourag- 241

ing fine-tuned weights to be close to pre-trained 242
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weights (Chen et al., 2020; Kirkpatrick et al., 2017).243

Mixout is a variant of Dropout regularization that re-244

places dropped neurons with the pre-trained model245

neurons, thereby mixing pre-trained and fine-tuned246

parameters (Lee et al., 2019).247

Weight consolidation is the closest alternative248

to our method. But in contrast to weight consoli-249

dation, CAPCORT does not put direct constraints250

on weight updates, but rather tries to control the251

structural changes in representations. Specifically,252

it prevents the loss of information content of the253

representations, yet does not necessarily require254

fine-tuned representations to stay close to the pre-255

trained representations.256

Other loss function based methods: FreeLB uses257

adversarial training to improve fine-tuning (Zhu258

et al., 2019). SMART (Jiang et al., 2020) is a259

trust region-based method that avoids aggressive260

updates during fine-tuning. R3F (Aghajanyan et al.,261

2020a) induces bias towards a solution with a lo-262

cally smooth prediction function and has been263

shown to outperform FreeLB and SMART. R4F264

extends R3F by adding a Lipschitzness constraint265

on the top classification layer. Supervised Con-266

trastive Learning (SCL) induces representations of267

examples with the same label to be close to each268

other and far from the examples of other classes269

(Gunel et al., 2020). A major disadvantage of270

SCL is a requirement for large mini-batch size and,271

hence, heavy memory consumption. We imple-272

ment a memory-efficient SCL version but exclude273

the original implementation from the baselines due274

to computational cost (see Appendix I).275

Additional fine tuning techniques: Data augmen-276

tation via back translation, synonymn replacement,277

random deletion, and synthetic noise can improve278

fine-tuning performance. (Feng et al., 2021; Wei279

and Zou, 2019). For related work on multi-task280

learning, parameter-efficient fine-tuning, domain281

adaptation, and text-to-text fine-tuning and mea-282

sures of representation quality see Appendix B.283

4 Experiments284

4.1 Set Up285

Datasets We evaluate methods on GLUE bench-286

mark (Wang et al., 2019) and six extra datasets287

for language model assessment (see Appendix D).288

For all the datasets, we perform experiments on289

the full dataset size and few-sample training sets290

of 250, 500, 1000 data points. To avoid the exces-291

sively high computational cost of fine-tuning on292

large-scale datasets, we limited their full training 293

sets to 10, 000 data points (marked with a suffix 294

-10k in Table 7). For few-sample experiments, we 295

fixed the same data subset across all models to 296

avoid performance changes related to data variabil- 297

ity. Since test set labels are unavailable, we use 298

development set to report the performance. 299

Fine-tuning settings: Following Zhang et al. 300

(2020) and Mosbach et al. (2020b), we use BERT- 301

large model with optimization settings that enhance 302

the stability of fine-tuning, i.e. applying bias correc- 303

tion in AdamW optimizer. We fine-tune all models 304

for 5 epochs (unless otherwise specified) at a learn- 305

ing rate of 2e-5, and run each experiment with 5 306

different seeds. Our implementation is based on the 307

HuggingFace library. For each task we use a batch 308

size of 4 or smaller in case it causes memory issues 309

(see Appendix D). In contrast to prior works (De- 310

vlin et al., 2018; Aghajanyan et al., 2020a; Chen 311

et al., 2020), we do not search for the optimal learn- 312

ing rate for our method across different tasks but 313

instead fix the optimization settings across all the 314

experiments. Thus, we evaluate our method under 315

more stringent settings and require it to be robust 316

to the choice of the learning rate. For each method, 317

we search its most optimal hyperparameters by per- 318

forming evaluation on the unused fraction of the 319

training set (see Appendix D). We also discuss re- 320

sults for a subset of datasets in Appendix L when 321

we search over optimal learning rate and epochs for 322

each method and task. We observe that CAPCORT 323

outperform all the baseline methods in this case 324

as well. However, due to resource constraint we 325

do not run these experiments for all datasets and 326

dataset size settings. 327

Performance metrics: For each task, we use a 328

recommended performance metric (Table 7). To 329

compare methods across multiple tasks, we use av- 330

erage rank and mean performance. Method’s rank 331

corresponds to the position of the method in a list 332

of all methods sorted by performance. The mini- 333

mal and best possible rank is 1. The average rank 334

of a method is obtained by averaging ranks across 335

all tasks. Since standard fine-tuning is susceptible 336

to failed runs that substantially lowers the average 337

resulting performance (Mosbach et al., 2020b), we 338

investigate performance in both cases when failed 339

runs are filtered out or preserved . Failed runs are 340

those with performance close to the majority clas- 341

sifier on the unused part of the training set (Dodge 342

et al., 2020) (see Appendix D for thresholds). 343
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4.2 Choices of Φ344

Φ defines the strength of the regularizer. A sin-345

gleton Φ containing an identity function is the346

strongest regularizer which keeps fine-tuned rep-347

resentations close to the pre-trained representa-348

tions. Conversely, for a rich Φ, e.g., deep/wide349

neural networks, ϕ can be chosen to reconstruct350

the lost information in representation, thereby pro-351

viding a weak regularization. In this paper, we352

experiment with a singleton Φ containing identity353

function (CAPCORT-I ) and a shallow multi-layer354

perceptrons (CAPCORT-MLP ). Our experiments355

show that CAPCORT-I based on layers 5, 10, and356

20 (from the input) exceeds the performance of357

top layer regularizing objective (see Appendix H).358

Thus, we regularize the intermediate layer in our359

experiments (Choice among 5, 10, or 20 is a hy-360

perparameter). We observe that layer 5 is most361

effective for small training datasets and layer 20 is362

most effective for large training datasets (see Ap-363

pendix H). In CAPCORT-MLP , we set the depth364

of MLP to be 2, keeping the width equal to the rep-365

resentation dimension. By varying the depth from 1366

to 5, we observe that lower depth performs better on367

smaller training sets. Training with large datasets368

is robust to choice of depth (see Appendix G).369

4.3 Baselines370

STD++ : standard++, an improved variant of the371

standard fine-tuning scheme that includes the use372

of bias correction in AdamW, following recently373

proposed practices that enhance the stability of fine-374

tuning (Zhang et al., 2020; Mosbach et al., 2020b).375

Weight Consolidation (Kirkpatrick et al., 2017;376

Chen et al., 2020) an approach that encourages377

agreement between pre-trained θpre and fine-tuned378

θfin models weights, by adding a regularization379

term
∑

i ||θ
fin
i − θprei ||22 to the loss function.380

Local smoothness inducing regularization R3F381

(Aghajanyan et al., 2020a) prevents aggressive382

model updates by restricting divergence of model383

outputs upon input perturbation. For model f(·)384

and input token embeddings x, R3F adds a regu-385

larization term KLS (f(x)∥f(x+ z)) to the loss386

function, where noise z is sampled from the Gaus-387

sian distribution and KLS is the symmetric Kull-388

back–Leibler divergence.389

Reinit-top-k (Zhang et al., 2020) improves fine-390

tuning performance by re-initializing the top-k391

layers of the encoder (closer to the output) with392

N (0, 0.022). Following the original study, we per-393

form hyperparameter search for k = 2, 4 or 6. 394

Data Augmentation generates augmented samples 395

by adding noise to the training data (keeping the 396

label intact). In our implementation, we add noise 397

ϵ ∼ N (0, δ) to the token embeddings. 398

For a detailed description and regularization co- 399

efficients of each baseline method, see Appendix E. 400

4.4 Results 401

Performance on GLUE and extra tasks: Ta- 402

ble 1 shows a comparison of CAPCORT-I 403

and CAPCORT-MLP with major fine-tuning ap- 404

proaches. Our methods outperform other ap- 405

proaches for the majority of tasks - 5/7 GLUE tasks 406

and 5/6 non-GLUE tasks (more details in Table 24, 407

Appendix J). CAPCORT-I and CAPCORT-MLP 408

outperform baseline methods in terms of mean per- 409

formance and average rank, with improvements 410

in the mean performance over the corrected fine- 411

tuning strategy by 1.65 and 2.06 points respectively 412

for GLUE benchmark, and 4.26 and 4.52 points for 413

non-GLUE benchmark. 414

Stabilizing Fine-tuning: Similarly to Dodge et al. 415

(2020); Mosbach et al. (2020b); Wang et al. (2019), 416

we observe that the standard fine-tuning procedure 417

is prone to instability and suboptimal convergence 418

(failed run). Our methods demonstrate higher sta- 419

bility and less fraction of failed runs than other 420

approaches (Table 2). In particular, CAPCORT-I 421

incurs the least number of failed runs (<1%) and 422

in case of not filtering out failed runs its perfor- 423

mance drops only by 0.02%. In contrast, perfor- 424

mance of baseline methods is reduced more signif- 425

icantly when failed runs are not filtered (STD++ : 426

-16.45, DA: -5.16, WC: -2.14, ReInit: -3.33, R3F: 427

-9.58). CAPCORT-I and CAPCORT-MLP achieve 428

lower average standard deviation than other base- 429

line methods in both cases when failed runs are 430

discarded or preserved. 431

Fine-tuning in few-sample setting To investigate 432

our methods’ robustness to small dataset sizes, we 433

study CAPCORT-MLP and CAPCORT-I perfor- 434

mance in limited data settings (Table 3). Notably, 435

CAPCORT-I outperforms the strongest few-shot 436

fine-tuning baseline, ReInit, for the majority of 437

tasks: 8/13 with 250 training data points, 9/13 with 438

500 training data points, 8/13 with 1000 training 439

data points (see Appendix K). 440

Overall, we find that CAPCORT-MLP yields 441

performance gain on large-scale datasets, whereas 442

CAPCORT-I is effective for few-sample fine-tuning 443
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

GLUE datasets

RTE 70.76 73.65 72.2 70.90 70.40 71.41 74.37
MNLI-10k 65.56 65.50 66.69 65.15 65.05 65.74 65.22
SST 92.08 92.00 92.73 92.04 92.09 92.91 93.19
MRPC 86.84 90.67 88.6 90.98 89.9 91.49 91.12
QNLI-10k 87.23 87.44 87.19 87.28 86.97 87.46 87.61
QQP-10k 76.74 76.44 76.25 77.22 74.90 79.03 79.30
COLA 59.69 63.45 61.50 61.25 62.04 62.34 62.47

Mean 76.98 78.45 77.88 77.83 77.33 78.63 79.04
Rank 6.57 4.14 4.29 3.71 5.43 1.86 2.00

Non-GLUE datasets

Mean 86.04 89.92 90.23 89.67 88.64 90.30 90.56
Rank 6.50 4.33 2.50 5.67 5.33 2.17 1.50

Table 1: Performance for our methods as well as baseline methods on different datasets. Rank refers to the average
rank of the method. Low performing fine-tuning runs are filtered. Detailed non-GLUE results in Appendix F.
Appendix L discusses results on a few tasks when we search over optimal learning rate/epochs for each task/method.

STD++ DA WC ReInit R3F CAPI CAPM

Successful runs (Failed runs filtered)

Mean 81.16 83.74 83.58 83.3 82.55 84.01 84.36
std 2.87 0.56 0.83 0.76 2.19 0.61 0.49
Frac 0.34 0.06 0.18 0.05 0.11 0.00 0.04

All runs (Failed runs not filtered)

Mean 64.71 78.58 81.4 79.97 72.97 83.99 83.04
std 13.4 6.14 2.89 5.89 8.62 0.60 1.28

Table 2: Stability of fine-tuning results. CAPI :
CAPCORT-I , CAPM : CAPCORT-MLP . Frac: frac-
tion of fine-tuning runs filtered due to low performance.
Mean, std: mean and standard deviation in performance
across all datasets. See Appendix M for details.

(since newly introduced parameters in CAPCORT-444

MLP are undertrained when the training data is445

limited). For walltime analysis, see Appendix Q.446

4.5 Robustness to label perturbation447

Real-world data can often contain mislabeled sam-448

ples, which can hinder the training process. Hence,449

robustness to label noise is a desirable quality of450

the fine-tuning approaches. Here, we study the451

performance of the fine-tuning methods under la-452

bel perturbation. We introduce label noise as fol-453

lows: let C = {1, . . . , c} be a class of labels and454

X = {(x, y)} be the true dataset for the fine-455

tuning task. Our fine-tuning method has access456

to a noisy dataset X ′ = {(x, y′)} where y′ = y457

with probability 1− p and sampled uniformly from458

{1, . . . , c} \ {y} with probability p.459

CAPCORT-I and CAPCORT-MLP show the460

highest resistance to label perturbation, retaining461

STD++ DA WC ReInit R3F CAPI CAPM

250 Training datapoints

Mean 71.98 73.16 72.86 74.37 73.27 74.23 73.94
Rank 5.62 4.92 4.62 3.00 4.04 2.50 3.31

500 Training datapoints

Mean 73.81 76.72 76.63 77.24 75.26 77.23 76.84
Rank 6.08 4.38 3.69 3.31 4.85 2.77 2.92

1000 Training Datapoints

Mean 77.34 79.20 79.04 79.37 78.98 79.65 79.28
Rank 5.69 4.00 3.62 3.54 4.62 2.69 3.85

Table 3: Performance for different methods for few-shot
learning. CAPI : CAPCORT-I , CAPM : CAPCORT-
MLP . Low performing fine-tuning runs are filtered.
Rank referred to average rank (see Section 4.1).

Noise STD++ DA WC ReInit R3F CAPI CAPM

0% 64.7 78.5 81.4 79.9 72.9 84.0 83.0
5% 58.3 68.2 75.3 72.3 57.3 81.4 78.0
10% 58.0 63.7 72.2 68.9 52.4 78.1 75.6
20% 48.4 49.1 64.1 55.2 44.3 66.2 70.2
30% 40.1 45.9 53.5 52.4 42.0 50.3 59.5

Table 4: Mean performance over 13 datasets when train-
ing with noisy data. CAPI : CAPCORT-I , CAPM :
CAPCORT-MLP . See Appendix N for detailed results.

closest to the original performance upon introduc- 462

ing 5-10% noise to the labels (Table 4). The sec- 463

ond most mislabel-resistant approach, WC, is also 464

close to our method conceptually, as it discourages 465

the fine-tuned model to deviate from pre-trained 466

weights. Other methods exhibit substantially lower 467

performance when trained on noisy data. 468
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5 Degradation of representations during469

fine-tuning: analytical perspective470

A common problem associated with fine-tuning471

is that representations lose the ample information472

content of pre-trained model. It reduces the in-473

formation content to a small subset needed solely474

for the current task, a phenomenon described as475

representation collapse. It is closely related to476

catastrophic forgetting, a phenomenon observed477

during sequential training when the model forgets478

information from earlier tasks after being trained479

on a new task. In contrast to catastrophic forget-480

ting, representation collapse is measured as the loss481

in the expressive power of the representations irre-482

spective of the performance on the pre-training task.483

In this section, we discuss both existing metrics as484

well as propose new metrics to quantify represen-485

tation collapse and compare the effect of different486

methods in mitigating representation collapse.487

5.1 Continual Learning perspective488

Aghajanyan et al. (2020a) study representation col-489

lapse with probing experiments as follows: (i) fine-490

tune model on a downstream task A, (ii) freeze491

the encoding layers and train the top linear layer492

for a different task B. Low performance in the493

second step implies representation collapse in the494

first step. To assess robustness of the proposed495

approach to representation collapse, we perform a496

series of probing experiments. In our experimetnts,497

we use four GLUE and four non-GLUE datasets498

in the first step and all datasets in the second step499

except the one used in the first step (Table 5).500

A STD++ DA WC ReInit R3F CAPI CAPM

QNLI 37.6 37.1 44.5 37.7 36.5 41.7 49.5
QQP 39.8 42.6 44.5 41.2 36.3 52.4 44.1
RTE 32.0 32.0 37.2 48.9 33.3 51.9 42.0

MNLI 36.3 40.6 41.3 52.5 43.0 51. 48.5
AG 41.1 42.5 42.3 43.3 41.4 43.7 47.8

IMDB 45.2 44.0 43.3 42.0 44.5 47.9 48.4
SCIT 39.0 50.3 46.2 44.6 34.0 47.8 48.8
SCIC 43.9 44.7 46.3 41.4 39.1 48.3 48.1

Aver. 39.4 41.7 43.2 44.0 38.5 48.1 47.1

Table 5: Model is fine-tuned for task A with different
methods, then top layer is trained for the remaining 12
tasks and the mean performance is presented. Aver. is
average over the choice of task A. CAPI is CAPCORT-I ,
CAPM is CAPCORT-MLP . AG: AGNEWS-10k, SCIT:
SCITAIL-10k, SCIC: SCICITE-10k, QNLI: QNLI-10k,
QQP:QQP-10k, MNLI: MNLI-10k.

We observe that CAPCORT-MLP and501

CAPCORT-I show high resistance to representa-502

tion collapse, outperforming other approaches in503

6/8 cases (Table 5). For instance, fine-tuning for 504

QNLI-10k in the first step with CAPCORT-MLP 505

results in a mean performance of 49.5 in the 506

second step, whereas the next best baseline results 507

in a mean performance of 44.5. 508

5.2 Diversity of fine-tuned representations 509

Figure 3: Top: illustration of three different data distri-
butions, λi and V (λi) correspond to ith eigenvalue and
its associated eigenvector after eigendecomposition of
Gram matrix. Data from the left distribution spans all
three dimensions, with all of its eigenvalues being simi-
lar. The right distribution shows all of the data collapsed
along one eigenvector, hence one of the eigenvalues sig-
nificantly exceeds two others. Bottom: comparison of
top-20 eigenvalues of STD++ and CAPCORT-I after
fine-tuning on QQP with 250 points.

Probing experiments rely on the availability of 510

extra fine-tuning tasks and, thus, are limited in the 511

amount of information they can assess, requiring 512

additional fine-tuning rounds. Here, we propose 513

metrics that can reliably quantify the power of fine- 514

tuned representations by capturing their geometric 515

diversity. The intuition behind our metrics is the 516

following: if all representations lie in a small di- 517

mensional space such as a straight line or a sin- 518

gle point, then they contain little information and 519

are not expressive. But if representations are well 520

spread out and span the entire representation space, 521

then they possess high information capacity). 522

We illustrate representation collapse metrics 523

from the geometric perspective in Figure 3. The 524

top three plots show three different distributions 525

of data points (representations). Assume that λi 526

and V (λi) correspond to ith eigenvalue and its 527

associated eigenvector after eigen-decomposition 528

of the data matrix. The left distribution spans all 529

three dimensions, indicating the highest degree of 530

7



data diversity. Since data points equally lie in all531

dimensions, all three eigenvectors will be of equal532

importance and all three eigenvalues will be approx-533

imately equal. In contrast, the central distribution534

spans two axes, leading to a smaller third eigen-535

value that corresponds to the "redundant" dimen-536

sion. Right distribution has all the data points col-537

lapsed along one axis, resulting in one eigenvalue538

being substantially higher than the others. Over-539

all, more uniform distribution of the eigenvalues540

corresponds to a better representation matrix diver-541

sity. In the bottom barplot we show distribution of542

the top-20 eigenvalues of the fine-tuned represen-543

tations with CAPCORT-I and std++ after training544

on QQP dataset with 250 points (Figure 3). In-545

terestingly, CAPCORT-I preserved a closer to uni-546

form eigenvalue distribution, while std++ results in547

representations with much higher first eigenvalue,548

indicating representation collapse.549

Here, we formalize the intuitive explanation and550

define the representation collapse metrics based on551

geometric diversity of sentence-level representa-552

tions. We compute the gram matrix for the repre-553

sentations G where Gi,j = ⟨zi, zj⟩. From G we554

obtain eigenvalues λ1 ≥ · · · ≥ λd. To measure di-555

versity of representations, we use geometric mean556

(GM) and harmonic mean (HM) of the eigenvalues:557

GM =
(
Πdi=1λi

)1/d
= Determinant1/d(G),558

HM =
(∑d

i=1
1
λi

)−1
= Trace

(
G−1

)−1
559

These metrics attain a high value if the represen-560

tations are well spread out and are zero or close561

to zero if all/most of the representations lie in a562

smaller dimension subspace. In contrast to arith-563

metic mean, geometric and harmonic mean are not564

as sensitive to outliers. Our metrics are also con-565

nected to parameter estimation error for pseudo566

linear regression tasks when representations are567

used as features (see Appendix R).568

We observe that representations typically lie in569

20-dimensional space (Appendix P), meaning that570

most of the (normalized) eigenvalues except the571

first 20 are close to 0 even for the pre-trained model,572

leading to GM and HM being close to zero when573

computed on the entire set of eigenvalues. Hence,574

we chose top-k λi values for k = 5, 10, 20 where575

GM and HM are bounded away from 0.576

GM-k =
(
Πki=1λi

) 1
k
,HM-k =

(
k∑
i=1

1

λi

)−1

577

We compare CAPCORT-I and CAPCORT-MLP

Mean STD++ DA WC ReInit R3F CAPI CAPM

GM-5 396 481 484 425 397 584 463
GM-10 92 118 118 90 93 134 91.2
GM-20 14 18 20 13 13 22 13
HM-5 198 253 242 184 207 290 217
HM-10 38 53 47 37 38 55 32
HM-20 3 4 5 3 3 6 3

Table 6: Diversity of fine-tuned representations. Mean
value across all the 13 tasks is presented. CAPI is
CAPCORT-I , CAPM is CAPCORT-MLP .

578
to the existing baselines using GM and HM with 579

k = 5, 10, 20 (Table 6). Low GM-k and HM-k in- 580

dicates representation collapse, when data is spread 581

around the first few eigenvectors. Table 6 shows 582

that CAPCORT-I results in the most diverse rep- 583

resentations among all the baseline methods (see 584

Appendix P for detailed results). 585

6 Conclusion 586

In this paper, we propose novel regularization 587

based finetuning method based on pseudo multi- 588

task learning. We also introduce a knob in our 589

regularization method which can be controlled to 590

get stronger/weaker regularization than multi-task 591

learning. We experiment with two choices of this 592

knob, CAPCORT-I and CAPCORT-MLP and show 593

that they both achieve significant performance gain 594

on GLUE benchmark and six additional tasks, in- 595

cluding few-shot learning settings and label noise 596

conditions. We also study the degradation of rep- 597

resentations during fine-tuning, representation col- 598

lapse, and propose new metrics to quantify it. Our 599

methods reduce representation collapse both in 600

terms of newly proposed metrics as well as pre- 601

viously studied metrics using auxiliary task data. 602

Guidelines on using the proposed methods: A 603

very restrictive ϕ in equation 3 yields a strong regu- 604

larization. Between explored methods, CAPCORT- 605

MLP yields better gain on large datasets (>5k train- 606

ing samples) and CAPCORT-I achieves superior 607

performance for small datasets (<1k samples). For 608

CAPCORT-I with small datasets, regularizing rep- 609

resentations from a lower layer (5th or 10th) yield 610

the best results. For CAPCORT-MLP , mlp of 611

depth 2 yields good result across all dataset sizes. If 612

training data is noisy, CAPCORT-I performs better 613

for low noise setting (0-10%) and CAPCORT-MLP 614

performs better for high noise setting (20-30%). 615

For ranges not specified here, one can use either 616

CAPCORT-I or CAPCORT-MLP as both improve 617

performance across the spectrum. 618
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A Detailed Derivations848

Lemma 1. minv∈Rd

∑N
j=1(yj − vT bj)

2 = ||y −849

B(BTB)†BT y||22 where yj is the j-th entry of y.850

Proof. Let the loss function be851

L =
N∑
j=1

(yj − vT bj)
2852

L is a smooth function with minimizer v⋆. Hence,853

minimum is achieved at a local minimum. Thus,854

δ

δv
L|v=v⋆ = 0855

−2

N∑
j=1

bj(yj − (v⋆)T bj) = 0856

−2
N∑
j=1

bjyj − bjb
T
j v

⋆ = 0857  N∑
j=1

bj

 yj =

 N∑
j=1

bjb
T
j

 v⋆858

 N∑
j=1

bjb
T
j

† N∑
j=1

bj

 yj = v⋆859

where X⋆ is the pseudo inverse which is equal to860

the inverse if X is invertible. Else it spans only861

the space spanned by X . Note that
∑N

j=1 bjb
T
j =862

BTB and
∑N

j=1 bjyj = BT y. So, v⋆ =863

(BTB)†BT y. Least square error can be written864

in terms of vector form to get865

minv∈Rd

N∑
j=1

(yj − vT bj)
2 = min

v∈Rd
||y −Bv||22866

where ||·||22 for a vector denote the ℓ2 norm squared.867

Substituting v∗ we get minv∈Rd

∑N
j=1(yj −868

vT bj)
2 =

∣∣∣∣y −B(BTB)†BT y
∣∣∣∣2
2

869

Theorem 2. We show that 870

Eu∼N(0,Id)

[
minv∈Rd

∑N
j=1(u

T zjpre − vT zjfin)
2
]

871

=
∥∥∥(Zfin(ZTfinZfin)†ZTfin − In

)
Zpre

∥∥∥2
2
. 872

Proof. To simplify notation, we use aj = 873

zjpre,bj = zjfin,B = Zfin ∈ RN×d matrix has 874

j-th row bj , A = Zpre ∈ RN×d matrix has j-th 875

row aj and X† is the pseudo-inverse of X . 876

Let 877

W = Eu∼N(0,Id)

min
v∈Rd

N∑
j=1

(uT zjpre − vT zjfin)
2

 878

From Lemma 1, we get 879

W = Eu∼N(0,Id)

∣∣∣∣∣∣Au−B(BTB)†BTAu
∣∣∣∣∣∣2
2

880

= Eu∼N(0,Id)

∣∣∣∣∣∣(A−B(BTB)†BTA)u
∣∣∣∣∣∣2
2

881

Lemma 2. For any matrix M , Rd×d. 882

Eu∼N(0,Id)[||Mu||22] = ||M ||22 where ||M ||22 883

is the forbenius norm of the matrix M . 884

Proof. Let the i, j-th entry of M be mi,j 885

and the j-th entry in u be uj . Then, 886

||Mu||22 =
∑d

i=1(
∑d

j=1mi,juj)
2 = 887∑d

i=1

∑d
j=1

∑d
k=1mi,jmi,kujuk. 888

E
[
||Mu|∥22

]
=

d∑
i=1

d∑
j=1

d∑
k=1

mi,jmi,kE[ujuk] 889

Since u is a gaussian random variable with mean 890

0 and covariance matrix Id, we have E[ujuk] = 0 891

for j ̸= k and E[u2i ] = 1 for all i ∈ [d]. Thus, 892

E
[
||Mu|∥22

]
=

d∑
i=1

d∑
j=1

m2
i,j = ||M ||22 893

894

Substituting equality from Lemma 2 to W , we 895

get 896

W =
∣∣∣∣∣∣A−B(BTB)†BTA

∣∣∣∣∣∣2
2

897

Using || − M ||22 = ||M ||22 and substituting 898

back A = Zpre and B = Zfin, we get 899

Eu∼N(0,Id)

[
minv∈Rd

∑N
j=1(u

T zjpre − vT zjfin)
2
]

900

=
∥∥∥(Zfin(ZTfinZfin)†ZTfin − In

)
Zpre

∥∥∥2
2
. 901
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Theorem 3.∥∥∥(Zfin(ZTfinZfin)†ZTfin − In

)
Zpre

∥∥∥2
2

902

= min
W∈Rd×d

N∑
j=1

∥∥∥zjpre −Wzjfin

∥∥∥2
2

903

Proof. To simplify notation, we use aj =904

zjpre,bj = zjfin,B = Zfin ∈ RN×d matrix has905

j-th row bj , A = Zpre ∈ RN×d matrix has j-th906

row aj and X† is the pseudo-inverse of X . Let907

W = Rd×d have i-th row wi. We need to compute908

L = min
W∈Rd×d

N∑
j=1

∥aj −Wbj∥22909

= min
w1,...,wd∈Rd

N∑
j=1

d∑
i=1

(aj,i − wTi bj)
2910

=

d∑
i=1

min
wi∈Rd

N∑
j=1

(aj,i − wTi bj)
2911

where aj,i is the i-th entry of aj . Applying912

Lemma 1, we get913

L =

d∑
i=1

∥∥∥(In −B(BTB)†BT )ci

∥∥∥2 (5)914

where ci is the i-th column of A (j-th entry of ci is915

aj,i).916

Lemma 3. For a matrix M ∈ RN×N and a set of917

vectors v1, . . . , vk ∈ RN ,918

k∑
i=1

∥Mvi∥2 = ||MV ||22919

where V ∈ RN×k is the matrix with columns920

v1, . . . , vk.921

Proof. Let j-th row of M be mj . Then,922

k∑
i=1

∥Mvi∥2 =
k∑
i=1

N∑
j=1

(mT
j v)

2923

For j ∈ [N ], i ∈ [k], (j, i)-the entry of MV is924

mT
j vi. Thus,925

∥MV ∥2 =
N∑
j=1

k∑
i=1

(mT
j vi)

2926

Combining the two equalities, we get927

k∑
i=1

∥Mvi∥2 = ||MV ||22928

929

Applying Lemma 3in eq 5, we get 930

L =
∥∥∥(In −B(BTB)†BT )A

∥∥∥2 931

This finishes the proof of theorem. 932

B Missing Related works 933

Multi-task learning: In multi-task learning, we 934

jointly finetune for many tasks where each task 935

has a classifcation head but share the backbone 936

with several other tasks (Caruana, 1997; Ruder, 937

2017; Zhang and Yang, 2017; Liu et al., 2019a). 938

This approach however requires access to a large 939

amount of labeled data from unrelated tasks which 940

is typically unavailable. Since our method focuses 941

on the scenario when a single finetuning task data is 942

available, we focus on comparing it against works 943

of a similar nature and do not provide an extensive 944

comparison with these works. It is likely that the 945

clear difference between the methods makes them 946

complementary, but exploring this is outside the 947

scope of this paper. 948

Domain shift between pre-training and finetun- 949

ing data: Even though pretrained models achieve 950

high performance for a large number of NLP tasks, 951

they tend to suffer if there is a significant domain 952

shift between the pretraining data and finetuning 953

data. Domain Adaptation bridges this gap by adapt- 954

ing the model to the finetuning task domain. It 955

can done by doing additional pre-training on task 956

domain data if such data is available (Gururangan 957

et al., 2020) or algorithmically finding such data 958

from general domain corpus if such a data is not 959

available (Madan et al., 2021). 960

Domain shift between finetuning train data 961

and evaluation data: Domain Adaptation typi- 962

cally refers to the scenario where labeled train 963

data is available in one domain and the evalua- 964

tion is done for data in other domain. Techniques 965

for addressing domain shift include model cen- 966

tric techniques, data centric techniques and hybrid 967

techniques. Model centeric technique changes the 968

model by changing the feature space, loss func- 969

tion or the structure of the model (Blitzer et al., 970

2006; Pan et al., 2010; Ganin et al., 2016; Ben- 971

David et al., 2020). Data-centeric approaches in- 972

volve pseudo-labeling (Abney, 2007), using aux- 973

iliary tasks (Phang et al., 2018), and data selec- 974

tion (Moore and Lewis, 2010; Wang et al., 2017). 975

Parameter Efficient Finetuning: Rather than stor- 976

ing a model for each of the finetuning task, some 977

12



approaches try to keep most of the model param-978

eters frozen and only tune a subset of parameters.979

Rebuffi et al. (2017) and Pfeiffer et al. (2020) in-980

sert adapter layers between the layers of pretrained981

model and keep the original parameters frozen.982

Guo et al. (2020) keep the change in model parame-983

ters to be sparse. (Aghajanyan et al., 2020b) learns984

a small dimensional vector whose projection onto985

a large dimension space added to pretrained model986

parameter yields the finetuned model. Ben Zaken987

et al. (2021) show that finetuning only the bias pa-988

rameters can also lead to competitive performance.989

Text-to-text finetuning: Autoregressive model990

such as T5 and GPT-3 cast the finetuning in a text-991

to-text format (Raffel et al., 2019; Brown et al.,992

2020). They can work in the few-shot learning993

setting by framing the finetuning task as the pre-994

training task. Autoregressive models make it easier995

to sample text whereas masked Language models996

such as BERT and RoBERTa are restricted fill in997

the blanks.998

Measures of representaion: (Aghajanyan et al.,999

2020a) measures the quality of finetuned represen-1000

tations by fitting them on auxiliary tasks. CKA (Ko-1001

rnblith et al., 2019) measures correspondences be-1002

tween representations from different network.1003

(Merchant et al., 2020) also studies what hap-1004

pens during finetuning via probing classifiers and1005

representation similarity analysis. It argues that1006

finetuning does not necessarily incurs catastrophic1007

forgetting. It analyze the effect for finetuning dif-1008

ferent tasks on the changes in representation.1009

C Relation to Weight Consolidation1010

Apart from working with representations instead of1011

model weights, key difference between our method1012

and weight consolidation is the following: our1013

method tries to control the structural change in rep-1014

resentations and does not always keep fine-tuned1015

representations close to the pre-trained represen-1016

tations. Regularizing fine-tuned representations to1017

be close to pre-trained representations is just a spe-1018

cial case and the most strict form of our method1019

(CAPCORT-I ). The knob (Φ) in our method can1020

be selected to chose a regularizer ranging from this1021

extreme case to the other extreme case with no1022

regularization. Note that this knob is not same as1023

the regularization constant which is used to weigh1024

regularization loss compared to cross-entropy loss.1025

D Experiment Set up details 1026

D.1 Dataset description 1027

Task Train Dev C Metric

COLA 8551 1043 2 MCC
RTE 2490 277 2 Accuracy
SST 67349 872 2 Accuracy
MNLI-10k 10000 9815 3 MCC
MRPC 3668 408 2 F1
QQP-10k 10000 40430 2 F1
QNLI-10k 10000 5463 2 Accuracy
CHEMPROT 4169 2427 13 Micro F1
SciCite 7320 916 3 Macro F1
SCITAIL-10k 10000 1304 2 Accuracy
AGNEWS-10k 10000 5000 4 Macro F1
YELP-10k 10000 10000 2 Accuracy
IMDB-10k 10000 5000 2 Macro F1

Table 7: Description of datasets - sizes of train set,
development set, number of classes (C) and metrics
used (MCC denotes Matthews correlation coefficient).

GLUE benchmark contains seven tasks, which 1028

cover paraphrase detection (MRPC, QQP), nat- 1029

ural language inference (MNLI, RTE, QNLI), 1030

linguistic acceptability (CoLA) and sentiment 1031

classification (SST-2). We also assembled 1032

non-GLUE benchmark from six distinct tasks 1033

which include biomedical relation extraction on 1034

CHEMPROT (Kringelum et al., 2016), sentiment 1035

classification on YELP (Zhang et al., 2015a) and 1036

IMDB (Maas et al., 2011), citation intent classifi- 1037

cation on SCICITE (Cohan et al., 2019), language 1038

inference on SCITAIL (Khot et al., 2018) and arti- 1039

cle topic classification on AGNEWS (Zhang et al., 1040

2015b). 1041

Batch Size: Different methods have different mem- 1042

ory requirement. For instance, R3F has the highest 1043

footprint which limits the batch size as we can not 1044

process too many inputs at the same time. Table 8 1045

shows the batch size used for each dataset in our 1046

experiments.

Task Batch size

COLA 4
RTE 1
SST 4

MNLI-10k 1
MRPC 4

QQP-10k 1
QNLI-10k 1

Task Batch size

CHEMPROT 1
SciCite 2

SCITAIL-10k 1
AGNEWS-10k 2

YELP-10k 1
IMDB-10k 1

Table 8: Batch size used in our experiments 1047

Filtering failed runs and data used for failed 1048

runs: For most of the datasets experimented here, 1049

available test data split is unlabeled. Thus, we use 1050

the validation data split to report performance. It 1051

has been observed that different finetuning runs 1052
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can result in very different finetuned model perfor-1053

mance (Mosbach et al., 2020b). Thus, reporting1054

max test run performance does not truely reflect the1055

effectiveness of the finetuning process and the max-1056

imum test run performance across different random1057

seeds can be substantially larger than the mean. So,1058

in our experiments we do not use the val data (on1059

which we report performance) to select the run or1060

any hyperparameter. To select optimal hyperpa-1061

rameters such as regularization coefficient etc., we1062

use a subset of original train data split which is not1063

used for training. Such a data is available as we are1064

typically finetuning with a subset of original train1065

data. Table 9 shows the threshold for failed run for1066

each task.

Task Threshold

COLA 0.00
RTE 53.70
SST 54.00

MNLI-10k 30.00
MRPC 81.22

QQP-10k 0.00
QNLI-10k 50.53

Task Threshold

CHEMPROT 34.45
SciCite 24.66

SCITAIL-10k 60.38
AGNEWS-10k 10.44

YELP-10k 52.80
IMDB-10k 33.94

Table 9: Failed run threshold
1067

E Baselines - detailed1068

Weight Consolidation: (Kirkpatrick et al., 2017;1069

Chen et al., 2020) Let P be the set of all model pa-1070

rameters and B be the subset of the bias parameters1071

(affine component in the linear transformations)1072

of the model. For a parameter θi, let θprei be the1073

pre-trained value and θfini be the value during the1074

finetuning process. Then, the regularization loss is.1075

LWC =
∑
i∈P\B

||θfini − θprei ||221076

Local smoothness inducing regularization R3F1077

(Aghajanyan et al., 2020a) For a classification prob-1078

lem, let f be the probability prediction function1079

corresponding to model being finetuned. It’s input1080

is the input to the first BERT encoder layer (out-1081

put of token embedding layer). Let x1, . . . , xN be1082

the outputs of the token embedding layer for the1083

inputs of the finetuning task. For i ∈ [N ], let ϵδ,i1084

be a Gaussian noise term with mean 0 and covari-1085

ance matrix δI . We set δ = 1e − 5. Then, the1086

regularization loss is1087

LR3F =
N∑
i=1

KL(f(xi) || f(xi + ϵδ,i))1088

+KL(f(xi) + ϵδ,i) || f(xi))1089

Method Regularization coefficient

CAPCORT-I 0.01, 0.05, 0.1, 0.5
CAPCORT-MLP 0.01, 0.05, 0.1, 0.5

DA 0.05, 0.1, 0.2, 0.4, 0.8
R3F 0.1, 0.5, 1, 5
WC 0.01, 0.05, 0.1, 0.5

Table 10: Regularization coefficient for different meth-
ods.

Data Augmentation: Let x1, . . . , xN be the out- 1090

puts of the token embedding layer for the inputs of 1091

the finetuning task and y1, . . . , yN be their associ- 1092

ated labels. In data augmentation, we add noise to 1093

the data during the training process. 1094

Ltotal =
N∑
i=1

LCE(f(xi), yi)+λ·LCE(f(xi+ϵδ,i), yi) 1095

where LCE is the cross entropy loss, f is the pre- 1096

diction function as per the model and ϵδ,i is a Gaus- 1097

sian noise with mean 0 and co-variance matrix δI 1098

added to xi. We set δ = 1e− 5. 1099

Table 10 show the regularization coefficients 1100

used for each method. 1101

F Detailed Results for non-GLUE 1102

datasets 1103

Table 11 shows the results for non-GLUE datasets. 1104

1105

G CAPCORT-MLP - Effect of MLP 1106

depth and missing details 1107

Missing Details: We use tanh activation in MLP 1108

with learning rate same as the rest of the network. 1109

Parameters of MLP are optimized alongside the 1110

language model. We use Glorot uniform initializer 1111

to initialize the parameters of MLP (Glorot and 1112

Bengio, 2010). Bias parameters are initialized to 1113

zero. 1114

Table 12 and 13 show that CAPCORT-MLP 1115

is resistant to the number of MLP layers chosen. 1116

When training with all datapoints, performance is 1117

typically within a percentage of each other. 1118

H CAPCORT-I - Which layer to 1119

regularize? 1120

Table 14, 15 and 16 compares the result between 1121

regularizing the top layer vs regularizing the inter- 1122

mediate layer in CAPCORT-I . We observe that 1123

CAPCORT-I consistently outperform when regu- 1124

larizing the intermediate layer. 1125

Table 17, 18, 19 and 20 show the the result for 1126

CAPCORT-I with representations chosen from 5th, 1127
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

Non-GLUE datasets

YELP-10k 95.340.16 95.650.14 95.880.14 95.440.12 95.550.09 95.780.18 95.960.16
CHEMPROT 82.560.54 82.950.96 83.910.4 82.460.84 82.910.2 83.490.3 83.670.89
IMDB-10k 93.20.1 93.240.27 93.40.19 92.70.27 93.130.27 93.960.2 93.870.3
AGNEWS-10k 91.670.29 91.820.37 91.920.25 91.670.35 91.730.13 92.070.26 91.930.25
SCITAIL-10k 71.6121.99 93.740.52 94.030.61 93.360.61 86.5416.52 93.740.56 94.750.4
SCICITE 81.870.52 82.130.14 82.230.44 82.410.68 81.970.34 82.740.36 83.150.45

Mean-filtered 86.043.93 89.920.4 90.230.34 89.670.48 88.642.93 90.30.31 90.560.41

Table 11: Performance for our methods as well as baseline methods for non-GLUE datasets. Each reported number
is average over five runs. Finetuning runs are filtered if the finetuned model has low performance on data not used
for training or for evaluation. Mean/Average Rank-filtered only consider successful runs and discard failed runs as
specified in Section 4.1.

Tasks 1 2

All Datapoints

IMDB-10k 93.43 93.87
MRPC 91.19 91.12
SCICITE 82.55 83.15
COLA 61.86 62.47
SST 93.03 93.19
MNLI-10k 65.18 65.22
AGNEWS-10k 91.8 91.93
CHEMPROT 82.48 83.67
QNLI-10k 87.52 87.61
SCITAIL-10k 94.06 94.75
YELP-10k 95.66 95.96
RTE 72.92 74.37
QQP-10k 78.22 79.3
Mean 83.83 84.35

Table 12: Performance of CAPCORT-MLP with differ-
ent number of MLP layers.

10th or 20th layer of encoder. Note that 5th layer is1128

the closest to the input and doesn’t account for to-1129

ken embedding layer. We note that all three choices1130

are performing roughly equally well. Mean perfor-1131

mance is typically less than a percentage point from1132

each other. If one were to use a single layer, one1133

can use 5th for low-data case and 10th or 20th for1134

large dataset case.1135

I Supervised Contrastive Learning1136

Let a mini-batch has m examples,1137

(x1, y1), . . . , (xm, ym) and z1, . . . , zm be the1138

representations (output of encoder) using the1139

model being finetuned. Supervised Contrastive1140

Learning encourages the representations of1141

examples of same label in the mini-batch to be1142

close to each other and far from the examples with1143

Tasks 1 2 5

1000 Training Datapoints

SCITAIL 91.12 90.9 90.81
QQP 70.67 72.16 72.64
QNLI 82.7 83.25 83.39
MRPC 88.2 88.28 87.97
COLA 48.67 48.84 49.02
SST 90.42 90.62 90.52
CHEMPROT 78.24 79.03 76.6
IMDB 90.67 91.19 90.7
RTE 66.7 70.76 64.44

Table 13: Performance of CAPCORT-MLP with differ-
ent number of MLP layers.

different label by additing the following loss to the 1144

objective: 1145

LSCL =
m∑
i=1

− 1

Nyi − 1

m∑
j=1

1i ̸=j1yi=yj 1146

log
exp(⟨zi, zj⟩/τ)∑m

k=1 1i ̸=kexp(⟨zi, zk⟩/τ)
1147

where τ is a scalable temperature parameter that 1148

controls the separation of classes. Loss function 1149

during training is 1150

L = λLCE + (1− λ)LSCL 1151

where LCE is the cross entropy loss where λ is 1152

a factor that can be tuned. This was shown to 1153

improve finetuning process in (Gunel et al., 2020) 1154

for few-shot finetuning. 1155

From the definition of LSCL we observe that 1156

SCL is only effective when the mini-batch size is 1157

large and each label class is sufficiently represented 1158

in the mini-batch. Otherwise, the loss function 1159
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Tasks STD++ Top Intermediate

250 Training Datapoints

QNLI 75.11 76.12 78.82
MNLI 37.7 38.67 38.35

AGNEWS 88.08 87.78 88.53
IMDB 86.11 87.44 90.38
SST 88.41 88.58 89.29

COLA 41.57 44.26 43.98
CHEMPROT 55.22 59.53 63.28

MRPC 84.43 83.91 84.65
SCITAIL 82.31 85.03 88.9
SCICITE 76.86 75.64 76.11

RTE 59.13 61.13 60.83
YELP 92.51 92.23 93.13
QQP 68.28 67.05 68.76

Mean 71.98 72.88 74.23
Average Rank 2.54 2.15 1.31

Table 14: Performance for CONCORT-intermediate vs
concort-top.

LSCL is vacuous. For instance, if the mini-batch1160

size is 1 which is the case for many of our datasets,1161

then L̂SCL = 0 for all the mini-batches. Thus, it is1162

equivalent to the standard finetuning. Large mini-1163

batch size however requires large memory during1164

finetuning process which is not always available as1165

in our case.Thus, we look for a relaxation of SCL1166

which can be implemented in a memory efficient1167

manner.1168

We start by considering LSCL over the entire1169

input set instead of mini-batch and then replace the1170

example xj with mean of examples of the same1171

class as xj while computing similarity with an-1172

other example. More formally, let the training1173

data be (x1, y1), . . . , (xN , yn), the set of labels be1174

{1, . . . , ℓ} and representation of xi from the en-1175

coder of finetuning model. Let Cj = {i | yi = j}1176

and cj = 1
|Cj |

∑
i∈Cj

zi be the center of embed-1177

dings of inputs with label j. We consider the fol-1178

Tasks STD++ Top Intermediate

500 Training Datapoints

QNLI 80.86 80.7 82.56
MNLI 41.74 41.07 49.07

AGNEWS 89.09 89.34 89.53
IMDB 83.65 89.77 91.32
SST 89.54 89.49 89.68

COLA 45.29 44.22 46.95
CHEMPROT 65.59 61.0 73.47

MRPC 84.44 84.54 85.26
SCITAIL 85.11 88.97 90.07
SCICITE 78.84 79.36 79.45

RTE 61.01 59.39 62.45
YELP 93.32 89.02 93.2
QQP 61.12 69.5 70.97

Mean 73.81 74.34 77.23
Average Rank 2.38 2.54 1.08

Table 15: Performance for CONCORT-intermediate vs
concort-top.

lowing relaxation of LSCL. 1179

L̂SCL =

N∑
i=1

− 1

Nyi − 1

N∑
j=1

1i ̸=j1yi=yj 1180

log
exp(⟨zi, cyj ⟩/τ)∑N

k=1 1i ̸=kexp(⟨zi, cyk⟩/τ)
1181

= −
N∑
i=1

ℓ∑
j=1

1j ̸=yi 1182

log
exp(⟨zi, cj⟩/τ∑ℓ

k=1 1k ̸=yi |Ck|exp(⟨zi, ck⟩/τ)
1183

A naive implementation of this loss function 1184

would be very expansive as the centers c1, . . . , cℓ 1185

would change in each iteration. We observe that 1186

centers change much slower than the individual 1187

examples. This is the reason to replace individual 1188

training samples with the centers while computing 1189

similarity ⟨zi, zj⟩. Thus, we do not update it in 1190

each iteration and instead update it only ten times 1191

during the finetuning process. Note that it increases 1192

the training time by roughly a factor of 10 which is 1193

also prohibitive for large datasets. Table 21, 22 and 1194

23 shows the comparison of memory efficient SCL 1195

with our methods. We see that both CAPCORT- 1196

I and CAPCORT-MLP beat SCL consistently for 1197

250, 500 and 1000 training datapoints. Moreover, 1198

SCL incur significant loss for several datasets. 1199
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Tasks STD++ Top Intermediate

1000 Training Datapoints

QNLI 81.73 69.19 83.67
MNLI 50.32 49.84 55.5

AGNEWS 89.29 89.45 89.74
IMDB 90.9 72.39 91.35
SST 90.69 90.12 90.32

COLA 49.39 49.22 51.05
CHEMPROT 75.64 74.6 79.64

MRPC 87.82 86.93 87.54
SCITAIL 80.31 90.08 91.51
SCICITE 80.85 81.16 80.25

RTE 63.63 63.9 67.06
YELP 94.3 84.45 94.78
QQP 70.58 67.22 73.04

Mean 77.34 74.5 79.65
Average Rank 2.08 2.62 1.31

Table 16: Performance for CONCORT-intermediate vs
concort-top.

J Comparison of CAPCORT-I and1200

CAPCORT-MLP against each baseline1201

Table 24 show that both CAPCORT-I and1202

CAPCORT-MLP outperform each baseline method1203

in majority of the datasets/1204

K 250, 500 and 1000 Training Datapoints1205

Table 25, 26 and 27 show the performance for1206

few-sample finetuning setting.1207

L Learning rate and Epochs as1208

hyper-parameters1209

Table 28 discusses the results when we search over1210

optimal learning rate and number of epochs for1211

each task and method. For learning rate, we per-1212

form the search over [5e-6,1e-5,2e-5,4e-5] and for1213

epochs, we search over [5,10].1214

M Results without any filtered runs1215

Table 29, 30, 31, and 32 shows performance with-1216

out filtering out failed runs.1217

N Detailed results for label noise1218

Table 33, 34, 35, 36 shows detailed results with1219

varying amount of label noise in the training data.1220

1221

O Representation Collapse - Continual1222

learning perspective1223

Table 37, 38, 39, 40, 41, 42, 43 shows results1224

for representation collapse when we finetune the1225

model for task A using different methods and then1226

Tasks STD++ 5 10 20

250 Training datapoints

COLA 41.57 41.23 43.98 41.94
QNLI 75.11 78.82 77.9 75.28
MRPC 84.43 83.99 84.65 84.81

SST 88.41 88.42 89.29 89.45
SCITAIL 82.31 89.48 88.9 88.07

YELP 92.51 93.13 92.68 92.63
AGNEWS 88.08 88.53 88.59 87.86

RTE 59.13 60.83 59.78 61.23
MNLI 37.7 38.35 41.16 39.81
QQP 68.28 66.66 67.78 68.76

IMDB 86.11 88.9 90.57 90.38
CHEMPROT 55.22 58.0 60.53 63.28

SCICITE 76.86 76.35 78.95 76.11

Mean 71.98 73.28 74.21 73.82

Table 17: Effect of embedding layer to be regularized
in CAPCORT-I .

finetune the top layer for task B. 1227

P Measuring representation collapse 1228

Table 44, 45, 46, 47, 48 show the sum of top-k 1229

normalized eigenvalues (divide each eigenvalue 1230

by the sum of eigenvalues) for k=1, 2, 5, 10, and 1231

20. From this, we can observe that almost all the 1232

normalized eigenvalues after the first twenty are 1233

close to zero 1234

Table 49, 50 and 51 show the GM-k for k=5, 10 1235

and 20. Table 52, 53, 54 show the HM-k for k=5, 10 1236

and 20. We observe that CAPCORT-I achieves the 1237

highest value and thus is most effective in reducing 1238

representation collapse. 1239

Q Walltime Analysis 1240

Walltime analysis: STD++ uses a single forward 1241

and backward pass with simplest loss function and 1242

thus has the least training time. ReInit is a close 1243

second as it only differs in the initialization of the 1244

model. WC also uses a single forward and back- 1245

ward pass but is slower due to the regularization 1246

loss function computation. R3F and DA use two 1247

forward passes and two (effective) backward passes. 1248

Our method on the other hand use only one for- 1249

ward and backward pass. In addition to that we use 1250

only an extra forward pass of the pretrained model. 1251

Thus, our method is slower than STD++ , ReInit 1252

and WC and is faster than R3F and DA. Table 55 1253

show the training time for all the methods. We 1254

observe that R3F consistently takes more time than 1255

all the methods. CAPCORT-I runs faster than R3F 1256
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Tasks STD++ 5 10 20

500 Training datapoints

COLA 45.29 46.95 44.58 44.34
QNLI 80.86 82.56 81.38 80.7
MRPC 84.44 85.26 84.78 84.31

SST 89.54 89.68 89.24 89.66
SCITAIL 85.11 90.36 90.07 89.2

YELP 93.32 92.88 93.2 93.2
AGNEWS 89.09 89.53 89.19 88.99

RTE 61.01 62.45 63.63 61.52
MNLI 41.74 44.61 49.07 44.57
QQP 61.12 72.6 71.79 70.97

IMDB 83.65 90.84 90.31 91.32
CHEMPROT 65.59 73.34 73.47 71.98

SCICITE 78.84 79.39 78.76 79.45

Mean 73.81 76.96 76.88 76.17

Table 18: Effect of embedding layer to be regularized
in CAPCORT-I .

and DA but slower than STD++ , WC and ReInit.1257

CAPCORT-MLP runs slower than CAPCORT-I .1258

R Connection of GMand HMto1259

parameter estimation error1260

Let the pseudo linear regression task on finetuned1261

representations be defined byw ∈ Rd and the noisy1262

labels observed on zi’s be yi = zTi w+ϵi where ϵi’s1263

are the gaussian noise centered around 0 with iden-1264

tity covariance matrix. If ŵ is the least square min-1265

imizer (same as log-likelihood maximizer), then1266

ŵ = w +N
(
0, G−1

)
1267

GM corresponds to minimizing the confidence1268

ellipsoid corresponding to the error ŵ − w. HM1269

corresponds to minimizing the expected ℓ22 norm of1270

the error vector ŵ−w. Derivation of the ŵ and the1271

explanation can be found in Madan et al. (2019).1272

Tasks STD++ 5 10 20

1000 Training Datapoints

COLA 49.39 51.05 48.16 47.74
QNLI 81.73 83.11 83.67 83.33
MRPC 87.82 87.54 87.84 87.08

SST 90.69 90.75 90.32 90.29
SCITAIL 80.31 91.09 91.51 91.73

YELP 94.3 94.78 94.39 94.32
AGNEWS 89.29 89.47 89.74 89.84

RTE 63.63 67.06 63.1 66.28
MNLI 50.32 55.5 55.88 53.6
QQP 70.58 70.86 72.21 73.04

IMDB 90.9 90.9 91.35 91.47
CHEMPROT 75.64 79.64 79.66 78.72

SCICITE 80.85 80.83 80.35 80.25

Mean 77.34 79.43 79.09 79.05

Table 19: Effect of embedding layer to be regularized
in CAPCORT-I .

Tasks STD++ 5 10 20

Full Datasets

COLA 59.69 62.34 61.65 58.45
MRPC 86.84 90.01 91.49 89.66

IMDB-10k 93.2 93.34 93.5 93.96
SCITAIL-10k 71.61 93.71 93.74 93.63

RTE 70.76 68.35 69.75 71.41
QNLI-10k 87.23 87.52 87.46 87.37
YELP-10k 95.33 95.62 95.78 96.01

AGNEWS-10k 91.67 91.83 91.84 92.07
CHEMPROT 82.56 82.74 83.49 83.4

QQP-10k 76.74 76.19 76.12 79.03
SCICITE 81.87 82.28 81.95 82.74

MNLI-10k 65.56 65.74 65.31 65.14

Mean 80.26 82.47 82.67 82.74

Table 20: Effect of embedding layer to be regularized
in CAPCORT-I .

Tasks STD++ SCL CONCORT CAPCORT

250 datapoints

QNLI 75.11 73.79 78.82 76.13
SST 88.41 87.27 89.29 88.59
QQP 68.28 68.79 68.76 70.38

SCITAIL 82.31 86.13 88.9 86.5
MNLI 37.7 38.07 38.35 41.18
IMDB 86.11 90.27 90.38 90.33
RTE 59.13 60.77 60.83 59.3

MRPC 84.43 85.67 84.65 84.08
COLA 41.57 31.91 43.98 45.28

CHEMPROT 55.22 32.0 63.28 62.32

Mean 67.83 65.47 70.72 70.41
Average Rank 4.3 3.7 1.6 2.35

Table 21: Performance of memory-efficiet SCL.
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Tasks STD++ SCL CAPCORT-I CAPCORT-MLP

500 datapoints

QNLI 80.86 80.48 82.56 82.43
SST 89.54 90.25 89.68 89.4
QQP 61.12 71.58 70.97 71.67

SCITAIL 85.11 87.38 90.07 89.3
MNLI 41.74 44.81 49.07 44.73
IMDB 83.65 90.27 91.32 90.49
RTE 61.01 64.44 62.45 62.94

MRPC 84.44 85.34 85.26 85.62
COLA 45.29 47.44 46.95 46.76

CHEMPROT 65.59 66.55 73.47 72.9

Mean 69.83 72.85 74.18 73.62
Average Rank 4.5 2.6 1.8 2.5

Table 22: Performance of memory-efficient SCL.

Tasks STD++ SCL CAPCORT-I CAPCORT-MLP

1000 datapoints

QNLI 81.73 83.3 83.67 83.25
SST 90.69 90.77 90.32 90.62
QQP 70.58 72.79 73.04 70.67

SCITAIL 80.31 88.91 91.51 90.9
MNLI 50.32 55.12 55.5 56.36
IMDB 90.9 90.85 91.35 91.19
RTE 63.63 64.98 67.06 66.7

MRPC 87.82 88.01 87.54 87.97
COLA 49.39 46.47 51.05 49.39

CHEMPROT 75.64 77.21 79.64 79.03

Mean 74.1 75.84 77.07 76.61
Average Rank 4.3 3.1 1.9 2.75

Table 23: Performance of memory-efficiet SCL.

CAPCORT-I CAPCORT-MLP

# wins against baselines methods

GLUE datasets (out of 7)

STD++ 7 6
DA 5 5
WC 5 6

ReInit 7 7
R3F 7 7

Non-GLUE datasets (out of 6)

STD++ 6 6
DA 6 6
WC 3 5

ReInit 6 6
R3F 6 6

Table 24: Number of tasks for which CAPCORT-I or
CAPCORT-MLP outperform the baseline method.
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

250 Training datapoints

QQP 68.28 65.63 69.01 68.46 67.45 68.76 70.38
COLA 41.57 40.39 45.14 43.73 40.76 43.98 45.28
RTE 59.13 61.37 58.99 60.29 60.02 60.83 59.3

MNLI 37.7 40.24 33.71 41.47 37.8 38.35 41.18
YELP 92.51 92.68 92.97 93.64 93.13 93.13 93.3

CHEMPROT 55.22 58.6 59.52 64.92 59.6 63.28 62.32
QNLI 75.11 78.72 75.27 77.62 77.43 78.82 76.13
IMDB 86.11 89.17 89.51 89.44 89.09 90.38 90.33

SCICITE 76.86 77.2 76.23 78.86 77.39 76.11 75.76
SST 88.41 88.1 88.14 88.3 88.47 89.29 88.59

MRPC 84.43 83.81 84.93 84.87 84.71 84.65 84.08
SCITAIL 82.31 87.65 86.2 87.8 88.6 88.9 86.5
AGNEWS 88.08 87.51 87.55 87.36 87.99 88.53 88.13

Mean 71.98 73.16 72.86 74.37 73.27 74.23 73.94
Average Rank 5.62 4.92 4.62 3.0 4.04 2.5 3.31

Table 25: Performance for different regularization methods.

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

500 Training datapoints

QQP 61.12 71.5 70.13 72.03 71.61 70.97 71.67
COLA 45.29 46.27 47.34 46.03 45.36 46.95 46.76
RTE 61.01 60.53 61.23 63.33 60.41 62.45 62.94

MNLI 41.74 49.05 46.32 51.11 42.25 49.07 44.73
YELP 93.32 93.46 92.87 93.04 93.27 93.2 93.35

CHEMPROT 65.59 74.2 70.78 73.2 70.04 73.47 72.9
QNLI 80.86 82.4 82.19 81.84 82.42 82.56 82.43
IMDB 83.65 90.42 91.47 90.57 89.45 91.32 90.49

SCICITE 78.84 79.19 79.21 79.14 78.38 79.45 79.8
SST 89.54 89.36 90.02 90.37 90.1 89.68 89.4

MRPC 84.44 84.69 85.4 84.93 84.77 85.26 85.62
SCITAIL 85.11 87.41 90.23 89.38 80.73 90.07 89.3
AGNEWS 89.09 88.93 89.0 89.09 89.59 89.53 89.54

Mean 73.81 76.72 76.63 77.24 75.26 77.23 76.84
Average Rank 6.08 4.38 3.69 3.31 4.85 2.77 2.92

Table 26: Performance for different regularization methods.
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

1000 Training datapoints

QQP 70.58 71.6 70.64 71.87 71.69 73.04 70.67
COLA 49.39 50.46 50.79 49.47 50.01 51.05 49.39
RTE 63.63 65.7 62.09 65.78 63.54 67.06 66.7

MNLI 50.32 56.1 55.28 57.9 55.51 55.5 56.36
YELP 94.3 93.83 94.41 93.99 94.51 94.78 94.19

CHEMPROT 75.64 78.88 78.37 78.12 77.98 79.64 79.03
QNLI 81.73 83.46 83.51 84.14 83.11 83.67 83.25
IMDB 90.9 91.22 90.99 91.29 90.8 91.35 91.19

SCICITE 80.85 80.93 81.55 80.39 80.15 80.25 81.09
SST 90.69 90.8 90.81 90.67 90.5 90.32 90.62

MRPC 87.82 87.49 88.12 87.29 87.92 87.54 87.97
SCITAIL 80.31 89.72 91.68 91.0 91.38 91.51 90.9
AGNEWS 89.29 89.38 89.25 89.91 89.62 89.74 89.32

Mean 77.34 79.2 79.04 79.37 78.98 79.65 79.28
Average Rank 5.69 4.0 3.62 3.54 4.62 2.69 3.85

Table 27: Performance for different regularization methods.

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

qqp-10k 78.58 78.79 78.20 78.74 78.67 79.71 79.23
rte 72.92 74.45 74.30 74.11 74.20 75.09 74.95
cola 56.67 62.36 61.79 61.50 61.74 62.45 61.82
mrpc 90.30 90.50 90.44 90.79 90.41 90.79 90.83

Table 28: Results with HPO over epochs and learning rate

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

250 datapoints

YELP 92.51 92.68 92.97 93.64 93.13 93.13 93.57
RTE 55.6 58.12 55.96 60.29 58.88 59.78 60.14

MNLI 25.75 30.22 28.42 41.47 31.94 39.2 38.58
QNLI 72.71 77.5 75.27 77.62 77.43 78.82 76.13

SCITAIL 82.31 87.65 86.2 87.8 88.6 88.9 86.5
SST 88.41 88.1 88.14 88.3 88.47 89.29 88.59

CHEMPROT 55.22 58.6 59.52 64.92 59.6 60.72 62.32
AGNEWS 88.08 87.51 87.55 87.36 87.99 88.53 88.13
SCICITE 76.86 77.2 76.23 78.86 77.39 78.95 75.76

IMDB 83.5 80.13 89.51 89.44 89.05 90.38 90.33
COLA 41.57 40.39 45.14 43.73 40.76 43.98 45.28
MRPC 84.43 83.81 84.93 84.87 84.71 84.65 84.08
QQP 35.94 64.08 51.92 68.46 55.81 68.76 65.5

Mean 67.91 71.23 70.9 74.37 71.83 74.24 73.45
Average Rank 5.92 5.46 4.85 2.69 3.88 1.96 3.23

Table 29: Performance for different regularization methods without filtering failed runs.
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

500 Training Datapoints

YELP 85.57 93.46 92.87 93.04 93.27 93.2 93.35
RTE 52.47 53.86 59.81 60.87 55.64 61.52 58.3

MNLI 23.87 32.25 39.53 51.11 42.19 43.81 43.19
QNLI 74.76 75.45 80.64 81.84 81.76 81.38 81.25

SCITAIL 85.11 87.41 90.23 89.38 80.73 90.07 89.3
CHEMPROT 65.59 74.2 70.78 73.2 70.04 73.47 72.9

SST 89.54 89.36 90.02 90.37 90.1 89.68 89.4
AGNEWS 89.09 88.93 89.0 89.09 89.59 89.53 89.54
SCICITE 78.84 79.19 79.21 79.14 78.38 79.45 79.8

IMDB 78.68 90.42 91.47 90.57 89.45 91.32 90.49
COLA 45.29 46.27 47.34 46.03 45.36 46.95 46.76
MRPC 84.44 84.69 85.4 84.93 84.77 85.26 85.62
QQP 25.73 56.3 68.63 72.03 42.07 70.97 71.48

Mean 67.61 73.21 75.76 77.05 72.57 76.66 76.26
Average Rank 6.54 4.85 3.46 2.92 4.62 2.54 3.08

Table 30: Performance for different regularization methods without filtering failed runs.

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

1000 Training Datapoints

YELP 94.3 93.83 94.24 93.99 94.51 94.78 94.19
RTE 49.74 53.26 59.09 62.94 52.11 65.78 57.16

MNLI 32.07 31.16 53.25 57.38 45.06 55.88 54.73
QNLI 69.93 82.7 82.34 84.14 77.63 83.67 83.23

SCITAIL 80.31 89.72 91.68 91.0 91.38 91.51 90.9
SST 90.69 90.8 90.81 90.67 90.5 90.75 90.62

CHEMPROT 75.64 78.88 78.37 78.12 77.98 79.64 79.03
AGNEWS 89.29 89.38 89.25 89.91 89.62 89.74 89.32
SCICITE 80.85 80.93 81.55 80.39 80.82 80.25 81.09

IMDB 82.3 91.22 90.99 91.29 90.8 91.35 91.19
COLA 49.39 50.46 50.79 49.47 50.01 51.05 49.39
MRPC 86.84 86.27 88.12 87.29 87.75 87.54 87.97
QQP 26.0 56.63 70.26 70.36 38.79 73.04 72.16

Mean 69.8 75.02 78.52 79.0 74.38 79.61 78.54
Average Rank 6.0 4.54 3.23 3.54 4.77 2.15 3.77

Table 31: Performance for different regularization methods without filtering failed runs.
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

All datapoints

MRPC 86.84 90.67 88.6 90.98 89.9 91.49 91.12
IMDB-10k 66.59 93.24 93.69 92.7 93.1 93.96 93.87
YELP-10k 72.65 95.55 95.81 95.56 95.42 95.78 95.96
SCICITE 81.87 82.13 82.23 82.41 81.97 82.74 83.15
QNLI-10k 64.93 81.64 86.1 86.73 78.43 86.85 87.36

CHEMPROT 72.59 82.57 83.91 82.46 82.73 83.49 83.67
MNLI-10k 14.37 45.98 55.94 46.54 21.66 65.48 64.81

COLA 59.69 63.45 61.5 61.25 62.04 62.34 62.47
RTE 51.35 56.14 52.87 66.86 56.68 71.26 61.44

AGNEWS-10k 91.67 91.82 91.92 91.67 91.73 92.07 91.93
SST 81.95 84.13 92.32 92.28 83.88 92.71 93.23

QQP-10k 5.9 47.77 76.25 55.16 27.8 79.03 79.3
SCITAIL-10k 76.01 93.74 94.03 93.36 86.54 93.74 94.75

Mean 63.57 77.6 81.17 79.84 73.22 83.92 83.31
Average Rank 6.92 4.38 3.46 4.38 5.31 1.92 1.62

Table 32: Performance for different regularization methods without filtering failed runs.

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

Noise level = 0.05

SCICITE 81.29 56.46 81.34 81.11 81.03 81.36 81.88
QNLI-10k 57.35 50.18 68.59 67.16 64.33 83.87 86.08

MRPC 87.4 87.48 86.66 89.11 88.41 88.41 86.81
RTE 51.35 48.59 51.55 65.63 48.65 67.58 61.16

IMDB-10k 72.43 68.28 77.4 62.14 91.63 92.84 92.56
CHEMPROT 71.57 81.42 83.88 81.81 81.48 81.64 82.18

AGNEWS-10k 91.1 91.11 91.55 91.07 91.26 91.21 91.47
YELP-10k 49.92 72.44 86.24 85.4 72.38 95.1 95.36
MNLI-10k 0.0 0.0 31.9 41.99 47.51 63.26 24.96
SST-10k 91.12 83.17 91.83 90.05 91.31 83.21 90.73

SCITAIL-10k 58.21 57.94 92.91 83.36 83.93 92.32 93.48
QQP-10k 0.0 0.0 76.24 57.38 0.0 77.78 78.82

COLA 46.38 47.84 59.33 43.47 45.15 59.53 48.29

Mean 58.32 57.3 75.34 72.28 68.24 81.39 77.98
Average Rank 5.5 5.96 2.92 4.38 4.35 2.42 2.46

Table 33: Training with at most 10k training datapoints on 13 datasets.
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

Noise level = 0.1

SST-10k 88.0 66.93 91.58 88.97 81.02 82.73 82.64
MNLI-10k 12.44 0.13 57.55 48.92 24.31 59.67 12.38

SCITAIL-10k 65.86 63.01 74.68 80.92 69.86 90.97 92.82
IMDB-10k 33.33 33.33 44.86 67.47 76.92 90.96 91.88

RTE 50.54 49.46 48.38 61.52 50.54 64.77 60.58
MRPC 84.11 83.69 85.11 88.49 84.33 86.06 87.4

AGNEWS-10k 90.19 90.24 90.54 90.23 90.32 90.51 90.58
CHEMPROT 80.75 68.56 82.25 80.56 69.38 82.49 71.92

QQP-10k 0.0 0.0 75.49 14.99 14.92 76.17 76.76
YELP-10k 60.78 60.77 83.65 76.4 73.85 94.22 94.64

COLA 56.75 45.85 58.65 52.8 45.43 44.12 55.6
QNLI-10k 50.32 50.54 65.61 63.15 66.69 74.24 83.83
SCICITE 80.79 69.21 80.45 80.71 80.29 78.76 81.52

Mean 57.99 52.44 72.22 68.86 63.68 78.13 75.58
Average Rank 4.96 6.46 3.23 3.46 4.73 2.77 2.38

Table 34: Training with at most 10k training datapoints on 13 datasets.

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

Noise level = 0.2

YELP-10k 49.91 49.64 94.1 56.72 50.14 92.83 93.63
RTE 48.65 47.29 50.54 55.38 47.29 64.98 58.84

QQP-10k 0.07 0.0 19.12 0.0 0.0 72.29 73.52
CHEMPROT 70.05 70.33 81.22 79.75 80.03 80.44 69.08
IMDB-10k 33.33 33.33 45.03 33.39 33.33 77.62 89.3

AGNEWS-10k 85.77 86.9 87.54 87.52 71.6 86.6 86.8
SST-10k 87.73 58.51 79.91 86.51 79.91 87.61 73.26

MNLI-10k 0.0 0.0 48.74 10.46 0.0 0.0 0.0
QNLI-10k 56.13 50.27 69.56 49.89 56.04 61.93 81.28

MRPC 84.45 82.25 85.62 83.49 82.37 72.71 84.88
SCITAIL-10k 49.62 49.62 74.85 49.62 49.62 69.5 88.91

COLA 17.64 9.53 20.23 47.09 19.7 20.16 35.51
SCICITE 45.74 38.42 77.13 77.57 68.46 74.41 76.89

Mean 48.39 44.31 64.12 55.18 49.11 66.24 70.15
Average Rank 4.88 5.92 2.19 3.58 5.27 3.31 2.85

Table 35: Training with at most 10k training datapoints on 13 datasets.
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

Noise level = 0.3

QQP-10k 0.0 0.0 68.62 13.08 16.01 68.31 67.36
SCICITE 34.18 24.67 43.99 73.7 62.73 67.3 73.7

COLA 3.42 6.67 35.97 22.14 12.8 15.01 24.99
IMDB-10k 33.33 33.33 47.15 43.14 33.33 33.33 35.6
MNLI-10k 0.0 0.0 1.29 0.0 0.0 0.22 0.0

CHEMPROT 41.96 54.1 69.21 75.81 45.41 67.7 53.96
QNLI-10k 50.11 49.89 56.27 55.13 50.27 50.18 77.96

AGNEWS-10k 70.31 83.14 67.91 81.75 82.41 45.87 68.06
RTE 49.46 49.46 51.48 53.14 49.46 60.83 54.51

YELP-10k 50.02 49.56 56.02 60.22 49.79 51.99 91.44
SCITAIL-10k 49.62 49.62 58.45 49.62 49.62 56.83 86.71

MRPC 80.92 81.38 81.26 78.42 81.22 79.54 80.63
SST-10k 58.23 64.04 57.73 75.53 63.03 57.08 57.98

Mean 40.12 41.99 53.49 52.44 45.85 50.32 59.45
Average Rank 5.5 4.88 2.77 3.23 4.54 4.04 3.04

Table 36: Training with at most 10k training datapoints on 13 datasets.

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

COLA -0.38 -0.63 3.39 -1.17 0.0 0.93 5.08
MRPC 81.62 81.22 83.13 81.57 81.44 82.12 82.42
QQP-10k 29.68 28.97 43.13 31.71 22.18 46.74 59.26
YELP-10k 50.86 51.55 55.13 51.46 50.99 52.63 60.04
SCITAIL-10k 59.55 58.44 74.46 61.32 49.62 67.38 71.24
SCICITE 24.82 24.84 28.74 24.75 24.67 25.02 27.71
AGNEWS-10k 20.22 20.5 36.61 16.92 20.15 31.01 62.9
IMDB-10k 41.36 33.33 49.87 41.0 43.36 43.57 55.72
CHEMPROT 33.1 32.46 33.23 32.92 32.34 33.09 33.15
MNLI-10k 8.07 8.27 16.76 8.36 6.92 14.58 17.69
SST-10k 51.25 54.55 58.21 52.24 52.2 55.93 66.36
RTE 51.32 51.62 51.5 51.26 53.55 47.83 52.17

Mean 37.62 37.09 44.51 37.69 36.45 41.74 49.48
Average Rank 5.17 5.17 1.92 5.33 5.67 3.33 1.42

Table 37: Results for training top layer for different task after finetuning entire model for QNLI-10k
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

MRPC 81.45 81.4 82.67 81.18 81.22 82.13 81.15
CHEMPROT 33.46 33.46 33.46 33.46 33.46 33.59 33.46
QNLI-10k 59.06 63.74 67.98 61.65 50.54 64.95 64.58
YELP-10k 50.18 50.02 55.91 51.43 50.06 64.07 51.32
SCITAIL-10k 62.54 72.01 68.1 65.55 49.62 76.55 71.55
COLA 0.23 -0.79 0.0 -0.01 0.0 5.17 -0.82
AGNEWS-10k 16.02 19.77 32.56 19.6 10.76 64.32 38.5
IMDB-10k 39.92 45.49 45.45 39.17 33.33 66.28 34.55
SCICITE 24.67 24.67 24.65 24.67 24.67 28.51 24.67
MNLI-10k 11.73 17.18 18.91 15.72 0.0 19.57 19.38
SST-10k 49.69 nan 52.24 50.89 51.03 69.87 58.08
RTE 48.86 52.71 52.89 51.44 50.9 53.52 52.17

Mean 39.82 41.79 44.57 41.23 36.3 52.38 44.05
Average Rank 4.96 3.79 3.08 4.79 5.67 1.17 4.04

Table 38: Results for training top layer for different task after finetuning entire model for QQP-10k

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 51.35 56.82 52.08 67.33 56.82 68.95 64.44
CHEMPROT 33.46 33.49 33.31 33.18 33.2 33.33 33.21
QQP-10k 0.0 14.81 15.45 59.92 24.49 60.55 48.03
QNLI-10k 50.54 51.22 52.57 53.88 52.06 52.6 54.51
SCITAIL-10k 49.62 56.42 57.32 78.47 68.79 78.58 71.15
MRPC 81.22 80.14 81.16 81.08 80.3 80.12 79.73
AGNEWS-10k 10.0 18.45 19.69 43.77 21.62 34.52 28.13
IMDB-10k 33.33 42.36 41.43 57.45 43.13 54.98 51.87
SCICITE 24.67 26.03 26.02 25.69 24.65 26.63 29.63
SST-10k 50.92 55.09 61.81 66.49 55.64 62.27 59.63
YELP-10k 50.02 52.67 54.75 62.68 54.7 58.66 61.74
COLA 0.0 0.0 0.0 0.0 0.0 0.51 -0.69

Mean 36.26 40.63 41.3 52.49 42.95 50.98 48.45
Average Rank 5.75 4.88 4.33 2.58 4.71 2.25 3.5

Table 39: Results for training top layer for different task after finetuning entire model for MNLI-10k

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

SCICITE 33.28 33.85 36.38 29.25 31.38 37.88 33.58
COLA 1.1 5.61 4.66 3.01 3.59 8.11 15.16
QNLI-10k 53.98 56.17 57.89 59.45 54.23 58.6 61.1
YELP-10k 57.78 58.5 59.56 58.38 55.79 61.11 60.11
SCITAIL-10k 50.3 56.81 51.76 57.21 53.59 55.23 67.82
RTE 52.67 52.64 52.6 54.51 54.24 53.13 54.39
IMDB-10k 57.55 60.21 59.33 57.61 56.16 60.9 59.42
CHEMPROT 33.69 33.65 33.44 33.17 33.47 34.32 33.54
SST-10k 64.64 64.43 64.99 63.9 64.46 66.34 66.79
MRPC 81.01 81.17 81.21 81.72 81.11 81.3 81.04
MNLI-10k 5.46 5.79 6.14 10.54 6.05 7.2 9.64
QQP-10k 1.95 1.19 0.05 11.24 3.2 0.51 31.22

Mean 41.12 42.5 42.34 43.33 41.44 43.72 47.82
Average Rank 5.58 4.17 4.42 3.83 5.17 2.5 2.33
Table 40: Results for training top layer for different task after finetuning entire model for AGNEWS-10k
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

CHEMPROT nan 31.23 32.66 32.14 32.55 33.13 32.94
COLA 1.28 -0.71 4.41 0.0 0.0 1.93 7.01
QQP-10k 10.1 18.43 1.98 16.43 22.99 5.02 21.81
QNLI-10k 52.3 54.59 59.36 52.59 49.81 55.78 54.57
YELP-10k 91.28 91.96 78.81 83.41 91.41 93.03 93.44
SCITAIL-10k 51.76 69.71 61.04 49.56 51.46 73.47 50.77
RTE 53.61 59.21 50.54 54.3 53.79 55.6 57.4
AGNEWS-10k 31.43 37.43 40.37 23.64 29.79 44.51 49.81
SCICITE 32.46 25.24 25.13 24.67 24.67 29.07 31.67
MNLI-10k 6.78 9.17 7.88 7.1 7.89 12.17 12.16
SST-10k 85.44 87.16 76.41 80.0 87.96 89.39 89.11
MRPC 81.22 nan 80.56 80.64 81.17 81.17 80.65

Mean 45.24 43.95 43.26 42.04 44.46 47.86 48.44
Average Rank 4.17 3.42 4.67 5.58 4.5 2.25 2.42

Table 41: Results for training top layer for different task after finetuning entire model for IMDB-10k

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

COLA 4.89 4.86 9.5 1.09 -0.44 12.78 12.6
CHEMPROT 32.29 32.09 31.95 32.17 32.98 31.7 31.41
QQP-10k 0.49 9.97 0.03 6.07 2.12 0.0 0.26
QNLI-10k 57.18 58.82 60.03 56.73 53.81 62.24 60.5
YELP-10k 62.97 65.96 63.1 62.67 57.9 67.26 76.47
SCITAIL-10k 49.37 49.31 57.88 49.46 49.62 66.74 49.9
RTE 54.66 53.07 52.49 50.76 51.08 54.01 53.88
AGNEWS-10k 48.5 49.79 55.09 38.46 34.05 57.98 60.96
IMDB-10k 62.83 61.85 65.36 53.94 48.51 65.12 70.33
MRPC 81.12 81.08 81.37 81.12 81.12 81.02 81.28
MNLI-10k 9.36 7.45 8.05 8.27 4.1 8.21 7.32
SST-10k 63.3 62.58 70.41 55.46 54.3 72.05 72.78

Mean 43.91 44.74 46.27 41.35 39.09 48.26 48.14
Average Rank 3.75 4.42 3.42 5.0 5.5 3.08 2.83

Table 42: Results for training top layer for different task after finetuning entire model for SCICITE

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

COLA 0.0 0.0 1.48 -0.59 0.0 5.06 1.91
MRPC 81.22 81.22 81.31 80.75 81.22 81.68 81.91
QQP-10k 0.0 0.0 18.89 60.51 0.0 60.87 36.29
QNLI-10k 50.54 50.54 57.24 58.24 50.54 62.8 55.56
YELP-10k 50.02 50.02 50.15 58.96 53.13 63.63 57.1
SCITAIL-10k 49.62 49.62 57.21 79.02 49.62 82.36 67.64
AGNEWS-10k 10.0 10.0 21.94 44.49 15.14 52.33 21.44
IMDB-10k 33.33 33.33 38.1 56.09 35.22 57.18 44.89
SCICITE 24.67 24.67 25.14 25.33 24.67 31.81 25.96
CHEMPROT 33.46 33.46 33.46 33.26 33.46 33.56 33.46
MNLI-10k 0.0 0.0 6.4 29.24 2.67 27.0 20.51
SST-10k 50.92 50.92 55.59 60.92 53.36 63.88 56.86

Mean 31.98 31.98 37.24 48.85 33.25 51.85 41.96
Average Rank 5.96 5.88 3.75 3.25 5.08 1.17 2.92

Table 43: Results for training top layer for different task after finetuning entire model for RTE
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 1.0 1.0 0.98 0.94 1.0 0.91 0.98
MRPC 0.97 0.92 0.9 0.93 0.94 0.95 0.99

QNLI-10k 0.97 0.97 0.96 0.98 0.98 0.96 0.96
SCITAIL-10k 0.98 0.95 0.96 0.96 0.97 0.96 0.98

IMDB-10k 0.97 0.97 0.98 0.98 0.98 0.96 0.97
SST-10k 0.94 0.94 0.95 0.96 0.94 0.95 0.97
COLA 0.94 0.94 0.93 0.94 0.96 0.94 0.95

AGNEWS-10k 0.65 0.66 0.66 0.68 0.66 0.65 0.64
QQP-10k 0.98 0.97 0.94 0.98 1.0 0.93 0.97

MNLI-10k 0.98 0.93 0.94 0.89 0.97 0.85 0.91
YELP-10k 0.98 0.97 0.97 0.99 0.99 0.97 0.98

CHEMPROT 0.59 0.49 0.49 0.52 0.51 0.51 0.68
SCICITE 0.86 0.87 0.87 0.92 0.9 0.84 0.86

Table 44: Normalized average of top-1 eigenvalues

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 1.0 1.0 0.99 0.97 1.0 0.95 0.99
MRPC 0.98 0.96 0.95 0.94 0.98 0.97 0.99

QNLI-10k 0.99 0.99 0.98 0.99 0.99 0.98 0.98
SCITAIL-10k 0.99 0.98 0.98 0.99 0.99 0.98 0.99

IMDB-10k 0.99 0.99 0.99 0.99 0.99 0.98 0.99
SST-10k 0.97 0.97 0.97 0.98 0.97 0.98 0.98
COLA 0.97 0.96 0.96 0.97 0.98 0.98 0.97

AGNEWS-10k 0.9 0.9 0.9 0.95 0.91 0.91 0.81
QQP-10k 1.0 0.99 0.98 0.99 1.0 0.96 0.99

MNLI-10k 0.99 0.96 0.98 0.96 0.98 0.93 0.97
YELP-10k 0.99 0.99 0.98 1.0 1.0 0.99 0.99

CHEMPROT 0.7 0.61 0.61 0.64 0.64 0.63 0.77
SCICITE 0.92 0.92 0.92 0.96 0.95 0.9 0.92

Table 45: Normalized average of top-2 eigenvalues

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 1.0 1.0 1.0 0.99 1.0 0.98 1.0
MRPC 0.99 0.99 0.98 0.95 0.99 0.99 1.0

QNLI-10k 1.0 1.0 0.99 1.0 1.0 1.0 0.99
SCITAIL-10k 1.0 0.99 0.99 1.0 1.0 1.0 1.0

IMDB-10k 1.0 1.0 1.0 1.0 1.0 0.99 1.0
SST-10k 0.99 0.99 0.99 1.0 0.99 0.99 1.0
COLA 0.99 0.99 0.98 0.99 1.0 0.99 0.99

AGNEWS-10k 0.97 0.97 0.96 0.99 0.97 0.97 0.97
QQP-10k 1.0 1.0 0.99 1.0 1.0 0.99 1.0

MNLI-10k 1.0 0.99 0.99 0.99 1.0 0.98 0.99
YELP-10k 1.0 1.0 0.99 1.0 1.0 1.0 1.0

CHEMPROT 0.89 0.85 0.85 0.88 0.87 0.86 0.92
SCICITE 0.98 0.97 0.97 0.99 0.99 0.97 0.98

Table 46: Normalized average of top-5 eigenvalues
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 1.0 1.0 1.0 0.99 1.0 0.99 1.0
MRPC 1.0 0.99 0.99 0.96 1.0 1.0 1.0

QNLI-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SCITAIL-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0

IMDB-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SST-10k 1.0 1.0 0.99 1.0 1.0 1.0 1.0
COLA 0.99 0.99 0.98 0.99 1.0 1.0 1.0

AGNEWS-10k 0.98 0.98 0.98 0.99 0.98 0.98 0.99
QQP-10k 1.0 1.0 1.0 1.0 1.0 0.99 1.0

MNLI-10k 1.0 0.99 0.99 0.99 1.0 0.99 1.0
YELP-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0

CHEMPROT 0.98 0.97 0.97 0.98 0.98 0.98 0.99
SCICITE 0.99 0.99 0.98 1.0 1.0 0.98 0.99

Table 47: Normalized average of top-10 eigenvalues

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 1.0 1.0 1.0 1.0 1.0 0.99 1.0
MRPC 1.0 1.0 1.0 0.97 1.0 1.0 1.0

QNLI-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SCITAIL-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0

IMDB-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SST-10k 1.0 1.0 0.99 1.0 1.0 1.0 1.0
COLA 1.0 1.0 0.99 0.99 1.0 1.0 1.0

AGNEWS-10k 0.99 0.99 0.98 0.99 0.99 0.99 0.99
QQP-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MNLI-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0
YELP-10k 1.0 1.0 1.0 1.0 1.0 1.0 1.0

CHEMPROT 0.99 0.99 0.98 0.99 0.99 0.99 1.0
SCICITE 0.99 0.99 0.99 1.0 1.0 0.99 0.99

Table 48: Normalized average of top-20 eigenvalues

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 0.06 0.05 151.08 356.83 4.78 497.38 140.33
MRPC 248.44 489.14 573.15 254.92 437.79 368.16 181.92

QNLI-10k 198.62 192.21 296.25 144.09 197.74 316.57 296.03
SCITAIL-10k 182.57 369.51 263.48 252.59 234.66 354.42 252.86

IMDB-10k 248.12 244.33 179.67 142.64 211.15 299.57 293.71
SST-10k 365.78 400.84 333.75 281.04 403.95 360.22 348.41
COLA 405.79 444.48 406.54 301.56 292.11 413.04 402.62

AGNEWS-10k 1124.36 1126.63 1083.96 818.83 1099.94 1121.69 1272.38
QQP-10k 109.81 163.71 380.98 211.71 0.07 497.27 234.59

MNLI-10k 119.46 393.29 287.3 671.92 175.47 849.31 432.63
YELP-10k 177.91 244.31 238.38 97.23 87.91 259.35 198.54

CHEMPROT 1103.13 1351.65 1347.29 1369.47 1390.28 1352.48 1193.84
SCICITE 867.7 844.45 752.98 630.59 633.57 906.15 775.52

Mean 396.29 481.89 484.22 425.65 397.65 584.28 463.33
Average Rank 4.85 3.31 3.85 5.15 4.92 2.0 3.92

Table 49: GM-5
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 0.01 0.01 28.58 54.68 0.54 113.27 24.64
MRPC 47.83 85.21 108.67 65.41 59.4 61.13 19.25

QNLI-10k 29.3 34.28 54.86 16.92 29.65 47.15 46.11
SCITAIL-10k 25.23 58.43 47.44 26.62 31.48 49.61 33.93

IMDB-10k 32.82 32.53 29.47 12.69 23.31 48.51 35.45
SST-10k 58.83 68.08 65.03 27.32 67.7 59.49 44.76
COLA 69.32 82.06 84.79 44.59 42.05 68.46 71.23

AGNEWS-10k 220.03 221.59 186.54 95.6 202.22 208.1 179.2
QQP-10k 10.5 25.4 64.85 22.53 0.01 90.66 35.88

MNLI-10k 20.29 82.66 46.99 115.1 34.8 164.62 71.13
YELP-10k 19.27 33.91 39.9 8.13 10.12 33.49 25.33

CHEMPROT 499.58 646.59 613.5 603.17 601.67 619.9 446.36
SCICITE 164.7 171.53 163.86 88.84 108.6 190.12 152.38

Mean 92.13 118.64 118.04 90.89 93.2 134.96 91.2
Average Rank 5.08 2.62 2.85 5.38 5.31 2.31 4.46

Table 50: GM-10

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 0.0 0.0 5.75 12.17 0.09 24.83 4.34
MRPC 7.55 15.06 20.88 24.8 8.25 10.41 2.65

QNLI-10k 4.01 5.22 9.67 2.0 4.2 6.66 7.5
SCITAIL-10k 2.89 7.58 8.7 3.04 3.58 5.72 4.64

IMDB-10k 3.38 3.55 5.36 1.03 2.38 7.34 4.65
SST-10k 9.62 11.93 14.43 3.63 11.54 10.26 6.77
COLA 12.85 14.76 20.1 10.88 6.18 11.65 12.35

AGNEWS-10k 38.7 38.02 37.23 15.59 35.16 36.44 32.92
QQP-10k 0.89 2.69 10.25 2.28 0.0 16.01 5.4

MNLI-10k 3.44 15.14 9.09 16.15 6.35 29.53 12.0
YELP-10k 1.78 3.68 6.86 0.54 1.05 4.18 3.36

CHEMPROT 69.87 93.37 81.62 65.05 80.71 86.34 48.23
SCICITE 29.61 30.0 32.32 12.79 17.54 37.96 27.58

Mean 14.2 18.54 20.17 13.07 13.62 22.1 13.26
Average Rank 5.08 3.08 2.08 5.38 5.38 2.46 4.54

Table 51: GM-20
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 0.0 0.0 46.98 129.47 0.63 210.7 50.95
MRPC 95.55 198.64 228.53 75.07 138.94 127.19 29.27

QNLI-10k 69.03 67.1 106.82 36.64 58.54 108.56 88.44
SCITAIL-10k 52.56 123.99 105.75 61.73 74.35 111.24 71.91

IMDB-10k 69.28 67.86 60.84 24.22 58.72 90.53 64.7
SST-10k 118.65 145.93 124.11 47.52 153.48 129.43 90.6
COLA 122.08 171.42 157.71 63.75 95.61 127.75 133.4

AGNEWS-10k 540.72 570.89 495.34 179.74 514.01 555.69 702.69
QQP-10k 21.54 55.95 125.51 54.76 0.0 172.94 60.37

MNLI-10k 59.91 193.92 84.33 262.68 84.15 416.25 166.81
YELP-10k 37.49 78.53 78.31 17.42 19.99 64.93 44.16

CHEMPROT 980.72 1196.85 1201.61 1199.8 1222.6 1187.46 924.5
SCICITE 414.13 418.66 338.99 250.67 272.92 476.9 394.16

Mean 198.59 253.06 242.68 184.88 207.23 290.74 217.07
Average Rank 5.0 2.85 3.31 5.62 4.77 2.31 4.15

Table 52: HM-5

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 0.0 0.0 9.0 14.79 0.1 41.73 7.15
MRPC 15.09 24.73 33.48 26.9 13.53 17.29 3.31

QNLI-10k 6.99 9.65 16.49 3.13 7.1 11.6 12.37
SCITAIL-10k 5.46 14.88 14.11 4.35 6.74 10.75 7.91

IMDB-10k 6.7 6.83 7.81 1.7 4.09 11.92 6.44
SST-10k 15.31 19.3 21.21 4.19 18.37 16.18 9.32
COLA 19.72 24.21 28.76 11.5 9.88 19.34 20.15

AGNEWS-10k 65.88 67.33 54.52 18.78 60.41 62.36 44.45
QQP-10k 1.56 5.6 17.67 3.68 0.0 26.38 9.33

MNLI-10k 5.68 27.28 13.1 28.45 10.77 50.47 20.74
YELP-10k 3.28 7.42 11.0 0.95 1.88 7.14 4.95

CHEMPROT 302.28 429.53 333.57 356.82 332.11 389.25 226.06
SCICITE 48.68 54.7 56.06 18.57 29.54 59.65 45.86

Mean 38.2 53.19 47.44 37.99 38.04 55.7 32.16
Average Rank 5.08 2.77 2.31 5.31 5.46 2.46 4.62

Table 53: HM-10
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Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

RTE 0.0 0.0 1.93 4.48 0.02 9.05 1.24
MRPC 2.04 4.6 6.63 13.83 2.13 3.05 0.61

QNLI-10k 0.9 1.31 2.96 0.39 0.98 1.5 2.04
SCITAIL-10k 0.55 1.53 2.65 0.6 0.68 1.04 1.1

IMDB-10k 0.52 0.62 1.63 0.13 0.37 1.84 1.02
SST-10k 2.61 3.52 5.33 0.83 3.29 2.94 1.73
COLA 3.99 4.49 7.88 4.37 1.52 3.28 3.6

AGNEWS-10k 11.43 11.09 12.51 4.21 10.29 10.72 10.49
QQP-10k 0.12 0.43 2.74 0.38 0.0 4.67 1.39

MNLI-10k 0.94 4.56 2.93 3.71 1.87 8.72 3.4
YELP-10k 0.25 0.61 1.96 0.06 0.17 0.91 0.74

CHEMPROT 14.88 20.84 17.98 12.33 17.11 17.93 6.92
SCICITE 8.79 8.87 10.77 3.06 4.68 12.55 8.44

Mean 3.62 4.81 5.99 3.72 3.32 6.02 3.29
Average Rank 5.23 3.15 1.85 5.23 5.46 2.69 4.38

Table 54: HM-20

Tasks STD++ DA WC ReInit R3F CAPCORT-I CAPCORT-MLP

CHEMPROT 584.01 1015.37 702.38 589.39 1415.28 826.09 1141.63
MNLI-10k 1506.74 2643.21 1723.52 1514.14 3746.99 1832.83 3022.97
SCITAIL-10k 1678.89 2962.31 1896.3 1684.06 4217.93 2418.12 3130.63
MRPC 162.09 258.92 214.94 157.42 362.83 226.59 299.13
QNLI-10k 1683.58 2966.56 1894.97 1681.34 4232.07 2414.78 3124.71
QQP-10k 1272.46 2194.95 1487.52 1276.92 3078.56 2307.62 2302.41
SST 5050.32 8537.84 5997.04 5080.05 11878.49 6019.1 9568.79
COLA 239.78 375.78 349.94 240.61 515.27 292.32 398.9
SCICITE 961.03 1746.23 1066.78 962.4 2838.07 1850.68 1835.6
IMDB-10k 1679.74 2975.29 1899.58 1692.33 4220.9 3149.3 3124.5
YELP-10k 1681.65 2975.09 1894.85 1686.21 4224.52 2426.62 3130.62
RTE 307.13 504.8 396.35 309.26 698.16 527.76 529.66
AGNEWS-10k 589.23 1046.27 675.37 595.06 1449.9 1125.27 1227.09

Mean 1338.2 2323.28 1553.81 1343.78 3298.38 1955.16 2525.9

Table 55: Training time for different methods
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